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Abstract: Classical regression generally assumes that all subjects follow a common model

with the same set of parameters. With ever advancing capabilities of modern technologies

to collect more subjects and more covariates, it has become increasingly common that there

exist subgroups of subjects, and each group follows a different regression model with a dif-

ferent set of parameters. In this article, we propose a new approach for subgroup analysis

in regression modeling. Specifically, we model the relation between a response and a set

of primary predictors, while we explicitly model the heterogenous association given an-

other set of auxiliary predictors, through the interaction between the primary and auxiliary

variables. We introduce penalties to induce the sparsity and group structures within the

regression coefficients, and to achieve simultaneous feature selection for both primary pre-

dictors that are significantly associated with the response, as well as the auxiliary predictors

that define the subgroups. We establish the asymptotic guarantees in terms of parameter

estimation consistency and cluster estimation consistency. We illustrate our method with

an analysis of the functional magnetic resonance imaging data from the Adolescent Brain

Cognitive Development Study. Key words and phrases: Adolescent Brain Cognitive Devel-

opment Study; Functional magnetic resonance imaging; Group Lasso; High-dimensional
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regressions; Subgroup analysis.
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1. Introduction

Classical regression modeling generally assumes that all the subjects follow a

common regression model with the same set of model parameters. In numerous

applications, however, there may exist subgroups of subjects, and each group

follows a different regression model with a different set of parameters. With

ever advancing capabilities of modern technologies to collect more subjects and

more covariates information, such data heterogeneity is becoming increasingly

common. It thus becomes imperative to effectively identify subgroups of sub-

jects and properly account for data heterogeneity in regression modeling (Ma

and Huang, 2017).

Our motivation is the Adolescent Brain Cognitive Development (ABCD)

Study, which plans to follow the brain development and health of over 10,000

children from their childhood through adolescence, and aims to understand bi-

ological and environmental factors that impact the brain development (Casey

et al., 2018). Adolescence of a teenager is often characterized by substantial

growth in cognitive skills, and those changes can be highly heterogeneous from

individual to individual. Although the environmental factors contributing to the

heterogeneity in cognitive development have been studied extensively (Luby

et al., 2012; Mackey et al., 2017), it remains unclear whether associations be-

tween brain activation and cognitive ability vary across individuals, and if so,
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how. The dataset we analyze is part of the baseline collection of the ABCD

Study, which consists of the cross-sectional observations of 1,901 children from

9 to 11 years old, each with a working memory emotional n-back task functional

magnetic resonance imaging (fMRI) scan, a cognitive score at the time of the

scan, a psychological score that measures the mental well-being of the subject,

and numerous demographic variables such as age, sex, race, and parental infor-

mation. It is known that the psychological state can affect the cognitive behavior

and possibly its association with brain activation (Sripada et al., 2020). Our

study goal is to quantify the association pattern between the cognitive ability,

which is measured by the cognitive score, and the brain region activation, which

is measured by fMRI, and identify potential subgroups of subjects, which may

be defined by the psychological score as well as the demographic variables.

Subgroup analysis is receiving constant attention, and has seen a surge of

interest in recent years. A popular line of research that detects subgroups is to

view the data as coming from a mixture of populations. For instance, Banfield

and Raftery (1993); Hastie and Tibshirani (1996); Wei and Kosorok (2013) mod-

eled the data as a mixture of Gaussian distributions to find different clusters of

subjects. Another line aims to identify a subgroup of patients for an enhanced

treatment effect in the setting of randomized clinical trials. Foster et al. (2011)

considered the binary response case and proposed a virtual twins approach for
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subgroup identification. Cai et al. (2011); Zhao et al. (2013) proposed paramet-

ric scoring methods based on the baseline covariates to rank treatment effects

then identified patients who benefit most. Shen and He (2015) considered a lin-

ear logistic-normal mixture model to test for the existence of a subgroup and to

score patients for treatment selection. Fan et al. (2017) developed a semipara-

metric change-plane approach to testing and identifying the subgroup with an

enhanced treatment effect. The third line adopts a family of parametric models,

typically linear association models, that include the subject-specific intercept or

main effect terms, then employs various penalty functions to fuse the subject-

specific terms to form subgroups. Notably, Ma and Huang (2017) considered a

linear model with unobserved latent factors represented by subject-specific in-

tercepts, and proposed a concave penalty to minimize the pairwise differences of

the intercepts. Adopting similar penalization ideas for subgroup analysis, Zhu

and Qu (2018) clustered the profiles of longitudinal data, Zhang et al. (2019)

studied the robust median regression, Hu et al. (2021) studied the Cox propor-

tional hazards model, and Wang et al. (2018), Tang et al. (2020), and Tang and

Song (2021) addressed simultaneous subgroup identification and feature selec-

tion.

In this article, we propose a new approach to learn the heterogeneous as-

sociation in a regression model. Specifically, we target the regression problem
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between a response variable Y and a set of primary predictors X ∈ Rp. Mean-

while, we explicitly model the potential heterogenous association given another

set of auxiliary predictors Z ∈ Rq, through the interaction between X and Z,

then cluster the subjects into subgroups based on this interactive relation. In our

motivating ABCD study, Y is the cognitive score, X is the brain activation pat-

tern from fMRI that is summarized in the form of a vector of measurements over

a set of brain regions-of-interest, and Z is the vector of covariates consisting of

the psychological score and demographic variables. Moreover, we introduce a

number of penalty terms to induce the sparsity and group structures within the

coefficients, and to achieve simultaneous feature selection for both primary pre-

dictors that are significantly associated with the response, as well as the auxiliary

predictors that define the subgroups. We establish the corresponding asymptotic

guarantees in terms of parameter estimation consistency and cluster estimation

consistency.

Our proposal is related to but also clearly different from existing subgroup

analysis solutions in multiple ways. First, our model essentially characterizes

the heterogeneity through the interaction between the primary and auxiliary co-

variates and their joint effect on the response, and in this sense is similar in spirit

to subgroup models that explicitly model the interaction between the covariates

and the treatment assignment (Cai et al., 2011; Zhao et al., 2013; Tibshirani and
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Friedman, 2020; Ma et al., 2019). Nevertheless, we target a high-dimensional

auxiliary vector Z, and the data can be observational, whereas the existing solu-

tions mostly study a scalar treatment variable, which is independent ofZ under a

fully randomized trial (Cai et al., 2011; Zhao et al., 2013) or study a low dimen-

sional Z without the theoretical justification of the estimation properties. Sec-

ond, we employ special penalty functions to facilitate the model interpretation as

well as feature selection, which is similar in spirit as the penalized subgroup so-

lutions (Ma and Huang, 2017; Tang et al., 2020). However, we primarily focus

on the group sparsity type penalties (Yuan and Lin, 2006), which can be effi-

ciently implemented, enjoy desirable theoretical properties (Huang and Zhang,

2010), and are utterly different from the fusion type penalties currently used in

subgroup modeling (Ma and Huang, 2017; Zhang et al., 2019). Finally, we adopt

a linear regression model, but it can be straightforwardly extended to more flex-

ible model forms through basis expansion approaches such as splines (De Boor,

1978) and reproducing kernels (Wahba, 1990). Besides, the choice of primary

and auxiliary variables depends on the scientific interest, while it is flexible in

terms of putting which variables into which set. We illustrate with the ABCD

study, but the method is equally applicable to a wide range of modern scientific

problems. In summary, our proposal addresses a critically important problem,

and offers a new angle to subgroup analysis.
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The rest of the article is organized as follows. Section 2 presents the model

and the penalized optimization formulation. Section 3 develops the estimation

algorithm, and Section 4 establishes the theoretical guarantees. Section 5 stud-

ies the finite-sample performance through simulations, and Section 6 revisits our

motivating ABCD data analysis. Section 7 concludes the paper with a discus-

sion. The Supplementary Appendix collects all technical proofs.

2. Model and Penalized Formulation

2.1 Model

Consider the response Y ∈ R, the primary predictor vectorX = (X1, . . . , Xp)
T ∈

Rp, and the auxiliary predictor vector Z = (Z1, . . . , Zq)
T ∈ Rq. Let X1 = 1

and Z1 = 1, which incorporate the intercept. Consider the observational data of

n i.i.d. copies of {X, Y,Z} :, {Xi, Yi,Zi, i = 1, . . . , n}. We posit a regression

model,

Yi = α(Zi)
TXi + εi, i = 1, . . . , n,

where α(Zi) = {α1(Zi), . . . , αp(Zi)}T ∈ Rp characterizes the effect of Xi

on Yi, and εi is a zero mean independent random error term. The coefficient

of Xi, i.e., α(Zi), varies across individuals, and thus reflects the potentially

heterogeneous effects of Xi on the outcome. We further assume that the data

samples can be uniquely partitioned to G groups, up to relabeling, with distinct
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cluster centers a01, . . . ,a0K , such that

E
(

min
g∈{1,...,G}

‖α(Zi)− a0g‖22
)

is the smallest, where ‖ · ‖2 is the vector L2-norm, and E is with respect to Zi.

Correspondingly, we divide our subgroup analysis into two main steps: we first

estimate α(·), then carry out a clustering analysis based on the estimated α(·).

Next, we introduce a parametric form forα(Zi), by setting αj(Zi) =
∑q

k=1 θ0jkZik,

j = 1, . . . , p, and we set m(·) as the identity function. This leads to our final

model,

Yi =

p∑
j=1

(
q∑

k=1

θ0jkZik

)
Xij + εi =

p∑
j=1

θ0j1Xij +

p∑
j=1

q∑
k=2

θ0jkZikXij + εi

=XT

i Θ0Zi + εi,

(21)

where Θ0 = (θ0jk)
p,q
j=1,k=1 ∈ Rp×q collects all parameters of interest. We make

some remarks about model (21). First of all, for the first column of Θ0, i.e.,

k = 1, the parameters θ0j1 characterize the common baseline effect of Xj’s on

Y , for j = 1, . . . , p. For the rest of columns of Θ0, i.e., k = 2, . . . , q, the

parameters θ0jk capture the deviation from this baseline, or in other words, the

heterogeneous effects introduced by Zk’s. Second, when an entire row of Θ0

equals zero, e.g., θ0j· = 0, for some j = 1, . . . , p, it implies that the jth primary

predictor Xj does not affect the response Y . Meanwhile, when an entire col-
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umn of Θ0 equals zero, e.g., θ0·k = 0 for some k = 2, . . . , q, it implies that the

kth auxiliary predictor Zk does not introduce any additional heterogeneity to the

association between X and Y . When all columns of Θ0 except for the first col-

umn equal zero, model (21) reduces to the usual homogeneous linear regression.

Finally, in a relatively straightforward fashion, model (21) can be generalized to

more flexible settings, e.g., through spline basis expansions (De Boor, 1978) or

reproducing kernel approaches (Wahba, 1990). In this article, we focus on the

model form in (21), as it provides a foundation for those more flexible exten-

sions.

2.2 Penalized optimization

Consider the least squares loss function and the penalty function,

L(Θ) =
1

2n

n∑
i=1

(Yi −XT

i ΘZi)
2 , R(Θ) = λc

q∑
k=2

√
p‖Θ·k‖2 + λr

p∑
j=1

√
q‖Θj·‖2.

We propose to estimate the parameter of interest Θ0 via the following penalized

optimization,

L(Θ) +R(Θ), subject to ‖vec(Θ)‖2 ≤ ψ1, and ‖vec(Θ)‖1 ≤ ψ2, (22)

where Θj· denotes the jth row of Θ, Θ·k denotes the kth column of Θ, λr, λc

are the row and column penalty parameters, respectively, ψ1 and ψ2 are penalty

constants and ‖ · ‖0 and ‖ · ‖1 are the vector L0 and L1-norm, respectively. We
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again make some remarks about the penalized optimization formulation (22).

First, the functionR(Θ) places the group Lasso penalties (Yuan and Lin, 2006)

on both columns and rows of Θ. As such, it achieves simultaneous feature se-

lection of both primary and auxiliary predictors. Second, the penalties placed

on the rows and columns are different, reflecting the asymmetric roles ofX and

Z in the model. More specifically, we do not penalize the first column Θ·1,

since it corresponds to the baseline association between X and Y . Moreover,

because each row and column intersect with each other, placing the group L1

penalties on both row and column forms a penalty on their intersection, which in

effect shrinks the small entries in Θ to zero. Finally, the additional constraints

‖vec(Θ)‖2 ≤ ψ1 and ‖vec(Θ)‖1 ≤ ψ2 in (22) are only used to facilitate the

theoretical derivation and have little empirical effect. Since X and Z are high-

dimensional, i.e., p, q > n, when we treat each row of Θ as a group, the number

of elements in the group and the number of groups both grow with the sample

size. Then these constraints limit the number of nonzero elements in Θ, which

in turn ensures that the loss function is convex. By doing so, we avoid having

to assume that the initial value is in a close neighborhood of the true parameter,

or the step size of the parameter update is small enough so that the estimator in

each iteration remains in a neighborhood of the truth. Similar constraints have

been used in Yin et al. (2014), Jiang and Ma (2021), and Loh and Wainwright
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(2012) too. In practice, we choose ψ1, ψ2 to take very large values, so that they

would not affect the penalty functionR(Θ).

3. Estimation

3.1 Subgradient analysis

To solve the optimization problem (22), we first majorize the loss function L(Θ)

as,

L̃jk(Θ) = L
(
Θ(t)

)
+
(
θjk − θ(t)jk

) ∂L(Θ(t))

∂θjk
+

1

2η

(
θjk − θ(t)jk

)2
, (33)

for a given (j, k), j = 1, . . . , p, k = 1, . . . , q, where Θ(t) =
(
θ
(t)
jk

)p,q
j=1,k=1

denotes

the estimate of Θ = (θjk)
p,q
j=1,k=1 at the tth iteration, and η is the step size. For

a convex optimization problem, the minimizer of the surrogate L̃jk(Θ) +R(Θ)

is closer to the global minimizer of L(Θ) + R(Θ) than Θ(t) (Loh and Wain-

wright, 2012). Furthermore, finding the minimizer for L̃jk(Θ) +R(Θ) instead

of L(Θ) +R(Θ) avoids inverting a potentially large Hession matrix, which in

turn reduces the computational burden. We next study the subgradient conditions

that determine the rows, columns, and entries of Θ, respectively, that would be

penalized to zero during the estimation. We present the detailed algorithm in the

next section.

Observing that the solution to a convex optimization problem is a saddle
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point at which the subgradient equals zero, we consider four different scenarios

of the subgradient.

Case I: Consider the saddle point with Θj· = 0, j = 1, . . . , p. It satisfies

that,

−∂L̃jk(Θ)

∂Θj·

∣∣∣
Θj·=0

= λc
√
pµ′ + λr

√
qµ,

where µ ∈ Rq is the subgradient of ‖Θj·‖2 with respect to Θj· evaluated at the

saddle point, i.e.,

µ =


Θ·k
‖Θ·k‖2

, if ‖Θj·‖2 6= 0

∀µ, ‖µ‖2 ≤ 1, if ‖Θj·‖2 = 0,

and µ′ = (µ′1, · · · , µ′q)T ∈ Rq is the subgradient of
∑q

k=2 ‖Θ·k‖2 with respect to

Θj· evaluated at the saddle point, i.e.,

µ′k =



0, if k = 1,

θjk
‖Θ·k‖2

, if ‖Θ·k‖2 6= 0, k > 1,

∀µ, |µ| ≤ 1, if ‖Θ·k‖2 = 0, k > 1.

When Θj· = 0 and ‖Θ·k‖22 6= 0, k ≥ 1 , we have obtained the first order

condition that

−∂L̃jk(Θ)

∂θjk

∣∣∣
Θj·=0

= λr
√
qµk.

On the other hand, following Simon et al. (2013), when Θ·k = 0, k > 1 and
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Θj· = 0, we have the first order condition that,∣∣∣∣∣S
(
−∂L̃jk(Θ)

∂θjk

∣∣∣
Θj·=0

, λc
√
p

)∣∣∣∣∣ ≤ λr
√
q|µk|,

where S(a, λ) = sign(a)(|a| − λ)+ is the soft-thresholding function. Define

Uj = (Uj1, · · · , Ujq)T ∈ Rq, j = 1, . . . , p,

Ujk =


−∂L̃jk(Θ)

∂θjk

∣∣∣
Θj·=0

, if Θ·k = 0,

S
(
−∂L̃jk(Θ)

∂θjk

∣∣∣
Θj·=0

, λc
√
p

)
, if Θ·k = 0 for k > 1.

(34)

In summary, if ‖Uj‖2 ≤ λr
√
q, then the subgradient condition for Θj· = 0 is

satisfied.

Case II: Consider the saddle point with Θ·k = 0, k = 2, . . . , q. It satisfies

that,

−∂L̃jk(Θ)

∂Θ·k

∣∣∣
Θ·k=0

= λc
√
pν + λr

√
qν ′,

where ν ∈ Rp is the subgradient of ‖Θ·k‖2 with respect to Θ·k evaluated at the

saddle point, and ν ′ = (ν ′1, · · · , ν ′p)T ∈ Rp is the subgradient of
∑p

j=1 ‖Θj·‖2

with respect to Θ·k, i.e.,

ν ′j =


θjk
‖Θj·‖2 , if ‖Θj·‖2 6= 0,

∀ν, |ν| ≤ 1, if ‖Θj·‖2 = 0.

Following a similar argument as before, and define Vk = (V1k, · · · , Vpk)T ∈ Rp,
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k = 2, . . . , q,

Vjk =


−∂L̃jk(Θ)

∂θjk

∣∣∣
Θ·k=0

, if Θj· 6= 0,

S
(
−∂L̃jk(Θ)

∂θjk

∣∣∣
Θ·k=0

, λr
√
q

)
, if Θj· = 0.

(35)

If ‖Vk‖2 ≤ λc
√
p, then the first order condition for Θ·k = 0 is satisfied.

Case III: Consider the saddle point with both Θj· = 0 and Θ·k = 0, j =

1, . . . , p, k = 1, . . . , q. It satisfies that,

−∂L̃jk(Θ)

∂θjk

∣∣∣
θjk=0

= λc
√
pµ′ + λr

√
qν ′. (36)

Therefore, if

∣∣∣∣∣∂L̃jk(Θ)

∂θjk

∣∣∣∣
θjk=0

∣∣∣∣∣ ≤ λr
√
q, or

∣∣∣∣∣∂L̃jk(Θ)

∂θjk

∣∣∣∣
θjk=0

∣∣∣∣∣ ≤ λc
√
p+ λr

√
q,

for k = 2, . . . , q, then the subgradient condition for θjk = 0 is satisfied.

Case IV: Consider the saddle point with Θ·k 6= 0 or Θj· 6= 0. The subgradi-

ent with respect to θjk evaluate at Θ is,

−∂L̃jk(Θ)

∂θjk
= λc
√
p

θjk
‖Θ·k‖2

+ λr
√
q

θjk
‖Θj·‖2

. (37)

Case I and Case II suggest that, if the jth row, or the kth column, of Θ is

zero, then correspondingly, ‖Uj‖2 ≤ λr
√
q, or ‖Vk‖2 ≤ λc

√
p. Henceforth, in

an iterative update, we shrink the jth row or the kth column to 0, if the estimate
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of Uj or Vk from the previous iteration satisfies those two inequalities. Case

III suggests a strategy to shrink the (j, k)th entry of Θ when the derivative is

sufficiently small. Case IV guides the estimation of the nonzero entries of Θ.

We present the complete iterative computational algorithm in the next section.

3.2 Algorithm

We develop an iterative optimization algorithm for parameter estimation with

five main steps. The first four steps identify zero rows, zero columns, and update

the nonzero entries of Θ, respectively, by utilizing the subgradient properties at

the saddle points studied in Section 3.1. The last step employs a projection

operation to make the estimate satisfy the constraint that ‖vec(Θ)‖2 ≤ ψ1 and

‖vec(Θ)‖1 ≤ ψ2.

When updating θjk at the tth iteration, we replace the parameters other than

θjk by their most recent update at the (t − 1)th iteration in (34), (35), (36), and

(37). Since θjk is the only unknown parameter, we have that,

∂L̃jk(Θ)

∂θjk

∣∣∣
Θj·=0

=
∂L̃jk(Θ)

∂θjk

∣∣∣
Θ·k=0

=
∂L̃jk(Θ)

∂θjk

∣∣∣
θjk=0

=
∂L(Θ(t−1))

∂θjk
− η−1θ(t−1)jk .(38)

We next describe the estimation algorithm step-by-step.

Step 1: Following the subgradient analysis in Case I, for row j = 1, . . . , p,

we set Θ
(t)
j· = 0, if ‖Uj‖2 ≤ λr

√
q, whereUj is defined in (34) and ∂L̃jk(Θ)/∂θjk

is obtained via (38).
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Step 2: Following the subgradient analysis in Case II, for column k =

2, . . . , q, we set Θ
(t)
·k = 0, if ‖Vk‖2 ≤ λc

√
p, where Vk is defined in (35) and

∂L̃jk(Θ)/∂θjk is obtained via (38).

Step 3: Following the subgradient analysis in Case III, when
∑

l>1,l 6=k(θ
(t−1)
jl )2 =

0 and
∑

u6=j(θ
(t−1)
uk )2 = 0, we update θ(t)jk as,

θ
(t)
jk = S

(
η−1θ

(t−1)
jk − ∂L(Θ(t−1))

∂θjk
, λc
√
p+ λr

√
q

)
, for k ≥ 2.

Also, since we place no penalty on the first column of Θ, we let

θ
(t)
j1 = S

(
η−1θ

(t−1)
j1 − ∂L(Θ(t−1))

∂θj1
, λr
√
q

)
,

i.e., we set λc = 0 for k = 1.

Step 4: Following the subgradient analysis in Case IV, when
∑

l>1,l 6=k(θ
(t−1)
jl )2

and
∑

u6=j (θ
(t−1)
uk )2 are not both zero, we update θ(t)jk as the root of the equation,

η−1θjk − η−1θ(t−1)jk +
∂L(Θ(t−1))

∂θjk
+ λr
√
q

θjk{∑
u6=j(θ

(t−1)
uk )2 + θ2jk

}1/2

+ λc
√
p

θjk{∑
l>1,l 6=k(θ

(t−1)
jl )2 + θ2jk

}1/2
= 0.

Again, we set λc = 0 when k = 1. In our implementation, we employ the

Brent’s method (Brent, 1973) to find the root, while other root finding methods

can be applied as well.

Step 5: We project vec(Θ(t)) to B1(ψ2) =
{
Θ | ‖vec(Θ)‖1 ≤ ψ2

}
, then

B2(ψ1) =
{
Θ | ‖vec(Θ)‖2 ≤ ψ1

}
, so that the final projection satisfies that

17

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



vec(Θ(t)) ∈ B1(ψ2) ∩ B2(ψ1). We obtain the projection to B1(ψ2), a simplex in

Rpq, by adopting the linear programming method of Duchi et al. (2008).

We iterate the above steps until the algorithm converges, where we set the

stopping criterion as ‖vec(Θ(t)) − vec(Θ(t−1))‖2 ≤ 10−4. In practice, we find

our algorithm converges relatively fast.

For tuning parameters, we set λc and λr at their theoretical orders specified

in the next section. Moreover, in real data analysis, we adopt the strategy of

Chatterjee and Lahiri (2011) to further bootstrap the procedure to construct a

confidence interval for each parameter after the sparse estimation, making the

results less sensitive to the choice of λc and λr. We choose b0 and b1 to be some

constants much larger than ‖vec(Θ)‖2 and ‖vec(Θ)‖1 at their initial values. In

addition, we find the method is not overly sensitive to the choice of η in the

majorization, as long as it is in a reasonable range.

Finally, after obtaining the final estimate Θ̂ = Θ(t) through the iterative

optimization, we employ a standard clustering algorithm, e.g., the K-means al-

gorithm, to cluster the subjects intoG subgroups based on Θ̂Zi, for i = 1, . . . , n.

We choose the number of clusters using the Bayesian information criteria (BIC),

while other criteria can be used as well (Wang, 2010).
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4. Asymptotic Theory

4.1 Parameter estimation consistency

We first introduce a set of conditions needed for the parameter estimation con-

sistency. Denote Y = (Y1, . . . , Yn)
T ∈ Rn, ε = (ε1, . . . , εn)

T ∈ Rn, Wi = Zi ⊗

Xi ∈ Rpq, with ⊗ being the Kronecker product, and W = (W1, . . . ,Wn)
T ∈

Rn×(pq). Let |A| be the cardinality of a set A, aS be the sub-vector of a with

elements in the index set S, and MS be the submatrix of M with columns in

S. Let Sr ⊂ {1, . . . , p} and Sc ⊂ {1, . . . , q} denote the set of nonzero rows and

columns of Θ0, respectively, and let gr = |Sr| and gc = |Sc| be the number of

nonzero rows and columns, respectively. Let d0 = ‖Θ0‖0. Define

ρ+(ω) = max{n−1‖WSuS‖22/‖uS‖22 : u ∈ Rpq,S ⊂ {1, . . . , pq}, |S| ≤ ω},

ρ−(ω) = min{n−1‖WSuS‖22/‖uS‖22 : u ∈ Rpq,S ⊂ {1, . . . , pq}, |S| ≤ ω}.

Intuitively, ρ+(ω) and ρ−(ω) are the maximum and minimal eigenvalues of

W T
SWS for any set S satisfying that |S| ≤ ω. We impose the following reg-

ularity conditions.

(A1) Suppose Xi and Zi are two sub-Gaussian random vectors, and εi is a

mean zero sub-Gaussian random error. Furthermore, Xi,Zi and εi are

independent, i = 1, . . . , n.
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(A2) Suppose ‖vec(Θ0)‖2 ≤ d2 < ∞. Denote the uniformity of the optimizer

of (22) as UΘ, where the uniformity of a matrix is defined as the ratio be-

tween the smallest nonzero entry and the largest one. Furthermore, define

b1 ≡
{
ψ2(U

1/2
Θ + U

−1/2
Θ )/(2ψ1)

}2

, we assume d0 ≤ b1.

(A3) Suppose there exists a constant s ≥ d0 + 2b1, such that ρ−(s) ≥ ε0 > 0,

and√
{ρ+(s)− ρ−(2s− d0)} × {ρ+(s− d0)− ρ−(2s− d0)}

ρ−(s)
≤ 1

3

min(λr
√
q, λc
√
p)

λr
√
qgr + λc

√
pgc

,

almost surely.

Condition (A1) is a fairly standard condition to ensure the distributions of the

first and second order derivatives of the loss function vanish sufficiently fast at

the tail. Condition (A2) ensures the convergence of the estimation procedure,

and induces the sparsity on the estimator by shrinking in both the row and col-

umn directions, where b1 is the upper bound of the sparseness of the optimizer

by Lemma S1 in the appendix. It is introduced to deal with the challenge that, in

our setting, the group size is either p or q, which can be larger than the sample

size n and also diverges with n. In addition, we can always achieve d0 ≤ b1 by

increasing the value ψ2/ψ1. By contrast, the classical group L1-based methods

require the group size to be fixed to achieve the estimation consistency (Huang

and Zhang, 2010; Tibshirani and Friedman, 2020). The same condition has been
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used in Yin et al. (2014); Jiang and Ma (2021); Loh and Wainwright (2012).

Condition (A3) is an eigenvalue condition. It restrict the L2 norm of the off-

diagonal submatrix of n−1W TW , and ensures the second order derivatives of

the loss function to be positive definite. Coupled with the lower bound on ρ−(s),

the upper bound for ρ+(s) implies that the correlations among the p + q covari-

ates are bounded from above. Similar conditions have also been imposed by

Huang and Zhang (2010).

Theorem 1. Suppose Conditions (A1), (A2) and (A3) hold. Furthermore, there

exit two positive constants c1 and c2, with c1 < c2, such that c1 ≤ λr√
b1 log(p)/(qn)

,

and λc√
b1 log(q)/(pn)

≤ c2. Then, with probability at least 1−12 exp {−b1 log(p)}−

12 exp {−b1 log(q)}, we have that,

‖vec(Θ̂−Θ0)‖2 ≤ C(g2r + g2c + 1)1/2(gr + gc)

√
b1 log(pq)

n
,

for some constant C > 0.

Theorem 1 utilizes the convexity of the objective function and the concentration

inequality of sub-Gaussian variables, and establishes the statistical consistency

of the proposed estimator when p and q are both in the order of o{exp(n)}. Fur-

thermore, when b1 = O(1), it implies that ‖vec(Θ̂−Θ0)‖2 = Op{
√

log(pq)/n},

which is consistent with the conventional order of convergence in the group L1

literature (Liu and Zhang, 2009; Huang and Zhang, 2010). Moreover, we can
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achieve b1 = O(1) by selecting R2/R1 to be of order O{1/(U1/2
Θ + U

−1/2
Θ )}.

4.2 Clustering consistency

After obtaining the estimator Θ̂, we perform the clustering analysis based on

Θ̂Zi to identify the subgroups. We next introduce another set of regularity con-

ditions needed for the clustering consistency. For a given parameter Θ, let PΘ

denote the probability measure induced by ΘZi, and fΘ(·) the associated den-

sity function. We impose the following conditions.

(B1) Suppose the number of clusters G is fixed, and suppose the true cluster

centers,

a0 = (aT

01, . . . ,a
T

0G)
T = argmin

a=(aT
1 ,··· ,aT

G)T
E
{

min
1≤g≤G

‖Θ0Zi − ag‖22
}

are unique up to relabeling, and E(‖Θ0Zi‖22) <∞.

(B2) Suppose there is a function g(·), such that fΘ0(v) ≤ g(‖v‖2), and
∫∞
0
vlg(v)dv <

∞, where l = ‖Θ0Z‖0.

(B3) Suppose |
∫
‖v‖22∂fΘ(v)/∂vec(Θ)Tejdv| <∞, |

∫
∂fΘ(v)/∂vec(Θ)Tejdv| <

∞, and ‖
∫
v∂fΘ(v)/∂vec(Θ)Tejdv‖2 <∞ at any Θ, with ‖vec(Θ)‖2 <

∞ and ‖vec(Θ)‖0 ≤ 2b1, where ej is the unit vector with the jth element

being one and the rest zero, j = 1, . . . , pq.
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Conditions (B1) to (B3) are standard and mild conditions to establish the con-

sistency of the K-means clustering in Pollard et al. (1982, Conditions (i), (ii),

(iv)). In particular, Condition (B1) does not allow the number of clusters to di-

verge, and also ensures the uniqueness of the cluster membership. Condition

(B2) ensures the contributions to the mean squared error made by the samples

that are outside of a certain radius of each center to vanish sufficiently fast. Con-

dition (B3) ensures that
∫
min1≤j≤K ‖v − aj‖22dPΘ̂(v) and

∫
min1≤j≤K ‖v −

aj‖22dPΘ0(v) are close. It is fairly mild, because it only requires that each ele-

ment of ∂fΘ(v)/∂vec(Θ), ‖v‖22∂fΘ(v)/∂vec(Θ), and v∂fΘ(v)/∂vec(Θ) have

finite integrals, rather than requiring the uniformly integrability of the entire vec-

tors. This condition is easily satisfied, for instance, when Zi is Gaussian or has

a compact support.

Theorem 2. Suppose the conditions in Theorem 1 along with (B1), (B2) and

(B3) hold. Then,

‖â− a0‖2 = Op

[
{b21 log(pq)/n}1/4 + n−1/2(Gb1)

1/2
]
.

Theorem 2 establishes the consistency of the estimated cluster centers. There are

two terms in the convergence rate. The first term comes from the estimation error

of Θ̂, whereas the second term comes from the empirical distribution approxi-

mation to the distribution of ΘZ. If Θ0 were known, then the order of clustering
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consistency is the same as that of Pollard et al. (1982). Moreover, the conver-

gence rate depends on b1, because the sparsity of â is bounded by b1 as a result of

the L1 and L2 constraints in our estimation. If b1 = O(1), log(pq) = op(n), then

‖a0k − a0l‖2 is bounded below by a constant, for k 6= l, and thus the clustering

consistency is achieved as n → ∞. It is also noteworthy that Theorem 2 does

not require the number of identified subgroups to be the same as the true number

of subgroups G, as long as G is fixed. In fact, this theorem shows that the rate

of convergence for clustering depends on G asymptotically.

5. Simulations

5.1 Estimation error

We first evaluate the estimation error and its convergence. We generate Yi based

on model (21), generate the components ofXi and Zi from a standard Gaussian

distribution, and generate the error εi from a Gaussian distribution with mean

zero and variance 0.25. We set Θ0 with its upper-left 5× 5 submatrix equal to

0.293 1.291 0.617 0.269 −0.458

−1.092 −0.514 −2.615 1.155 0.400

1.185 −0.279 1.332 2.198 2.853

2.183 −2.295 0.104 −2.208 1.301

−1.378 −2.211 −2.668 −1.190 −1.427


, (59)

24

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



1000 2000 3000 4000 5000

2
4

6
8

10

n

Θ̂
−Θ

0 F

p = q = 20
p = q = 40
p = q = 60
p = q = 80

1000 2000 3000 4000 5000

40
60

80
10
0

n

n
log
(p)

Θ̂
−Θ

0 F

p = q = 20
p = q = 40
p = q = 60
p = q = 80

Figure 1: Estimation error ‖vec(Θ̂−Θ0)‖2 for different values of p = q as n increases.

where the entries are generated from Uniform(−3, 3), and the rest entries of Θ0

being zero. We set p = q, and vary this value along with the sample size n.

Figure 1 reports the estimation error ‖vec(Θ̂ − Θ0)‖2 first in the original

scale, then in the scale of
√
n/ log(pq)‖vec(Θ̂ −Θ0)‖2, for different values of

p, q as n increases. The plot is based on 100 data replications. It is seen that

the estimation error monotonically decreases as the sample size increases, and it

remains a constant approximately at the scale of
√
n/ log(pq)‖vec(Θ̂−Θ0)‖2,

both of which agree with our theoretical result in Theorem 1.
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Figure 2: Average adjusted rand index between the clustering results using the estimated Θ̂Z

and using the true Θ0Z, respectively, for different values of σ.

5.2 Clustering

We next investigate the clustering performance of our method. We adopt a sim-

ilar setting as in Section 5.1, and we fix p = 150, q = 200, and n = 100.

We set Θ0 with its upper-left 5 × 5 submatrix equal to (59), and the rest en-

tries being zero. We generate Zik from a Gaussian distribution with mean µik =∑5
g=1(g − 1)I

{
20(g − 1) + 1 ≤ i ≤ 20g, 2 ≤ k ≤ 10

}
, where I(·) is an in-

dicator function, for i = 1, . . . , n, k = 1, . . . , q, and standard deviation σk. By

design, there are G = 5 clusters, with 20 sample observations per cluster, that

are determined by the clustering pattern in the linear combinations of Zik, for

k = 2, . . . , 5, where the linear combination coefficients are determined by the

second to the fifth column of the submatrix in (59). Meanwhile, the remaining

columns of Zik, for k = 6, . . . , q, would not affect the subgroup structure, be-
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cause the corresponding linear combination coefficients are all zero. We vary

the variation level of the clusters as σ1 = . . . = σ5 = σ ∈ {0.1, 0.2, 0.3, 0.4},

and fix σk = 0.3 for 6 ≤ k ≤ 10, and σk = 1 for k > 10. We apply our method

to estimate Θ, then apply K-means clustering with 5 groups based on the esti-

mated Θ̂Zi. We also consider a benchmark solution by applying K-means on

the true Θ0Zi.

Figure 2 reports the average adjusted rand index (Sinnott et al., 2016), which

provides a robust measure of the similarity between the two data clustering re-

sults. The plot is based on 100 data replications. It is seen that the clustering

based on the estimated Θ̂Zi works well, and generally agrees with the bench-

mark clustering based on the true Θ0Zi. In addition, ARI decreases when the

noise level σ increases, which agrees with the expectation.

5.3 Sparsity

We next investigate the selection accuracy of the sparse estimation. We again

adopt the similar setting as that in Section 5.1, except that we consider a sparse

Θ0, with p = 91, q = 18, and the sample size n = 1901, where p, q, n are the

same as the dimensions of X , Z and the sample size in the real data in Section

6. More specifically, we set the entries of Θ0 at the first and second columns

and at rows 1, 11, 21, and 81 to be nonzero, and the rest zero. We set the
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Figure 3: Heat map of the true nonzero entries (a), and the estimated nonzero entries by our

method (b), the entry-wise Lasso (c), and column-wise group Lasso (d).

nonzero values of the first column as 0.088, −0.274, −0.093, and 0.102, which

are randomly generated from a uniform distribution on [−0.2, 0.2], and those

of the second column as 0.691, −1.222, 1.621, and 1.575, which are randomly

generated from a uniform distribution on [−3, 3]. We also compare our method

with two alternative solutions, the usual Lasso method applied to the individual

entries of Θ, and the group Lasso method applied to each column of Θ, for

k = 2, . . . , q.

Figure 3 shows the heat map of the true nonzero entries and the estimated

nonzero entries by the three methods. The plot is based on 100 data replica-

tions. It is seen that our method performs substantially better than the alternative

solutions in sparse recovery of Θ0.
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6. ABCD Data Analysis

6.1 Background and data

The Adolescent Brain Cognitive Development (ABCD) Study is the largest long-

term study of brain development and child health in the United States. It aims

to follow over 10,000 children from their childhood through adolescence, and

to understand biological and environmental factors that impact their brain devel-

opment and health (Casey et al., 2018). One of the key scientific questions is

to investigate the association between cognitive ability, measured by the child’s

cognitive score or g-factor (Deary et al., 2007), and working memory brain ac-

tivity, measured by the task fMRI. In the ABCD study, the working memory task

fMRI is collected based on the emotional n-back tasks that engage the processes

related to memory and emotion regulation (Casey et al., 2018). Our analysis in

particular focuses on brain activity in response to the 0-back task that involves

low memory load. At the beginning of fMRI scanning for the 0-back task, chil-

dren are presented a target stimulus. Then during the scanning they are asked to

hit a button for “match” when they see an identical picture and a button for “no

match” when they see a different picture. Due to substantial growth and cogni-

tive development during adolescence, the association between brain activity and

cognitive ability can be highly heterogeneous from individual to individual. It is
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thus important to account for potential subject heterogeneity in the association

modeling. The dataset we analyze comes from the ABCD study, Release 1.0,

which consists of n = 1, 901 children from 9 to 11 years old. The response is

the cognitive score. The primary predictors are the 0-back fMRI activation mea-

surements over p = 90 automated anatomical labelling (AAL) regions (Tzourio-

Mazoyer et al., 2002). In addition, there are a set of additional variables, in-

cluding the psychological score or p-factor (Caspi et al., 2014), which measures

general features of mental disorders, plus age, race, parental education, parental

marital status, family size, and income. Together they form a set of q = 18

auxiliary predictors. We apply the proposed method to this dataset. To further

amend the sparse estimation, we apply a bootstrap method to construct a 95%

confidence interval for each estimated parameter.

6.2 Subgroups and associations

We first examine the auxiliary predictors Zi and the associated subgroups. Fig-

ure 4 plots the average effect ofZi on Yi, i.e., the q-dimensional estimate n−1
∑n

i=1 Θ̂TXi,

over 100 bootstrap replications. The left panel is based on our method, and the

right panel based on the usual Lasso with Zi as the predictor for comparison.

It is seen that the psychological score, age, race, parental education whether or

not having a postgraduate degree, parental marital status, and income, contribute
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Figure 4: Average effect of the auxiliary predictors on the response, obtained from our method

(left panel), and the usual Lasso (right panel). The error bars represent 95% confidence intervals

obtained from 100 bootstraps.

significantly to clustering children into different subgroups. Meanwhile, our es-

timate has a much smaller variation compared to the usual Lasso estimate.

Next, we compare the analysis based on the entire study cohort to that based

on the two groups of subjects divided by the psychological score. This is mainly

motivated by the domain interest that the psychological score can be a major

factor that influences the association between the cognitive outcome and 0-back

(low memory load) brain activities. Figure 5, top row, plots the significantly
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associated brain regions for the entire data, for those subjects whose psycholog-

ical score is lower than 1.28, and for those subjects whose score is higher. The

statistical significance of the association of interest is determined by the boot-

strap method, i.e., whether ≥ 97.5% of the bootstrapped regression coefficient

estimates are positive or negative. The threshold value 1.28 is the largest psy-

chological score in the low score group identified by the K-means clustering

when applied to the psychological score variable. It is seen that, the associa-

tion pattern for the low psychological score group is similar to that for the entire

group, in that the left and right inferior frontal gyrus (the opercular part) have

a positive effect on the cognitive outcome, while the right postcentral gyrus has

a negative effect. By contrast, in the high score group, no AAL region is found

significantly associated with the cognitive outcome, showing a heterogeneous

relation between the brain activity and cognitive ability. The inferior frontal

gyrus is related to several well known brain functions including language pro-

cessing (Winhuisen et al., 2005), working memory (Liakakis et al., 2011) and

spatial attention (Hartwigsen et al., 2019). Our results suggest that mental health

issues of children may affect their brain activity in the inferior frontal gyrus and

its related cognitive functions.

Next, instead of using the psychological score to form the clusters, we apply

the K-means algorithm to the estimated Θ̂Zi. Based on the BIC criterion, we
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Overall, CS = 0.265

Frontal-Inf-Oper-R, 0.588; Frontal-Inf-Oper-L, 0.561; 
Postcentral-R, -0.274

P score in (-0.77, 1.28], CS = 0.265

Frontal-Inf-Oper-R, 0.604; Frontal-Inf-Oper-L, 0.473; 
Postcentral-R, -0.276

P score in (1.28, 16.19], CS = -0.053

None          

CS = 0.672, sample size = 762

Temporal-Sup-L, -0.344

CS = 0.163, sample size = 761

None

CS = -0.351, sample size = 378

Postcentral-R, -0.3

Figure 5: Association patterns between brain regions and cognitive outcome for different sub-

groups. The top row is for the entire study cohort, the group with the psychological score lower

than the threshold, and the group higher than the threshold. The bottom row is for the three

subgroups identified byK-means applied to Θ̂Zi. Significant positive and negative associations

are represented by green and blue colors, respectively, for corresponding brain regions.

identify three subgroups, which happen to correspond to the high, medium, and

low cognitive scores approximately. After identifying the subgroups, we refit the

regression model of Y on X within each subgroup separately. We comment that

this is mainly to simplify the analysis, but it may underestimate the variation in
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the association between Y and X . Figure 5, bottom row, plots the significantly

associated brain regions for the three subgroups. It is seen that, the superior tem-

poral gyrus has a negative effect only for the high cognitive score group, while

the right postcentral gyrus has a negative effect only for the low cognitive score

group. This again demonstrates heterogenous patterns for different subgroups of

subjects. It has been shown that the superior temporal gyrus (Mesgarani et al.,

2014) involves the high-order auditory processing of speech, while the postcen-

tral gyrus (Thomas et al., 1999) is related to spatial working memory task and

visual processing. The identified heterogenous brain activation patterns between

the high and low cognitive score groups provide new insights on how the differ-

ent types of cognitive skills contribute differently to a general cognitive ability,

6.3 Predictions

Finally, we evaluate the prediction performance of our proposed method in two

ways. We first randomly split the data into two halves, and report the R2 mea-

sure based on the testing data. We also compare our method with a number of

alternative solutions, including the usual Lasso method applied to the individ-

ual entries of Θ, and the group Lasso method applied to each column of Θ for

k = 2, . . . , q, similarly as in Section 5.3. In addition, we compare with the Lasso

regression with Xi as the predictors, but separately for the three clusters iden-
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Figure 6: Prediction performance in terms of R2 from 100 random data splits. The mean and

the standard deviation are shown in the bottom row.

tified based on Θ̂Zi, and the Lasso regression separately for the three clusters

identified based on Zi directly. We repeat the random splits 100 times. Figure

6 shows the box plot of the R2 values from 100 splits. It is clearly seen that our

method achieves the best performance in terms of R2. We also note that sepa-

rate Lasso regression based on the clustering results using Zi directly performs

poorly.

Moreover, we evaluate the prediction performance by using the Lasso model

learnt from the samples in one cluster to predict the outcome of the samples

in another cluster. Table 1 reports the corresponding mean squared prediction

error. It is seen that the best prediction accuracy is achieved when predicting

the same cluster of samples, suggesting that there is indeed data heterogeneity,
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Table 1: Prediction performance. The mean squared prediction error for cross training and

testing. All results are based on 100 random data splits.

Groups 1 2 3

1 0.598 (0.059) 0.901 (0.274) 1.304 (0.339)

2 0.948 (0.266) 0.560 (0.048) 0.901 (0.269)

3 1.353 (0.370) 0.903 (0.271) 0.562 (0.054)

and taking into account such heterogeneity actually helps improve the prediction

performance.

7. Discussion

In this article, we have proposed a new approach for subgroup analysis in regres-

sion modeling. Our key idea is to treat the primary and auxiliary predictors sep-

arately, and model the heterogenous association through the interaction between

the primary and auxiliary variables. In addition, we achieve simultaneous fea-

ture selection for both primary and auxiliary predictors through proper penalty

functions. Our theoretical and numerical analyses demonstrate the effectiveness

of the proposed method. Meanwhile, we remark that, although we adopt a linear

type regression model and consider a continuous response variable, it is possi-

ble to extend our method to nonlinear models and other types of outcomes, by
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adopting different link functions.

Our current work relies on a key underlying structure that Θ0 is sparse. Such

a sparsity structure has several advantages. It makes the interpretation easier,

as it allows us to identify and focus on the subset of auxiliary predictors that

contribute to the heterogenous association between the response and the primary

predictors. In addition, it leads to a low-dimensional Θ0Z, which would in turn

facilitate the downstream clustering analysis. As we have shown in Section 6.3,

directly clustering based on the high-dimensional auxiliary covariates Z would

lead to a poor performance. Alternatively, one may consider another structure

such that Θ0 is of a low rank. This can be achieved by introducing a nuclear

norm type penalty inR(Θ), and defining the subgroups according to the nonzero

singular values of Θ0Z. However, the low-rank structure is harder to interpret,

and its effect on downstream clustering requires more investigations. We feel a

full treatment is beyond the scope of this article, and we leave this extension as

future research.

Supplementary Materials

The supplementary document online includes the comprehensive proofs of all

theoretic results. .
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