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Abstract: Statistical analysis in modern scientific research nowadays has oppor-

tunities to utilize external summary information from similar studies to gain

efficiency. However, the population generating data for current study, referred

to as internal population, is typically different from the external population for

summary information, although they share some common characteristics that

make efficiency improvement possible. The existing population heterogeneity

is a challenging issue especially when we have only summary statistics but not

individual-level external data. In this paper, we apply an empirical likelihood

approach to estimating internal population distribution, with external summary

information utilized as constraints for efficiency gain under population hetero-

geneity. We show that our approach produces an asymptotically more efficient

estimator of internal population distribution compared with the customary em-

pirical likelihood without using any external information, under the condition

that the external information is based on a dataset with size larger than that
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of the dataset from internal population. Some simulation results are given to

supplement asymptotic theory. A real data example is also illustrated.

Key words and phrases: constraints, data integration, population heterogeneity,

quantile estimation, shared parameters, summary statistics.

1. Introduction

Consider the estimation of a population distribution FX,Z defined on the

k-dimensional Euclidean space Rk, where X and Z are vectors with dimen-

sions l and k−l, respectively, based on a random sample {Xi, Zi, i = 1, ..., n}

from FX,Z . Nowadays we often also have information in the form of sum-

mary statistics, not necessarily individual-level data, from external sources

(such as past similar studies), which can be utilized to increase statistical

accuracy in estimating FX,Z and its characteristics. Specifically, there is

an external sample {XE
i , i = 1, ...,m}, independent of {Xi, Zi, i = 1, ..., n},

from an external population distribution FE
X , where XE and X measure the

same quantity and have the same dimension l, but FE
X is not necessarily

the same as FX , the distribution of X. When l < k, the vector Z is not

measured externally due to progress of new technology and/or new scientif-

ic relevance or other practical reasons. In what follows, {Xi, Zi, i = 1, ..., n}

and FX,Z are referred to as internal data and internal population, respective-
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ly, to distinguish external data {XE
i , i = 1, ...,m} and external population

FE
X .

The purpose of our study is to develop estimation methodology using

internal data and external summary statistics (functions of XE
1 , ..., X

E
m),

when individual-level external data XE
1 , ..., X

E
m are not available due to

some practical reasons. This problem has been studied in Chatterjee et al.

(2016) and Zhang et al. (2020) when FX,Z follows a parametric model,

whereas we study the estimation of FX,Z with the nonparametric empirical

likelihood approach. This research fits into a general framework of data

integration (Merkouris, 2004; Lin and Zeng, 2010; Lohr and Raghunathan,

2017; Zhang et al., 2017; Kundu et al., 2019; Yang et al., 2023; Yang and

Kim, 2020; Wang et al., 2023; Rao, 2021; Li et al., 2022; Tian and Feng,

2022).

Our research takes into consideration of the heterogeneity between in-

ternal and external populations FX and FE
X , although they share some

common part as a link that makes it possible to improve the estimation of

FX,Z using external information. To the best of our knowledge, population

heterogeneity is not well addressed in coupling internal data and external

summary information. For example, Chatterjee et al. (2016) and Zhang

et al. (2020) assume FX = FE
X , when only external summary statistic is
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available.

To present the main ideas, we focus on one external dataset, since exten-

sions to multiple external datasets are straightforward. Our main method

is empirical likelihood using the external summary statistic in a constrain-

t. We establish asymptotic normality of estimators of FX,Z with explicit

formulas of asymptotic covariance matrices, which can be used to compare

their asymptotic efficiency with the customary estimator without using any

external information and to make inference on FX,Z or its characteristic-

s. Some simulation results are presented as complementary to asymptotic

theory. A real data sample is also illustrated.

2. Empirical Likelihood with External Information

We follow the notation developed in Section 1. To link the internal and

external populations FX and FE
X for the purpose of increasing the accu-

racy in estimating FX,Z , where FX is the l-dimensional marginal of the

k-dimensional internal population FX,Z of interest, we assume that there is

a p-dimensional parameter vector θ shared by both FX and FE
X and defined

by ∫
u(x, θ)dFX(x) =

∫
u(x, θ)dFE

X (x) = 0, (2.1)
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where u(·, ·) is a known vector function from Rl×Rp to Rp with continuous

partial derivatives with respect to θ. For example, u(x, θ) = x−θ, in which

case p = l and θ is the common mean of FX and FE
X .

Let θ̂E be a p-dimensional estimator of θ in (2.1) based on external data

via a generalized estimation equation, i.e.,

1

m

m∑
i=1

u(XE
i , θ̂

E) = 0, (2.2)

an empirical analog of
∫
u(x, θ)dFE

X (x) = 0 in (2.1) based on XE
i ’s. For

example, in the common mean example where u(x, θ) = x − θ, θ̂E is the

sample mean X̄E ofXE
1 , ..., X

E
m. Note that in the current paper we only have

the value of θ̂E as external summary statistic (information), not individual-

level values XE
1 , ..., X

E
m.

To make use of external information θ̂E, we require that any estimate

F̂X,Z of FX,Z based on internal data has property

∫
u(x, θ̂E)dF̂X(x) = 0, (2.3)

an empirical analog of
∫
u(x, θ)dFX(x) = 0 in (2.1), where F̂X is the l-

dimensional marginal of F̂X,Z for X. Using the method of empirical like-

lihood (Owen, 1988, 2001; Qin and Lawless, 1994), we use (2.3) as a con-

straint in the estimation of FX,Z based on internal data, treating θ̂E as
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known. That is, we estimate FX,Z by F̂X,Z as a maximizer of

n∏
i=1

pi subject to pi > 0, i = 1, ..., n,
n∑
i=1

pi = 1,
n∑
i=1

piu(Xi, θ̂
E) = 0,

(2.4)

where pi is a point mass of any distribution whose support consists of n

points (Xi, Zi), i = 1, ..., n, and θ̂E is treated as fixed and known in maxi-

mization. The resulting estimator F̂X,Z satisfies (2.3).

The customary estimator without using any external information, the

empirical distribution F̄X,Z putting mass n−1 at each (Xi, Zi), is a maxi-

mizer of (2.4) only when u ≡ 0, because, when u 6≡ 0,
∫
u(x, θ̂E)dF̄X(x) =

n−1
∑n

i=1 u(Xi, θ̂
E) is typically not 0 although

∫
u(x, θ)dFE

X (x) = 0, where

F̄X is the l-dimensional marginal of F̄X,Z for X. This is the reason why

F̂X,Z can be more efficient than F̄X,Z .

Using the Lagrange multiplier method, we can show that the maximizer

of (2.4) is the distribution

F̂X,Z putting mass p̂i =
1

n{1 + λ>u(Xi, θ̂E)}
at each (Xi, Zi), (2.5)

where λ ∈ Rp is the Lagrange multiplier satisfying

n∑
i=1

p̂iu(Xi, θ̂
E) =

1

n

n∑
i=1

u(Xi, θ̂
E)

1 + λ>u(Xi, θ̂E)
= 0,

and a> denotes the transpose of vector a.
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Note that

∂

∂λ

 1

n

n∑
i=1

log{1 + λ>u(Xi, θ̂
E)}

 =
1

n

n∑
i=1

u(Xi, θ̂
E)

1 + λ>u(Xi, θ̂E)

and

∂2

∂λ∂λ>

 1

n

n∑
i=1

log{1 + λ>u(Xi, θ̂
E)}

 = − 1

n

n∑
i=1

u(Xi, θ̂
E)u(Xi, θ̂

E)>

{1 + λ>u(Xi, θ̂E)}2
< 0

(negative definite) if u 6≡ 0. Hence, there is a unique sequence of {λ =

λ(X1, ..., Xn, θ̂
E), n = 1, 2, ...} such that

lim
n→∞

P

 1

n

n∑
i=1

u(Xi, θ̂
E)

1 + λ>u(Xi, θ̂E)
= 0

 = 1 and λ = op(1), (2.6)

where op(1) denotes a term converging to 0 in probability as n → ∞.

Therefore, with probability tending to 1, F̂X,Z is uniquely defined.

For any s fixed t1, ..., ts in Rk, we define F =
(
FX,Z(t1), ..., FX,Z(ts)

)>
,

F̂ =
(
F̂X,Z(t1), ..., F̂X,Z(ts)

)>
for estimator F̂X,Z in (2.5), and define F̄ =(

F̄X,Z(t1), ..., F̄X,Z(ts)
)>

for the empirical distribution F̄X,Z . Also, define

ū = n−1
∑n

i=1 u(Xi, θ), U = Var{u(X, θ)} (assumed to be non-singular),

and W =
(
W (t1), ...,W (ts)

)
, W (tj) = E{u(X, θ)I((XZ ) ≤ tj)}, where I(A)

denotes the indicator function of event A and a ≤ b for vectors a and

b means that every component of a is no larger than the corresponding

component of b. Following the argument in the proof of Theorem 5.4 in

Shao (2003), we obtain that

√
n(F̂ − F) =

√
n(F̄ − F − ū>U−1W − ũ>M−>L>U−1W ) + op(1), (2.7)
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where L =
∫
{∂u(x, θ)/∂θ}dFX(x), M =

∫
{∂u(x, θ)/∂θ}dFE

X (x) (assumed

to be non-singular), M−> = (M−1)>, ũ = m−1
∑m

j=1 u(XE
j , θ), and the last

equality follows from

θ̂E − θ = −M−1ũ+m−1/2op(1) (2.8)

by (2.2) and Taylor’s expansion. The covariance matrix

nVar(F̄ − ū>U−1W − ũ>M−>L>U−1W )

= Λ−W>U−1W +m−1nW>U−1LM−1VM−>L>U−1W,

where Λ = nVar(F̄), the k × k matrix whose (i, j)th element is equal to

P
(
{(X,Z) ≤ ti}∩{(X,Z) ≤ tj}

)
−FX,Z(ti)FX,Z(tj), V =mVar(ũ), and the

equality follows from

nVar(ū>U−1W ) = nCov(F̄ , ū>U−1W )

and

nVar(ũ>M−>L>U−1W ) = nW>U−1LM−1Var(ũ)M−>L>U−1W.

Consequently, by the central limit theorem, we obtain the following result.

Theorem 1. Assume (2.1), θ̂E defined by (2.2) satisfies (2.8) as m→∞,

and matrices L, M , U , and V are non-singular. Then, for any s fixed
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distinct t1, ..., ts in Rk, as n→∞ and m→∞,

√
n{
(
F̂X,Z(t1), ..., F̂X,Z(ts)

)> − (FX,Z(t1), ..., FX,Z(ts)
)>} d−→ N(0,Σ),

Σ = Λ−W>U−1W + rW>U−1LM−1VM−>L>U−1W,

(2.9)

where
d−→ denotes convergence in distribution, N(0,Σ) is the normal distri-

bution with mean 0 and covariance matrix Σ, and r is the limit of n/m.

Result (2.9) indicates how statistical accuracy can be affected through

using external information provided by θ̂E, since Λ is the asymptotic co-

variance matrix for the customary empirical distribution F̄X,Z without using

any external information. If the sample size of external dataset m domi-

nates the sample size of internal dataset, i.e., r = 0, then Σ in (2.9) is

Λ −W>U−1W , smaller than Λ (in the order for nonnegative definite ma-

trices) and, hence, F̂X,Z in (2.5) is asymptotically more efficient than F̄X,Z .

If r > 0, then whether F̂X,Z is better depends on the magnitude of the last

two terms in Σ in (2.9) involving the quality of external information. In

the special case where L = M (e.g., when u(x, θ) = x− θ) and V = U , Σ in

(2.9) reduces to Λ− (1− r)W>U−1W and, thus, F̂X,Z is better than F̄X,Z

if and only if r < 1 (the external dataset has a large size than the internal

dataset).

If we estimate a characteristic of FX,Z given as ψ(FX,Z), a functional
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of FX,Z , then ψ(F̂X,Z) is asymptotically more efficient than ψ(F̄X,Z) when

F̂X,Z is more efficient than F̄X,Z . Specific examples are given in Section 4.

Result (2.9) is useful for large sample inference on characteristics of

population FX,Z . To make inference, we need to estimate the covariance

matrix Σ in (2.9), which requires some additional external information for

the variability of θ̂E. From (2.8) and V =mVar(ũ), the asymptotic covari-

ance matrix for
√
m(θ̂E − θ) is Ξ = M−1VM−>. Assume that, together

with θ̂E in (2.2), we also have an external summary statistic Ξ̂ as a co-

variance matrix estimator of Ξ for θ̂E. In the case where θ̂E is the sample

mean X̄E of XE
1 , ..., X

E
m, for example, Ξ̂ is the sample covariance matrix

of XE
1 , ..., X

E
m. Assuming that the sample size m of the external dataset is

known, we can estimate r by n/m. Matrices Λ, W , U , and L in (2.9) can

all be estimated using internal data. Therefore, Σ in (2.9) can be estimated

by substitution.

When the estimator ψ(F̂X,Z) under consideration is complex, for exam-

ple, a quantile of F̂X,Z , we may apply the following bootstrap method to esti-

mate the variance of ψ(F̂X,Z). Independently for b = 1, ..., B, let (X∗bi , Z
∗b
i ),

i = 1, ..., n, be selected with replacement from (Xi, Zi), i = 1, ..., n, and let

θ̂E∗b ∼ N(θ̂E, Ξ̂/m). Let ψ(F̂ ∗bX,Z) be ψ(F̂X,Z) with (Xi, Zi)’s and θ̂E re-

placed by (X∗bi , Z
∗b
i )’s and θ̂E∗b, respectively. Then, the bootstrap variance
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estimator for ψ(F̂X,Z) is the sample variance of ψ(F̂ ∗bX,Z), b = 1, ..., B. This

bootstrap method is used in the example presented in Section 6.

3. Guaranteed Efficiency Gain

It is interesting to know whether we can construct an estimator of FX,Z that

is almost always better than the empirical distribution F̄X,Z , i.e., utilizing

external information has a guaranteed efficiency gain. The discussion in

Section 2 indicates that F̂X,Z in (2.5) does not always achieve this, especially

when r ≥ 1, due to the uncertainty in external information.

To reach a guaranteed efficiency gain, we replace θ̂E in (2.2) by the fol-

lowing shared parameter estimator that uses not only external information

but also internal data,

θ̃ =
nθ̂ +mθ̂E

n+m
, (3.10)

where θ̂ is a generalized estimation equation estimator of θ based on internal

data,

1

n

n∑
i=1

u(Xi, θ̂ ) = 0. (3.11)

We define a new estimator of FX,Z as

F̃X,Z given by (2.5) with θ̂E replaced by θ̃ in (3.10)-(3.11). (3.12)
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By the same argument in Section 2 we can show that

√
n(F̃ − F) =

√
n(F̄ − F − 1

r+1
ū>U−1W − 1

r+1
ũ>M−>L>U−1W ) + op(1),

(3.13)

where F̃ =
(
F̃X,Z(t1), ..., F̃X,Z(ts)

)>
, and

nVar(F̄ − F − 1
r+1

ū>U−1W + 1
r+1

ũ>M−>L>U−1W )

= Λ + W>U−1W
(r+1)2

− 2W>U−1W
r+1

− nW>U−1LM−1VM−>L>U−1W
m(r+1)2

.

Consequently, we obtain the following result.

Theorem 2. Under the same conditions in Theorem 1 and (3.10)-(3.11),

√
n{
(
F̃X,Z(t1), ..., F̃X,Z(ts)

)> − (FX,Z(t1), ..., FX,Z(ts)
)>} d−→ N(0, Σ̃),

Σ̃ = Λ− 2r+1
(r+1)2

W>U−1W + r
(r+1)2

W>U−1LM−1VM−>L>U−1W,

(3.14)

as n→∞ and m→∞, for any s fixed distinct t1, ..., ts in Rk.

In the special case where L = M and V = U , Σ̃ in (3.14) is equal

to Λ − 1
r+1

W>U−1W , which means that F̃X,Z is always better than the

empirical distribution F̄X,Z ; also, using θ̃ in (3.10)-(3.11) is better than using

θ̂E in (2.2). Note that V is the covariance matrix of u(XE, θ) under external

population whereas U is the covariance matrix of u(X, θ) under internal

population. If V = cU (the external u(XE, θ) is c times as variable as the
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internal u(X, θ)) and L = M , then Σ̃ in (3.14) is Λ − (2−c)r+1
(r+1)2

W>U−1W .

Hence, whether F̃X,Z is better than the empirical distribution F̄X,Z depends

on the size of external dataset and the variability in external data, i.e., on

the sign of (2− c)r + 1.

For large sample inference, result (3.14) can be used with Σ̃ estimated

by the same method as described in Section 2 for the estimation of Σ in

(2.9).

4. Common Mean of X

In this section, we consider the case where u(X, θ) = X − θ, i.e., θ is the

common mean vector shared by the internal and external populations. A

specific example is the situation where X is the vector of covariates and

responses under some treatments, and there are k − l > 0 new treatments

in the study of internal population resulting in Z-data, and these treatments

and data are not in the external study.

Since ∂u(X, θ)/∂θ = −I, where I is the identity matrix, L = M in (2.9)

or (3.14) and the result in Theorem 1 or 2 simplifies. Further, in Theorem

1 or 2, U = Var(X) and V = Var(XE), and U = V if the internal and

external covariance matrices of X are the same, i.e., the shared parameter

is not only the mean but also the covariance matrix of X.
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4.1 Estimation of population means

If we use (2.2), then θ̂E = X̄E, the sample mean of external XE
1 , ..., X

E
m,

although individual values of XE
1 , ..., X

E
m are not available. If we use θ̃ given

by (3.10)-(3.11), then

θ̃ =
n

n+m
X̄ +

m

n+m
X̄E, (4.15)

where X̄ is the sample mean of internal data Xi’s. It can be seen in this

case θ̃ is better than θ̂E.

4.1 Estimation of population means

Consider the estimation of population mean vector µ =
∫
tdFX,Z(t). The

first l components of µ is the shared parameter vector θ.

With FX,Z estimated by F̂X,Z in (2.5) and θ̂E = X̄E, µ is estimated by

µ̂ =

∫
tdF̂X,Z(t) =

n∑
i=1

p̂i

(
Xi

Zi

)
=

1

n

n∑
i=1

1

1 + λ>(Xi − X̄E)

(
Xi

Zi

)
.

From (2.6), with probability tending to 1,

0 =
1

n

n∑
i=1

Xi − X̄E

1 + λ>(Xi − X̄E)
=

n∑
i=1

p̂iXi −
n∑
i=1

p̂iX̄
E =

n∑
i=1

p̂iXi − X̄E,

since
∑n

i=1 p̂i = 1. This means that the first l components of µ̂ is X̄E, a

function of external data only, which may be fine if the external sample

size m is much larger than the internal sample size n, but is not very good

otherwise.
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4.1 Estimation of population means

With FX,Z estimated by F̃X,Z in (3.12) with θ̃ given by (3.10)-(3.11),

i.e., (4.15), µ is estimated by

µ̃ =

∫
tdF̃X,Z(t) =

1

n

n∑
i=1

1

1 + λ>(Xi − θ̃)

(
Xi

Zi

)
,

and the first l components of µ̃ is θ̃, which is a more reasonable estimator

of the first l components of µ, the shared parameter vector, especially when

m is not much larger than n. This supports the use of θ̃ in Section 3 to

replace θ̂E in Section 2.

The following result for the asymptotic normality of µ̂ and µ̃ can be

shown using the same argument in the derivation of Theorem 1 or 2, or

applying the mean functional to the result in Theorem 1 or 2.

Corollary 1. Assume the conditions in Theorem 2 with u(X, θ) = X − θ

and finiteness of the second-order moments of (X,Z). Then,

√
n(µ̂− µ)

d−→ N
(

0, Var(XZ )−H>U−1H + rH>U−1V U−1H
)
, (4.16)

√
n(µ̃− µ)

d−→ N
(

0, Var(XZ )− 2r+1
(r+1)2

H>U−1H + r
(r+1)2

H>U−1V U−1H
)
,

(4.17)

where r is the limit of n/m and H = E
{

(X − θ)(X>, Z>)
}

under the

internal population.

More details about the asymptotic covariance matrices in (4.16)-(4.17)
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4.1 Estimation of population means

can be obtained. Let D = Var(Z) and C = Cov(X,Z). Then

Var(T ) =

 U C

C> D

 , H =

(
U C

)
,

and, hence, the asymptotic covariance matrix of
√
n(µ̂− µ) in (4.16) is rV rV U−1C

rC>U−1V D − C>U−1C + rC>U−1V U−1C

 ,

and the asymptotic covariance matrix of
√
n(µ̃− µ) in (4.17) is r2

(r+1)2
U + r

(r+1)2
V r2

(r+1)2
C + r

(r+1)2
V U−1C

r2

(r+1)2
C> + r

(r+1)2
C>U−1V D − 2r+1

(r+1)2
C>U−1C + r

(r+1)2
C>U−1V U−1C

 .

For the estimation of the first l components of µ (the mean of X), the

comparison between µ̂ and µ̃ is actually the comparison between θ̂E = X̄E

and θ̃ in (4.15). If r = 0, then the result shows that the convergence rate

of µ̂ and µ̃ is faster than 1/
√
n.

For estimating the last k − l components of µ, the convergence rate

is 1/
√
n even if r = 0. The comparison between µ̂ and µ̃ is between t-

wo matrices D − C>U−1C + rC>U−1V U−1C and D − 2r+1
(r+1)2

C>U−1C +

r
(r+1)2

C>U−1V U−1C, which is similar to the comparison between Σ in (2.9)

and Σ̃ in (3.14). In particular, if V = U , then the former is D − (1 −

r)C>U−1C but the latter is D− 1
r+1

C>U−1C and, hence, µ̃ is always better

than µ̂ asymptotically.
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4.2 Estimation of population quantiles

4.2 Estimation of population quantiles

Consider the estimation of quantile vector Q =
(
F−1(π1), ..., F

−1(πs)
)>

,

where F is a particular marginal of FX,Z , π1, ..., πs are s distinct known

points in (0, 1), and F−1(π) = inf{t : F (t) ≥ π}. If we do not use any

external information, then a customary estimator is the vector of sample

quantiles. If we estimate FX,Z by F̂X,Z or F̃X,Z , then our estimator is

Q̂ =
(
F̂−1(π1), ..., F̂

−1(πs)
)>

or Q̃ =
(
F̃−1(π1), ..., F̃

−1(πs)
)>

, where F̂ and

F̃ are the corresponding marginals of F̂X,Z and F̃X,Z , respectively. Using the

same argument in the proof of Bahadur’s representation (see, e.g., Theorem

5.11 of Shao (2003)), we can show that

√
n(Q̂−Q) =

√
n
(
F (F−1(π1))−F̂ (F−1(π1))

f(F−1(π1))
, ..., F (F−1(πs))−F̂ (F−1(πs))

f(F−1(πs))

)>
+ op(1),

where f(F−1(πj)) is the derivative of F at F−1(πj) assumed to be positive,

j = 1, ..., s. The same result holds with (F̂ , Q̂ ) replaced by (F̃ , Q̃ ). This

representation together with result (2.9) or (3.14) show that Q̂ or Q̃ is typi-

cally asymptotically more efficient than the sample quantile vector without

using external information.

For inference about quantiles, the bootstrap method introduced in the

end of Section 2 can be applied.
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5. Simulation

In this section we present some simulation results under the scenario in

Section 4. Consider k = 3, l = 2, a two-dimensional X and a univariate Z,

i.e., u(X, θ) = X−θ, and the mean of X, θ = E(X), is the two-dimensional

shared parameter vector for internal and external populations.

5.1 Simulation with a continuous Z

We consider the following four cases for internal and external populations.

A. For both internal and external populations, X is bivariate normal,

X ∼ N


 1

0

 ,

 1 0.3

0.3 1


 . (5.18)

For internal population, conditional on X, Z is normal with mean

α + β>X and variance 0.25. For external population, conditional on

X, Z is normal with the same mean as in the internal population but

a different variance = 1.

B. For internal and external populations, X is generated according to

(5.18). For internal population, conditional on X, Z is the same as

that in case A. For external population, conditional on X, Z has

the double exponential distribution with mean α + β>X and scale

parameter 0.5.
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5.1 Simulation with a continuous Z

C. In internal population, X is generated according to (5.18). For ex-

ternal population, X is generated according to (5.18) but with the

covariance matrix replaced by

 2 0.5

0.5 1

. Conditional on X, Z is

generated the same as in case B, for both internal and external pop-

ulations.

D. X is generated the same as in case C. For internal population, con-

ditional on X, Z − α − β>X has a probability density f(t) that is

the normal density with mean 0 and variance 0.25 when t < 0, and is

the double exponential density with mean 0 and scale parameter 0.5

when t ≥ 0. For external population, conditional on X, Z−α−β>X

has probability density f(−t).

In all cases, (α, β>) = (1.5, 0.4,−0.8). In cases A and B, the internal

and external populations of X are the same, whereas in cases C and D, the

internal and external populations of X are different although they share the

same mean E(X). Conditional on X, the internal and external distributions

of Z are always different, normal distributions with difference variances in

case A, normal versus double exponential distributions in cases B and C,

and asymmetric distributions in case D.

We consider the estimation of two parameters in internal population,

the mean E(Z) and Q75 = the 0.75 quantile of Z, with internal sample
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5.1 Simulation with a continuous Z

size n = 100 and external sample size m = 100, 200, 500, 1000, and 10000,

which ranges from comparable with n to much larger than n.

Based on 2000 simulation runs, Table 1 presents the simulation bias

and standard deviation (SD) of the following estimators.

1. Z̄ = the sample mean and Q̄75 = sample 0.75 quantile, based on

internal Z data without using any external information.

2. Z̃ = the mean and Q̃75 = the 0.75 quantile of the third marginal of

F̃X,Z in (3.12) (the estimated distribution of Z), where θ̃ =
n

n+m
X̄+

m

n+m
X̄E, X̄ is the sample mean for internal data, and X̄E is the

external summary statistic, the sample mean for external X-data.

3. Ẑ = the mean and Q̂75 = the 0.75 quantile of the third marginal of

F̂X,Z in (2.5), where θ̂ = X̄E is the external summary statistic.

The following is a summary of the results in Table 1 based on 2000 simula-

tions.

1. All biases are negligible, even for the case with m = n = 100. For

Z̄ and Q̄75 without using external information, the bias and SD have

small variations within each setting due to simulation error.

2. For the estimation of mean E(Z), the efficiency gain of using external

summary information is very substantial, when θ̃ in (3.10) is used.
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5.2 Sensitivity of assumption (2.1)

The efficiency gain ranges from 18% to 43% when m ranges from

100 to 104 for cases A-C. The efficiency gain is slightly smaller for

case D when the distribution of Z is asymmetric. When θ̂E in (2.2)

is used, the efficiency gain of using external summary information is

negligible when m = 100, becomes appreciable when m = 200, and is

comparable with the use of θ̃ when m ≥ 1000.

3. Although the shared parameter θ is the mean vector (of X), the quan-

tile estimation also has substantial gain when external summary in-

formation is utilized. The efficiency gain for 0.75 quantile estimation

can still be between 10-20% for cases A-C and 7-17% for case D, when

θ̃ in (3.10) is used. When θ̂E in (2.2) is used, we need m ≥ 500 in

order to see substantial efficiency gain for quantile estimation.

5.2 Sensitivity of assumption (2.1)

Assumption (2.1) of shared parameter is a bridge between internal and

external data for utilizing external information. If (2.1) is violated, then

our proposed estimators may be biased. Here, we perform a simulation

under case A of Section 5.1 to see the sensitivity of (2.1). Specifically,

we add a positive constant δ to the two mean values of X in (5.18) for

the external population; that is, the internal X has mean vector (1, 0) but
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5.3 Simulation with a binary Z

external XE has mean vector (1 − δ,−δ). The remaining parameters are

unchanged.

Figures 1 and 2 present the root of mean squared error (RMSE) of mean

and quantile estimation based on the three different estimators considered

in Section 5.1, with δ varying from 0 to 0.25. As expected, when δ increases,

the RMSE of the estimator using internal data only keeps stable; the RMSE

of two estimators using external information increases. It can be seen that

the proposed method using θ̃ still has much smaller RMSEs than the one

using internal data only unless δ > 0.2 and m = 500, and using θ̃ is better

than using θ̂.

5.3 Simulation with a binary Z

We consider a binary Z with X being a 15-dimension multivariate normal-

ly distributed vector having mean (1, 0.5, 0, ..., 0)> and covariance matrix

whose diagonal elements are equal to 1 and off-diagonal elements are equal

to 0.3, for both internal and external populations. Conditional on X, Z

follows a Bernoulli distribution with probability π satisfying log π(1−π) =

α + βTX, where (α, βT ) = (−0.5, 1,−1, 0.5, ..., 0.5) for the internal popu-

lation and (α, βT ) = (−0.3, 1,−1, 0.5, ..., 0.5) for the internal population.

For this binary Z, we consider the estimation of mean E(Z) of the in-
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ternal population with internal sample size n = 100 and external sample

size m = 100, 200, 500, 1, 000, and 10, 000. Based on 2000 simulation runs,

Table 2 presents the simulation bias and standard deviation (SD) of the

estimators Z̄, Z̃, and Ẑ as defined in Section 5.1. Similar conclusions to

those in Section 5.1 can be obtained from the simulation results in Table 2

.

6. An Example

An important part of agriculture around the world, particularly in Turkey,

is about dry beans. The Turkish Standards Institution classifies dry beans

according to their physical features that can help farmers to identify dry

beans and monitor their quality. Two physical features are the major axis

length X, which is the length of longest straight line that can be drawn

from a bean, and the area Z of a bean. We consider a dataset available on

the website https://www.muratkoklu.com/datasets/ with two type of dry

bean, BARBUNYA and HOROZ. The dataset for BARBUNYA is used as

the internal dataset and the dataset for HOROZ is treated as the external

dataset. Figure 3 shows the boxplots of areas and major axis lengths of

two dry beans, and Table 3 provides some basic statistics. It can be seen

that these two types of dry beans share almost the same major axis length,
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but their areas differ greatly. We would like to estimate the mean, 0.25,

0.5, and 0.75 quantiles of the area of BARBUNYA using information from

major axis lengths of BARBUNYA and HOROZ to improve efficiency.

For the mean E(Z), quantilesQ25, Q50, andQ75 of area of BARBUNYA,

we compute the following three types of estimates.

1. The sample mean and quantiles based on only internal data for dry

bean BARBUNYA.

2. The mean and quantiles of last marginal of F̃X,Z in (3.12) using θ̃ =

n

n+m
X̄+

m

n+m
X̄E with X̄ = the sample mean of major axis length

for internal data, X̄E = the sample mean of major axis length for

external data (HOROZ), n = 1322, and m = 1928.

3. The mean and quantiles of last marginal of F̂X,Z in (2.5) using θ̂E =

X̄E.

For each point estimate, we compute the bootstrap standard error as the

square root of the bootstrap variance estimator described in the end of

Section 2 with B = 2000. The results are given in Table 4.

From Table 4, the point estimates for the same parameter are close to

each other. The estimates using external information with F̃X,Z in (3.12)

and θ̃ in (3.10) have smaller standard errors than those using internal data
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only; the relative efficiency to internal data only in terms of standard error

is substantial for the estimation of mean, Q50, and Q75, and is slight for the

estimation of Q25. Comparing two methods of using external information,

we find that the method using F̃X,Z in (3.12) is much better than the method

using F̂X,Z in (2.5); in fact the method using F̂X,Z in (2.5) is comparable

with the method without using external information as r = 0.686 is not

very small. Thus, using external information is worthwhile especially for

the method using F̃X,Z in (3.12).

7. Discussion

Using external summary information, we improve the nonparametric em-

pirical distribution F̄X,Z based on internal data only by the nonparametric

empirical likelihood estimator F̃X,Z in (3.12) with θ̃ given by (3.10) using

both internal estimator θ̂ and external estimator θ̂E of the shared parameter

θ defined by (2.1).

If F̄X,Z is replaced by the semi-parametric empirical likelihood estimator

that maximizes

n∏
i=1

pi subject to pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pig(Xi, β) = 0

over pi’s and β, where g is a known vector function and β is an unknown

parameter vector with dimension smaller than the dimension of g, then our
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method can be extended to F̃X,Z that maximizes

n∏
i=1

pi subject to pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pig(Xi, β) =
n∑
i=1

piu(Xi, θ̃) = 0

over pi’s and β. Properties of this F̃X,Z can be derived similarly.

An anonymous referee suggests an alternative to F̃X,Z in (3.12); that

is, F̌X,Z putting mass

p̌i =
n

n+m
p̂EL,i +

m

n+m
p̂i

to each (Xi, Zi), i = 1, ..., n, where p̂i is given in (2.5) and p̂EL,i is the mass

of nonparametric empirical likelihood estimator without using any external

information. Because the dimensions of u and θ are the same, p̂EL,i = n−1

for all i and, hence,

F̌X,Z =
n

n+m
F̄X,Z +

m

n+m
F̂X,Z .

Define F̌ =
(
F̌X,Z(t1), ..., F̌X,Z(ts)

)>
. Following the notation in Sections

2-3, we have

√
n(F̌ − F) =

√
n(F̄ − F) +

√
n

m

n+m
(F̂ − F̄)

=
√
n(F̄ − F)−

√
n

r + 1
ū>U−1W −

√
n

r + 1
ū>U−1W + op(1)

=
√
n(F̃ − F) + op(1),

where the second equality follows from (2.7) and r = the limit of n/m, and

the last equality follows from (3.13). Therefore, F̃X,Z and F̌X,Z are asymp-
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totically equivalent. This asymptotic result is confirmed by simulation not

reported in this paper.
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Table 1: Simulation results (2000 replications) for estimation of mean E(Z)

and 0.75 quantile Q75 when internal sample size n = 100

Case A estimation of E(Z) = 1.90 estimation of Q75 = 2.52

Z̄ Z̃ Ẑ Q̄75 Q̃75 Q̂75

m = 100 bias 0.0021 -0.0009 -0.0040 0.0064 0.0037 0.0038

SD 0.0941 0.0758 0.0917 0.1283 0.1158 0.1264

m = 200 bias 0.0017 -0.0002 -0.0011 -0.0018 -0.0031 -0.0026

SD 0.0917 0.0669 0.0744 0.1244 0.1091 0.1152

m = 500 bias 0.0008 0.0014 0.0016 0.0006 0.0029 0.0036

SD 0.0952 0.0601 0.0617 0.1272 0.1056 0.1059

m = 103 bias -0.0018 -0.0013 -0.0013 -0.0045 -0.0022 -0.0016

SD 0.0901 0.0549 0.0557 0.1240 0.1056 0.1059

m = 104 bias 0.0028 -0.0009 -0.0010 0.0014 -0.0014 -0.0012

SD 0.0938 0.0516 0.0516 0.1277 0.1012 0.1011

Case B estimation of E(Z) = 1.90 estimation of Q75 = 2.52

Z̄ Z̃ Ẑ Q̄75 Q̃75 Q̂75

m = 100 bias 0.0001 -0.0008 -0.0019 -0.0008 -0.0004 0.0016

SD 0.0914 0.0747 0.0932 0.1249 0.1124 0.1249

m = 200 bias -0.0001 0.0016 0.0024 -0.0026 0.0006 0.0019

SD 0.0896 0.0661 0.0738 0.1239 0.1091 0.1143

m = 500 bias -0.0008 -0.0012 -0.0013 0.0003 0.0025 0.0026

SD 0.0934 0.0605 0.0622 0.1242 0.1035 0.1047

m = 103 bias -0.0009 0.0002 0.0003 -0.0010 0.0015 0.0020

SD 0.0903 0.0546 0.0554 0.1256 0.1045 0.1047

m = 104 bias -0.0018 -0.0017 -0.0017 -0.0037 -0.0007 -0.0007

SD 0.0938 0.0526 0.0526 0.1266 0.1026 0.1026
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Table 1: continued

Case C estimation of E(Z) = 1.90 estimation of Q75 = 2.52

Z̄ Z̃ Ẑ Q̄75 Q̃75 Q̂75

m = 100 bias -0.0017 -0.0017 -0.0019 -0.0011 -0.0011 0.0015

SD 0.0911 0.0751 0.0955 0.1240 0.1122 0.1286

m = 200 bias 0.0018 0.0025 0.0029 -0.0004 0.0011 0.0037

SD 0.0919 0.0678 0.0750 0.1241 0.1091 0.1157

m = 500 bias 0.0001 -0.0010 -0.0012 -0.0051 -0.0037 -0.0031

SD 0.0934 0.0606 0.0629 0.1267 0.1047 0.1059

m = 103 bias 0.0011 0.0005 0.0004 -0.0002 0.0022 0.0024

SD 0.0914 0.0547 0.0555 0.1214 0.1008 0.1006

m = 104 bias 0.0007 -0.0019 -0.0019 0.0018 0.0025 0.0026

SD 0.0923 0.0525 0.0526 0.1230 0.1003 0.1003

Case D estimation of E(Z) = 1.95 estimation of Q75 = 2.58

Z̄ Z̃ Ẑ Q̄75 Q̃75 Q̂75

m = 100 bias 0.0005 0.0010 0.0016 -0.0031 -0.0011 0.0029

SD 0.0975 0.0816 0.1017 0.1342 0.1250 0.1417

m = 200 bias -0.0023 -0.0006 0.0002 -0.0075 -0.0050 -0.0008

SD 0.0991 0.0749 0.0810 0.1345 0.1222 0.1285

m = 500 bias 0.0002 0.0016 0.0018 -0.0021 0.0014 0.0032

SD 0.0995 0.0681 0.0693 0.1357 0.1152 0.1167

m = 103 bias 0.0015 0.0013 0.0013 0.0006 0.0030 0.0030

SD 0.0992 0.0653 0.0660 0.1367 0.1170 0.1184

m = 104 bias 0.0052 0.0015 0.0014 0.0053 0.0031 0.0030

SD 0.1000 0.0614 0.0614 0.1347 0.1118 0.1119
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Figure 1: The RMSE values different δ on the estimation of mean under

m = 100, 200 and 500.
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Figure 2: The RMSE values different δ on the estimation of quantile under

m = 100, 200 and 500.
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Table 2: Simulation results (2000 replications) for estimation of mean E(Z)

for a Bernoulli variable Z

estimation of E(Z) = 0.5

Z̄ Z̃ Ẑ

m = 100 bias 0.0016 0.0014 0.0016

SD 0.0511 0.0448 0.0567

m = 200 bias 0.0008 -0.0005 -0.0012

SD 0.0484 0.0425 0.0494

m = 500 bias -0.0022 -0.0005 -0.0002

SD 0.0500 0.0410 0.0432

m = 103 bias 0.0001 -0.0010 -0.0012

SD 0.0497 0.0389 0.0390

m = 104 bias 0.0020 0.0006 0.0006

SD 0.0504 0.0380 0.0381

Figure 3: The boxplots of two types of dry beans
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Table 3: The basic information of two dry bean datasets

BARBUNYA HOROZ

Sample size 1322 1928

Sample mean of X (length) 370.0 372.6

Sample SD of X 32.3 30.2

Sample mean of Z (area) 69804.1 53648.5

Sample SD of Z 10265.4 7341.4

Correlation coefficient of Z and X 0.88 0.91

Table 4: The estimates of mean and quantiles for the area of BARBUNYA

with bootstrap SE

Estimate E(Z) Q25 Q50 Q75

Using internal data only 69804.1 62930.0 69580.0 76307.0

Bootstrap SE 286.7 386.1 323.9 383.7

Using F̃X,Z in (3.12) and θ̃ in (3.10) 70224.1 63357.0 69963.0 76729.0

Bootstrap SE 215.4 380.2 258.8 322.8

Relative efficiency to internal only 1.3310 1.0155 1.2515 1.1887

Using F̂X,Z in (2.5) and θ̂E in (2.3) 70512.7 63733.0 70135.0 76904.0

Bootstrap SE 264.4 383.4 313.7 391.6

Relative efficiency to internal only 1.0843 1.0070 1.0325 0.9798
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