
 

 
 
 

 
 
 

 

Statistica Sinica Preprint No: SS-2023-0065 
Title On Block Cholesky Decomposition for Sparse Inverse 

Covariance Estimation 
Manuscript ID SS-2023-0065 

URL http://www.stat.sinica.edu.tw/statistica/ 
DOI 10.5705/ss.202023.0065 

Complete List of Authors Xiaoning Kang,  
Jiayi Lian and  
Xinwei Deng 

Corresponding Authors Xinwei Deng 
E-mails xdeng@vt.edu 

Notice: Accepted version subject to English editing. 



Statistica Sinica

1

On Block Cholesky Decomposition

for Sparse Inverse Covariance Estimation

Xiaoning Kang†, Jiayi Lian‡ and Xinwei Deng‡

†Institute of Supply Chain Analytics and International Business College,

Dongbei University of Finance and Economics, Dalian, China

‡Department of Statistics, Virginia Tech, Blacksburg, VA

Abstract: The modified Cholesky decomposition is popular for inverse covariance estimation,

but often needs pre-specification on the full information of variable ordering. In this work,

we propose a block Cholesky decomposition (BCD) for estimating inverse covariance matrix

under the partial information of variable ordering, in the sense that the variables can be

divided into several groups with available ordering among groups, but variables within each

group have no orderings. The proposed BCD model provides a unified framework for several

existing methods including the modified Cholesky decomposition and the Graphical lasso. By

utilizing the partial information on variable ordering, the proposed BCD model guarantees

the positive definiteness of the estimated matrix with statistically meaningful interpretation.

Theoretical results are established under regularity conditions. Simulation and case studies

are conducted to evaluate the proposed BCD model.

Key words and phrases: Graphical model, modified Cholesky decomposition, regularization,

sparsity, variable ordering.
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1. Introduction

The estimation of covariance and inverse covariance matrices is of fundamental im-

portance in the multivariate statistics with a broad spectrum of applications, such as

linear discriminant analysis (Clemmensen et al., 2011), portfolio optimization (Deng

and Tsui, 2013), and assimilation (Nino-Ruiz et al., 2019). In high-dimensional data,

sparse estimation of an inverse covariance matrix has specially attracted great at-

tention, since it is closely related to a graphical model for inferring the conditional

independence between variables of multivariate normal data. However, estimation

of a large inverse covariance matrix often encounters two challenges. First, the esti-

mated matrix needs to be positive definite for the valid statistical inferences. Second,

the number of parameters in the model increases quickly in a quadratic order in terms

of the matrix dimensionality.

Existing studies on the inverse covariance estimation in the literature generally

fall into two categories. Denote the random variables of interest byX = (X1, . . . , Xp)
′

with mean 0 for simplicity and covariance matrix Σ. The first category needs the pre-

specification on the full ordering information of variables X. That is, the variables

X1, . . . , Xp have a natural ordering, which typically occurs in longitudinal data, time

series, spatial data, spectroscopy and so forth. In this situation, banded or tapering

estimation for the high-dimensional matrices has been developed (Bickel and Levina,

2008), requiring an assumption that the variables are becoming weakly correlated as
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their positions in the ordering are far away. Although these methods are straightfor-

ward and easy in computation, the resultant estimates may not be positive definite.

A better technique for estimating the inverse covariance matrix in this category is

the modified Cholesky decomposition (MCD) introduced by Pourahmadi (1999). It

not only guarantees the positive definiteness of the estimated matrix, but also utilizes

the information of variable ordering, leading to an accurate estimate. Moreover, this

decomposition has a meaningful regression interpretation, allowing the use of the reg-

ularization for sparse estimation (Huang et al., 2006; Kang and Wang, 2021). That

is, the sparse pattern in the Cholesky-based matrix estimates can be induced by the

sparsity in the Cholesky factors through linear regressions in the decomposition.

The second category considers that the information of variable ordering is not

available. In this case, one strategy is to identify a proper variable ordering based on

a certain data driven mechanism, transforming it into the estimation problem of the

first category. For example, Wagaman and Levina (2009) determined the variable

ordering by the Isomap algorithm and proposed an Isoband matrix estimate. Della-

portas and Pourahmadi (2012) suggested using BIC criterion to seek for the variable

ordering before applying the MCD technique. Rajaratnam and Salzman (2013) recov-

ered the variable ordering via the best permutation algorithm, which is very efficient

for autoregressive model. However, a potential drawback is obvious that the accuracy

of such estimates relies on the accuracy of the estimated orderings of variables. Fur-
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thermore, some real data, for example gene data and medical data, practically may

not have a natural variable ordering, which means that it is not adequate to find a

variable ordering for such data. Alternatively, another strategy in this category is to

consider a permutation invariant estimation for inverse covariance matrix. One pop-

ular method is the Graphical lasso (Glasso) proposed by Meinshausen and Bühlmann

(2006) and Yuan and Lin (2007), of which the algorithms and properties have been

widely studied (Friedman et al., 2008; Lam and Fan, 2009; Yuan, 2010). Other works

on the permutation invariant estimation for inverse covariance matrix can be found

in Xue et al. (2012); Wang et al. (2015); Cai et al. (2016); Van Wieringen (2019);

Wang et al. (2020), among many others.

By comparing two categories of estimation methods, it is seen that the MCD

is an appropriate method for estimating the inverse covariance matrix when the

information of variable ordering is fully available, while the Glasso is suitable when

the information of variable ordering is not available. However, in many applications,

there is only partial information of variable ordering available. Here the partial

information means that the variables can be divided into several groups (including

one group) with the group ordering known but the variable ordering within each

group unknown. For example, in the multi-stage manufacturing process (Shi, 2006),

each stage contains a set of variables and the stages have a natural ordering among

themselves because of the nature of manufacturing process. Thus, the full information
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of variable ordering is not available since the variables within the same stage may

not have an ordering. In this case the partial information of variable ordering is

present since there is an ordering among stages. To estimate the inverse covariance

matrix of variables in such a multi-stage manufacturing process, neither the MCD

method nor the Glasso method is adequate. Another concrete example is the Covid-

19 data in Case Studies Section. The data were weekly collected from 37 continuous

weeks at the beginning of the pandemic. In each week, four variables which have no

ordering among themselves are recorded. Such four variables in a certain week are

correlated with variables in the former weeks (see details in Case Studies). Therefore

the 4× 37 = 148 variables can be naturally divided into 37 groups by calendar week,

which forms a partial information of the variable ordination.

In this work, we fill in the gap to develop a block Cholesky decomposition (BCD)

method for estimating the inverse covariance matrix given the partial information

of variable ordering. The proposed BCD method takes advantage of such partial

information on the variable ordination to estimate the inverse covariance matrix

via the joint estimation of a set of penalized multivariate regressions. It guar-

antees the positive definiteness of the estimated sparse inverse covariance matrix

with statistically meaningful interpretation. Moreover, the proposed method pro-

vides a unified framework of estimating the inverse covariance matrix, where the

MCD, the Glasso method, the Witten et al. (2011)’s estimator and Rothman et al.
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(2010a)’s estimator can be all considered as special cases of the proposed method.

The theoretical results suggest that the proposed model can have faster consistent

rate than that of Glasso method when the partial information on the variable ordi-

nation is present. The R codes of implementing the proposed model are available at

https://github.com/xiaoningmike/BCD.

The remainder of this work is organized as follows. Section 2 develops the pro-

posed method along with its parameter estimation. The asymptotically theoretical

property is established in Section 3 under regularity conditions. Sections 4 and 5

demonstrate the merits of the proposed model via simulations and two real data

examples. We conclude our work with some discussion in Section 6. All technical

proofs are reported in the supplementary materials.

2. The Proposed Method

In this section, we describe the proposed methodology of the BCD method. Dif-

ferent from the MCD technique, the proposed BCD method only requires partial

information of the variable ordination.

2.1 Block Cholesky Decomposition for Inverse Covariance Matrix

Suppose that the variables in X can be partitioned into M groups, with the jth

group of variables denoted as X(j) = (X
(j)
1 , X

(j)
2 , . . . , X

(j)
pj )

′, j = 1, 2, . . . ,M , where
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2.1 Block Cholesky Decomposition for Inverse Covariance Matrix7

pj is the number of variables in the jth group, and
∑M

j=1 pj = p. Assume that these

M groups of variables have a natural ordering of X(1),X(2), . . . ,X(M), while there

is not any ordering structure among variables X
(j)
1 , X

(j)
2 , . . . , X

(j)
pj within each group

X(j). We call such ordering information of these M groups as the partial information

of the variable ordination. Note that when M = 1, it reduces to the case that there

is no ordering information for the p variables X1, . . . , Xp, and M = p corresponds

to the case that the p variables have a full ordering information. In this work, we

assume both of p and M can be diverged as the sample size goes to infinity.

Without loss of generality, we write X = ((X(1))′, (X(2))′, . . . , (X(M))′)′ with its

inverse covariance matrix Ω = Σ−1. The key idea of the BCD model is to decompose

Ω by a block lower triangular matrix constructed from the multivariate regression

coefficients when the variable group X(j) is regressed on its preceding variable groups

X(1),X(2), . . . ,X(j−1) for j = 2, 3, . . . ,M . Specifically, the BCD method considers a

series of multivariate regressions

X(j) =

j−1∑
i=1

AjiX
(i) + ϵj = AjZ

(j) + ϵj, j = 2, . . . ,M, (2.1)

where Z(j) = ((X(1))′, (X(2))′, . . . , (X(j−1))′)′ and Aj = (Aj1, . . . ,Aj,j−1) with Aji

being the pj×pi coefficient matrix. Here ϵj is the pj-dimensional vector of error term

for the jth multivariate regression with Eϵj = 0 and Cov(ϵj) = Dj. Hence, we can

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.1 Block Cholesky Decomposition for Inverse Covariance Matrix8

construct a block lower triangular matrix A written as

A =



0 0 0 . . . 0

A21 0 0 . . . 0

A31 A32 0 . . . 0

...
...

. . .
...

...

AM1 AM2 . . . AM,M−1 0


,

with its jth diagonal element being a pj × pj zero matrix, and its lower left part

composed of all the regression coefficient matrices in Equation (2.1). Besides, define

Dj = Cov(ϵj) =


Cov(X(1)), j = 1,

Cov(X(j) −
∑j−1

i=1 AjiX
(i)), j = 2, 3, . . . ,M.

Denote byD = diag(D1,D2, . . . ,DM) the block diagonal covariance matrix of vector

ϵ = (ϵ′1, ϵ
′
2, . . . , ϵ

′
M)′. Thus the multivariate regressions in (2.1) can be written as

ϵ = X −AX = (I −A)X ≜ TX, (2.2)

where I represents the p × p identity matrix, and T = I −A is a unit block lower

triangular matrix having ones on its diagonal. The matrices T and D are called the

block Cholesky factors. By taking Cov(ϵ) = Cov(TX) in Equation (2.2), we have
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2.1 Block Cholesky Decomposition for Inverse Covariance Matrix9

D = TΣT ′, which consequently leads to

Ω = Σ−1 = T ′D−1T , (2.3)

where D−1 = diag(D−1
1 ,D−1

2 , . . . ,D−1
M ). As a result, the BCD method reduces the

challenge of modeling an inverse covariance matrix based on the partial information

of the variable ordination into the problem of estimating (M − 1) multivariate linear

regressions. Because of the decomposition (2.3), the general sparsity in T would

induce some sparsity in Ω (although it may not induce certain structured sparsity),

which is easily implemented by the regularization on the linear regressions in (2.1).

The decomposition (2.3) also indicates that the BCD method can guarantee the

positive definiteness of the resulting estimate of Ω provided that D−1
1 ,D−1

2 , . . . ,D−1
M

are all positive definite. Note that there is no constraint required for parameters

in matrix T . We would like to remark that although the proposed model needs

information on the group ordering, it is invariant to the permutation of variables

within each group because the coefficient estimation of multivariate regressions in

(2.1) is not affected by the ordering of variables in X(j) and Z(j). This point is

verified in the simulation study. Moreover, it is seen that the MCD is a special case

of the proposed BCD with M = p (i.e., pj = 1 for j = 1, 2, . . . ,M), which represents

the case where the p variables have a full ordering information.
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2.2 Parameter Estimation10

2.2 Parameter Estimation

Denote by x1,x2, . . . ,xn the n independently and identically distributed observations

from the multivariate normal distribution Np(0,Ω
−1). Let X = (x1,x2, . . . ,xn)

′ be

the n × p data matrix. Based on the partial information of the variable ordination,

we partition X by columns and write X = (X(1),X(2), . . . ,X(M)), where X(j) represents

the n× pj sub-data matrix corresponding to the jth variable group X(j). Based on

the methodology of BCD, we need to model a set of multivariate regressions in (2.1)

to obtain the estimates of block Cholesky factors matrices T and D−1. The negative

joint log-likelihood function is expressed as

L(A,D−1) =
M∑
j=1

{
− log |D−1

j |+ tr
[
SϵjD

−1
j

]}
, (2.4)

up to some constant. The symbol Sϵj = 1
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2.2 Parameter Estimation11

=
M∑
j=1

{
− log |D−1

j |+ tr
[
SϵjD

−1
j

]
+ λ1∥Aj∥1 + λ2∥D−1

j ∥−1
}

≜
M∑
j=1

ℓλ(Aj,D
−1
j ), (2.5)

where ℓλ(Aj,D
−1
j ) = − log |D−1

j |+tr
[
SϵjD

−1
j

]
+λ1∥Aj∥1+λ2∥D−1

j ∥−1 with A1 = 0

being zero matrix. Here λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters, the matrix norm

||B||1 =
∑

i,j |bij|, and ||B||−1 =
∑

i̸=j |bij| with bij being the elements of matrix B.

Note that different components ℓλ(Aj,D
−1
j ) contain different parameters Aj and

D−1
j . Hence minimizing Lλ(A,D−1) is equivalent to minimizing each ℓλ(Aj,D

−1
j )

separately, which facilitates a parallel computing procedure for estimating (Aj,D
−1
j )

simultaneously to save computational time. For each minimization of ℓλ(Aj,D
−1
j ),

although the objective function is not convex with respect to (Aj,D
−1
j ), it is a

biconvex optimization (Gorski et al., 2007). That is, ℓλ(Aj,D
−1
j ) is convex over Aj

when fixing D−1
j , and is also convex over D−1

j when fixing Aj. This property enables

us to apply a coordinate descent algorithm to iteratively estimate Aj by minimizing

ℓλ(Aj,D
−1
j ) for a givenD−1

j = (D−1
j )∗, and estimateD−1

j by minimizing ℓλ(Aj,D
−1
j )

for a given Aj = (Aj)∗ (Rothman et al., 2010b; Sofer et al., 2014). Specifically, for a

given (D−1
j )∗, we solve

Âj[(D
−1
j )∗] = argmin

Aj

ℓλ(Aj|(D−1
j )∗)
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2.2 Parameter Estimation12

= argmin
Aj

{ 1

n
(X̃(j) − Z̃(j)Ãj)

′(X̃(j) − Z̃(j)Ãj) + λ1∥Ãj∥1}, (2.6)

where X̃(j) = vec[X(j)(D
− 1

2
j )∗] , Z̃(j) = (D

− 1
2

j )∗ ⊗ Z(j) and Ãj = vec[A′
j]. Here vec

denotes the vectorization operator and ⊗ the Kronecker product, and their property

vec(ABC) = (C ′ ⊗A)vec(B) is applied. The optimization problem (2.6) is thus a

linear regression with Lasso penalty (Tibshirani, 1996). The initial value for (D−1
j )∗

is set to be the identity matrix. On the other hand, for a given (Aj)∗, we solve

D̂−1
j [(Aj)∗] = argmin

D−1
j

ℓλ(D
−1
j |(Aj)∗)

= argmin
D−1

j

{
− log |D−1

j |+ tr
[
(Sϵj)∗D

−1
j

]
+ λ2∥D−1

j ∥−1
}
, (2.7)

where (Sϵj)∗ =
1
n
[X(j) −Z(j)(A′

j)∗]
′[X(j) −Z(j)(A′

j)∗]. It has the same form as Glasso

estimation. Accordingly, the estimates Âj and D̂−1
j are iteratively solved from opti-

mization problems (2.6) and (2.7) until convergence. After obtaining the estimates

Âj and D̂−1
j , we construct the block Choleksy factor estimate T̂ with −Âj as the jth

block row and the identity matrix being the block diagonal. The estimate D̂−1 is con-

structed with D̂−1
j as its jth block diagonal. Then Ω̂ = T̂ ′D̂−1T̂ is a sparse estimate

of inverse covariance matrix under the partial information of variable ordination. We

briefly summarize the above estimation procedure in Algorithm 1.
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2.2 Parameter Estimation13

Algorithm 1

Input: Data X, tuning parameters λ1 and λ2.

Output: Estimate Ω̂(λ1, λ2) corresponding to λ1 and λ2.

For j = 1 to M do

Step 0: Set an initial value of Dj = I.

Step 1: Given D−1
j = D̂−1

j;t , solve Aj in (2.6) by the Lasso technique.

Step 2: Given Aj = Âj;t, solve D−1
j in (2.7) by the Glasso technique.

Step 3: Repeat Steps 1 and 2 till both Âj = Âj;t and D̂−1
j = D̂−1

j;t converge.

End

Step 4: T̂ = I − Â and D̂−1 = diag(D̂−1
1 , . . . , D̂−1

M ), then Ω̂(λ1, λ2) = T̂ ′D̂−1T̂ .

Here Âj;t and D̂j;t represent the estimates of Aj and Dj in the tth iteration.

The convergence criteria are ||Âj;t− Âj;t−1||2F < τ1 and ||D̂j;t− D̂j;t−1||2F < τ2, where

τ1 and τ2 are two pre-selected small quantities, and || · ||F stands for the Frobenius

norm. Since the objective (2.5) is not joint convex, there is no guarantee of finding

the global minimum. However, Algorithm 1 uses a coordinate descent to compute a

local solution of (2.5). Steps 1 and 2 both ensure a decrease in the value of objective,

leading to the convergence ofAj andDj. In Step 3, we also set a maximum number of

iterations as 100 in case that the parameter estimation is not empirically converged.

However, in the simulation we have tried, almost all the parameter estimates satisfy

the convergence criteria quickly with several tens of iterations.
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2.2 Parameter Estimation14

Note that there are two tuning parameters λ1 and λ2 in the objective function

(2.5). To choose their optimal values, studies in the literature often suggest cross-

validation, information criteria, independent validation set mechanism and so forth.

In this work the BIC (Bayesian information criterion) proposed by Yuan and Lin

(2007) is adopted to determine the optimal values of tuning parameters as follows

BIC(λ1, λ2) = − log |Ω̂(λ1, λ2)|+ tr[Ω̂(λ1, λ2)S] +
log n
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2.3 Comparison and Connection with Several Existing Methods

The proposed BCD method obtains a sparse inverse covariance matrix estimate un-

der the partial information of variable ordination. Both of the Cholesky factors’

estimates T̂ and D̂−1 contain the sparsity resulting from a set of penalized multi-

variate regressions. It makes close connection with several existing methods.

Firstly, we demonstrate that the MCD, Glasso, Rothman et al. (2010a) and Wit-

ten et al. (2011) are all special cases of the proposed method. The MCD method for

estimating Ω is a special case when M = p, indicating that there is a full ordering

information. When data have partial ordering information, the MCD is not suitable.

The MCD needs a pre-specified full ordering before analyzing data, but the variables

have no ordering within each group. Therefore, one needs to identify an ordering

before applying the MCD. However, different orderings would lead to different esti-

mates (Chang and Tsay, 2010), and an incorrectly identified ordering would result

in an inaccurate estimate. Additionally, the Glasso is a special case of the proposed

BCD with M = 1, implying that there is no ordering information. Besides, Rothman

et al. (2010a) studied a banded estimate of Ω via MCD. Their approach can also be

viewed as a special case of the proposed BCD model by M = p and regressing X(j)

only on its several nearest previous group variables instead of all the previous group

variables in Equation (2.1). Furthermore, the proposed BCD method can be easily

extended to estimate the inverse covariance matrix with a banded block structure.
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In addition, Witten et al. (2011) introduced a block diagonal inverse covariance

estimation with each block obtained by the Glasso on the corresponding group vari-

ables. Their method assumed that variables in different groups are independent.

Thus their estimator is also a special case of the proposed BCD, in the sense that

the block Cholesky factor T becomes the identity matrix under the independence

assumption between group variables, and each D−1
j is then estimated from Glasso on

X(j). The estimate Ω̂ = T̂ ′D̂−1T̂ is the same as that in Witten et al. (2011).

Secondly, we compare several methods from perspective of ordering informa-

tion. When there is no ordering among variables, apart from Glasso which penalizes

likelihood function, some papers investigated matrix estimation through penalized

pseudo-likelihood. They solve their optimization problems often in a column-by-

column fashion, such as Yuan (2010); Cai et al. (2011); Liu and Luo (2015); Liu and

Wang (2017) and so forth. Liu and Luo (2015) extended the idea of Cai et al. (2011)

and proposed SCIO estimator as

β̂i = argmin
β

{
1
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step is also needed to make their estimates symmetric. In the contrast, the proposed

BCD estimate is itself symmetric and positive definite.

On the other hand, when variables have a full information on the ordering, two

recent works Yu and Bien (2017) and Khare et al. (2019) proposed to estimate Ω

via the classical Cholesky decomposition Ω = L′L, where the Cholesky factor L is a

lower triangular matrix. Both of such decomposition and the MCD induce the sparse

estimates by the sparsity in the Cholesky factors. The advantage of classical Cholesky

decomposition is to directly result in a convex objective with respect to parameter L,

hence guaranteeing a global convergence with an appropriate penalty. But it lacks

statistical meanings and interpretation as explicit as the MCD technique. Yu and

Bien (2017) assumed “local dependence” in the ordered data in the sense that the jth

variable is correlated with itsKj nearest variables, whereKj can be different. That is,

they assumed structured sparse pattern in the underlying Ω, while the proposed BCD

is suitable for a general or unstructured sparsity. Khare et al. (2019) introduced CSCS

estimator, which accommodates the unstructured sparsity by imposing a Lasso-type

penalty on the likelihood function in terms of L, and developed a cyclic coordinate

algorithm which leads to a closed form of solution for the estimates of each row of L.

To the best of our knowledge, few works have contributed to the inverse covariance

estimation when variables have partial ordering information.
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3. Theoretical Properties

In this section, we establish the asymptotically theoretical properties for the pro-

posed BCD estimator. To facilitate the presentation and proofs, we introduce some

notation and make assumptions on the true model. Let Ω0 = T ′
0D

−1
0 T0 be the under-

lying inverse covariance matrix with its block MCD according to the group variables

X(1),X(2), . . . ,X(M). Let Tj = −Aj, and Tj0 be the counterpart of Tj in the block

Cholesky factor T0. That is, Tj0 is the jth block row in the lower triangular part of

matrix T0. Define ZTj
= {(i, k) : (Tj0)ik ̸= 0} as the collection of nonzero elements

in the matrix Tj0. Similarly, denote the counterpart of Dj in the block Cholesky

factor D by the matrix Dj0, which is the jth block diagonal of matrix D0. Let

ZDj
= {(i, k) : i ̸= k, (D−1

j0 )ik ̸= 0} be the collection of nonzero off-diagonal elements

in the matrix D−1
0 . Denote by sTj

and sDj
the cardinality of ZTj

and ZDj
, respec-

tively. Let sT =
∑M

j=1 sTj
and sD =

∑M
j=1 sDj

. In order to achieve the asymptotic

consistent property of the proposed estimator, a mild condition is needed that there

exists a constant θ > 0 such that the singular values of Ω0 are bounded as

1/θ < φp(Ω0) ≤ φ1(Ω0) < θ, (3.8)

where φ1(B), φ2(B), . . . , φp(B) represent the singular values of matrix B in a de-

creasing order. This assumption is made to guarantee the positive definiteness of Ω0.
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In addition, assume that there exist constants 0 ≤ Cj ≤ 1 and γj ≥ 1 such that

pj = γjp
Cj for j = 1, 2, . . . ,M. (3.9)

Assumption (3.9) characterizes the relation between each pj and p for high-dimensional

data. If p diverges to infinity, Cj = 0 corresponds to the case where pj is fixed and

controlled by γj, while 0 < τc ≤ Cj ≤ 1 implies that pj also diverges, but not faster

than p, where τc is some positive arbitrarily small number. Denote ZC = {j : 0 <

τc ≤ Cj ≤ 1}, the set of indices that the corresponding groups have a diverging

number of variables. Now, we present the main results in Theorems 1 and 2.

Theorem 1. Suppose that x1, . . . ,xn are n independently and identically distributed

observations from Np(0,Ω
−1). Let (D−1

j )∗ and (Aj)∗ be any estimates of D−1
j and

Aj obtained from the path of Algorithm 1. Under (3.8) and (3.9), assume that the

tuning parameters λ1 and λ2 satisfy λ1 = O(
√
log(p)/n), λ2 = O(

√
log(p)/n), then

(a) there exists a local minimum Âj(= −T̂j) of ℓλ(Aj|(D−1
j )∗) such that ∥T̂j −

Tj0∥F = Op(sTj
log(

∑j
k=1 pk)/n).

(b) there exists a local minimum D̂j of ℓλ(D
−1
j |(Aj)∗) such that ∥D̂j − Dj0∥F =

Op((sDj
+ pj) log pj/n).

Theorem 2. Let Ω̂ be the estimate of Ω obtained by Algorithm 1. Assume all the
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assumptions in Theorem 1 hold, then we have

∥Ω̂−Ω0∥F = Op


√

n

 .

Under the condition sT log p+
∑M

j=1(sDj
+ pj) log pj = o(n), ∥Ω̂−Ω0∥F

P→ 0.

Theorem 1 provides asymptotic consistent rates of the estimators T̂j and D̂j that

are obtained by minimizing ℓλ(Aj|(D−1
j )∗) in (2.6) and minimizing ℓλ(D

−1
j |(Aj)∗)

in (2.7). Theorem 2 establishes the property for the inverse covariance estimate Ω̂

obtained from the proposed Algorithm 1, which demonstrates the consistent rate of

our estimate in practice. Moreover, we would like to have the following remarks.

First, from Theorem 1 we have ∥D̂−1 − D−1
0 ∥2F = ∥D̂ − D0∥2F =

∑M
j=1 ∥D̂j −

Dj0∥F = Op(
∑M

j=1(sDj
+ pj) log(pj)/n). Such rate is sharper than the theoretical

Glasso consistent rate (s̃ + p) log(p)/n (s̃ is a measure of sparsity), which has been

obtained in the literature (Lam and Fan, 2009), because of
∑M

j=1 pj log pj ≤ p log p

resulting from
∏M

j=1 p
pj
j ≤

∏M
j=1 p

pj
max = ppmax ≤ pp, where pmax = max{pj}Mj=1. The

equality holds only in the situation that all the p variables are in one group, where

it is exactly a Glasso problem. This implies that, as long as there are at least two

groups of variables, the proposed BCD model with partial information of variable

ordination is useful in reducing the consistent rate.

Second, the estimation ofD is decomposed intoM separate Glasso estimations in
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the proposed method. According to the log sum inequality, we have
∑M

j=1 pj log pj ≥

p log(p/M). The equality holds when pj = p/M for all j = 1, 2, . . . ,M , indicating

that the lowest bound of the proposed estimator’s consistent rate would be achieved

when each group has the equal number of variables. In view of this, we would like to

point out that: (i) a larger number of variable groups leads to a smaller value of the

lowest bound of the consistent rate; (ii) the more evenly that p variables are assigned

into M groups, the more closely that the consistent rate tends to the lowest bound.

Third, the requirement sT log p+
∑M

j=1(sDj
+ pj) log pj = o(n) in Theorem 2 is a

relatively weaker condition compared with the assumption for the Glasso model. Note

that ∥D̂−D0∥2F ≤ Op(
∑M

j=1(sDj
+pj) log(pmax)/n) = Op((sD+p) log(pmax)/n), then

we may require a stronger condition sT log p + (sD + p) log pmax = o(n). Moreover,

if we further loose the upper bound of ∥D̂ − D0∥2F ≤ Op((sD + p) log(p)/n), the

proposed BCD model needs an even stronger condition (sT + sD + p) log p = o(n),

which however is the similar condition as that for the Glasso estimator.

4. Numerical Study

In this section, we conduct simulation studies to evaluate the performance of the

proposed BCD model (Prop) in comparison with several existing methods, includ-

ing the MCD method, Glasso, SCIO (Liu and Luo, 2015) and CSCS (Khare et al.,

2019). The MCD, where M = p, reduces Equation (2.1) to (p− 1) univariate linear
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regressions with their coefficients estimated by Lasso. The Glasso and SCIO are two

popular methods, but do not consider ordering information. The CSCS is suitable for

data with full ordering information and implemented via classical Cholesky decompo-

sition. The tuning parameters in the Glasso, SCIO and CSCS methods are selected

based on BIC. Besides, to examine whether the proposed model is permutation in-

variant within each group, we also implement the Prop∗ method, which estimates Ω

by Algorithm 1 from data which randomly permutate variables within each group.

The data are independently generated from Np(0,Ω
−1) with sample size n = 50

and number of variables p = 200. We consider two different cases of variable groups:

(1) five groups with each containing 40 variables; (2) four groups with each sub-

sequently containing 30, 60, 40 and 70 variables. Let AR(ρ) represent a squared

matrix with autoregressive structure with (i, j)th entry as ρ|i−j|, 1 ≤ i, j ≤ p. Let

MA(0.5, 0.4, 0.3) indicate a squared banded matrix with the main diagonal elements

1, and the subsequent sub-diagonal elements are 0.5, 0.4 and 0.3 respectively. Denote

an a× b non-squared matrix ÃR(ρ) = (AR(ρ),0) if a < b, and ÃR(ρ) =

 AR(ρ)

0


otherwise, where 0 represents the matrix with all elements 0. Similarly, Denote an

a × b non-squared matrix M̃A(0.5, 0.4, 0.3) = (MA(0.5, 0.4, 0.3),0) if a < b, and

M̃A(0.5, 0.4, 0.3) =

 MA(0.5, 0.4, 0.3)

0

 otherwise. To systematically investigate

the performance of the proposed method, we consider the following different struc-
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tures of inverse covariance matrix Ω.

• Scenario 1. Ω1 = AR(0.8).

• Scenario 2. Ω2 =


AR(0.5) . . . 0

...
. . . 0

0 . . . AR(0.5)

.

• Scenario 3.

Ω3 =



MA(0.5, 0.4, 0.3) ÃR(0.5) . . . ÃR(0.5)

ÃR(0.5) MA(0.5, 0.4, 0.3) . . . ÃR(0.5)

... ÃR(0.5)
. . . ÃR(0.5)

ÃR(0.5) ÃR(0.5)
... MA(0.5, 0.4, 0.3)


+ αI.

The value of α is gradually increased to ensure that Ω3 is positive definite.

• Scenario 4. Ω4 = Ω̃4 + αI, where Ω̃4 is generated by randomly permuting

rows and corresponding columns of each block of

AR(0.5) M̃A(0.5, 0.4, 0.3) . . . M̃A(0.5, 0.4, 0.3)

M̃A(0.5, 0.4, 0.3) AR(0.5) . . . M̃A(0.5, 0.4, 0.3)

... M̃A(0.5, 0.4, 0.3)
. . . M̃A(0.5, 0.4, 0.3)

M̃A(0.5, 0.4, 0.3) M̃A(0.5, 0.4, 0.3)
... AR(0.5)


. The value of

α is gradually increased to ensure that Ω4 is positive definite.

• Scenario 5. Ω5 = B′HB, where H is a block diagonal matrix with its each

diagonal block as AR(0.5), and B = (bi,j) with bi,i = 1, bi+20,i = −0.8 and
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bi,j = 0 otherwise.

• Scenario 6. Ω6 = B′HB, where H is a block diagonal matrix with its each

diagonal block being MA(0.5,0.4,0.3), and B = (bi,j) with bi,i = 1, bi+20,i =

−0.8, bi+21,i = 0.5 and bi,j = 0 otherwise.

• Scenario 7. Ω7 = Ω̃7 + αI. Here the diagonal elements of Ω̃7 are 0, and

each off-diagonal element is generated independently as (Ω̃7)ij = (Ω̃7)ji =

b ∗ Unif(−1, 1), where b is a Bernoulli random variable with probability 0.15

equal 1. The value of α increases gradually to make sure Ω7 is positive definite.

Scenario 1 is the AR structure with the variables’ correlations decaying when

they are far apart from each other. Scenarios 2 is a block diagonal matrix with

multiple groups of variables, where the variables in different groups are independent.

Scenarios 3 and 4 are block matrices with multiple groups of variables with variables

in different groups possibly correlated. Scenarios 5 and 6 are similarly used in

Huang et al. (2006). Scenario 7 is a general sparse matrix with random structure.

To evaluate the accuracy of each estimate Ω̂ = (ω̂ij) for the underlying inverse

covariance matrix Ω = (ωij), we consider the loss measures L1, the matrix spectral

norm L2, the Frobenius norm F of (Ω− Ω̂) as follows

L1 = max
j

∑
i

|ω̂ij − ωij|, L2 = λmax[(Ω− Ω̂)], Fnorm =

√√√√ p∑
i=1

p∑
j=1

(ω̂ij − ωij)2,
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where λmax is the maximum value of eigenvalues. We also use the Kullback-Leibler

loss (KL) as well as the quadratic loss (QL)

KL =
1

p
(tr[Ω−1Ω̂]− log |Ω−1Ω̂| − p), QL =

1

p
tr(Ω−1Ω̂− I)2.

In addition, to gauge the ability of the proposed model to capture the underlying

sparse structure, we report the false selection loss FSL = (FP + FN) / p2 in per-

centage, where FP is the false positive and FN is the false negative. The simulation

results of loss measures for each method are summarized in Tables 1 and 2, reporting

their averages and corresponding standard errors (in parenthesis) over 50 replicates.

Overall, the Prop method gives relatively superior performance compared with

other methods for the considered loss measures. Especially it performs substantially

well with respect to KL and QL for all the scenarios. Note that the results of Prop∗

are omitted in the tables since they are exactly the same as the results of the Prop

method. It further confirms that the proposed BCD model is permutation invariant

for the variables within each group. In scenario 1, the CSCS and Prop are the best

models. The CSCS method is slight better than Prop regarding L1, L2 and Fnorm

since it is designed for inverse covariance estimation of data with full information on

variable ordering. For other scenarios 2-7, we observe that (1) the Prop is at least

comparable with or slightly better than CSCS method; (2) the Prop outperforms
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Table 1: The averages and standard errors (in parenthesis) of estimates for 5 groups
of variables.

Scenario L1 L2 Fnorm KL QL FSL (%)

1

MCD 50.25 (6.628) 16.66 (2.187) 196.5 (24.94) 4.000 (0.670) 4.738 (1.027) 34.75 (0.302)
Glasso 8.852 (0.001) 8.717 (0.001) 28.61 (0.004) 0.518 (0.001) 0.601 (0.004) 27.67 (0.001)
SCIO 8.843 (0.002) 8.685 (0.001) 28.43 (0.004) 0.451 (0.003) 0.655 (0.005) 27.35 (0.006)
CSCS 8.750 (0.004) 8.577 (0.002) 28.06 (0.009) 0.415 (0.002) 0.505 (0.005) 27.30 (0.019)
Prop 8.768 (0.004) 8.581 (0.001) 27.87 (0.006) 0.363 (0.001) 0.397 (0.004) 25.89 (0.022)

2

MCD 41.23 (15.07) 32.46 (4.881) 34.83 (5.265) 0.366 (0.054) 2.921 (0.699) 29.53 (0.580)
Glasso 2.613 (0.004) 2.379 (0.003) 12.57 (0.009) 0.242 (0.001) 0.410 (0.003) 7.875 (0.001)
SCIO 2.618 (0.005) 2.363 (0.003) 12.48 (0.010) 0.240 (0.003) 0.419 (0.003) 7.769 (0.003)
CSCS 2.586 (0.006) 2.324 (0.005) 12.20 (0.031) 0.222 (0.002) 0.390 (0.003) 7.711 (0.010)
Prop 2.539 (0.007) 2.259 (0.002) 11.78 (0.008) 0.195 (0.001) 0.340 (0.003) 7.343 (0.006)

3

MCD 61.20 (5.725) 205.6 (20.88) 245.2 (25.91) 4.671 (0.303) 28.53 (6.462) 49.24 (0.163)
Glasso 9.592 (0.001) 9.414 (0.001) 25.87 (0.004) 0.778 (0.001) 2.952 (0.023) 36.35 (0.001)
SCIO 9.579 (0.002) 9.348 (0.001) 25.62 (0.004) 0.703 (0.003) 3.506 (0.029) 35.99 (0.007)
CSCS 9.543 (0.007) 9.153 (0.005) 25.14 (0.016) 0.591 (0.003) 1.604 (0.024) 34.72 (0.032)
Prop 9.530 (0.005) 9.140 (0.001) 25.09 (0.003) 0.424 (0.001) 0.681 (0.009) 36.99 (0.018)

4

MCD 50.70 (6.839) 16.30 (2.144) 19.04 (2.179) 3.108 (0.210) 54.44 (11.78) 47.52 (0.204)
Glasso 4.221 (0.031) 3.474 (0.012) 11.33 (0.111) 0.568 (0.041) 10.79 (2.661) 21.14 (0.079)
SCIO 3.936 (0.001) 3.546 (0.001) 11.91 (0.012) 0.597 (0.083) 9.475 (1.973) 19.70 (0.001)
CSCS 6.880 (0.140) 3.300 (0.006) 10.12 (0.032) 0.566 (0.019) 2.601 (0.067) 22.23 (0.109)
Prop 4.341 (0.010) 3.373 (0.002) 10.50 (0.008) 0.466 (0.001) 2.075 (0.043) 21.12 (0.014)

5

MCD 136.7 (13.75) 50.75 (5.017) 67.67 (5.552) 1.282 (0.086) 47.12 (6.803) 31.27 (0.281)
Glasso 9.354 (0.005) 8.612 (0.005) 30.83 (0.029) 0.626 (0.006) 8.278 (0.366) 23.54 (0.013)
SCIO 9.543 (0.002) 8.841 (0.002) 32.11 (0.010) 0.637 (0.008) 3.559 (0.034) 23.85 (0.001)
CSCS 9.532 (0.014) 8.540 (0.015) 29.38 (0.075) 0.966 (0.014) 1.786 (0.013) 22.77 (0.043)
Prop 9.311 (0.007) 8.390 (0.005) 29.77 (0.026) 0.614 (0.003) 0.665 (0.085) 23.09 (0.055)

6

MCD 34.50 (2.309) 13.79 (0.952) 27.24 (0.814) 1.493 (0.016) 20.98 (0.858) 25.59 (0.234)
Glasso 8.291 (0.004) 5.340 (0.005) 25.74 (0.028) 1.052 (0.009) 1.717 (0.121) 12.45 (0.027)
SCIO 10.52 (0.713) 7.234 (0.382) 26.68 (0.478) 1.243 (0.083) 1.494 (0.062) 10.70 (0.001)
CSCS 7.987 (0.017) 4.921 (0.008) 21.62 (0.044) 1.278 (0.039) 1.275 (0.018) 11.33 (0.111)
Prop 7.724 (0.024) 5.003 (0.015) 22.92 (0.103) 1.062 (0.008) 0.803 (0.258) 10.31 (0.064)

7

MCD 78.65 (9.265) 25.19 (2.910) 28.24 (2.983) 4.042 (0.291) 11.57 (2.259) 48.25 (0.290)
Glasso 5.112 (0.054) 1.638 (0.005) 10.88 (0.041) 0.537 (0.010) 3.615 (0.313) 16.97 (0.027)
SCIO 4.502 (0.008) 1.663 (0.001) 10.74 (0.017) 0.547 (0.008) 3.227 (0.412) 14.86 (0.010)
CSCS 5.776 (0.099) 1.580 (0.005) 9.346 (0.034) 0.524 (0.007) 2.444 (0.081) 17.16 (0.092)
Prop 4.618 (0.020) 1.540 (0.003) 9.701 (0.027) 0.468 (0.002) 2.129 (0.054) 16.88 (0.028)
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Table 2: The averages and standard errors (in parenthesis) of estimates for 4 groups
of variables.

1

MCD 48.46 (6.760) 16.19 (2.258) 178.1 (23.47) 4.400 (0.556) 3.809 (0.841) 33.46 (0.316)
Glasso 8.850 (0.001) 8.718 (0.001) 28.62 (0.003) 0.518 (0.001) 0.597 (0.003) 27.68 (0.001)
SCIO 8.845 (0.002) 8.683 (0.001) 28.43 (0.004) 0.489 (0.002) 0.648 (0.004) 27.35 (0.005)
CSCS 8.771 (0.003) 8.603 (0.002) 28.05 (0.010) 0.451 (0.003) 0.497 (0.004) 27.29 (0.022)
Prop 8.785 (0.003) 8.610 (0.003) 28.04 (0.016) 0.387 (0.002) 0.421 (0.003) 26.43 (0.030)

2

MCD 23.83 (19.01) 36.34 (6.053) 38.72 (6.322) 0.397 (0.060) 3.993 (0.879) 28.31 (0.577)
Glasso 2.612 (0.004) 2.384 (0.002) 12.60 (0.008) 0.243 (0.001) 0.418 (0.003) 8.099 (0.001)
SCIO 2.635 (0.019) 2.367 (0.002) 12.51 (0.008) 0.242 (0.003) 0.430 (0.004) 7.998 (0.003)
CSCS 2.605 (0.008) 2.331 (0.005) 12.26 (0.036) 0.227 (0.002) 0.400 (0.004) 7.976 (0.015)
Prop 2.573 (0.008) 2.271 (0.004) 11.88 (0.026) 0.201 (0.002) 0.354 (0.004) 7.687 (0.013)

3

MCD 16.27 (1.882) 60.19 (7.668) 81.22 (7.474) 2.385 (0.119) 16.14 (2.668) 41.68 (0.223)
Glasso 7.953 (0.003) 7.766 (0.007) 22.23 (0.034) 1.147 (0.033) 7.825 (0.492) 21.93 (0.030)
SCIO 7.971 (0.055) 7.668 (0.041) 21.14 (0.042) 1.337 (0.054) 9.113 (0.230) 21.38 (0.010)
CSCS 7.845 (0.011) 7.451 (0.009) 20.01 (0.032) 0.953 (0.048) 1.564 (0.036) 22.53 (0.115)
Prop 7.817 (0.006) 7.405 (0.002) 20.78 (0.007) 0.486 (0.002) 0.789 (0.016) 23.73 (0.021)

4

MCD 26.29 (4.073) 8.836 (1.365) 11.09 (1.435) 1.883 (0.142) 18.57 (4.659) 39.62 (0.273)
Glasso 4.284 (0.051) 2.809 (0.008) 9.456 (0.055) 0.347 (0.015) 2.629 (1.172) 15.57 (0.037)
SCIO 3.576 (0.001) 2.939 (0.001) 10.22 (0.012) 0.405 (0.026) 2.506 (1.088) 14.13 (0.001)
CSCS 5.846 (0.119) 2.684 (0.005) 8.746 (0.024) 0.369 (0.010) 1.782 (0.043) 15.88 (0.046)
Prop 4.491 (0.025) 2.788 (0.003) 9.024 (0.008) 0.358 (0.001) 1.487 (0.033) 15.82 (0.017)

5

MCD 69.74 (5.203) 25.87 (1.396) 56.76 (1.174) 1.714 (0.097) 68.35 (9.419) 36.22 (0.221)
Glasso 25.84 (0.003) 20.54 (0.002) 53.62 (0.008) 0.824 (0.005) 11.44 (0.379) 35.91 (0.014)
SCIO 25.96 (0.002) 20.65 (0.001) 54.02 (0.002) 0.797 (0.008) 4.084 (0.035) 37.30 (0.001)
CSCS 25.62 (0.007) 20.35 (0.003) 52.98 (0.010) 1.057 (0.035) 3.884 (0.011) 34.60 (0.035)
Prop 25.76 (0.004) 20.42 (0.003) 53.07 (0.013) 0.734 (0.002) 3.003 (0.200) 33.54 (0.049)

6

MCD 38.13 (3.725) 15.74 (1.756) 29.40 (1.459) 1.032 (0.022) 22.71 (1.110) 25.72 (0.266)
Glasso 8.295 (0.005) 5.364 (0.005) 25.81 (0.031) 1.072 (0.010) 1.355 (0.114) 12.55 (0.031)
SCIO 9.359 (0.798) 6.426 (0.358) 27.73 (0.641) 1.106 (0.094) 1.379 (0.056) 10.99 (0.019)
CSCS 7.985 (0.022) 4.827 (0.009) 21.68 (0.047) 1.091 (0.018) 1.308 (0.021) 11.65 (0.128)
Prop 7.659 (0.017) 5.005 (0.009) 22.86 (0.070) 0.902 (0.005) 0.726 (0.159) 11.08 (0.033)

7

MCD 40.16 (5.131) 13.34 (1.641) 16.00 (1.795) 2.658 (0.200) 37.25 (8.799) 47.28 (0.289)
Glasso 5.944 (0.099) 1.588 (0.006) 10.53 (0.060) 0.480 (0.015) 4.094 (0.968) 16.34 (0.038)
SCIO 4.682 (0.001) 1.619 (0.001) 10.34 (0.014) 0.483 (0.009) 3.901 (0.876) 15.13 (0.001)
CSCS 8.205 (0.198) 1.604 (0.038) 9.022 (0.032) 0.451 (0.006) 1.756 (0.068) 17.52 (0.070)
Prop 4.992 (0.029) 1.503 (0.001) 9.063 (0.010) 0.374 (0.001) 1.312 (0.029) 17.15 (0.016)
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SCIO, Glasso and MCD methods for most loss measures. In addition, the compared

methods also show their advantages in some loss functions. For example, the SCIO

produces the lowest values in terms of L1 and FSL for both of scenarios 4 and 7. The

CSCS gives the best performance in terms of Fnorm for scenarios 5, 6 and 7. It is

also superior over other methods regarding L2 for scenarios 4 and 6.

Besides, one can see that the MCD approach does not perform well compared

with other methods, possibly due to that most simulated data do not have a valid

full information of natural variable ordering. It can make the MCD, the performance

of which heavily depends on the variable ordering, being inferior to other methods.

Moreover, for Scenario 7 without any variable ordering, we observe that the Glasso

can be better in certain criteria such as L1 and FSL. Especially, the Glasso is

superior in FSL as expected since it is good at inducing sparsity. Comparing with

CSCS, the Glasso gives similar performance on L2, although not as good in terms of

Fnorm and QL.

5. Case Studies

5.1 Covid-19 Data

We further evaluate the performance of the proposed model through a real data exam-

ple of Covid-19 pandemic, which is available on the official website of Virginia health

department. The data were weekly collected during May 29th, 2020 to February 6th,
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2021 (37 weeks) from 34 districts in Virginia State such as Arlington, Fairfax, Rich-

mond, Roanoke, Virginia Beach, etc. For each week the data contain four variables:

the accumulative number of cases, the accumulative number of people hospitalized,

the accumulative number of deaths and the accumulative number of people taking

the PCR (polymerase chain reaction) tests, resulting in 4× 37 = 148 variables.

Denote the collected data by Ni = (Ni1, . . . , Ni148)
′, i = 1, ..., 34, and transform

yij =
√

(Nij + 1/4) to make the data distribution close to normal (Brown et al.,

2005). We then apply the proposed model as well as the MCD, SCIO, CSCS and

Glasso methods to estimate the 148×148 inverse covariance matrix. To conduct data

analysis, the 148 variables are partitioned into 37 groups with each group naturally

corresponding to a calendar week. Hence it is seen that the data have a partial in-

formation of the variable ordination in a weekly scale. To examine the performance

of methods in comparison, we predict the accumulative number of cases, the accu-

mulative number of people hospitalized, the accumulative number of deaths and the

accumulative number of people taking PCR in the last 2 weeks using the inverse

covariance estimates obtained from the data in the first 35 weeks. Specifically, let

yi = (yi1, . . . , yi148)
′ = (y′

iE,y
′
iL)

′, where yiE and yiL represent the data in the first

35 weeks and last 2 weeks for the ith district, i = 1, 2, . . . , 34. Hence yiE contains

4 × 35 = 140 variables and yiL contains 4 × 2 = 8 variables. Accordingly, the mean
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vector and the inverse covariance matrix are divided as

µ =

 µ1

µ2

 and Ω =

 Ω11, Ω12

Ω′
12, Ω22

 .

Assuming multivariate normality, we have

E(yiL|yiE) = µ2 −Ω−1
22 Ω

′
12(yiE − µ1). (5.10)

The 34 observations are split into a training set and a testing set using the leaving-

one-out mechanism. That is, each observation is considered as a testing point with

the rest 33 observations as training set. The training set is used to estimate the mean

vector µ and the inverse covariance matrix Ω. The values of yiE = (yi1, . . . , yi140)
′ in

the testing data are used to predict yiL = (yi141, . . . , yi148)
′ based on Equation (5.10).

For each variable in yiL, define the average absolute prediction error (APE) by

APEj =
1

34

34∑
i=1

|ŷij − yij|, j = 141, . . . , 148.

where ŷij is the predicted value.

Table 3 reports the values of APEj for j = 141, . . . , 148, corresponding to the

prediction measurements for weeks 36 and 37. The columns “Hospitalizations” and
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Table 3: The averages (×10−1) and standard errors (×10−1) of APE for Covid-19
data.

36th week 37th week
Cases Hospitalizations Deaths PCR Cases Hospitalizations Deaths PCR

MCD 2.90 (0.26) 0.79 (0.11) 0.79 (0.11) 1.41 (0.16) 1.65 (0.22) 0.87 (0.12) 0.75 (0.09) 2.20 (0.40)
Glasso 3.57 (0.43) 1.03 (0.13) 1.02 (0.13) 5.50 (0.68) 2.41 (0.32) 1.00 (0.10) 0.93 (0.11) 5.16 (0.75)
SCIO 2.48 (0.32) 0.95 (0.13) 1.04 (0.12) 2.65 (0.34) 2.22 (0.31) 0.99 (0.10) 0.93 (0.11) 3.02 (0.51)
CSCS 2.54 (0.24) 1.06 (0.13) 0.79 (0.12) 1.50 (0.19) 1.64 (0.19) 0.85 (0.10) 0.84 (0.08) 1.68 (0.40)
Prop 2.39 (0.33) 0.80 (0.11) 0.75 (0.12) 1.33 (0.17) 1.61 (0.24) 0.80 (0.09) 0.73 (0.08) 2.55 (0.39)

“PCR” represent the variables that the number of people hospitalized, and the num-

ber of people attending the PCR tests, respectively. We observe that the Prop

outperforms the SCIO and Glasso, and is slightly better than the CSCS and MCD

approaches. Specifically, the Prop provides more accurate prediction in the number

of cases, which is of practically importance for pandemic study on the risk assess-

ment. It also predicts well in the number of deaths, and performs comparably with

the CSCS and MCD in predicting the number of people who will take the PCR tests

and the number of patients in hospital due to Covid-19. Additionally, it is seen that

the CSCS and MCD methods perform better than the Glasso and SCIO on this data

set. One possible reason is that the data, although not very strictly, have a natural

time ordering by weeks among the variables. The CSCS and MCD methods utilize

this information and show the advantages over the Glasso and SCIO.

In addition, Figure 1 displays the estimated conditional dependency relationship

between variables through network plots, which provide a further insight into the

analysis results from the compared methods. It is seen that the CSCS and MCD
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Figure 1: Conditional dependence networks inferred from Covid-19 data for all vari-
ables.

Figure 2: Conditional dependence networks inferred from Covid-19 data for variables
from 5th week to 20th week.

methods yield an excessive amount of connections, which complicates the estimated

model with difficult interpretation. While the graphs constructed from the Glasso

and SCIO appear to give few connections, not providing sufficient information to

infer the conditional dependency among variables. In contrast, the proposed model

identifies a proper number of variable connections with certain sparsity. For a clear

presentation, Figure 2 shows the estimated networks for the 60 consecutive variables,
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corresponding to the 5th week to 20th week. One would expect a meaningful network

with nearby variables having some connections while the far-away variables having

few connections. From Figure 2, it appears that the proposed model outperforms

other methods, since the MCD method presents relatively too many connections

of far-away variables, and the Glasso and SCIO provide too little information of

dependency relationship between nearby variables. The CSCS displays a proper

number of connections as the Prop method, while the Prop method seems to infer

more connections of nearby variables, which is indicated by dense connections on the

both upper right and bottom right of network plot constructed by the Prop method.

5.2 Call Center Data

In this section, we apply the proposed model to analyze the call center data from

Huang et al. (2006). The data set was collected from one of call centers in a major

U.S. northeastern financial organization. It recorded the time that every call arrives

at the service queue from 7:00am until midnight in each day of 2002, except for

6 days when the data collecting equipment was out of order. The 17-hour period

is divided into 102 10-minute intervals, and the number of calls during each time

interval is counted. Since the arrival patterns of calls are different between weekdays

and weekends, the analysis focuses on weekdays here. In addition, screening out some

outliers that include holidays and days when the recording equipment was faulty, we
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are left with 239 observations.

Denote such data byNi = (Ni1, . . . , Ni102)
′, i = 1, ..., 239, whereNij is the number

of calls received by the call center for the jth 10-minute interval on day i. Do the

transformation yij =
√
(Nij + 1/4), i = 1, . . . , 239, j = 1, . . . , 102 to make the data

distribution close to normal (Brown et al., 2005). We apply the compared methods to

estimate the 102× 102 inverse covariance matrix. The 102 variables are partitioned

into three groups with each group subsequently containing 30, 30 and 42 variables,

corresponding to three time intervals of 7:00am - 12:00am, 12:00am - 5:00pm and

5:00pm - midnight. To compare the performance of different methods, we predict the

number of arriving calls later in a day based on the arrival patterns at earlier times

of that day. As in Section 5.1, we use notation yi = (yi1, . . . , yi102)
′ = (y′

iE,y
′
iL)

′,

where yiE and yiL measure the arrival patterns in the early and later times of day

i. To examine the performance of the proposed model, the 239 observations are split

into a training set which contains the first 205 data corresponding to dates from

January to October, and a testing set with the rest 34 data corresponding to dates

from November and December. The values of yiE, i = 206, . . . , 239 in the testing

data are used to predict yiL based on Equation (5.10). Two different settings of yiE

are considered as (A): yiE = (yi1, . . . , yi51)
′ and (B): yiE = (yi1, . . . , yi60)

′. Setting A

is used in Huang et al. (2006) and represents using the data from the early half of a

day to predict the call numbers in the later half of the day. Setting B means using
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the data from the daytime to predict the call numbers in the evenings. For each time

interval in yiL, the APE is computed as

APEj =
1

Setting MCD Glasso SCIO CSCS Prop
A 1.240 (0.052) 1.258 (0.053) 1.194 (0.063) 1.152 (0.045) 0.991 (0.031)
B 1.159 (0.045) 1.163 (0.044) 1.083 (0.030) 1.098 (0.039) 1.023 (0.030)

Table 4 shows the averages and corresponding standard errors of APE over j

from each compared method for Settings A and B. The proposed model generally

gives superior performance over other methods with lowest values of APE. The SCIO

appears to be comparable with the CSCS method, and they perform better than

MCD and Glasso. The application results demonstrate the merits of the proposed

model when data have partial information of the variable ordination.

6. Discussion

In this work, we propose a block Cholesky decomposition (BCD) method for inverse

covariance estimation when the partial information of variable ordination is available.
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The proposed model adopts the MCD to induce the sparsity by imposing the regu-

larization on the multivariate regressions. The proposed method provides a unified

framework for several existing methods. including the MCD, the Glasso, and the es-

timators of Rothman et al. (2010a) and Witten et al. (2011). The theoretical results

indicate that the proposed model enjoys a faster consistent rate than the Glasso if

the data have the partial ordination among the variables.

There are several directions for future research. First, the objective function (2.5)

is not jointly convex, hence the theoretical global minimizer is not guaranteed. A

potential way to address this issue is to employ the classical Cholesky decomposition

for the inverse covariance estimation (Yu and Bien, 2017; Khare et al., 2019), which

leads to a convex optimization. However, the statistical interpretation of the classical

Cholesky decomposition may not be as explicit as the MCD, where the Cholesky

factor matrix can be constructed from regressions. It will be interesting to further

investigate how to incorporate the partial information of variable ordering into the

classical Cholesky decomposition. Second, the proposed method can be extended

to investigate the multivariate response regression, where the multivariate response

variables have certain ordering information, such as data with outcomes collected in

a time sequence order. Third, the error bounds in Theorem 1 and Theorem 2 could

be further improved. Note that (D−1
j )∗ and (Aj)∗ in Theorem 1 are generated on the

path of Algorithm 1. When they are close to the underlying true parameters, several
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terms of op(1) in the proof could be close to 0, making a smaller constant term in the

error bound.
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