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Abstract:

Uniform stochastic ordering (USO), also known as hazard rate or failure rate

ordering, has garnered significant interest across various applications. In this

study, we present nonparametric approaches for comparing distributions within

the framework of USO using the ordinal dominance curve. Our study consists of

three main components. The first one offers new tests for equality among multiple

distributions under USO assumptions. Secondly, we provide goodness-of-fit tests

to investigate whether multiple distributions adhere to USO. Lastly, we iden-

tify distributions that exhibit significant statistical differences within the context

of USO. We provide asymptotic properties and supporting numerical evidence

for our proposed methods. To exemplify the application of our inferential tech-

niques, we focus on a biomarker, microfibrillar-associated protein 4, and assess

its potential for diagnosing fibrosis stages in hepatitis C patients.

Key words and phrases: Brownian bridge, Bonferroni correction, Hazard rate

ordering, Ordinal dominance curve, Order-restricted inference.
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1. Introduction

Uniform Stochastic Ordering (USO) has held significant importance across

various applications since it was introduced by Lehmann (1955). Define

two independent random variables X1 and X2 with distributions F1 and

F2, respectively. Denoted by X1 � X2 or F1 � F2, we say X1 is smaller

than X2 in the sense of USO when the ratio {1−F1(t)}/{1−F2(t)} is non-

increasing in t whenever F2(t) < 1. When both F1 and F2 are absolutely

continuous, USO is also known as hazard rate ordering. Applications in ac-

tuarial science, biology, economics, reliability, and survival analysis further

emphasize the versatility of USO, e.g., see Dykstra et al. (1991), Navarro

and Shaked (2006), Da and Ding (2016), and Balakrishnan et al. (2018).

USO is stronger than ordinary stochastic ordering but weaker than likeli-

hood ratio ordering (Keilson and Sumita, 1982; Shaked and Shanthikumar,

2007).

When data are collected from k > 2 distributions, a well-ordered USO,

say F1 � F2 � · · · � Fk, has garnered considerable attention in the liter-

ature. In this work, we also focus on F1 � F2 � · · · � Fk and examine

three fundamental questions: 1) testing if all distributions are identical

under USO, 2) assessing the occurrence of USO, and 3) identifying which

distributions differ in the context of USO.
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Statistical inference often initially involves testing the equality of dis-

tributions, denoted as F1 = F2 = · · · = Fk. Under USO, Kochar (1979)

provided a U-statistic-based test for equal distributions with k = 2. When

k ≥ 2, Dykstra et al. (1991) developed a likelihood ratio test by discretiz-

ing the support of the data. El Barmi and McKeague (2016) and El Barmi

(2017) proposed empirical likelihood-based tests which localized hypothe-

ses and accumulated local test statistics. Daradanoni and Forcina (1998)

unified likelihood ratio tests for discrete distributions satisfying stochastic

orderings, including USO. However, the discretization in likelihood-based

approaches may be subjective and lose efficiency. On the other hand, in the

case of equal sample sizes n, the empirical likelihood-based test may require

computing kn(kn + 1)/2 local test statistics and U-statistics of order two

include {n(n + 1)/2}2 terms. Consequently, both approaches pose compu-

tational challenges for large sample sizes. We propose ordinal dominance

curve (ODC) approaches to circumvent the issues mentioned above.

The ODC, also known as the probability-probability plot, is a graphi-

cal tool visualizing the relationship between two distributions. Given two

distributions F1 and F2, the ODC is defined by R1(u) = F1{F−12 (u)} for

0 ≤ u ≤ 1 where F−12 is the quantile function associated with F2. When

F1 � F2, the ODC R1 exhibits star-shaped, that is, {1−R1(u)}/(1− u) is
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nonincreasing in u (Tang et al., 2017). In the case of F1 = F2, the ODC R1

is the diagonal line in the unit square, denoted by R0. Hence, ODC-based

equality tests for multiple distributions utilize Lp differences between shape-

restricted estimators of ODCs and equal distribution line R0 as evidence

of unequal distributions (Carolan and Tebbs, 2005; Davidov and Herman,

2012). Here we apply star-shaped estimators for ODCs Ri(·) = Fi{F−1i+1(·)}

proposed by Tang et al. (2017) for each 1 ≤ i < k and accumulate the k−1

differences.

To check for the presence of USO, conducting goodness-of-fit (GOF)

tests for F1 � F2 � · · · � Fk is essential. Park et al. (1998) proposed a

likelihood ratio test among multiple distributions by discretizing the data’s

support; however, how to properly discretize remains unsolved. In con-

trast, two-sample ODC-based GOF tests have been studied by Tang et al.

(2017), Wang et al. (2020), and Wang et al. (2021). The Lp differences

between star-shaped and empirical estimators of the ODC R1 were used to

test if F1 � F2 holds. For k-sample GOF tests, it is a natural extension to

consider ODCs R1, . . . , Rk−1 and accumulate the Lp differences. However,

this approach requires extra care because ODC estimators become corre-

lated (Ri = Fi{F−1i+1(u)} and Ri+1 = Fi+1{F−1i+2(u)} both depend on Fi+1).

We propose data-adaptive critical values addressing the dependency and

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



5

provide Bonferroni-corrected GOF tests for comparison.

Lastly, if distributions are known to differ in advance, it is crucial to de-

termine which distributions change. For example, determining distinguish-

able distributions of a noninvasive biomarker over stages of a disease is a

critical assessment when searching for a replacement of an invasive “gold

standard” diagnosis; see Section 7. However, to the best of our knowl-

edge, none of the equality tests can distinguish unequal distributions under

USO. We propose ODC-based methods capable of detecting distributional

changes to address this gap. We further offer a BIC-type method even if

distributions are unknown to differ beforehand.

The rest of this paper is organized as follows. We propose ODC-

based equality tests under USO in Section 2. Section 3 constructs GOF

tests for USO with data-adaptive and Bonferroni-corrected critical values.

Methods to distinguish distributions under USO are proposed in Section

4. We provide numerical justification in Section 5 to support theoretical

results. Section 6 illustrates our methods when assessing a new serum

biomarker for distinguishing hepatic fibrosis stages. Finally, we conclude

with a discussion in Section 7. All proofs and additional numerical re-

sults are provided in the Supplementary Materials. The R codes on GitHub

(https://github.com/cftang9/MSUSO) reproduce all numerical results.
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2. Equality Tests

With k ≥ 2 continuous distributions F1, F2, . . . , Fk, the relevant hypotheses

for testing equality under USO are

H0 : F1 = F2 = · · · = Fk and H1 : F1 � F2 � · · · � Fk but not H0.

Given the transitivity property of “�” in USO, the alternative hypothesis

H1 can be expressed as Fi � Fi+1 for all 1 ≤ i < k, excluding H0. Thus,

the analysis can focus on pairs of distributions Fi and Fi+1. We denote

the corresponding ODC as Ri(u) = Fi{F−1i+1(u)} for 0 ≤ u ≤ 1, where

F−1i+1(u) = inf{t : Fi+1(t) ≥ u} is the quantile function associated with Fi+1.

The ordering Fi � Fi+1 is equivalent to Ri being star-shaped (i.e., the ratio

ri(u) = {1 − Ri(u)}/(1 − u) is nonincreasing in u). Therefore, H1 can be

stated equivalently as all Ri being star-shaped, with the condition that at

least one Ri deviates from the equal distribution line R0. Similarly, H0 is

equivalent to Ri = R0 for all 1 ≤ i < k.

Our test statistics rely on the disparity between a star-shaped estima-

tor of Ri and R0. Given independent random samples Xj1, . . . , Xjnj
from

distributions Fj for 1 ≤ j ≤ k, we denote the empirical estimator of Ri as

R̂i(u) = Fi{F−1i+1(u)} for 0 ≤ u ≤ 1. Here, Fi(t) represents the empirical
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distribution of the ith random sample and F−1i+1(u) is the empirical quantile

function of the (i + 1)th random sample. The star-shaped estimator, fol-

lowing the approach of Tang et al. (2017), is defined as the least star-shaped

majorant of R̂i; i.e., the smallest star-shaped function that is greater than

R̂i. This estimator is denoted as MR̂i and has an explicit expression:

MR̂i(u) =


1− (1− u) inf

0≤v≤u
{1− R̂i(v)}/(1− v), for 0 ≤ u < 1,

1, when u = 1.

From this expression, it follows thatMR̂i(u) ≥ R0(u) holds for all u ∈ [0, 1]

because R̂i(0) = 0 so that inf
0≤v≤u

{1−R̂i(v)}/(1−v) ≤ {1−R̂i(0)}/(1−0) = 1.

We consider scaled Lp differences between MR̂i and R0:

∆ip = Ci‖MR̂i −R0‖p,

where Ci = {nini+1/(ni+ni+1)}1/2 serves as a normalizing constant and ‖·‖p

stands for the Lp functional norm with p ∈ [1,∞]. For example, when p = 1,

∆i1 = Ci(
∫ 1

0
MR̂i(u) du− 1

2
); when p =∞, ∆i∞ = Ci sup

0≤u≤1
{MR̂i(u)− u}.

Clearly, large values of ∆ip are evidence of Fi � Fi+1 excluding Fi = Fi+1.

Therefore, to test H0 : F1 = F2 = · · · = Fk, one can aggregate all ∆ip to
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construct relevant test statistics. Here we choose

Tkp =
∑
1≤i<k

∆ip and Ukp = max
1≤i<k

∆ip

and denote critical values by tkp,α and ukp,α for Tkp and Ukp, respectively.

The critical values satisfy α = pr(Tkp > tkp,α) = pr(Ukp > ukp,α) under H0.

Theorem 1 shows our proposed tests are consistent.

Theorem 1. When F1, . . . , Fk satisfy H1, lim
n→∞

pr(Tkp > tkp,α) = 1 and

lim
n→∞

pr(Ukp > ukp,α) = 1, where n = min{n1, . . . , nk}.

In practice, we recommend approximating tkp,α and ukp,α by generating

Monte Carlo samples under H0. According to Remark S1.1 in the Sup-

plementary Materials, the sampling distributions of both MR̂i and R̂i are

solely dependent on Ri and sample sizes, irrespective of the underlying dis-

tributions. Consequently, it suffices to generate independent random sam-

ples Xj1, . . . , Xjnj
from the uniform distribution U(0, 1) for j = 1, . . . , k. In

our analysis, we implemented this procedure 10, 000 times and estimated

tkp,α and ukp,α by using the α-th upper quantile of the simulated values of

Tkp and Ukp, respectively. We provide selected values of tkp,α and ukp,α in

Table S1.1 in the Supplementary Materials.
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3. Goodness-of-fit tests

It is important to highlight that rejecting H0 (equality) in favor of H1 (USO)

does not necessarily imply the ordering holds. For further assessment, we

explore the goodness-of-fit (GOF) test for

H∗0 : F1 � F2 � · · · � Fk versus H∗1 : not H∗0 .

3.1 Bonferroni-corrected critical values

Using a Bonferroni correction is a straightforward way to extend the two-

sample GOF tests proposed by Tang et al. (2017) to k > 2 samples. For

the ith and the (i + 1)th samples, the two-sample GOF test examines the

hypotheses H∗0i : Fi � Fi+1 versus the opposite. The test statistic, denoted

by Mip, is defined as

Mip = Ci‖MR̂i − R̂i‖p,

which is a scaled distance between MR̂i and R̂i. Because the hypothe-

sis H∗0i is composite, determining a critical value that controls the type I

error probability is challenging. Tang et al. (2017) proved that equal dis-

tributions Fi = Fi+1 serve as the asymptotic least favorable configuration
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maximizing the type I error probability, that is, supFi�Fi+1
lim
n→∞

pr(Mip >

t) ≤ supFi=Fi+1
lim
n→∞

pr(Mip > t) for t ≥ 0. Thus, for large sample sizes,

considering the limiting distribution of Mip under Fi = Fi+1 suffices. When

Fi = Fi+1, Mip converges in distribution to ‖D‖p as n → ∞, where

D(u) = (1− u) sup
0≤v≤u

{B(v)/(1− v)} − B(u) for 0 ≤ u < 1, D(1) = 0, and B

is a standard Brownian bridge. Let bp,α denote the α-th upper quantile of

‖D‖p. The type I error probability is asymptotically controlled under H∗0i,

that is, lim
n→∞

pr(Mip > bp,α) ≤ pr(‖D‖p > bp,α) = α.

Applying a Bonferroni correction, we define the test statistic Wkp =

max
1≤i<k

Mip and reject H∗0 when Wkp > bp,α/(k−1). Utilizing the definition of

‖D‖p, and assuming F1, . . . , Fk satisfy H∗0 , the following inequality holds

lim
n→∞

pr
(
Wkp > bp,α/(k−1)

)
≤ lim

n→∞

k−1∑
i=1

pr(Mip > bp,α/(k−1))

≤
k−1∑
i=1

pr(‖D‖p > bp,α/(k−1)) = (k − 1)× α

k − 1
= α. (3.1)

Therefore, the Bonferroni-corrected tests have size α asymptotically.

3.2 Data-adaptive critical values

While theoretically sound, Bonferroni-corrected tests can be conservative

in the finite-sample cases, especially when k is large. Therefore, we propose
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a more sophisticated method to determine the critical values. Our method

avoids using the summation of marginal upper bounds, as in (3.1), for

controlling the type I error probability. Instead, we seek to employ data-

adaptive critical values, steering clear of the need to search for a fixed and

conservative value from the least favorable configuration.

We consider the test statistics Wkp = max
1≤i<k

Mip defined in Section 3.1

and Skp =
∑

1≤i<k
Mip. The asymptotic behavior of Mip inspires our construc-

tion of critical values. Lemma S1.3 in the Supplementary Materials shows

that when Ri is star-shaped, the limiting distribution of Mip relies on the

segment of the process

Li(u) =


λ
1/2
i Bi{MRi(u)} − (1− λi)1/2

{
1−MRi(u)

1−u

}
Bi+1(u), 0 ≤ u < 1,

0, u = 1,

over certain regions of [0, 1], where λi is the limit of ni+1/(ni + ni+1) as

n = min1≤i<k{ni} → ∞ and the Bi’s are independent standard Brownian

bridges. These regions are subsets of [0, 1], known as the non-strictly-star-

shaped regions of Ri (see Tang et al., 2017). Achieving precise control

over the type I error probability necessitates consistent estimation of these

regions, a task that proves to be exceedingly challenging. To bypass this

challenge, we opt to expand these regions to [0, 1] as a pragmatic means of
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bounding the type I error probability. We utilize Li(u) to define

M̃ip =


[∫ 1

0

{
sup0≤v≤u

(
Li(v)
1−v

)
(1− u)− Li(u)

}p
du
]1/p

, 1 ≤ p <∞,

sup0≤u≤1

[
sup0≤v≤u

(
Li(v)
1−v

)
(1− u)− Li(u)

]
, p =∞,

in which the integral and supremum (of u) are both over [0, 1]. In the

Supplementary Materials (Remark S1.2), we show that, for p ∈ [1,∞],

lim
n→∞

pr(Mip > t) ≤ pr(M̃ip > t) holds at any t ≥ 0.

Hence, we can employ S̃kp =
∑

1≤i<k
M̃ip and W̃kp = max

1≤i<k
M̃ip to find critical

values, denoted by s̃kp,α and w̃kp,α, respectively.

Theorem 2. When F1, . . . , Fk satisfy H∗0 , lim
n→∞

pr{Skp > s̃kp,α} ≤ α and

lim
n→∞

pr{Wkp > w̃kp,α} ≤ α hold for every p ∈ [1,∞]. When F1, . . . , Fk

satisfy H∗1 , lim
n→∞

pr{Skp > s̃kp,α} = 1 and lim
n→∞

pr{Wkp > w̃kp,α} = 1.

Provided that s̃kp,α or w̃kp,α are known in advance, Theorem 2 shows they

are desirable as new critical values in testing H∗0 , ensuring type I error

probabilities are controlled asymptotically. Moreover, under H∗1 , both s̃kp,α

and w̃kp,α still guarantee consistency.

Now we provide a numerical approximation for s̃kp,α and w̃kp,α. It is

important to note that both S̃kp and W̃kp depend on Li with unknownMRi
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and λi. Therefore, we estimate MRi by its consistent estimator MR̂i and

approximate λi by ni+1/(ni+ni+1). Lastly, the Brownian bridges B1, . . . ,Bk

in L1, . . . ,Lk−1 are replaced by a sequence of independent Brownian bridges

B∗1, . . . ,B∗k, which are approximated by independently generating k random

samples of size K from U(0, 1). Thus, we approximate Li by

L̂∗i (u) =

(
ni+1

ni + ni+1

)1/2

B∗i {MR̂i(u)}

−
(

ni
ni + ni+1

)1/2
{

1−MR̂i(u)

1− u

}
B∗i+1(u),

for u ∈ [0, 1) and L̂∗i (1) = 0 and plug Li = L̂∗i into M̃ip to obtain both Ŝ∗kp

and Ŵ ∗
kp accordingly. By generating the approximated Brownian bridges

B times, we obtain B pairs of Ŝ∗kp and Ŵ ∗
kp. It is advisable to select much

larger values of K and B than the maximum of the k sample sizes (e.g.,

we set K = B = 1000 when sample sizes are less than or equal to 200).

Lastly, upper α-th sample quantiles, denoted by ŝ∗kp,α and ŵ∗kp,α, serve as the

estimated critical values for Skp and Wkp, respectively. Theorem 3 shows

that both tests have size α asymptotically and are consistent under H∗1 .

Theorem 3. When F1, F2, . . . , Fk satisfy H∗0 , lim
n→∞

pr{Skp > ŝ∗kp,α} ≤ α and

lim
n→∞

pr{Wkp > ŵ∗kp,α} ≤ α. When F1, F2, . . . , Fk satisfy to the alternative

H∗1 , lim
n→∞

pr(Skp > ŝ∗kp,α) = lim
n→∞

pr(Wkp > ŵ∗kp,α) = 1.
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4. Distinguishing Distributions

When H∗0 : F1 � F2 � · · · � Fk is true, it is still possible that some Fi’s are

equal and not strictly ordered. The final component of our work focuses

on identifying all potential indices i where Fi � Fi+1 while Fi 6= Fi+1. To

simplify, we refer to this relationship as Fi ≺ Fi+1 and label such an index i

as a “jump point.” We collect the set of true jump points as J = {i : Fi ≺

Fi+1}. In essence, our objective is to pinpoint all jump points under H∗0 .

To identify J , we can effectively leverage the statistic ∆ip as defined in

Section 2. Recall that large values of ∆ip indicate that Ri differs from R0

in the context of USO, suggesting Fi ≺ Fi+1. Consequently, it is logical

to designate i as a jump point when ∆ip exceeds the cutoff value ukp,α

defined in Section 2. We then gather the identified jump points as J0
p =

{i : ∆ip > ukp,α}. Theorem 4 provides the probability of J0
p containing J

and accurately determining J under both H0 and H1.

Theorem 4. Under H1, pr(J0
p ⊇ J) converges to 1 and pr(J0

p = J) ≥ 1−α

as n → ∞. Under H0, pr(J0
p ⊇ J) = 1 and pr(J0

p = J) = 1 − α for all

finite sample sizes.

Theorem 4 indicates that, under H∗0 = H0∪H1, J
0
p guarantees contain-

ing all the true jump points J with probability approaching 1. However, J0
p
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may falsely include some non-jumping points with probability smaller than

or equal to α, preventing the correct rate from approaching 1, especially

when H0 is true. To improve the correct rate, we propose a distinguish-

ing method with the correct rate converging to 1 under H0. We introduce

threshold values denoted by δ = (δ1, . . . , δk−1), where δi increases with sam-

ple sizes such that all δi → ∞ as n → ∞. We then gather the identified

jump points using J∗p (δ) = {i : ∆ip > δi}. Theorem 5 suggests that as long

as δi grows slower than Ci (i.e., δi/Ci → 0 as n →∞), J∗p (δ) will correctly

determine all jump points in the limit.

Theorem 5. Under H∗0 , for any ∅ ⊆ J ⊆ {1, . . . , k−1}, limn→∞ pr(J∗p (δ) =

J) = 1, provided that δi →∞ and δi/Ci → 0 as n →∞, for 1 ≤ i < k.

In practice, one can simplify the threshold values by setting all δi =

η and defining J∗p (η) = {i : ∆ip > η}. We utilize BIC-type criteria to

determine η by minimizing the loss function

Qp(η) =
∑

i/∈J∗
p (η)

‖MR̂i −R0‖p +
∑

i∈J∗
p (η)

(
‖MR̂i − R̂i‖p + dip

logCi
Ci

)
.

Here, R0 is viewed as a “parsimonious model,” and a BIC-type penalty

term dip(logCi)/Ci is added to account for the departure from a star-shaped

configuration. We suggest using dip = log logCi{(1+p)/(2+p)}, as the term
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log logCi is recommended by Wang et al. (2009) and the term (1 + p)/(2 +

p) is introduced to appropriately adjust the magnitude for the Lp errors.

Denote the minimizer of Qp(η) by η∗p, Theorem 6 shows that J∗p := J∗p (η∗p)

effectively identifies all jump points with probability converging to 1.

Theorem 6. Under H∗0 , for any ∅ ⊆ J ⊆ {1, . . . , k − 1}, limn→∞ pr(J∗p =

J) = 1.

Because Qp(η) is a step function, η∗p can be efficiently computed. By

setting η†i = ∆ip and η†0 = 0, we compute Qp(η) over the values η†i for

i = 0, . . . , k − 1 and select the one that yields the smallest Qp(η). It is

important to highlight that while the probability of correct identification

approaches 1, our finite-sample evaluation in Section 5.5 reveals that J∗p

tends to be a bit more conservative when compared to J0
p .

5. Simulation

5.1 ODC Examples

Throughout the assessment, we consider a family of ODCs denoted as Gq

for −1 ≤ q ≤ 1, depicted in Figure 1(a). The configuration of these ODCs

is controlled by the parameter q. Specifically, Gq exhibits a star-shaped

pattern when q is non-negative and a non-star-shaped pattern otherwise.
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To evaluate the sensitivity and robustness of our tests, we measure the

degree of departure of the corresponding null hypothesis. The departure of

an ODC R from the equal distribution line R0 is measured by D0(R, p) =

‖MR − R0‖p. Therefore, D0(G0, p) = 0 because G0 = R0. For q < 0,

D0(Gq, p) = 0 asMGq = R0. As q increases from 0 to 1,MGq progressively

distances itself from R0, resulting in an increase in D0(Gq, p).

The departure of an ODC R from being star-shaped is measured by

D∗(R, p) = ‖MR−R‖p. When q ≥ 0, Gq is star-shaped (i.e.,MGq = Gq),

leading to D∗(Gq, p) = 0. As q increases from −1 to 0, Gq approaches

MGq, causing a decrease in D∗(Gq, p). We refer to Figure 1(b) for plots of

D0(Gq, p) and D∗(Gq, p) over q ∈ [−1, 1] for p = 1, 2,∞.

5.2 Data generation under specified ODCs

To generate independent samples that adhere to specified ODCs, we assume

all distributions have the same support [0, 1] and that the inverse of Fj exists

and coincides with the quantile function F−1j for each j. We write F−1j (u) =

F−11 ◦R1◦R2◦· · ·◦Rj−1(u) where “◦” denotes function composition. Indeed,

it suffices to rewrite F−1j = R1 ◦ R2 ◦ · · · ◦ Rj−1 by choosing F1 as U(0, 1).

Hence, the inverse cumulative distribution method can generate the jth

random sample. For example, considering F1, F2, and F3 with (R1, R2) =
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Figure 1: Departures D0(·, p) and D∗(·, p) for ODCs Gq and Kδ.

(Gq1 , Gq2), we generate independent random samples from each Fi by X1l1 =

U1l1 , X2l2 = R1(U2l2) = Gq1(U2l2), andX3l3 = R1◦R2(U3l3) = Gq1◦Gq2(U3l3),

for 1 ≤ lj ≤ nj, where Uj1, . . . , Ujnj
are random samples from U(0, 1).

Finally, we are prepared to introduce numerical evaluations of the pro-

posed methods. In each configuration, we fixed α = 0.05, considered equal
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5.3 Equality tests 19

sample sizes (nj = n for all 1 ≤ j ≤ k), and used 1000 Monte Carlo repli-

cations. In the manuscript, we focused on k = 3 and used different settings

of R1 = Gq1 and R2 = Gq2 , denoted by (R1, R2) = (Gq1 , Gq2) for simplicity.

Results for k > 3 are in Section S2 of the Supplementary Materials.

5.3 Equality tests

To assess the size, we set R1 = R2 = R0 as specified by H0. For power

assessment, we chooseR1 andR2 from the star-shapedGq’s (i.e., 0 ≤ q ≤ 1),

where at least one of them differs from R0. With the chosen (R1, R2), we

generated data of equal sample size n ∈ {60, 100, 200}.

The results are summarized in Table 1. Under H0 with (q1, q2) =

(0.0, 0.0), both T3p and U3p maintain type I error probability close to α =

0.05 with errors less than 0.018 for p ∈ {1, 2,∞} and n ∈ {60, 100, 200}.

The value 0.018 is the margin of error for estimating the nominal rejec-

tion rate 0.05 with 1000 Monte Carlo replications at the 99% confidence

level. Under H1 : F1 � F2 � F3 with (q1, q2) 6= (0.0, 0.0) and q1, q2 ≥ 0,

the probability of rejecting H0 approaches 1 with growing sample sizes in-

crease, aligning with Theorem 1. When the sample size is fixed, the power

increases as either q1 or q2 increases, which is expected as the departure

D0(Gq, p) increases in q. When comparing Tkp and Ukp, we see that Tkp ex-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)
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hibits superior power across almost all settings. The bold numbers in Table

1 mark the maximum value in each row. It is clear that p =∞ performed

better than p = 1 and p = 2, and Tk∞ is consistently the best.

Table 1: Sizes and powers for testing H0 versus H1.

n (q1, q2) T31 U31 T32 U32 T3∞ U3∞

60

(0.0,0.0) 0.051 0.048 0.043 0.049 0.044 0.051
(0.4,0.0) 0.446 0.341 0.482 0.392 0.506 0.469
(0.6,0.0) 0.678 0.573 0.746 0.673 0.781 0.750
(1.0,0.0) 0.948 0.887 0.973 0.936 0.990 0.973
(0.2,0.2) 0.428 0.230 0.462 0.269 0.466 0.312
(0.4,0.2) 0.700 0.412 0.734 0.482 0.747 0.567
(0.6,0.4) 0.954 0.758 0.974 0.856 0.974 0.907

100

(0.0,0.0) 0.067 0.051 0.067 0.059 0.065 0.047
(0.4,0.0) 0.621 0.463 0.674 0.569 0.709 0.623
(0.6,0.0) 0.901 0.781 0.944 0.863 0.957 0.911
(1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000
(0.2,0.2) 0.599 0.337 0.648 0.403 0.657 0.399
(0.4,0.2) 0.893 0.600 0.929 0.711 0.934 0.741
(0.6,0.4) 0.998 0.940 1.000 0.975 1.000 0.990

200

(0.0,0.0) 0.048 0.053 0.046 0.056 0.050 0.054
(0.4,0.0) 0.914 0.824 0.958 0.896 0.970 0.942
(0.6,0.0) 0.998 0.984 1.000 0.995 1.000 0.999
(1.0,0.0) 1.000 1.000 1.000 1.000 1.000 1.000
(0.2,0.2) 0.889 0.574 0.921 0.678 0.927 0.720
(0.4,0.2) 0.995 0.924 0.997 0.966 0.997 0.989
(0.6,0.4) 1.000 1.000 1.000 1.000 1.000 1.000

5.4 GOF tests

The first part of our assessment of the GOF tests proposed in Section 3

considers three scenarios:
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5.4 GOF tests 21

(A) H∗0 : F1 � F2 � F3 with (R1, R2) = (Gq1 , Gq2), where q1, q2 ≥ 0;

(B) H∗1 : F1 � F2 � F3 with (R1, R2) = (Gq1 , Gq2), where q1 < 0, q2 ≥ 0;

(C) H∗1 : F1 � F2 � F3 with (R1, R2) = (Gq1 , Gq2), where q1, q2 < 0.

Scenario (A) evaluates the size of the test, while Scenarios (B) and (C)

assess the power. Under the hypothesis specified in each scenario, we gen-

erated datasets of equal sizes n ∈ {60, 100, 200} and conducted our tests

with Skp and Wkp and also the Bonferroni-corrected test, denoted by Bkp,

for p ∈ {1, 2,∞}. Table 2 summarizes the results.

Under H∗0 , the setting (q1, q2) = (0.0, 0.0) aligns with the null configu-

ration that F1 = F2 = F3. It is evident that all tests maintain type I errors

at the nominal level (i.e., within a 0.018 margin of error for α = 0.05). As

either q1 or q2 increases from 0 under Scenario (A), the ODCs progressively

take on a more star-shaped form. Consequently, the type I error probability

decreases and consistently remains below 0.05. This pattern coincides with

the theoretical findings in Theorem 3.

Under H∗1 in both Scenarios (B) and (C), all proposed tests have powers

approaching 1 as the sample size n increases, which illustrates the consis-

tency of our tests established in Theorem 3. When qi decreases, the power

increases as the departure D∗(Ri, p) increases. Among S3p, W3p, and B3p,
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we observe that S32 or W3∞ often achieves the highest power (marked in

bold) while B3∞ performs in between.

To gain a clear picture of the comparison among S3p, W3p, and B3p, we

proceed to the second part of our assessment. We now study the power of

these tests as the sample size remains constant while the deviation from the

null hypothesis increases. We consider a sequence of 10 ODCs, denoted by

Kδ for δ ∈ {0, 1, . . . , 9}, as previously used in Wang et al. (2020). When

δ = 0, K0 is star-shaped. As δ deviates form 0, Kδ progressively becomes

more non-star-shaped, leading to an increase in D∗(Kδ, p). We refer to

Figures 1(c)-(d) for plots of the Kδ’s and their corresponding D∗(Kδ, p).

We fixed n = 200 and considered two sequences of ODC pairs for

(R1, R2), denoted by {(Kδ, R0)}9δ=0 and {(Kδ, Kδ)}9δ=0. Figure 2 illustrates

the estimated power of each test. When δ = 0, all three tests’ type I error

probabilities are well controlled, as anticipated. As δ increases, the powers

of the GOF tests rise and approach 1. Comparing the three testing proce-

dures reveals clear results. For the sequence {(Kδ, R0)}9δ=0, where F2 = F3

is fixed, Wkp exhibits superior power to Skp since only (F1, F2) departs

from USO as δ increases. However, for the sequence {(Kδ, Kδ)}9δ=0, Skp

accumulates the departures from USO of both (F1, F2) and (F2, F3) better,

and thus achieves better power. Lastly, both Skp and Wkp dominate the
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Bonferroni-corrected tests.

5.5 Distinguishing distributions

We now assess our methods in Section 4. For data generation, we utilize con-

figurations (R1, R2) = (Gq1 , Gq2) with q1, q2 ≥ 0 and take n ∈ {100, 200}.

We introduce the following measures. Let Ĵ be a general jump point col-

lector (in our case, either J0
p or J∗p ). We evaluate the performance of Ĵ by

the correct rate pr(Ĵ = J), the true positive average E(#{Ĵ ∩J}), and the

false positive average E(#{Ĵ ∩ J c}), where #{A} means the size of a set

A and J c = {i : Fi = Fi+1} is the collection of non-jump points. A well-

performing Ĵ is expected to have high correct rates and low false positive

averages, and the positive averages are about the size of underlying J .

Our investigations utilize Gq’s to configure various combinations of

(R1, R2) = (Gq1 , Gq2). Start by examining the scenario with q1, q2 > 0,

we observe the order F1 ≺ F2 ≺ F3 with J = {1, 2} and J c = ∅. In this

case, we anticipate that E(#{Ĵ ∩ J}) ≈ 2 and #{Ĵ ∩ J c} must be 0. Mov-

ing on to the cases with q1 > 0 and q2 = 0, we find that F1 ≺ F2 = F3

with J = {1} and J c = {2}. Here, we expect E(#{Ĵ ∩ J}) ≈ 1. Lastly,

q1 = q2 = 0 corresponds to F1 = F2 = F3 with J = ∅ and J c = {1, 2}, we

have #{Ĵ ∩ J} = 0. For the second and third cases where J c is nonempty,
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we expect that E(#{Ĵ ∩ J c}) ≈ 0 as Ĵ identifies J .

From Table 3, when J remains the same, the cases with larger depar-

tures D0(Ri, p) have better performance for both proposed methods J0
p and

J∗p . The sup-norm version performed the best for both J0
p and J∗p in terms

of the correct rate and true positive rate. In addition, both methods have

false positive averages E(#{Ĵ ∩ J c}) lower than 0.025. Comparing J0
p and

J∗p , when all distributions are the same, J0
p has correct rates around 0.95

while J∗p has slightly better rates from 0.95 to 1. Under H1, when at least

one jump point exists, J0
p outperforms J∗p in terms of the correct rates and

true positive average. Therefore, when H1 is known in advance, we suggest

using J0
p . On the other hand, although J∗p is more conservative than J∗p

under H1, J
∗
p has its own practical merits under H0. Notably, J∗p has very

low false positive rates when H0 is true. Consequently, J∗p is recommended

when the false positive rates must be strictly controlled and/or where H1

is unknown in advance.

6. Data analysis

Liver fibrosis is a change in the microscopic structure of the liver, reflecting

the body’s response to injury, often associated with conditions like hepati-

tis C virus infection. The progression of this disease and the assessment of
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therapeutic effectiveness are crucial considerations. The METAVIR scor-

ing system categorizes fibrosis into five stages ranging from mild to severe:

F1 (no fibrosis), F2 (portal fibrosis without septa), F3 (few septa), F4 (nu-

merous septa without cirrhosis), and F5 (cirrhosis). While liver biopsy has

long been considered the “gold standard” for determining fibrosis stages,

its invasive nature, potential complications, and lack of easy repeatability

pose challenges (Adams, 2011; Berger et al., 2019). The pursuit of safe and

efficient diagnostic methods remains a crucial focus of ongoing research.

Serum markers serve as non-invasive methods for diagnosing liver fi-

brosis, offering advantages such as reproducibility, applicability, and cost-

effectiveness (Manning and Afdhal, 2008; Pinzani et al., 2008; Castera, 2009;

Smith and Sterling, 2009; Nallagangula et al., 2017; Li et al., 2018). Given

its relevance in disease-related tissue remodeling, human microfibrillar-

associated protein 4 (MFAP4) emerges as a potential candidate for a serum

marker (Mölleken et al., 2009). The viability of using MFAP4 as a biomarker

for diagnosing liver fibrosis has been assessed in Bracht et al. (2016). How-

ever, concerns arise regarding the subjective transformation of MFAP4 mea-

surements and the assumption of normality with equal variances, prompting

consideration for a nonparametric approach.

We demonstrate our equality tests and GOF tests using the MFAP4
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data presented in Bracht et al. (2016). Additionally, we assess the potential

of MFAP4 for distinguishing among the various fibrosis stages. We denote

ODCs for consecutive distributions by Ri = Fi ◦ F−1i+1 for i = 1, . . . , 4. The

number of patients collected for each fibrosis stage are n1 = 97, n2 = 176,

n3 = 135, n4 = 67, and n5 = 67. Empirical ODCs R̂1, . . . , R̂4 and star-

shaped ODC estimators MR̂1, . . . ,MR̂4 are plotted in Figure 3. The Lp

differences ∆ip and Mip with p = 1, 2, and ∞, are reported in Table 4.

Set α = 0.05. For testing H0 versus H1, both the test statistics Tkp

and Ukp (as shown in Table 4) exceed their corresponding critical values

tkp,α and ukp,α for all p, respectively. Consequently, the proposed methods

consistently indicate that the MFAP4 distributions are not equal, aligning

with the findings in Mölleken et al. (2009). Turning to the goodness-of-fit

(GOF) test for H∗0 versus H∗1 , the test statistics Skp and Wkp fall below

their corresponding critical values ŝ∗kp,α and ŵ∗kp,α for all p. This suggests

the presence of USO is strongly supported.

Under USO, we apply our distinguishing methods J0
p and J∗p . For J∗p ,

the optimized η∗p are 0.913, 0.976, and 1.555 for p = 1, 2, and ∞, respec-

tively, and all result in the same set of jump points, J∗p = {2}. Therefore,

we conclude the MFAP4 distributions adhere to the order F1 = F2 = F3 ≺

F4 = F5, aligning with the findings in Bracht et al. (2016). In addition,
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if we view H1 as established from our GOF tests, we can apply J0
p to de-

tect the jump points. In this case, the analysis provides J0
p = {2, 3} for

all p = 1, 2,∞, suggesting that MFAP4 distributions F2, F3, and F4 are

distinguishable, and the order of distributions is F1 = F2 ≺ F3 ≺ F4 = F5.

This is a stronger conclusion when compared to that in Bracht et al. (2016).

7. Discussion

In this article, we have provided a comprehensive nonparametric toolkit for

comparing multiple distributions under USO. Extensive numerical studies

via both synthetic and real data have been conducted to showcase the ef-

ficacy of our methods and their counterparts. In the following, we would

like to discuss three additional topics.

In practical scenarios where the overarching goal is to distinguish among

distributions, one can combine the three components of our toolkit using

modified significance levels. We list four potential cases:

• If both the equality of distributions and presence of USO are unknown,

one can perform the equality tests for H0 at a significance level α/3

and the GOF tests for H∗0 at α/3. If H0 is rejected but not H∗0 , one

can perform J0
p with α/3. Another option is to test for H0 at α/2

and for H∗0 at α/2. If H0 is rejected but not H∗0 , one can calculate
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J∗∞ since J∗∞ has the correct rate approaching 1.

• If USO is known in advance, but it is unknown whether the distribu-

tions are identical, one can perform equality tests for H0 first at α/2

and then perform J0
p with α/2 if H0 is rejected. Or one can calculate

J∗∞ directly without performing equality tests for H0.

• If USO is unknown, but distributions are known to be non-identical,

then one can perform the GOF tests for H∗0 at α/2 and then J0
p with

α/2 if H∗0 is not rejected. Or one can perform the GOF test with α

and then J∗∞ if H∗0 is not rejected.

• If one knows the distributions adhere to USO and not all of them are

equal, we suggest performing J0
p with α directly to distinguish them.

Next, we want to highlight our contribution in comparison to the ex-

isting methods. For the equality test, El Barmi and McKeague (2016) used

empirical likelihood (EL) to propose a nonparametric test for H0 versus

H1. We have included their test in our R codes and conducted compar-

isons with our approach (see Section S2.1 of the Supplementary Materials).

The results reveal that EL-based tests outperformed ours when the depar-

ture from equality is substantial. Our tests have better power when the

departure is mild and are more computationally feasible in most cases.
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For GOF tests involving multiple distributions, to the best of our knowl-

edge, our method stands as the sole sophisticated solution. We believe de-

veloping EL-based GOF tests has its own merit and could be an interesting

future topic. We have numerically compared our method with the naive

Bonferroni approach. We have also considered other types of tests that

combine and adjust p-values, such as the Cauchy combination test (Liu and

Xie, 2020) and Benjamini and Yekutieli methods (Benjamini and Yekutieli,

2001). Our comparative analysis in Section S2.2 of the Supplementary Ma-

terials reveals that Bonferroni’s corrected test and Cauchy’s combination

test stand out from the p-value-adjusted methods across various scenar-

ios. Nevertheless, none of the p-value-adjusted methods can surpass the

effectiveness of our proposed methods.

In conclusion, we present some intriguing avenues for future exploration.

First, our proposed ODC-based methods lend themselves to adaptation for

partially ordered distributions such as tree-shape orderings (F0 � Fi for

i = 1, . . . , k) and umbrella orderings (F1 � F2 � · · · � Fi and Fk �

· · · � Fi+1 � Fi). In general, partially ordered distributions can be repre-

sented by ordered pairs Fi � Fj for (i, j) ∈ O, where O collects all pairs

of USO ordered distributions. One could consider corresponding Lp differ-

ences which accumulate these differences among (i, j) ∈ O. With similar
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arguments, these modified procedures are expected to exhibit good per-

formance, such as well-controlled size, consistency, and favorable correct

identification rates, at least asymptotically. Second, an interesting future

topic involves investigating the ordering of observations taken in vector or

matrix form. Third, as USO is also known as hazard ratio ordering, extend-

ing our methods to handle censored data would be valuable. Undoubtedly,

these topics pose significant theoretical challenges.

Supplementary Materials

The supplementary materials contain proofs of the theorems, required lem-

mas, and additional numerical results for all proposed methods.
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Table 2: Size and power comparisons for GOF tests with test statistics Skp,

Wkp, and Bonferroni-corrected method Bkp with p = 1, 2 and ∞.

n (q1, q2) S31 W31 B31 S32 W32 B32 S3∞ W3∞ B3∞

60

(0.0,0.0) 0.066 0.067 0.047 0.062 0.062 0.046 0.027 0.053 0.053
(0.2,0.0) 0.033 0.045 0.028 0.028 0.037 0.026 0.012 0.032 0.030
(0.4,0.2) 0.004 0.012 0.006 0.005 0.011 0.006 0.001 0.008 0.007
(-0.4,0.2) 0.425 0.450 0.371 0.430 0.505 0.449 0.343 0.484 0.497
(-0.6,0.2) 0.713 0.712 0.643 0.747 0.766 0.716 0.681 0.790 0.787
(-0.4,0.0) 0.516 0.453 0.390 0.537 0.948 0.466 0.435 0.488 0.517
(-0.6,0.0) 0.791 0.711 0.669 0.819 0.765 0.749 0.768 0.798 0.815
(-0.2,-0.2) 0.449 0.309 0.254 0.466 0.326 0.291 0.357 0.284 0.310
(-0.4,-0.2) 0.754 0.533 0.473 0.772 0.574 0.563 0.696 0.568 0.613
(-0.6,-0.4) 0.980 0.871 0.835 0.986 0.909 0.910 0.979 0.920 0.933

100

(0.0,0.0) 0.048 0.060 0.048 0.041 0.057 0.048 0.023 0.048 0.043
(0.2,0.0) 0.023 0.037 0.026 0.018 0.037 0.029 0.014 0.034 0.028
(0.4,0.2) 0.001 0.004 0.003 0.002 0.006 0.003 0.005 0.006 0.004
(-0.4,0.2) 0.619 0.645 0.574 0.662 0.720 0.672 0.609 0.751 0.735
(-0.6,0.2) 0.908 0.912 0.866 0.940 0.947 0.924 0.929 0.967 0.961
(-0.4,0.0) 0.722 0.650 0.593 0.758 0.714 0.691 0.703 0.745 0.749
(-0.6,0.0) 0.953 0.915 0.890 0.974 0.950 0.936 0.968 0.970 0.973
(-0.2,-0.2) 0.653 0.419 0.379 0.669 0.456 0.433 0.607 0.426 0.453
(-0.4,-0.2) 0.927 0.744 0.701 0.950 0.799 0.787 0.924 0.815 0.831
(-0.6,-0.4) 0.998 0.982 0.974 0.999 0.993 0.990 1.000 0.995 0.995

200

(0.0,0.0) 0.063 0.059 0.046 0.052 0.057 0.044 0.049 0.048 0.043
(0.2,0.0) 0.018 0.036 0.023 0.022 0.037 0.023 0.021 0.038 0.027
(0.4,0.2) 0.000 0.001 0.000 0.001 0.002 0.001 0.004 0.009 0.006
(-0.4,0.2) 0.905 0.906 0.884 0.933 0.945 0.937 0.937 0.976 0.972
(-0.6,0.2) 0.997 0.996 0.994 1.000 0.999 0.999 0.998 1.000 1.000
(-0.4,0.0) 0.955 0.911 0.893 0.971 0.949 0.945 0.974 0.976 0.975
(-0.6,0.0) 1.000 0.999 0.997 1.000 1.000 1.000 1.000 1.000 1.000
(-0.2,-0.2) 0.905 0.649 0.633 0.939 0.740 0.715 0.928 0.786 0.788
(-0.4,-0.2) 0.999 0.959 0.953 0.999 0.982 0.980 0.999 0.995 0.996
(-0.6,-0.4) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 2: Power curves comparison for GOF tests with {(Kδ, R0)}9δ=0 (left

column) and {(Kδ, Kδ)}9δ=0 (right column).
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Table 3: Performance of Ĵ = J0
p and Ĵ = J∗p using the estimated correct

rate pr({Ĵ = J}) denoted by C, true positive average E(#{Ĵ ∩J}) denoted

by TA, and false positive average E(#{Ĵ ∩ J c}) denoted by FA.

p = 1 p = 2 p =∞
n (q1, q2) C TA FA C TA FA C TA FA

J0
p

100

(0.0,0.0) 0.949 0.000 0.051 0.941 0.000 0.059 0.953 0.000 0.047
(0.4,0.0) 0.456 0.456 0.027 0.556 0.558 0.029 0.609 0.614 0.024
(0.8,0.0) 0.903 0.919 0.035 0.943 0.967 0.036 0.972 0.991 0.025
(1.0,0.0) 0.967 0.983 0.017 0.981 0.998 0.017 0.982 0.999 0.017
(0.6,0.4) 0.320 1.248 0.000 0.472 1.450 0.000 0.554 1.541 0.000
(0.8,0.6) 0.691 1.690 0.000 0.836 1.836 0.000 0.898 1.898 0.000
(1.0,1.0) 0.961 1.961 0.000 0.997 1.997 0.000 0.999 1.999 0.000

200

(0.0,0.0) 0.947 0.000 0.053 0.944 0.000 0.056 0.946 0.000 0.054
(0.4,0.0) 0.781 0.788 0.024 0.845 0.856 0.026 0.898 0.913 0.023
(0.8,0.0) 0.975 1.000 0.025 0.978 1.000 0.022 0.978 1.000 0.022
(1.0,0.0) 0.983 1.000 0.017 0.980 1.000 0.020 0.981 1.000 0.019
(0.6,0.4) 0.757 1.757 0.000 0.852 1.852 0.000 0.904 1.904 0.000
(0.8,0.6) 0.983 1.983 0.000 0.996 1.996 0.000 0.999 1.999 0.000
(1.0,1.0) 1.000 2.000 0.000 1.000 2.000 0.000 1.000 2.000 0.000

J∗p

100

(0.0,0.0) 0.996 0.000 0.004 0.997 0.000 0.003 0.995 0.000 0.005
(0.4,0.0) 0.098 0.098 0.002 0.112 0.112 0.002 0.216 0.216 0.002
(0.8,0.0) 0.550 0.550 0.002 0.642 0.642 0.001 0.808 0.809 0.003
(1.0,0.0) 0.779 0.779 0.002 0.857 0.858 0.001 0.948 0.949 0.001
(0.6,0.4) 0.006 0.414 0.000 0.012 0.474 0.000 0.080 0.774 0.000
(0.8,0.6) 0.121 0.857 0.000 0.190 1.019 0.000 0.426 1.381 0.000
(1.0,1.0) 0.559 1.542 0.000 0.740 1.735 0.000 0.888 1.888 0.000

200

(0.0,0.0) 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000
(0.4,0.0) 0.030 0.030 0.000 0.047 0.047 0.000 0.173 0.173 0.000
(0.8,0.0) 0.528 0.528 0.000 0.701 0.701 0.000 0.924 0.924 0.000
(1.0,0.0) 0.800 0.800 0.000 0.918 0.918 0.000 0.987 0.987 0.000
(0.6,0.4) 0.001 0.217 0.000 0.002 0.320 0.000 0.076 0.780 0.000
(0.8,0.6) 0.054 0.722 0.000 0.149 0.986 0.000 0.565 1.553 0.000
(1.0,1.0) 0.631 1.617 0.000 0.859 1.858 0.000 0.987 1.987 0.000
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Figure 3: Empirical and star-shaped ODC estimates for R1(top left), R2(top

right), R3(bottom left), and R4(bottom right) with the MFAP4 data.

Table 4: List of the scaled Lp differences, test statistics for equality and

GOF, and corresponding cutoff values for the MFAP4 data.

∆1p ∆2p ∆3p ∆4p Tkp tkp,α Ukp ukp,α
p = 1 0.654 0.913 1.407 0.738 3.712 1.712 1.407 0.826
p = 2 0.704 0.976 1.533 0.787 4.000 1.924 1.533 0.910
p =∞ 1.092 1.555 2.311 1.037 5.995 3.322 2.311 1.475

M1p M2p M3p M4p Skp ŝ∗kp,α Wkp ŵ∗kp,α
p = 1 0.130 0.134 0.059 0.154 0.477 1.291 0.154 0.592
p = 2 0.154 0.159 0.080 0.182 0.575 1.581 0.182 0.690
p =∞ 0.382 0.354 0.304 0.369 1.297 3.447 0.382 1.299
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