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Abstract: Partially linear additive models (PLAMs) have been considered one of the most

popular semiparametric models for prediction, as they enjoy model flexibility and inter-

pretability. However, choosing the linear and nonlinear parts in PLAMs is always a chal-

lenging task. In the literature, there are a few studies that propose choosing the linear part

by using a regularization method. As a result, they can identify a single optimal PLAM.

We propose a novel strategy based on model averaging to obtain an optimal weighted com-

bination of a series of partially linear additive candidate models. Our approach provides

a new perspective on accounting for the structure uncertainty of PLAMs. It improves

prediction accuracy compared to the estimation method based on each single PLAM, and

reduces the risk of model mis-specification. Moreover, we consider a conditional quantile

process setting that provides a more comprehensive analysis of the relationships between

the response and covariates as well as a more robust prediction. Theoretically, we show

that the proposed method of choosing the weights is asymptotically optimal in terms

of minimizing the out-of-sample quantile prediction error by allowing misspecification of
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each candidate model. The numerical results demonstrate that our method yields smaller

prediction errors than the conventional regularization methods of selecting a single PLAM.

Key words and phrases: Asymptotic optimality, B-splines, Model averaging, Partially

linear additive models, Quantile prediction error.

1. Introduction

Partially linear additive models (PLAMs) have been considered as one of the

most popular semiparametric models for prediction, as they enjoy model flexibility

as well as interpretability, see, for example, Wang et al. (2011); Ma (2012); Ma

et al. (2013); Wang et al. (2014); Wong et al. (2019). In recent years, estimation

in PLAMs has also been investigated in quantile regression which can provide a

more robust prediction as well as a more comprehensive analysis of the relationship

between the response and covariates, see Lian (2012); Sherwood and Wang (2016),

and the reference therein. As far as we know, it is usually a challenging task to

choose between the linear and nonlinear parts for each covariate when one fits a

PLAM, which is called the model structure uncertainty. In practice, people often

deal with the model structure uncertainty according to their empirical experiences.

For example, a commonly adopted strategy is to put continuous covariates in the

nonparametric part and discrete predictors in the linear part of a PLAM. Another

way is to choose a few covariates which may have nonlinear effects on the response

based on prior knowledge, and place them in the nonparametric additive part.
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However, one rarely knows a priori which covariates have linear effects and which

ones have nonlinear effects. Over the past several years, various regularization

methods have been applied to automatically identify linear and nonlinear compo-

nents, including Zhang et al. (2011); Lian (2012); Huang et al. (2012); Lian et al.

(2015); Lou et al. (2016), and so forth. These methods are proposed for model

selection, but they are not for optimal prediction. When all candidate models are

not correctly specified, using a single model without considering the information

from others can result in poor predictive performance.

Model averaging, as a well-known ensemble technique, takes all potential mod-

els into account and assigns a weight to each model. It can markedly reduce the

risk of model misspecification, and generally results in more accurate predictions

than using a single model. Over the last two decades, we have witnessed a boom-

ing development of parametric and semiparametric model averaging methods; see

Wan et al. (2010); Hansen and Racine (2012); Li et al. (2018); Zhang and Wang

(2019); Zhang et al. (2020); Seng and Li (2022); Li et al. (2021, 2022), and the

references therein. However, these aforementioned research findings mainly focus

on conditional mean prediction. Under the framework of quantile regression, Lu

and Su (2015) proposed a jackknife model averaging of a series of linear models to

handle the uncertainty of variable selection. Theoretically, they demonstrated its

asymptotic optimality in terms of minimizing the out-of-sample prediction error.

Wang et al. (2023) investigated the jackknife model averaging for linear quantile
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regression with high-dimensional covariates. Unlike Lu and Su (2015) and Wang

et al. (2023), our goal is to address the PLAM model uncertainty problem and

to achieve an optimal conditional quantile prediction when each candidate model

may be misspecified.

In this paper, we propose a novel strategy for optimal quantile prediction in

PLAMs using both model averaging and quantile regression coefficient modeling

(QRCM). Specifically, we obtain an optimal weighted conditional quantile estimate

from a series of partially linear additive sub-models, where quantile regression

coefficients of each sub-model are modeled as smooth functions of the quantile

levels and estimated by minimizing an integrated loss, and the model weights are

chosen by using an integrated loss with a penalty term. Our approach provides a

new perspective of accounting for the structure uncertainty of PLAMs via model

averaging, and it improves prediction accuracy compared to the regularization-

based method which selects an optimal single PLAM.

Our contributions are three-fold. First, instead of selecting an optimal model,

we average a series of semiparametric partially linear additive sub-models, each

with different nonlinear components, and the model weights automatically adjust

the relative importance of these sub-models. Compared to the popular regular-

ization methods for model selection such as Lian (2012), our model averaging

approach provides a different way to circumvent the problem of artificially set-

ting linear and nonlinear index sets. Furthermore, our approach leads to a more
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accurate prediction than a single selected optimal PLAM by regularization, as

it combines useful information from different semiparametric candidate models.

Second, we consider the regression coefficients as an unknown smooth function of

the quantile levels, called QRCM, so that we can simultaneously estimate the en-

tire conditional quantile process of the response rather than at a given individual

quantile level. The QRCM can provide a full range of quantile analyses, leading

to more appropriate and comprehensive findings, and it can also increase statis-

tical efficiency; see Frumento and Bottai (2016) for applications and discussions

of QRCM. However, previous works on QRCM (Frumento and Bottai, 2016; Fru-

mento et al., 2021) use a parametric model to model the quantile levels, while we

consider the quantile process as an unknown smooth function approximated by

B-splines for more flexibility. Third, we show that the proposed model averaging

estimator enjoys the asymptotic optimality (Lu and Su, 2015), in the sense that its

out-of-sample average quantile prediction error is asymptotically identical to that

of the best but infeasible model averaging estimator. This theoretical property

ensures that the new procedure has good predictive capability in our considered

setting.

The remainder of this article is organized as follows. In Section 2, we introduce

the proposed method for model averaging of PLAMs for conditional quantile pre-

diction. Section 3 focuses on the theoretical properties of the proposed procedure.

In Section 4, implementation is discussed. Section 5 presents empirical evidence
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from simulation studies and a real data example. We provide concluding remarks

in Section 6. Finally, additional simulation results and all proofs are left in the

Supplementary Material.

2. Methodology

2.1 Model and Estimation

Let Y ∈ R1 be the response variable and X = (X1, · · · , Xp)
⊤ ∈ Rp be the

covariate vector, where ⊤ is the transpose of a vector or matrix. The τth (0 <

τ < 1) conditional quantile of Y given X is denoted by µ (X, τ) ≜ Q (Y |X, τ) =

inf {t : FY (t|X) ≥ τ}, where FY (t|X) is the conditional distribution function of

Y given X. In this study, what we are most interested in is to predict µ (X, τ).

We all know that, when the dimension of X is high, modeling the conditional

quantile function µ (X, τ) by purely multivariate nonparametric approaches with-

out any structure specification is infeasible because of the curse of dimensionality.

Earlier authors estimate µ (X, τ) by using popular semiparametric models such as

the PLAM. However, we do not always know the true model in practice. Using

a single model, despite its sophistication, may have a high risk of model misspec-

ification, and thus result in poor prediction performance. Instead of using one

model, aggregating S partially linear additive sub-models with a weighted average

effectively might offer a better approximation to µ (X, τ), where S is allowed to

diverge to infinity as the sample size tends to infinity.
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Specifically, suppose that a total of S candidate models are given asM1, · · · ,MS.

For each s = 1, · · · , S, we assume that As and Ac
s are mutually exclusive and com-

plementary subsets of {1, · · · , p} with the cardinality ps and (p− ps) respectively.

Define XAs =
(
X

(s)

1 , · · · , X(s)

ps

)⊤
and XAc

s
=
(
X

(s)
1 , · · · , X(s)

p−ps

)⊤
, where X

(s)

j ,

X
(s)
j′ are two different components of X for j = 1, · · · , ps and j′ = 1, · · · , p − ps.

Then, the sth candidate model with a partially linear additive structure is defined

by

Ms : µ
(s) (X, τ) ≜ α(s) (τ) +

ps∑
j=1

g
(s)
j

(
X

(s)

j , τ
)
+X⊤

Ac
s
β(s) (τ) , (2.1)

where α(s) (τ) is the unknown intercept, β(s)(τ) =
(
β
(s)
j (τ) : 1 ≤ j ≤ p− ps

)⊤
and

g
(s)
j (·, τ) are the unknown parameter vector and smooth function at the τ -th quan-

tile. To ensure identifiability, for a given τ , we usually assume Eg
(s)
j

(
X

(s)

j , τ
)
= 0,

1 ≤ j ≤ ps. The features in As contribute to the model in a nonlinear fashion

while the features in Ac
s contribute in a linear fashion. Here µ(s) (X, τ) can be

regarded as the τth conditional quantile function under the sth sub-model Ms. In

Section 4.2, we will show how to prepare S semiparametric sub-models.

To offer an optimal weighting scheme, it is necessary to accurately estimate

µ(s) (X, τ) and the model average weights. Therefore, we first should estimate all

unknown parameters and nonparametric functions of the sth candidate model Ms.

Suppose we have a random sample {(Yi,Xi)}ni=1 of size n from the population
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(Y,X). Because of the centering constraint on g
(s)
j (·, τ), we approximate the

nonparametric functions g
(s)
j (·, τ)’s by the centralized B-spline basis functions (Ma,

2012). Using spline expansions, we can approximate g
(s)
j (·, τ) by

g
(s)
j (·, τ) ≈ ψ⊤

j (·)γ(s)
j (τ) , j = 1, · · · , ps, (2.2)

where ψj (·) = (ψjk (·) : 1 ≤ k ≤ Jn = Nn + d)⊤ is a vector of centralized B-spline

basis functions of order d withNn internal knots and γ
(s)
j (τ) =

(
γ
(s)
jk (τ) : 1 ≤ k ≤ Jn

)⊤
is the spline coefficient vector. Then, substituting (2.2) into the model (2.1), we

can get

Ms : µ
(s) (X, τ) ≈α(s) (τ) +

ps∑
j=1

ψ⊤
j

(
X

(s)

j

)
γ
(s)
j (τ) +X⊤

Ac
s
β(s) (τ)

≜Z(s)⊤ξ(s)(τ), (2.3)

whereZ(s) =
(
ψ⊤

1

(
X

(s)

1

)
, · · · ,ψ⊤

ps

(
X

(s)

ps

)
,
(
1,X⊤

Ac
s

)
/
√
Jn

)⊤
and ξ(s)(τ) =

(
γ
(s)⊤
1 (τ),

· · · ,γ(s)⊤
ps (τ),

√
Jn
(
α(s)(τ),β(s)⊤(τ)

))⊤
.

Clearly, ξ(s)(τ) can be taken as a set of quantile regression coefficient func-

tions describing how each regression coefficient replies on the quantile level τ . The

large majority of references on standard quantile regression (e.g., Koenker (2005))

focused on the problem of estimating a single quantile of interest. However, we

usually need to obtain the entire quantile process over τ ∈ (0, 1) rather than only
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obtaining a discrete set of quantiles in practice. An alternative approach, intro-

duced by Frumento and Bottai (2016), is to model quantile regression coefficients

as parametric functions of the quantile level, which has advantages in terms of

parsimony and efficiency, and may expand the potential of statistical modeling.

Thus, we model ξ(s)(τ) by a series of K known basis functions

ξ(s)(τ) = θ(s)b (τ) , (2.4)

where b (τ) = (bj (τ) : 1 ≤ j ≤ K)⊤ is a set of K known basis functions of τ ∈

(0, 1), and θ(s) is a ϕs×K matrix with ϕs ≜ 1+psJn+p−ps. Let θ(s)uv be the (u, v)th

element of θ(s) for u = 1, · · · , ϕs and v = 1, · · · , K. Under model (2.4), it is easy

to see that the lth component of ξ(s)(τ) is ξ
(s)
l (τ) =

K∑
k=1

θ
(s)
lk bk (τ) , l = 1, · · · , ϕs.

The model (2.4) extracts the common features of ξ(s)(τ) over τ ∈ (0, 1) via the K-

dimensional known basis function vector b (τ). So this modeling strategy presents

numerous superiorities including a simpler computation, increased statistical effi-

ciency, and easy interpretability of the results. To obtain an estimate of θ(s), we

should specify b (τ) in advance. We give detailed discussions on selection of b (τ)

in Section 4.1.

To facilitate the presentation, some notations should be introduced. Let

D(s) (τ) = b (τ)⊗Z(s) and ζ(s) =
(
θ
(s)⊤
1 , · · · ,θ(s)⊤K

)⊤
, where θ

(s)
k =

(
θ
(s)
1k , · · · , θ

(s)
ϕsk

)⊤
is the k-th column of the parameter matrix θ(s) and ⊗ is the Kronecker product
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of two matrices. By a simple calculation, we have Z(s)⊤ξ(s) (τ) = D(s)⊤ (τ) ζ(s).

Then, the formula (2.3) can be rewritten as

Ms : µ
(s) (X, τ) ≈D(s)⊤ (τ) ζ(s). (2.5)

To integrate information from different quantile levels, we propose to estimate ζ(s)

in (2.5) by minimizing the following integrated loss function

ζ̂(s) =argmin
ζ(s)

L̄(s)
n

(
ζ(s)
)

=argmin
ζ(s)

∫ 1

0

L(s)
n

(
ζ(s)
)
dτ

=argmin
ζ(s)

∫ 1

0

n∑
i=1

ρτ

(
Yi −D(s)⊤

i (τ) ζ(s)
)
dτ, (2.6)

where D
(s)
i (τ) is the sample version of D(s) (τ) and ρτ (u) = u (τ − I (u < 0)) is

the quantile check function. The objective function L̄(s)
n

(
ζ(s)
)
can be regarded

as an average loss function, achieved by marginalizing L(s)
n

(
ζ(s)
)
over the entire

interval (0, 1). So far, the solution of minimizing (2.6) can be implemented by

the “iqr” function in the R package “ qrcm” (Frumento and Bottai, 2016). Let

µ̂(s) (Xi, τ) =D
(s)⊤
i (τ) ζ̂(s) be the estimator of µ (Xi, τ) under the sth sub-model

Ms for s = 1, · · · , S.

With the estimators µ̂(s) (Xi, τ) of each sub-model readily available, we can

define the model average estimate of µ (Xi, τ) as a weighted average of µ̂(s) (Xi, τ),
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i.e.,

µ̂[w] (Xi, τ) =
S∑

s=1

wsµ̂
(s) (Xi, τ) , (2.7)

where w = (ws, 1 ≤ s ≤ S)⊤ is the vector of model weights belonging to the set

W =

{
w ∈ [0, 1]S :

S∑
s=1

ws = 1

}
.

Remark 1. In fact, it would be difficult to find an optimal parametric or semipara-

metric model for a dataset of interest. Basically, all sub-models M1, · · · ,MS under

investigation might be wrong, but aggregating S semiparametric sub-models with

a weighted average effectively offers a close approximation to the reality. Thus,

we may achieve improved prediction accuracy by combining M1, · · · ,MS in an

effective manner. Furthermore, it is worth emphasizing that we provide another

attractive strategy to solve model structure uncertainty, which distinguishes from

existing model averaging literature that mainly considers the problem of covariate

uncertainty (Wan et al., 2010; Hansen and Racine, 2012; Lu and Su, 2015; Zhang

et al., 2020; Wang et al., 2023).

2.2 Weight-Choosing Criterion

Until now, the weight vector w in µ̂[w] (Xi, τ) is left unspecified. Clearly, each

element of w measures the relative importance of each candidate model in the

final prediction. For example, the sth weight with zero value implies that the final

prediction removes the sth candidate model. Thus, the key question here is how
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to choose a suitable weight for each candidate model as it plays a critical role

in producing good and reliable prediction performance. We propose to select the

weight vector by minimizing the following criterion

Qn (w) = n−1

∫ 1

0

n∑
i=1

ρτ

(
Yi −

S∑
s=1

wsD
(s)⊤
i (τ) ζ̂(s)

)
dτ + n−1λn

S∑
s=1

wsϕs, (2.8)

that is, ŵ = argmin
w∈W

Qn (w), where λn is a positive scale depending on the sample

size n. We take λn = log (n) /2 in numerical experiments. Note that the first

term in (2.8) measures the goodness of fit and the second term controls the model

complexity and prevents assigning relative weights to the overfitting candidate

models. The second term n−1λn
S∑

s=1

wsϕs is related to the information criterion. We

use a special case for illustration. If we only consider the sth candidate model Ms

(1 ≤ s ≤ S) for prediction and thus take the sth element of w to be one and others

to be zeros, then n−1λn
S∑

s=1

wsϕs reduces to ϕslog(n)/(2n) when λn = log(n)/2,

which is the same as the second term of Schwarz information criterion (SIC) in Lian

(2012). Previous studies such as Lian (2012) used SIC to select tuning parameters

(i.e., knots selection and regularization parameter selection), but we use a similar

form to estimate the weight vector w. Such a similar penalty term has also been

used in semiparametric model averaging works, see for example Fang et al. (2022).

Furthermore, it is easy to understand that the model weight estimator ŵ does

not depend on the quantile level τ because of using the integrated loss function.
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Compared with the standard quantile loss function, the penalized integrated loss

function (2.8) utilizing the common characteristics of multiple quantiles can gain

better estimation efficiency of the model weight w. Therefore, our weight-choosing

criterion is different form the jackknife criterion of Lu and Su (2015) and Wang

et al. (2023), which focuses on the problem of estimating a single quantile of

interest. Given ŵ, the model averaging estimator of µ (Xi, τ), termed as the

semiparametric model averaging quantile prediction (SMAQP), is defined by

µ̂[ŵ] (Xi, τ) =
S∑

s=1

ŵsµ̂
(s) (Xi, τ) =

S∑
s=1

ŵsD
(s)⊤
i (τ) ζ̂(s). (2.9)

Suppose that (y,x) is an independent copy of (Yi,Xi). DefineDn = {(Yi,Xi)}ni=1,

z(s) =
(
ψ⊤

1

(
x
(s)
1

)
, · · · ,ψ⊤

ps

(
x(s)ps

)
,
(
1,x⊤

Ac
s

)
/
√
Jn

)⊤
, xAs =

(
x
(s)
1 , · · · , x(s)ps

)⊤
and

xAc
s
=
(
x
(s)
1 , · · · , x(s)p−ps

)⊤
where x

(s)
j , x

(s)
j′ are two different components of x for

j = 1, · · · , ps and j′ = 1, · · · , p−ps. The definitions of As, Ac
s and ψj (·) are given

in subsection 2.1. Let D(s) (τ) = b (τ) ⊗ z(s) and µ̂(s) (x, τ) = D(s)⊤ (τ) ζ̂(s) for

s = 1, · · · , S. Define the out-of-sample average quantile prediction error (denoted

as OAQPEn) as follows

OAQPEn (w) =E

{∫ 1

0

ρτ

(
y −

S∑
s=1

wsµ̂
(s) (x, τ)

)
dτ |Dn

}
. (2.10)

Next, we will show that the weight vector selected by (2.8) is asymptotically op-

timal in the sense of achieving the lowest possible OAQPEn (w) under some reg-
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ularity conditions.

Remark 2. It is understood that the selection of the loss function is closely re-

lated to the characteristic of the response variable’s distribution that one wants

to predict. For example, the traditional quadratic (or quantile) loss function cor-

responds to the conditional mean (or quantile) of the distribution of the response.

Here the object of our interest is the average of quantile prediction over the in-

terval (0, 1), and thus it is natural to define the risk function (2.10) which can be

regarded as a beneficial extension of the criterion (2.13) in Lu and Su (2015).

Remark 3. Of course, we can utilize standard quantile regression to estimate

the parameters and the nonparametric functions of each candidate model and

choose the optimal model weight. Specifically, for a given quantile level τ ∈ (0, 1),

we obtain the estimator of µ (Xi, τ) in the sth sub-model Ms by µ̃(s)
(
Xi, τ

)
=

Z
(s)⊤
i ξ̃(s)(τ), where ξ̃(s)(τ) = argmin

ξ(s)(τ)

n∑
i=1

ρτ
(
Yi −Z(s)⊤

i ξ(s)(τ)
)
and Z

(s)
i is the

sample version of Z(s) in (2.3). Then, the model weight estimator can be ob-

tained by minimizing the penalized standard quantile loss function, i.e., w̃(τ) =

argmin
w(τ)∈W

Q̃n (w, τ), where Q̃n

(
w, τ

)
= n−1

n∑
i=1

ρτ
(
Yi −

S∑
s=1

ws(τ)µ̃
(s)
(
Xi, τ

))
+n−1λn

S∑
s=1

ws(τ)ϕs.

Then, similar to (2.9), the final model averaging estimator of µ (Xi, τ), termed as

standard semiparametric model averaging quantile prediction (SSMAQP), is defined

by µ̃[w̃] (Xi, τ) =
S∑

s=1

w̃s(τ)µ̃
(s) (Xi, τ).

Remark 4. We note that the standard quantile regression fitted at each given

quantile level can be viewed as a special case of the quantile regression with the
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integrated loss. Specifically, we carry out the integral in a sufficiently small interval

(τ−∆, τ+∆), and let the regression coefficients and model weights be constant on

this interval. Then, the estimator based on the integrated loss approaches to the

one obtained from the standard quantile regression when ∆ approaches zero, which

reasonably clarifies in what sense this approach can use more information from the

data than the standard quantile regression, so that SMAQP can be more efficient

than SSMAQP. The numerical evidence for the above discussion is provided in

Section S1.2 of the Supplementary Material.

3. Theoretical results

In this section, we investigate the asymptotic properties of the SMAQP esti-

mator. For notational simplicity, let µi ≜ µ (Xi, τ) and εi ≜ εi (τ) = Yi−µi, so we

have P {εi ≤ 0 |Xi} = τ . Suppose that f (· |Xi ) and F (· |Xi ) are the conditional

probability density function (PDF) and cumulative distribution function (CDF)

of εi given Xi, respectively. Since all models are potentially misspecified in the

model averaging literature, we define the pseudo-true parameter value for the sth

sub-model

ζ
(s)
0 = argmin

ζ(s)

Q̄(s)
(
ζ(s)
) ∆
= argmin

ζ(s)

E

[∫ 1

0

ρτ

(
Yi −D(s)⊤

i (τ) ζ(s)
)
dτ

]
. (3.1)
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For s = 1, · · · , S, we define A(s) = E
[∫ 1

0
f
(
−u(s)i |Xi

)
D

(s)
i (τ)D

(s)⊤
i (τ) dτ

]
,

C(s) = Cov
[∫ 1

0
ψτ

(
εi + u

(s)
i

)
D

(s)
i (τ) dτ

]
and Σ(s) = E

[∫ 1

0
D

(s)
i (τ)D

(s)⊤
i (τ) dτ

]
,

where ψτ (u) = τ − I {u < 0} and u
(s)
i ≜ u

(s)
i (τ) = µi − D

(s)⊤
i (τ) ζ

(s)
0 can be

regarded as the approximation bias for the sth candidate model. Let λmin(A) and

λmax(A) be the smallest eigenvalue and largest eigenvalue of a symmetric matrix

A, respectively. For a vector ξ = (ξ1, · · · , ξs)⊤ ∈ Rs, denote its L2 norm by

∥ξ∥ = (ξ21 + · · ·+ ξ2s )
1/2

. Let ϕ̄ = max
1≤s≤S

ϕs. To build the theoretical properties of

ζ̂(s) and ŵ, the following regularity conditions are needed.

(C1) (i) {(Yi,Xi)}ni=1 are independent and identically distributed and E [µ4
i ] <∞.

(ii) The support of each predictor, X̄
(s)
j , is [a, b], where a and b are finite real

numbers. The marginal densities for X̄
(s)
j are all bounded from below and above by

two fixed positive constants on [a, b], for j = 1, · · · , ps, s = 1, · · · , S. (iii) There are

constants 0 < C1 < C2 < ∞, such that C1 ≤ λmin

(
E

[(
1,X⊤

Ac
s

)⊤ (
1,X⊤

Ac
s

)])
≤

λmax

(
E

[(
1,X⊤

Ac
s

)⊤ (
1,X⊤

Ac
s

)])
≤ C2.

(C2) For s = 1, · · · , S, j = 1, · · · , ps and sufficiently large n, Jn
n∑

i=1

ψj

(
X̄

(s)
ij

)
ψ⊤

j

(
X̄

(s)
ij

)
is nonsingular, and the eigenvalues of Jnn

−1
n∑

i=1

ψj

(
X̄

(s)
ij

)
ψ⊤

j

(
X̄

(s)
ij

)
are bounded

away from zero and infinity.

(C3) The conditional cumulative distribution function F (· |Xi ) is absolutely con-

tinuous, with continuous conditional density function f (· |Xi ) uniformly bounded,

and its first-order derivative f ′ (· |Xi ) exists and is uniformly bounded.

(C4) For s = 1, · · · , S, there exist constants cA(s) , c̄A(s) , cC(s) , c̄C(s) that may de-
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pend on ϕs such that (i) 0 < cA(s) ≤ Jnλmin

(
A(s)

)
≤ Jnλmax

(
A(s)

)
≤ C0Jnλmax

(
Σ(s)

)
≤

c̄A(s) < ∞ for some positive constant C0; (ii) 0 < cC(s) ≤ Jnλmin

(
C(s)

)
≤

Jnλmax

(
C(s)

)
≤ c̄C(s) <∞; (iii) (c̄A(s) + c̄C(s))/ϕs = O(c2

A(s)).

(C5) Let cA = min
1≤s≤S

cA(s) , cC = min
1≤s≤S

cC(s) , c̄A = max
1≤s≤S

c̄A(s) and c̄C = max
1≤s≤S

c̄C(s) .

(i)As n → ∞, p2J2
n/(nc

2
C(s)) → 0 and pϕ̄Jn log n/n → 0; (ii) Sn−L2ϕ̄c3A/(4c̄Ac̄C) =

o(1) for a sufficiently large constant L.

(C6) λnϕ̄ = o(n).

Conditions (C1)(i) specifies the data are IID, which is commonly imposed in

the quantile model averaging literature, see Lu and Su (2015); Lee and Shin (2023);

Wang et al. (2023). Condition (C1)(ii) requires a boundedness condition on the

covariates, and it is often assumed in the asymptotic analysis of nonparametric

regression problems. Condition (C1)(iii) can be found in Condition (C2) of Huang

et al. (2007) and Assumption (A2) of Ma et al. (2013). Condition (C2) is similar

to Condition (C6) in Sun et al. (2017). This condition can be derived from the

properties of B-splines. It can also be written in another way such that c1J
−1
n ≤

λmin

{
E
[
ψj(X̄

(s)
ij )ψ⊤

j (X̄
(s)
ij )
]}

≤ λmax

{
E
[
ψj(X̄

(s)
ij )ψ⊤

j (X̄
(s)
ij )
]}

≤ J−1
n C1 for 0 <

c1 ≤ C1 < ∞, which holds by using the conclusion of Lemma S.2 in Ma and

He (2016). Condition (C3) is a common assumption for the conditional density

function of the random error. Moreover, Condition (C4) (i) and (ii) can be derived

from Condition (C1) (iii) and Condition (C2). Condition (C4)(i)-(ii) imply that

the eigenvalues of JnA
(s) and JnC

(s) are bounded and bounded away from zero
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for a given s. However, these bounds (cA(s)
, cC(s)

) can converge to zero and (c̄A(s)
,

c̄C(s)
) diverge to infinity, both at slow rates when ϕs → ∞. The rates are restricted

in conditions (C4)(iii) so that the usual consistency
√
ϕsJn/n for the estimator

ζ̂(s) in Ms is not affected. Condition (C5) imposes restrictions on the dimension of

the covariates p, Jn, the largest dimension of the models ϕ̄, the potential number

of models under investigation(S), and the constants cA, cC , c̄A and c̄C . Condition

(C6) is satisfied when we use λn = 1 or log(n)/2.

Proposition 1. Under conditions (C1)–(C5), we have

max
1≤s≤S

∥∥∥ζ̂(s) − ζ(s)0

∥∥∥ = Op

(√
Jnϕ̄ log n/n

)
.

Remark 5. The prediction of the conditional quantile function is of our main

interest. We provide the uniform convergence rate of ζ̂(s) for the purpose of estab-

lishing the desirable asymptotic optimality of SMAQP.

Theorem 1. Suppose conditions (C1)–(C6) hold, and p3/2ϕ̄3/2S log n/n → 0 as

n→ ∞. Then ŵ is asymptotically optimal in the sense that

OAQPEn (ŵ)

inf
w∈W

OAQPEn (w)
= 1 + op(1).

Remark 6. Theorem 1 presents the asymptotic optimality of the SMAQP esti-

mator even if all candidate models are misspecified, implying that the estimated
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weight vector ŵ by minimizing (2.8) is optimal in the sense of making the OAQPEn

as small as possible among all feasible weight vectors w lying in the set W. This

result is similar to Theorem 3.3 of Lu and Su (2015), but our proof may be more

cumbersome due to the different model weight choice criterion (2.8) and compli-

cated semi-parametric candidate models. In addition, we should be aware that

ŵ will change if the set of semi-parametric sub-models under consideration are

changed. Any SMAQP estimator based on the given set of candidate models may

not outperform an estimator that is not considered by the given candidate models.

4. Implementation details

4.1 Selection of turning parameters and basis functions

Selection of the order and knots for B-spline plays important roles in numerical

studies. Following Ma (2012) and Huang et al. (2012), we used cubic B-splines

(d = 4) to approximate each nonparametric function in all numerical studies. For

convenience, the number of interior knots (Nn) is selected as the integer part of

n1/(2d+1), which is also adopted in Xue et al. (2010) and Wang et al. (2014). One

often uses λn = 1 or log(n)/2 in practice (Fang et al., 2022). Both of them satisfy

Condition (C6). To investigate whether there is a significant difference in the

numerical results for λn = 1 or log(n)/2, we conduct a sensitivity analysis of the

proposed SMAQP. Figure S3 in the Supplementary Material shows that the two

values of λn lead to similar prediction results. Therefore, both values can be used
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in practice. In our numerical studies, we set λn = log(n)/2.

Another key problem in the implementation of our model averaging is how

to specify the basis function b (τ). In the absence of prior knowledge, one may

define b (τ) by using polynomials, splines, trigonometric functions, known quantile

functions, and combinations of the above. For instance, we consider the three

types of basis functions b (τ)(1) = (1,Φ−1 (τ))
⊤
, b (τ)(2) = (1, τ, τ 2)

⊤
, b (τ)(3) =

(1, log (τ/ (1− τ)))⊤, where Φ (·) denotes the distribution function of the standard

normal distribution. The basis set b (τ)(1) relates to the quantile function of the

standard normal, b (τ)(2) simply consists of polynomials of increasing orders and

b (τ)(3) relates to a logistic distribution. In general, any set of functions could be

utilized, with the only requirement that b (τ) should induce a well-defined quantile

function for some θ(s). More examples can be found in Frumento and Bottai (2016)

and Frumento et al. (2021). In Section 5.1, a sensitivity analysis has been made

to investigate whether our method is sensitive to the selection of basis function.

4.2 Building partially linear additive sub-models

Prior to model averaging, we have to prepare suitable candidate models for

producing good predictions. So far, many model averaging studies focus on dealing

with the covariate uncertainty, see Wan et al. (2010); Hansen and Racine (2012);

Lu and Su (2015); Zhang and Liu (2018); Zhang et al. (2020); Fang et al. (2023).

In this paper, we introduce another attractive scheme to build a series of semipara-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



21

metric sub-models for solving the model structure uncertainty. Without loss of

generality, we assume that the first S∗ covariates are continuous and the last p−S∗

covariates are discrete. Let XA = (X1, · · · , XS∗)⊤ and XAc = (XS∗+1, · · · , Xp)
⊤.

Usually, discrete covariates are only taken as the linear parts. However, we still do

not know which continuous covariates have linear effects on the conditional quan-

tile function. In the absence of prior information, we suppose that all continuous

covariates have nonlinear effects on the conditional quantile function, and thus the

following PLAM is used initially

µ(0) (X, τ) ≜ α(0) (τ) +
S∗∑
j=1

g
(0)
j (Xj, τ) +

p−S∗∑
l=1

Xl+S∗β
(0)
l (τ), (4.1)

where α(0) (τ) is the unknown intercept, β
(0)
l (τ) and g

(0)
j (·, τ) are the unknown

parameter and smooth function at the τ -th quantile for 1 ≤ l ≤ p − S∗ and 1 ≤

j ≤ S∗. It is often assumed Eg
(0)
j (Xj, τ) = 0 with j = 1, · · · , S∗ for identification

purposes.

For a bivariate function g (x, τ), let g′ (x, τ) = ∂g (x, τ) /∂x be the first partial

derivative of g (x, τ) with respect to x. Let bij (τ) = g′
(0)
j (Xij, τ)− g′

(0)
j (Xi−1,j, τ),

bj (τ) = (b2j, · · · , bnj)⊤ ∈ Rn−1 and ∥bj (τ) ∥ =
(∑n

i=2 b
2
ij (τ)

)1/2
for 2 ≤ i ≤ n and

1 ≤ j ≤ S∗. It is easy to understand that the jth covariate has a linear effect (i.e.,

g
(0)
j (x, τ) is a linear function of x) if and only if its first partial derivative with

respect to x is a constant, then ∥bj (τ) ∥ = 0 (Hu and Xia, 2012). We still adopt the
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strategy of subsection 2.1 to estimate all unknown parameters and nonparametric

functions in (4.1). Thus, we can easily obtain ĝ′
(0)

j (x, τ), ∥b̂j (τ) ∥ and ∥b̂j∥ =∫ 1

0
∥b̂j (τ) ∥dτ for j = 1, · · · , S∗. To build a series of semiparametric sub-models,

an explicit ordering of the S∗ continuous covariates is needed. Specifically, we

can determine the order of the covariates entering the nonlinear set according to

the decreasing order of ∥b̂1∥, · · · , ∥b̂S∗∥ (called as S∗ threshold values). Suppose

that {j1, · · · , jS∗} is a permutation of {1, · · · , S∗} such that ∥b̂j1∥ ≥ · · · ≥ ∥b̂jS∗∥.

Clearly, the larger ∥b̂j∥ is, the more reasonable it is to take the jth covariate as

a nonlinear component. Moreover, the model (4.1) that includes all continuous

covariates in the nonlinear part is only used as an initial model to obtain ∥b̂j∥

based on which one can rank the continuous covariates and build the series of

semiparametric sub-models.

Given S∗ available continuous covariates, we all know that the total number

of semiparametric sub-models is (2S
∗ − 1) if we require that at least one continu-

ous covariate is taken as the nonlinear component. Applying our model averaging

procedure in such a case is computationally infeasible when S∗ is large or mod-

erate. So we provide two versions of constructing semiparametric sub-models for

obtaining good numerical results.

Strategy A: Let S = S∗, As = {jl : 1 ≤ l ≤ s} and Ac
s be the complemen-

tary set of As for s = 1, · · · , S. All the nonlinear sets are nested, that is,

A1 ⊂ A2 ⊂ · · · ⊂ AS. In the sth sub-model Ms, we takeXAs = (Xj1 , · · · , Xjs)
⊤ ≜
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X

(s)

1 , · · · , X(s)

s

)⊤
as the nonlinear parts and regard the remaining covariates

XAc
s
=
(
X

(s)
1 , · · · , X(s)

p−s

)⊤
as the linear parts, where X

(s)

j , X
(s)
j′ are two differ-

ent components of X for j = 1, · · · , s and j′ = 1, · · · , p− s.

Strategy B : We assume that the first q covariates
{
Xj1 , · · · , Xjq

}
may have

nonlinear effects on the conditional quantile function. Let A1, · · · ,AS be all pos-

sible nonempty subsets of {j1, · · · , jq}, which indicates that we take all the possible

(S = 2q − 1) sub-models into consideration. Here q is often small, and thus we

take q = 5 in our numerical studies. In the sth sub-model Ms, we regard XAs and

XAc
s
as the nonlinear and linear components respectively.

5. Numerical studies

5.1 Simulation examples

In this section, we conduct two simulation examples to evaluate the finite-

sample performance of the proposed approach and compare it with the following

model selection and model averaging approaches.

(1) QRCM: Frumento and Bottai (2016) described an alternative approach

for linear quantile regression through modeling quantile regression coefficients as

parametric functions of the order of the quantile, which can be implemented by

the iqr function in the package qrcm of R software.

(2) PAQRM: Lian (2012) proposed a penalized polynomial spline-based proce-

dure that simultaneously eliminates irrelevant predictors and identifies nonlinear
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components for additive quantile regression models. This procedure aims to iden-

tify a single optimal model to make predictions.

(3) JQLMA: Lu and Su (2015) introduced a jackknife model averaging estima-

tor for linear quantile regression. This procedure considers all candidate models

to be fully linear.

(4) It is known that the performance of model averaging heavily relies on the

construction of candidate models. Thus, two versions are considered for SMAQP.

Let SMAQP1 and SMAQP2 be the respective optimal model averaging methods

with candidate models constructed by Strategy A and Strategy B.

Next, we examine the numerical performances of the above methods by two

simulated examples. For each simulation, we estimate unknown parameters, func-

tions and model weights with n = 500 in-sample observations, and then generate

additional 100 out-of-sample observations to calculate prediction performances.

We utilize the sample version of OAQPEn, defined in (2.10), to measure the aver-

age of out-of-sample quantile prediction error

OAQPE =
K∑
k=1

∑
i∈I

ρτk (Yi − µ̂ (Xi, τk))

K |I|
,

where τk = k/(K + 1), k = 1, · · · , K = 100, µ̂ (Xi, τ) is an estimator of the τth

conditional quantile function µ (Xi, τ) and I stands for the testing set with the

size |I| = 100. Following Lee and Shin (2023), we adopt the following criteria to
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assess the performance of different methods

Average OAQPEA =R−1

R∑
r=1

OAQPE (r)A ,

Winning RatioA =R−1

R∑
r=1

I
{
OAQPE (r)A < OAQPE (r)B , · · · ,

OAQPE (r)A < OAQPE (r)E
}
,

Loss to SMAQP2A =R−1

R∑
r=1

I
{
OAQPE (r)SMAQP2 < OAQPE (r)A

}
,

where I (C) is an indicator function for an event C and OAQPE(r) is the value of

OAQPE in the rth replication for r = 1, · · · , R. Similar to Lee and Shin (2023), the

subscript A in OAQPE (r)A denotes a generic notation for an estimation approach.

Note that the loss to SMAQP2 ratio gives us a more direct binary comparison of

each approach to SMAQP2. It is easy to see that the smaller OAQPE and the

bigger winning ratio, the method is better. We generate R = 200 replications for

each simulation example.

Example 1. Similar to the simulation setups of Lian (2012), we generate

data from an additive model Yi =
p∑

j=1

mj (Xij)+σiϵi, i = 1, · · · , n, where m1 (u) =

3sin (2πu), m2 (u) = 2cos (2πu) − 3u, m3 (u) = 6u (1− u), m4 (u) = exp (−2u) +

3u3, m5 (u) = u, m6 (u) = −u and mj (u) = 0 for j = 7, · · · , p. The covariates

Xi = (Xi1, · · · , Xip)
⊤ are generated by Xil = (Wil + tUi) / (1 + t) for 1 ≤ l ≤ p,

where Wil and Ui are generated independently from Uniform(0, 1). Thus, the
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covariates have an exchangeable correlation structure with ρx ≜ Corr(Xil, Xil′) =

t2/(1 + t2) for l ̸= l′. The parameter t is taken as 0, 1 and 3, representing uncor-

related (ρx = 0), moderate (ρx = 0.5) and high (ρx = 0.9) correlations between

covariates. We take σi = 1 (case a) or 0.5 + |Xi1| (case b), representing ho-

moscedasticity and heteroscedasticity respectively. We also consider p = 6 or 10,

corresponding to different sparsity levels. Three different distributions of the error

term ϵi are considered: (case i) standard normal distribution; (case ii) t distribu-

tion with 3 degrees of freedom; (case iii) mixture distribution which is a mixture

of N (0, 1) and N (0, 25) with weights 95% and 5% respectively.

Example 2. To reflect the flexibility of our procedure, we consider two

more complicated data-generating processes. In the first case (Model I), we gen-

erate data from the previous model in Example 1, only except that mj (u) =

cos (2κju) /
√
j with κj

i.i.d∼ Uniform(1, 4) for j = 1, · · · , 1000. Our setting is

similar to the infinite-order regression in Lu and Su (2015) except that regres-

sion parameters are replaced by nonlinear additive functions. In this case, we

only use the first 10 covariates for prediction, which indicates that some co-

variates are excluded. In the second case (Model II), we assume that the true

data-generating process is from the multivariate nonparametric regression model

Yi = 4sin (2πXi1Xi3Xi5)Xi7 − exp (Xi9Xi10) + σiϵi, i = 1, · · · , n. In this example,

we consider p = 10. Other specifications are the same as those in Example 1. It

is easy to see that all candidate models are wrongly specified in both two cases.
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An intuitive approach is to specify basis functions by a collection of polynomi-

als, known quantile functions, splines, and combinations of the above as long as the

regression coefficient can be approximated reasonably well by the specified basis

functions. We conduct a sensitivity analysis of the proposed method SMAQP1 us-

ing b (τ)(1) = (1,Φ−1 (τ))
⊤
, b (τ)(2) = (1, τ, τ 2)

⊤
and b (τ)(3) = (1, log (τ/ (1− τ)))⊤.

We attain 200 replicates and corresponding results are given in Table S2 of the

Supplementary Material. We only consider t = 1, p = 10 and homoscedastic-

ity (case a), and the results for other cases are similar. To save space, we don’t

report those results. From Table S2, we can see that there is essentially little dif-

ference in the numerical results when different bias functions are used, indicating

that our method is not sensitive to the selection of basis function Thus, we fix

b (τ) = (1,Φ−1 (τ))
⊤
in these two simulation examples.

Table 1 and Table S3 in the Supplementary Material summarize the simulation

results of various estimators in all designs. From Table 1 and Table S3, we observe

that the proposed SMAQP2 enjoys the smallest OAQPEs and the highest winning

ratio among all compared methods. The results in the tables show that SMAQP2

slightly outperforms SMAQP1 which typically has the second-best prediction per-

formance. The good performances of SMAQP1 and SMAQP2 are partly because

the optimality of the proposed semiparametric model averaging does not depend

on the correct specification of candidate models.

Interestingly, the popular model selection method PAQRM is inferior to SMAQP1
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and SMAQP2 in all scenarios, showing the benefits of model averaging. One possi-

ble reason is that identifying the best semiparametric model is usually difficult as

it often involves complicated tuning steps, resulting in model selection exhibiting

unsatisfactory prediction results in most practical applications. Furthermore, it is

not surprising that QRCM and JQLMA yield the worst outcomes as they ignore

the nonlinearity between the response and covariates.

Finally, it is not difficult to understand that all approaches use misspecified

models in example 2. Even in the misspecified scenarios, SMAQP1 and SMAQP2

still dominate the other methods in all cases. This can be partly explained by

the fact that aggregating more flexible partially linear additive sub-models with

a weighted average effectively provides a close approximation to the true model

which is unknown and thus leads to a smaller risk of model misspecification and

more accurate prediction. Generally speaking, we confirm that our proposal has a

satisfactory finite sample performance via two simulation examples.

5.2 A real data example

In this section, we will visit the empirical example in Harrison and Rubinfeld

(1978) and apply the proposed model averaging procedure to predict the quantiles

of the Boston housing price. The empirical data can be downloaded freely from

the R package “mlbench”, which contains n = 506 observations taken from 506

census tracts of Boston from the 1970 census. This is a widely used dataset, see,
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Table 1: Simulation results over different settings in Example 1.

error t, p
homoscedasticity (case a) heteroscedasticity (case b)

QRCM PAQRM JQLMA SMAQP1 SMAQP2 QRCM PAQRM JQLMA SMAQP1 SMAQP2
Average OAQPE

0,6 0.657 0.333 0.662 0.328 0.327 0.667 0.335 0.671 0.331 0.330
1,6 0.529 0.350 0.529 0.343 0.337 0.524 0.348 0.525 0.343 0.336
3,6 0.525 0.346 0.524 0.342 0.334 0.526 0.357 0.524 0.354 0.346
0,10 0.667 0.335 0.668 0.328 0.327 0.664 0.334 0.664 0.327 0.326
1,10 0.531 0.354 0.529 0.346 0.340 0.529 0.357 0.527 0.349 0.342
3,10 0.526 0.344 0.523 0.339 0.332 0.518 0.354 0.515 0.350 0.342

Winning Ratio

0,6 0% 25.5% 0% 20.0% 54.5% 0% 32.0% 0% 18.5% 49.5%
1,6 0% 16.5% 0% 6.0% 77.5% 0% 22.0% 0.5% 4.0% 73.5%

case i 3,6 0% 10.5% 0% 7.5% 82.0% 0% 13.0% 0% 5.0% 81.5%
0,10 0% 24.5% 0% 19.0% 56.0% 0% 29.5% 0% 18.5% 51.5%
1,10 0.5% 14.5% 0% 9.0% 75.5% 0% 15.5% 0% 3.0% 80.5%
3,10 0% 10.0% 0% 6.0% 84.0% 0% 16.0% 1.5% 4.0% 78.5%

Loss to SMAQP2
0,6 100% 73.5% 100% 68.5% NA 100% 66.0% 100% 69.5% NA
1,6 100% 83.5% 100% 90.5% NA 99.5% 77.5% 99.5% 94.5% NA
3,6 100% 88.5% 100% 91.0% NA 100% 86.0% 100% 94.0% NA
0,10 100% 74.5% 100% 76.0% NA 100% 70.0% 100% 72.5% NA
1,10 99% 85.0% 99.0% 91.0% NA 100% 84.0% 100% 95.0% NA
3,10 100% 89.5% 100% 93.0% NA 98.5% 84.0% 98.5% 94.5% NA

Average OAQPE

0,6 0.738 0.467 0.742 0.456 0.455 0.754 0.478 0.758 0.469 0.468
1,6 0.633 0.486 0.634 0.472 0.466 0.619 0.485 0.621 0.472 0.465
3,6 0.623 0.475 0.622 0.467 0.460 0.617 0.477 0.617 0.468 0.461
0,10 0.748 0.476 0.749 0.463 0.461 0.755 0.479 0.754 0.468 0.467
1,10 0.632 0.481 0.632 0.464 0.458 0.619 0.486 0.617 0.471 0.464
3,10 0.630 0.482 0.627 0.473 0.466 0.629 0.479 0.625 0.468 0.462

Winning Ratio

0,6 0% 16.5% 0% 25% 58.5% 0% 18.5% 0% 22.0% 59.0%
1,6 0% 6.5% 0% 12.5% 81.0% 0% 5.0% 0% 5.0% 89.0%

case ii 3,6 0% 7.5% 0% 9.5% 83.0% 0% 2.0% 0.5% 8.0% 88.5%
0,10 0% 17.5% 0% 24.0% 58.0% 0% 17.0% 0% 26.5% 56.0%
1,10 0% 6.5% 0% 10.0% 83.5% 0% 9.5% 0% 6.0% 84.5%
3,10 0% 8.0% 0% 11.0% 81.0% 0% 8.0% 0% 9.2% 82.5%

Loss to SMAQP2
0,6 100% 83.0% 100% 71.0% NA 100% 80.5% 100% 69.0% NA
1,6 100% 93.5% 100% 86.5% NA 100% 94.5% 100% 93.0% NA
3,6 100% 91.0% 100% 89.0% NA 98.5% 97.0% 98.5% 91.0% NA
0,10 100% 79.0% 100% 70.0% NA 100% 80.5% 100% 67.5% NA
1,10 100% 93.5% 100% 89.0% NA 100% 89.5% 100% 93.0% NA
3,10 100% 92.0% 100% 85.5% NA 100% 92.0% 100% 91.0% NA

Average OAQPE

0,6 0.705 0.401 0.709 0.395 0.394 0.714 0.408 0.719 0.400 0.399
1,6 0.586 0.427 0.588 0.416 0.409 0.588 0.423 0.589 0.411 0.405
3,6 0.580 0.412 0.579 0.402 0.395 0.580 0.422 0.580 0.416 0.408
0,10 0.716 0.420 0.717 0.408 0.407 0.716 0.416 0.717 0.405 0.403
1,10 0.582 0.423 0.581 0.412 0.406 0.582 0.429 0.581 0.414 0.408
3,10 0.590 0.423 0.587 0.414 0.407 0.583 0.432 0.58 0.423 0.416

Winning Ratio

0,6 0% 26.5% 0% 22.5% 51.0% 0% 22.0% 0% 20.0% 58.0%
1,6 0% 11.0% 0% 6.0% 83.0% 0% 8.5% 0% 9.5% 82.0%

case iii 3,6 0% 7.5% 0% 6.0% 86.5% 0% 8.5% 0% 4.0% 87.0%
0,10 0% 13.5% 0% 27.0% 59.0% 0% 17.5% 0% 23.5% 58.5%
1,10 0% 12.0% 0% 10.0% 80.0% 0% 7.5% 0% 6.5% 85.5%
3,10 0% 5.0% 0% 9.0% 86.0% 0% 4.0% 0% 5.0% 91.0%

Loss to SMAQP2
0,6 100% 71.5% 100% 67.5% NA 100% 77.0% 100% 70.5% NA
1,6 100% 88.5% 100% 94.0% NA 100% 91.0% 100% 88.5% NA
3,6 100% 92.5% 100% 93.5% NA 100% 91.0% 100% 93.5% NA
0,10 100% 85.5% 100% 67.5% NA 100% 81.0% 100% 70.5% NA
1,10 100% 87.0% 100% 88.5% NA 100% 92.0% 100% 92.0% NA
3,10 100% 93.5% 100% 90.5% NA 100% 96.0% 100% 94.0% NA
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e.g., Hu and Xia (2012), but existing literature focused on studying parametric or

nonparametric function estimation and hypothesis testing based on a single model.

However, the goal of this paper is to analyze how the listed factors affect the

quantiles of house prices in Boston and obtain accurate predictions. Following the

previous studies, we takemedv as the response and use the following 13 explanatory

variables as covariates, including crim, indus, nox, rm, age, dis, tax, ptratio, b, lstat,

zn, chas and rad. Note that the first ten variables are continuous and the last three

are discrete. More descriptions of this data can refer to the R package “mlbench”.

Each continuous covariate is standardized with mean zero and variance one before

any analysis is implemented.

It is well known that any continuous covariate can serve as a nonparametric

component when one fits a PLAM. To address model structure uncertainty, we

adopt the model averaging idea to address this issue. The strategy described in

the subsection 4.2 is utilized to prepare semiparametric candidate models, yielding

10 and 31 candidate models for SMAQP1 and SMAQP2 respectively.

To investigate the numerical performance of our approach for different basis

functions, we still consider b (τ)(1) , b (τ)(2) and b (τ)(3) in the subsection 4.1. Tables

S4 and S5 in the Supplementary Material report the estimates of the model weights,

their standard errors, and the 95% confidence intervals for the model weights

under different choices of basis functions. The standard errors and confidence

intervals are computed based on a bootstrap method given in Section S1.1 of the
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Supplementary Material with 400 bootstrap samples. From Tables S4 and S5, we

see that the model weights obtained by different basis functions might be different.

For example, SMAQP2 with b (τ)(1) assigns relatively large weights to the 1st, 7th,

24th and 28th sub-models but the estimated weights with b (τ)(3) for the 6th,

7th, 21th and 24th sub-models are relatively large. Though our proposed model

averaging obtained by different basis functions yields different model weights, they

are robust against misspecification of the basis functions, as they have similar

prediction performances (see Figure S4). In what follows, we fix the basis function

as b (τ) = (1,Φ−1 (τ))
⊤
to evaluate the out-of-sample predictive performance.

We also plot the estimated regression coefficients and the corresponding 95%

pointwise confidence intervals for the coefficients of the 5th candidate model and

the 28th candidate model in Figures S5 and S6 of the Supplementary Material,

respectively. We can clearly see that almost all estimated coefficients are quite

smooth over the quantile levels, indicating that modeling the quantile regression

coefficients as unknown functions of the quantile levels is reasonable in practice.

The regression coefficients of other candidate models show similar patterns, so we

omit their plots to save space.

To evaluate the predictive performance of various methods, following Lu and

Su (2015), we randomly choose ntrain samples from the data set to estimate all

parameters and nonparametric functions in candidate models, as well as the model

weights, and calculate the OAQPE based on the remaining ntest test samples. We
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Table 2: The average OAQPE, winning ratio and loss to SMAQP2 of various
approaches for the Boston housing price data.

ntest QRCM PAQRM JQLMA SSMAQP1 SSMAQP2 SMAQP1 SMAQP2
Average OAQPE

100 1.240 1.269 1.247 1.098 1.067 1.077 1.041
200 1.249 1.131 1.255 1.042 1.021 1.022 0.997
300 1.269 1.204 1.275 1.085 1.070 1.068 1.043

Winning Ratio

100 5.0% 0.0% 2.0% 2.5% 2.0% 0.0% 78.0%
200 0.0% 1.0% 0.0% 2.5% 2.5% 1.5% 82.0%
300 0.0 % 0.5% 0.0% 3.0% 5.0% 2.5% 66.0%

Loss to SMAQP2
100 93.0% 100% 93.0% 95.5% 96.5% 88.0% NA
200 100% 97.5% 100% 93.5% 94.5% 86.0% NA
300 100% 99.5% 100% 88.0% 92.0% 71.5% NA
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Figure 1: The standard deviations of FPEτ for SSMAQP1, SSMAQP2, SMAQP1
and SMAQP2 at various quantiles with the test sample size ntest = 100, 200 and
300.

repeat the random splitting procedure 200 times, and compute the mean of the

obtained 200 OAQPEs for each method. To make a comprehensive comparison,

we still compare the proposed SMAQP1 and SMAQP2 with the same approaches in

simulations, including QRCM, PAQRM, JQLMA, SSMAQP1 and SSMAQP2, where

SSMAQP1 (or SSMAQP2) is the model averaging approach based on the standard

quantile loss function for a single quantile with candidate models constructed by

Strategy A (or Strategy B). We set the size ntest of the test set to be 100, 200, and

300, respectively.
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Table 3: The average FPEτ , winning ratio and loss to SMAQP2 of various ap-
proaches at τ = 0.1, 0.3, 0.5, 0.7, 0.9 for the Boston housing price data.

ntest τ QRCM PAQRM JQLMA SSMAQP1 SSMAQP2 SMAQP1 SMAQP2
Average FPEτ

100 0.1 0.599 0.900 0.601 0.675 0.635 0.667 0.628
0.3 1.268 1.378 1.281 1.231 1.188 1.200 1.159
0.5 1.629 1.579 1.633 1.441 1.398 1.394 1.354
0.7 1.635 1.510 1.669 1.313 1.281 1.301 1.263
0.9 1.075 1.073 1.100 0.877 0.848 0.828 0.786

200 0.1 0.597 0.737 0.597 0.636 0.614 0.617 0.583
0.3 1.257 1.207 1.266 1.141 1.119 1.135 1.107
0.5 1.615 1.406 1.616 1.335 1.318 1.33 1.311
0.7 1.621 1.341 1.654 1.247 1.225 1.244 1.222
0.9 1.068 0.909 1.096 0.843 0.822 0.794 0.761

300 0.1 0.616 0.792 0.617 0.646 0.630 0.627 0.596
0.3 1.293 1.264 1.301 1.179 1.166 1.166 1.140
0.5 1.658 1.461 1.667 1.364 1.361 1.378 1.361
0.7 1.670 1.421 1.707 1.294 1.288 1.297 1.281
0.9 1.128 1.011 1.136 0.902 0.882 0.849 0.820

Winning Ratio

100 0.1 27.0% 1.0% 21.5% 3.0% 14.5 % 0.5% 25.5%
0.3 11.5% 5.5% 5.5% 9.0% 20.0% 1.0% 40.5%
0.5 3.0% 5.0% 6.5% 8.0% 8.5% 2.0% 58.5%
0.7 1.0% 5.5% 2.0% 12.5% 23.0% 3.0% 48.0%
0.9 2.0% 7.0% 0.0% 11.0% 13.5% 0.5% 55.0%

200 0.1 18.0% 2.5% 18.0% 2.0% 8.0% 0.5% 41.0%
0.3 1.5% 5.5% 3.0% 14.5% 21.0% 0.0% 43.5%
0.5 0.0% 6.0% 0.5% 17.0% 22.5% 3.5% 42.5%
0.7 0.0% 5.5% 0.5% 12.0% 29.5% 6.0% 40.5%
0.9 0.0% 10.5% 0.0% 9.5% 8.0% 0.5% 60.0%

300 0.1 11.5% 0.0% 10.0% 0.5% 11.5% 0.5% 51.5%
0.3 0.5% 4.0% 2.5% 10.0% 15.5% 2.0% 53.0%
0.5 0.0% 8.0% 0.0% 27.5% 24.0% 3.5% 27.0%
0.7 0.0% 6.5% 0.0% 20.5% 24.5% 5.0% 32.5%
0.9 0.5% 4.5% 0.0% 7.0% 6.5% 3.5% 58.5%

Loss to SMAQP2
100 0.1 43.5% 93.0% 45.0% 77.5% 62.5% 84.0% NA

0.3 81.0% 92.5% 82.5% 80.0% 66.5% 84.5% NA
0.5 94.0% 92.5% 91.0% 85.0% 81.5% 83.0% NA
0.7 97.5% 93.5% 98.0% 77.5% 63.5% 79.5% NA
0.9 97.5% 93.0% 98.5% 83.5% 83.0% 84.5% NA

200 0.1 64.5% 95.0% 65.5% 89.5% 81.0% 83.0% NA
0.3 95.5% 90.5% 95.5% 78.0% 66.5% 77.5% NA
0.5 99.5% 86.0% 99.0% 63.0% 59.0% 69.0% NA
0.7 99.5% 90.5% 99.5% 71.5% 53.0% 73.0% NA
0.9 99.5% 89.0% 100% 86.5% 88.0% 81.5% NA

300 0.1 79.0% 99.5% 77.0% 91.0% 84.0% 80.0% NA
0.3 98.0% 92.5% 96.5% 76.5% 73.5% 75.5% NA
0.5 99.5% 82.0% 100% 49.5% 50.5% 65.5% NA
0.7 100% 87.5% 100% 61.5% 54.0% 64.5% NA
0.9 98.5% 94.0% 99.5% 86.0% 86.5% 69.5% NA
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Table 2 summarizes prediction results at the entire quantile process over 200

repetitions. It is clear that SMAQP1 (or SMAQP2) is uniformly better than SS-

MAQP1 (or SSMAQP2) in terms of OAQPEs, suggesting that it is beneficial for

improving the accuracy of prediction to consider a combination of modeling quan-

tile functions parametrically and the integrated loss. Moreover, Table 2 also shows

that SMAQP2 outperforms other compared methods uniformly due to the rela-

tively high winning ratio and Loss to SMAQP2. Figure 1 describes the standard

deviations of FPEτ defined in S1.1 in the Supplementary Material for SSMAQP1,

SSMAQP2, SMAQP1 and SMAQP2 at different quantiles. Figure 1 reveals that

SMAQP1 (or SMAQP2) produces more stable and reliable predictions than that

of SSMAQP1 (or SSMAQP2) as it has smaller standard deviations. Table 3 dis-

plays the average FPEτ , winning ratio and loss to SMAQP2 of various approaches

at given quantile levels τ = 0.1, 0.3, 0.5, 0.7, 0.9. We can see that the proposed

approach outperforms other methods at a single quantile level. Overall, the em-

pirical example confirms that our semiparametric model averaging provides a more

accurate quantile prediction of house prices in Boston.

6. Concluding Remarks

We develop a novel model averaging procedure of PLAMs for optimal condi-

tional quantile prediction. The proposed approach is more robust against model

misspecification and leads to a better prediction than the estimation method based
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on a single PLAM. Different from popular regularization methods that focus on

identifying a single optimal PLAM, we propose a new strategy via model aver-

aging to account for the model structure uncertainty of PLAMs and improve the

accuracy of the conditional quantile prediction. We have shown the asymptotic op-

timality of the proposed model averaging method when the number of sub-models

diverges to infinity as the sample size increases. Extensive simulation studies illus-

trate that our proposed method performs better than competing methods in most

situations. The empirical application of quantile prediction of the Boston housing

price also demonstrates that the new method has a good numerical performance

in practice.

Note that the proposed SMAQP may have the quantile crossing problem, i.e.,

the estimator µ̂[ŵ] (Xi, τ) given in Section 2.2 may not be nondecreasing in τ . The

quantile crossing is a well-known problem in quantile regression and special treat-

ment is often needed to solve it. Note that we treat each unknown coefficient as a

smooth function of τ , which is approximated by a B-spline function. By a property

given in Section 3 of Ma (2016), the B-spline function is monotone nondecreas-

ing if the spline coefficients are ordered. Therefore, one possible way to address

the quantile crossing problem in our setting is to estimate the spline coefficients

subject to an ordering constraint or rearrange the estimated coefficients. Alterna-

tively, we can also take the rearrangement strategy given in Chernozhukov et al.

(2010). The theoretical, computational, and numerical investigation of quantile
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non-crossing deserves further thorough investigation and thus it is considered as a

future research topic to explore.

In numerical analysis, we use a bootstrap method to calculate the standard

errors of the weight estimator ŵ and construct confidence intervals for the model

weights, since it is difficult to derive the asymptotic distribution of the weight es-

timator. Bootstrapping is also used in other model averaging studies for inference,

see, for example, Li et al. (2018). Although the bootstrap method has reliable

numerical performance, as demonstrated by our simulation studies, its theoretical

properties in our setting need further investigation in future research studies.

Supplementary Materials

The supplementary material provides the bootstrap procedure for the model

weight vector, a comprehensive comparison of SMAQP and SSMAQP, a sensitivity

analysis of SMAQP for λn = 1 and log(n)/2, additional simulation results, and

three technical lemmas and proofs of the lemmas, Proposition 1 and Theorem 1.
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