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Abstract: In biomedical studies, estimating drug effects on chronic diseases re-

quires a long follow-up period, which is difficult to meet in randomized clinical

trials (RCTs). The use of a short-term surrogate to replace the long-term out-

come for assessing the drug effect relies on stringent assumptions that empirical

studies often fail to satisfy. Motivated by a kidney disease study, we investigate

the drug effects on long-term outcomes by combining an RCT without observation

of long-term outcomes and an observational study in which the long-term outcome

is observed but unmeasured confounding may exist. Under a mean exchangeability

assumption weaker than the previous literature, we identify the average treatment

effects in the RCT and derive the associated efficient influence function and semi-

parametric efficiency bound. Furthermore, we propose a locally efficient doubly

robust estimator and an inverse probability weighted (IPW) estimator. The for-

mer attains the semiparametric efficiency bound if all the working models are
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correctly specified, which may be hard to achieve due to the intertwined working

models. While the latter has a simpler form and requires much fewer model spec-

ifications. The IPW estimator using estimated propensity scores is more efficient

than that using true propensity scores and achieves the semiparametric efficient

bound in the case of discrete covariates and surrogates with finite support. Both

estimators are shown to be consistent and asymptotically normally distributed.

Extensive simulations are conducted to evaluate the finite-sample performance of

the proposed estimators. We apply the proposed methods to estimate the efficacy

of oral hydroxychloroquine on renal failure in a real-world data analysis.

Key words and phrases: Data fusion, Long-term treatment effects, Semiparamet-

ric efficiency, Surrogate.

1. Introduction

In biomedical research, randomized clinical trials (RCTs) are the gold stan-

dard for drug or therapy evaluation (Cartwright, 2010). However, the high

cost of labour and material resources restricts the sample size and the du-

ration of RCTs. Especially for chronic diseases, the important long-term

outcomes are difficult to observe during the period of RCTs. As a motivat-

ing example, we consider a clinical study on immunoglobulin A nephropa-

thy (IgAN), which is the most prevalent form of primary glomerular disease

worldwide (D’amico, 1987). A double-blind randomized clinical trial is con-
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ducted at Peking University First Hospital for six months, to compare the

efficacy of additional use of oral hydroxychloroquine (HCQ) with only op-

timized renin-angiotensin-aldosterone system (RAAS) inhibition, which is

a standard therapy for IgAN disease. The outcome of interest is whether

the patient will develop renal failure over a period of time. But IgAN is

a chronic disease and the long-term outcome is not observed within a six-

month experiment period, instead, the researcher collected the percentage

change in proteinuria as a surrogate (Liu et al., 2019).

This kind of need to evaluate the long-term effect in clinical trials is per-

vasive in medical and social science applications and requires new method-

ologies. If only RCT data is available, to evaluate the effect of a treatment

on the long-term outcome, the researchers often choose a short-term surro-

gate that is strongly predictive of the outcome and can be observed during

the RCTs and then report analysis results for the surrogate (Liu et al.,

2019). The criteria for choosing short-term surrogates have been studied

over the years (Prentice, 1989; Frangakis and Rubin, 2002; Lauritzen et al.,

2004; Chen et al., 2007; Ju and Geng, 2010). However, the aim of using a

surrogate to replace the outcome of interest is too ambitious (Kallus and

Mao, 2020). For example, Chen et al. (2007) raised the surrogate para-

dox, a phenomenon that treatment has a positive effect on a surrogate that
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has a positive effect on the outcome of interest, but the treatment has a

negative effect on the outcome of interest. Stringent unverifiable assump-

tions are made to avoid the surrogate paradox (Chen et al., 2007). Thus

it is important to propose more flexible methods that rely on less stringent

assumptions to estimate the treatment effects on the long-term outcomes.

Besides RCT data, hospitals usually have a large amount of observational

data containing long-term outcomes. Nevertheless, the existence of unmea-

sured confounders is unavoidable in an observational study (Kallus and

Zhou, 2018; Ding et al., 2022), which will impede valid inference about the

target quantity such as the efficacy of a newly developed therapy. This

article aims to identify the drug effect on long-term outcomes in RCT by

combining an RCT dataset and an observational dataset.

In this paper, we mainly make the following three contributions. First,

under a mean exchangeability assumption, we elaborate on the identifiabil-

ity of the treatment effect on long-term outcomes in RCT by combining an

RCT without observation of long-term outcome and an observational study

in which the long-term outcome is observed but unmeasured confounding

may exist. We show that the identifiability assumptions adopted in this

article are weaker than those of existing methods. Second, we derive the

efficient influence function and the semiparametric efficiency bound for the
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target parameter. Third, we propose a locally efficient doubly robust (DR)

estimator and an inverse probability weighted (IPW) estimator, and show

their large sample properties. The proposed DR estimator is locally effi-

cient in the sense that it attains the semiparametric efficiency bound if all

the working models are correctly specified. However, the proposed DR es-

timator relies on the estimations of multiple complex nuisance parameters

contained in the efficient influence function, its efficiency may degrade sig-

nificantly if some of the nuisance parametric models are misspecified. This

is not a problem unique to our method, existing approaches have similar

problems (see Athey et al., 2019, 2020; Kallus and Mao, 2020; Chen and

Ritzwoller, 2021). To ease this problem, we further propose a simpler IPW

estimator that relies on much fewer nuisance parameters and shows that

using an estimated propensity score will lead to better performance even

if we know the true propensity score, which is common for RCTs (Robins

et al., 1994; Hirano et al., 2003). In addition, we show that the IPW estima-

tor with estimated propensity scores achieves the semiparametric efficient

bound in the case of discrete covariates and surrogates with finite sup-

port. Both the proposed doubly robust and IPW estimators are shown to

be consistent and asymptotically normally distributed, and the associated

variance can be estimated. Extensive simulations are conducted to evaluate
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the performance of the proposed estimators.

The idea of leveraging external data to help identify and improve effi-

ciency has gained much attention in the field of causal inference (Barein-

boim and Pearl, 2016; Hünermund and Bareinboim, 2019; Kallus et al.,

2018; Yang et al., 2020a,b; Yang and Ding, 2020; Li et al., 2021). Our

method is closely related to the recently proposed methods of studying the

long-term treatment effect. Athey et al. (2019) considered identifying the

long-term causal effect in RCT data in a setting where the long-term out-

come is not observed in RCT data and the treatment variable is missing

in observational data. They briefly discussed estimation methods for the

average treatment effect in RCT data, without showing the large sample

properties of the proposed estimator. Different from their setting, we as-

sume that treatment variables are observed in the observational study and

allow treatment to have a direct effect on outcomes. We identify the same

parameter under weaker assumptions than those in Athey et al. (2019),

derives the semiparametric efficiency bound, proposes two new estimators,

and shows their asymptotic properties. In addition, Kallus and Mao (2020)

considered the efficiency gain of estimating the causal effect on a long-term

outcome by using an observed short-term surrogate when the long-term out-

come is missing at random. However, the missing at random assumption is
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less plausible in the combined RCT and observational data.

Several works have considered a causal parameter similar to ours, which

is the long-term causal effects in observational data (Athey et al., 2020;

Ghassami et al., 2022; Imbens et al., 2022; Chen and Ritzwoller, 2021),

arguing that this quantity may have better generalizability. But in prac-

tice, there are occasions when RCT is a representative sample of the target

population, for example, Li et al. (2021); Athey et al. (2020) consider the

average treatment effect in the RCT data for a new drug or a policy. Be-

sides, real-world RCTs such as “pragmatic randomized clinical trial” can

contain samples reflective of real-world population Gamerman et al. (2019)

and become more popular in recent years. Furthermore, in empirical medi-

cal data analysis, the analysis results based on RCT data are more credible

and are more easily accepted by regulators such as FDA. Therefore, we

choose the long-term causal effects in the RCT as the target parameter.

The rest of the article is organized as follows. In Section 2, we describe

the setting of the problem interested and give the identifiability assump-

tions, and compare them with the existing approaches. Section 3 shows

the semiparametric efficiency bound for the target parameter. Section 4

proposes two new estimators and presents their large sample properties. In

Section 5, extensive simulations are performed to evaluate the finite sample
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behaviors of the proposed methods. Section 6 illustrates our approaches

with an empirical example. A brief discussion is concluded in Section 7.

2. Causal Parameter and Identifiability

2.1 Study design and causal parameter

When combining datasets from different sources, sampling mechanisms of

the multiple datasets are crucial for statistical inference. There are mainly

two ways to view the study design of the RCT data and observational data:

nested design and non-nested design (Colnet et al., 2020; Dahabreh et al.,

2021). In this paper, we adopt the non-nested design where the sampling

mechanisms of the RCT are independent of the observational data. Suppose

that there exists an underlying population for the patients, and two sub-

populations with different distributions. The RCT data and observational

data are simple random samples from two corresponding subpopulations,

where the sampling probabilities for the two subpopulations are unknown.

With the observed data, the distributions of the two subpopulations can be

identified, while the underlying population is not because of the unknown

sampling probabilities. And the overall population for the observed data

consists of samples from two subpopulations. A more detailed discussion of

the related study design can be found in Li et al. (2021).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.1 Study design and causal parameter

Now we introduce the observed data structure in our problem. Let T

denote the indicator for binary treatment, with T = 1 or 0 the treated or

control group, X denotes the observed pre-treatment covariates, Y denotes

the long-term outcome of interest, and S denote the short-term surrogates

(e.g., intermediate outcomes) that are highly informative about the out-

come Y and measured after the treatment T . Under the potential outcome

framework (Rubin, 1974; Neyman, 1990), let {S(1), Y (1)} and {S(0), Y (0)}

be the potential outcomes with and without treatment respectively. The ob-

served surrogate S and outcome Y are the potential outcomes correspond-

ing to the treatment received by the consistency assumption, i.e. S = S(T )

and Y = Y (T ). Suppose that we have available two data sources: an

RCT dataset {(Ti, Xi, Si) : i = 1, ..., n1} consists of independent and iden-

tically distributed (i.i.d.) sample of n1 observations, and an i.i.d. observa-

tional dataset {(Ti, Xi, Si, Yi) : i = n1 + 1, ..., n1 + n0} contains n0 observa-

tions. Therefore, the observed data has sample size n = n0 + n1. Denote

Gi ∈ {0, 1} as the indicator of the data sources, where Gi = 1 represents

that unit i belongs to RCT data and Gi = 0 represents that unit i belongs

to observational data. The limit of n1/n as n → ∞ tends to a positive

constant q = pr(G = 1), which represents the proportion of the RCT data

in the observed data population. The parameter of interest is the average
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2.2 Assumptions and identifiability

treatment effect in the RCT defined by τ = E{Y (1)− Y (0)|G = 1}.

2.2 Assumptions and identifiability

For identification, Assumptions 1 and 2 are imposed throughout.

Assumption 1 (Internal validity of RCT data) For t = 0 or 1,

T ⊥⊥ (Y (t), S(t)) | X,G = 1.

Assumption 2 (Strict overlap) There exists a constant 0 < ε < 1/2, such

that

(i) ε ≤ e(X) := pr(T = 1 | X,G = 1) ≤ 1− ε,

(ii) ε ≤ pr(T = 1 | X,S,G = 0) ≤ 1− ε,

(iii) ε ≤ pr(G = 0 | X = x, S = s) for all (x, s) satisfying pr(X =

x, S = s | G = 1) > 0.

Assumption 1 guarantees that the treatment assignment in RCT is un-

confounded and is satisfied in most cases with a carefully designed exper-

iment. Kallus and Mao (2020) uses the assumption T ⊥⊥ (Y (t), S(t)) | X,

where unconfoundedness holds in the combined data, rather than in RCT

data. However, this assumption is less plausible, as the existence of unmea-

sured confounders is an unavoidable problem for observational data (Kallus
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2.2 Assumptions and identifiability

et al., 2018). Assumptions 2(i)-(ii) are common in causal inference litera-

ture (Rosenbaum and Rubin, 1983; Tsiatis, 2006; Imbens and Rubin, 2015;

Hernán and Robins, 2020), which ensure that each unit has the chance to

be assigned to each treatment option. Assumption 2(iii) means that each

unit in RCT has a positive probability of belonging to the observational

data group. This implicitly restricts the support of covariates and surro-

gates in RCT data should be included in those of observational data, which

is necessary to leverage observational data to help identify τ . Besides, As-

sumption 2(iii) is reasonable in empirical studies because the inclusion rule

exerted in RCT will prevent part of the patients from entering the experi-

ment, leading to a smaller support set of X and S. The causal estimand τ

is not identified under Assumptions 1 and 2, we further invoke the following

mean exchangeability assumption.

Assumption 3 (Mean exchangeability) For t = 0 or 1,

E(Y (t) | X,S(t), T = t, G = 1) = E(Y (t) | X,S(t), T = t, G = 0).

By consistency, Assumption 3 can be written as E(Y |X,S, T,G = 1) =

E(Y |X,S, T,G = 0), an equation only consists of observed data, which is

the key assumption that enables us to transfer the conditional mean of Y
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2.3 Comparison with the identifiability of existing methods

X S

YTU
Figure 1: RCT data

X S

YTU
Figure 2: Observational data

Note: U denotes the unmeasured confounder.

in observational data to RCT data. The mean exchangeability is a weaker

version of G ⊥⊥ Y (t) | X,S(t), T = t brought up by Kallus and Mao (2020)

and similar assumptions are invoked across various data fusion literature

(Li et al., 2021; Wu and Yang, 2021; Miao et al., 2022). Importantly, As-

sumption 3 allows for the existence of unmeasured confounders between the

treatment T and the surrogates S, as the unmeasured confounders have no

direct effect on Y , leading to the same conditional expectation of Y between

the two datasets. Figures 1-2 give typical causal graphs when Assumption

3 holds. The following Proposition 1 gives the identification result for τ .

Proposition 1. Under Assumptions 1, 2 and 3, τ is identified.

2.3 Comparison with the identifiability of existing methods

The previous literature adopts stronger identifiability assumptions than As-

sumptions 1-3. Concretely, Athey et al. (2020) and Chen and Ritzwoller

(2021) adopt the following Assumptions 4 and 5 to substitute Assumption
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2.3 Comparison with the identifiability of existing methods

3.

Assumption 4 (Conditional external validity)

Gi ⊥⊥ (Yi(0), Yi(1), Si(0), Si(1)) | Xi

Assumption 5 (Latent unconfoundedness) For t = 0 or 1,

Ti ⊥⊥ Yi(t) | Xi, Si(t), Gi = 0

Under Assumptions 1, 2, 4, and 5, Athey et al. (2020) and Chen and

Ritzwoller (2021) obtain the identifiability of the average treatment effect

in observational data, i.e., E[Y (1) − Y (0)|G = 0], and the authors assert

that these assumptions are also applicable to identify τ . However, Assump-

tions 4–5 may be too strong for empirical applications when the focus is

the average treatment effect in RCT data. Assumption 4 states that condi-

tioning on X, the distributions of potential outcomes are the same between

RCT data and observational data, which implicitly assumes that the dis-

tributions of the unmeasured confounders affecting T and S conditional on

observed covariates are the same between RCT data and observational data.

Compared to Assumptions 4–5, Assumption 3 imposes weaker constraints

on the data-generating distribution. In fact, we can show that Assumptions
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2.3 Comparison with the identifiability of existing methods

4–5 are sufficient conditions for Assumption 3 under Assumption 1.

Proposition 2. Under Assumption 1, Assumption 3 is implied by Assump-

tions 4 and 5.

Below we provide an example that satisfies Assumption 3 but violates

Assumptions 4-5.

Example 1. Consider the following structural equation models. For RCT

data:

pr(T = 1) = 1/2, S = α1X + α2U + τST + εS

Y = β1X + β2S + τT + εY

For observational data:

pr(T = 1 | X,U) = {1 + exp(−γ1X − γ2U)}−1, S = α1X + α2U + τST + εS

Y = β1X + β2S + τT + εY

where U is an unmeasured variable in both RCT data and observational

data, εS and εY be the error terms independent of all other variables. If

the distribution of U |G = 1 and U |G = 0 are different, one can verify

that the distribution of S(t), Y (t), t = 0, 1 are different in RCT data and

observational data, thus Assumption 4 is violated.
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3. Semiparametric Efficiency Bound

Under the nonparametric model restricted by Assumptions 1–3, we cal-

culate the semiparametric efficiency bound for τ . The following interme-

diate quantities will appear in the efficient influence function: the selec-

tion propensity score gt(s, x) = pr(G = 1|S = s,X = x, T = t), which

quantifies the probability of selection into RCT group for a given surro-

gate, baseline covariates and treatment; the treatment propensity score for

RCT e(x) = pr(T = 1|X = x,G = 1); the regression functions µt(s, x) =

E(Y (t)|S(t) = s,X = x,G = 1) = E(Y |S = s,X = x, T = t, G = 1)

and µt(x) = E(Y (t)|X = x,G = 1) = E(Y |X = x, T = t, G = 1) =

E{µt(S,X)|X = x, T = t, G = 1} for t = 0, 1. With these nuisance param-

eters, Theorem 1 presents the efficient influence function for τ .

Theorem 1 (efficiency bound). Under Assumptions 1–3, the efficient in-

fluence function for τ is given as

ϕ =
G

q

{
T (µ1(S,X)− µ1(X))

e(X)
− (1− T )(µ0(S,X)− µ0(X))

1− e(X)
+ (µ1(X)− µ0(X))− τ

}
+

1−G

q

{
g1(S,X)T{Y − µ1(S,X)}

e(X){1− g1(S,X)}
− g0(S,X)(1− T ){Y − µ0(S,X)}

{1− e(X)}{1− g0(S,X)}

}
,

where q = p(G = 1). The semiparametric efficiency bound is E(ϕ2). In
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addition,

(i) the efficiency bound remains the same no matter whether the propen-

sity score e(X) is known or not.

(ii) ϕ is the unique influence function in the nonparametric model class

that is only restricted by Assumptions 1–3.

Theorem 1 shows that for any regular and asymptotic linear estima-

tor, its asymptotic variance is no smaller than the efficiency bound E(ϕ2).

Chen and Ritzwoller (2021) obtains the efficient influence function for aver-

age treatment effect for the long-term outcome in observational data under

Assumptions 1, 2, 4, and 5. Here our focus is the average treatment effect

in RCT data, and the efficient influence function is derived under weaker

assumptions. Theorem 1(i) shows that the propensity score is ancillary for

the estimation of τ , that is, the knowledge of e(x) does not decrease the

efficiency bound of τ . Similar conclusions that knowing some nuisance pa-

rameters will not change the efficiency bound of the target parameter are

made in Hahn (1998) and Chen and Ritzwoller (2021). The uniqueness of

the influence function in Theorem 1(ii) means that any regular and asymp-

totic linear estimators for τ in the nonparametric model have the same

influence function and thus the same asymptotic distribution.
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4. Estimation

4.1 Efficient doubly robust estimator

Theorem 1 motivates an estimator that can achieve the semiparametric

efficiency bound. Concretely, generalized linear models are specified for the

nuisance parameters in ϕ, including µt(s, x;αt) and µt(x; βt) for t = 0 or 1,

e(x; γ), and gt(s, x; ηt). Let α̂t, β̂t, γ̂, and η̂t denote the maximum likelihood

estimators of αt, βt, γ, ηt, respectively.

The estimation of e(x; γ) is trivial. However, particular care is needed

when estimating gt(s, x; ηt), µt(s, x;αt) and µt(x; βt). First, gt(s, x; ηt) should

be estimated based on the combined samples of both RCT and observational

data; Second, we cannot estimate µt(s, x;αt) directly due to the missingness

of Y in RCT data. Owing to Assumption 3, µt(s, x; α̂t) can be obtained by

regressing Y on (X,S) in observational data with T = t, then we calculate

their predicted values in RCT data ; Finally, µt(x; β̂t) can be derived by

conducting a linear regression of µt(s, x; α̂t) on X in the RCT sample. It

should be noted that we can’t estimate µt(x; βt) by directly regressing Y on

X with observational data, since E[Y |X,T = t, G = 1] may not equal to

E[Y |X,T = t, G = 0] under Assumptions 1–3. With these fitted nuisance
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4.1 Efficient doubly robust estimator

parameters, the efficient doubly robust estimator is given as

τ̂dr = Ê

[
G

q̂

{
T (µ1(S,X; α̂1)− µ1(X; β̂1))

e(X; γ̂)
− (1− T )(µ0(S,X; α̂0)− µ0(X; β̂0))

1− e(X; γ̂)
+ µ1(X; β̂1)

−µ0(X; β̂0)

}
+

1−G

q̂

{
g1(S,X; η̂1)T{Y − µ1(S,X)}
e(X; γ̂){1− g1(S,X; η̂1)}

− g0(S,X; η̂0)(1− T ){Y − µ0(S,X)}
{1− e(X; γ̂)}{1− g0(S,X; η̂0)}

}]
,

where Ê(·) denotes the sample average of all data throughout, q̂ = n1/(n1+

n0). The large sample properties of τ̂dr are presented in the following The-

orem 2.

Theorem 2. Under Assumptions 1–3 and regularity conditions described

in theorems 2.6 and 3.4 of Newey and McFadden (1994), the estimator τ̂dr

is consistent and asymptotically normal if either

(i) the outcome model µt(S,X;αt) and µt(X; βt) for t = 0, 1 are cor-

rectly specified, or

(ii) the outcome model µt(S,X;αt) and the propensity score model e(X; γ)

are correctly specified.

In addition, τ̂dr is locally efficient, i.e., it attains the semiparametric

efficiency bound E(ϕ2) when all the working models are correctly specified.

Theorem 2 indicates that the consistency of τ̂dr relies on the correct

specifications of µt(S,X) for t = 0, 1, which may not be guaranteed in real

data analysis and increases the risk of obtaining biased conclusions. How-
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4.1 Efficient doubly robust estimator

ever, the consistency of τ̂dr does not rely on the correct specification of the

selection propensity score gt(s, x), although the asymptotic variance does.

Besides, the doubly robust estimator involves many nuisance parameters

and some of them are intertwined. For example, the definitions of µt(S,X)

and µt(X) imply that µt(X) = E[µt(S,X)|X,G = 1]. When a logistic

model is specified for µt(S,X), a logistic model for µt(X) can hardly be

correctly specified. We found that this is not a problem unique to our

method, existing approaches have similar problems (see Athey et al., 2019,

2020; Kallus and Mao, 2020; Chen and Ritzwoller, 2021).

When all the parametric models for the nuisance parameters are cor-

rectly specified, the asymptotic variance of τ̂dr can be naturally estimated

by Ê(ϕ̂2), where ϕ̂ is the plug-in estimator of ϕ. Besides, we can use the

bootstrap method to get the asymptotic variance estimation if we cannot

ensure the correctness of all model specifications. Concretely, for each boot-

strap, we randomly sample n1 and n0 samples from RCT and observational

data with replacement, respectively. Repeat B times to get B point esti-

mates. Then the sample variance of the B point estimates is the estimate

of the asymptotic variance of τ̂dr. In Section 5, our simulation compares

these two methods of calculating the asymptotic variance.
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4.2 Inverse probability weighted estimator

4.2 Inverse probability weighted estimator

The doubly robust estimator has some worrying features. As discussed in

Section 4.1, its efficiency relies on the correctness of multiple cumbersome

model specifications for the nuisance parameters. When some models are

misspecified, the efficiency may degrade and the estimator may have a bias.

As a complement, the inverse probability weighted (IPW) estimator that

can consistently estimate τ by merely imposing a model specification for

h(X,S, T ) = E[Y |X,S, T,G = 1], which is given by

τ̂ipw =
1

n1

n1∑
i=1

{
Ti · h(Xi, Si, Ti; κ̂)

e(Xi)
− (1− Ti) · h(Xi, Si, Ti; κ̂)

1− e(Xi)

}
, (4.1)

where h(X,S, T ;κ) is assumed to be a generalized linear model and κ̂ is the

maximum likelihood estimator of κ based on observational data. Clearly,

the IPW estimator has a much simpler form than the doubly robust esti-

mator and thus is more tractable.

Generally, there are two obstacles to applying the IPW estimator in

statistical analysis: imprecision and instability when some propensity score

values are close to 0 or 1 (Tan, 2007, 2010; Molenberghs et al., 2015; Wu

et al., 2021, 2022). Since the propensity score in RCT data is usually known

and bounded away from 0 or 1, the problem of instability does not exist in
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4.2 Inverse probability weighted estimator

our setting. To improve the efficiency of the IPW estimator, we propose

using the estimated propensity score, instead of the true propensity score,

to construct the IPW estimator. Specifically, we use logistic regression to

estimate it, i.e., assuming e(Xi) = e(Xi; γ) = exp(XT
i γ)/{1 + exp(XT

i γ)}.

Let γ̂ be the maximum likelihood estimator of γ, and define

τ̃ipw =
1

n1

n1∑
i=1

{
Ti · h(Xi, Si, Ti; κ̂)

e(Xi; γ̂)
− (1− Ti) · h(Xi, Si, Ti; κ̂)

1− e(Xi; γ̂)

}
. (4.2)

Next, we establish the asymptotic properties of τ̂ipw and τ̃ipw. For ease

of exposition hereafter, we let ei = e(Xi), êi = e(Xi; γ̂), X̃i = (XT
i , S

T
i , Ti)

T ,

hi = h(Xi, Si, Ti;κ), ĥi = h(Xi, Si, Ti; κ̂), and h′
i(κ) = ∂h(Xi, Si, Ti;κ)/∂κ.

Denote the true values of κ and γ by κ∗ and γ∗.

Theorem 3. Under Assumptions 1–3, and denote ρ = p(G = 1)/{1 −

p(G = 1)}, which is the limit of n1/n0, we have

(i) if the propensity scores ei’s in RCT data are known, then

√
n1(τ̂ipw − τ)

d−→ N
(
0, V1 + ρBT

1 I
−1(κ∗)B1

)
, (4.3)

where V1 = var{ (Ti−ei)hi

ei(1−ei)
|Gi = 1}, B1 = E[ (Ti−ei)

ei(1−ei)
· h′

i(κ
∗)|Gi = 1] and I(κ∗)

is the Fisher information matrix of κ at κ∗ in observational data.
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4.2 Inverse probability weighted estimator

(ii) if we estimate the propensity scores ei’s in RCT data with a correctly

specified logistic regression model, then

√
n1(τ̃ipw − τ)

d−→ N
(
0, (V1 − V2) + ρBT

1 I
−1(κ∗)B1

)
, (4.4)

where V2 = BT
2 I

−1(γ∗)B2, with B2 = E[Tihi(1−ei)Xi

ei
|Gi = 1]+E[ (1−Ti)hieiXi

1−ei
|Gi =

1], I(γ∗) = E[ei(1 − ei)XiX
T
i |Gi = 1] is the Fisher information matrix of

γ at γ∗.

Theorem 3(i) shows the asymptotic variance of
√
n1τ̂ipw consists of V1

and ρBT
1 I

−1(κ∗)B1, where the former is the variance of IPW estimator when

h(X,S, T ) is known by noting that V1 = var{Tihi/e(Xi) − (1 − Ti)hi/(1 −

e(Xi))|Gi = 1}, which can be seen as the systematic variance; the latter

is induced by the estimation of h(Xi, Si, Ti;κ). Compared with τ̂ipw, the

asymptotic variance of τ̃ipw in Theorem 3(ii) minus an extra positive term

V2 resulted from the estimation of propensity scores, which reveals that

using estimated propensity scores reduces the asymptotic variance and thus

lead to a more accurate estimator. This phenomenon has been noticed in

previous literature, such as (Joffe and Rosenbaum, 1999; Hirano et al., 2003;

Wu et al., 2021), and we will verify it in the simulation study of Section 5.

The results given in Theorem 3 are valid for any generalized linear
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4.2 Inverse probability weighted estimator

model h(Xi, Si, Ti;κ), and thus it is applicable to various data types of Y .

For convenience, we present the specific form of B1 and I(κ∗) for binary and

continuous outcomes, the two most common scenarios in real data analysis.

(1) For binary Y and assume h(Xi, Si, Ti;κ) is a logistic model, then B1 =

E[ (Ti−ei)
ei(1−ei)

· hi(1 − hi)X̃i|Gi = 1], I(κ∗) = E[hi(1 − hi)X̃iX̃
T
i |Gi = 0]. (2)

For continuous outcome and assume h(Xi, Si, Ti;κ) is a linear model with

variance σ2, then B1 = E[ (Ti−ei)
ei(1−ei)

· X̃i|Gi = 1], I(κ∗) = E[X̃iX̃
T
i σ

−2|Gi = 0].

Furthermore, with respect to the efficiency between the IPW and the

efficient doubly robust estimator, we have the following corollary.

Corollary 1. When (X,S) are discrete with finite support, and the nui-

sance parameters in τ̂dr and τ̃ipw are nonparametrically estimated of order

√
n, as the efficient influence function ϕ is the unique influence function

for τ , we have τ̂dr and τ̃ipw are first-order equivalent, that is, they have the

same asymptotic distribution.

Corollary 1 shows that the IPW estimator using estimated propensity

scores achieves the semiparametric efficient bound in the case of discrete

X and S with finite support. The intuition is that when X and S are

discrete with finite support, the selection model gt(S,X), the propensity

score model e(X), and the regression model µt(S,X), µt(X) only contain

finite dimensional parameters, which can be nonparametrically estimated
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at a convergence rate of order 1/
√
n. Therefore the IPW method with es-

timated propensity score and the doubly robust estimator is regular and

asymptotically normal for the nonparametric model constrained only by

Assumptions 1–3. Their corresponding influence function must be the only

element ϕ by Theorem 1(ii), so the two estimators have the same asymp-

totic distribution.

The asymptotic variances of both τ̂ipw and τ̃ipw can be obtained by the

plug-in method, that is, substitute e(Xi) and hi with its estimates ê(Xi)

and ĥi in the associated asymptotic variance formulas, and the population

expectation is replaced by the empirical average. In Section 5, the simu-

lation study shows that the estimated asymptotic variances based on the

plug-in method perform well across extensive simulation scenarios.

5. Simulation

We conduct extensive simulation studies to assess the finite sample per-

formance of the proposed methods and compare them with the competing

approach of Athey et al. (2019). Two common data types of Y , binary

and continuous, are considered in this simulation. R codes are provided in

https://github.com/hwj0828/long-term-effect to reproduce the sim-

ulation results.
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Denote U as the unmeasured variable. Throughout this simulation, for

RCT data, unmeasured variable U ∼ N(0, 1), and the treatment assignment

pr(T = 1) = 1/2. The error terms εS and εY are independently identically

distributed inN(0, 1) for both the RCT and observational data. The sample

size of RCT data is set as n1 = 50, 100 or 200, observational data is n0 =

500. Let expit(x) = exp(x)/{1 + exp(x)} be the logistic function.

Continuous outcome. We first consider the following four cases for con-

tinuous Y .

Case (1). For RCT data , S = U + 2(X1 + X2) + T + εS, Y =

T + 3(X1 + X2) + S + εY , X = (X1, X2)
T ∼ N(0, I2). For observational

data, X ∼ N(1, 4I2), U ∼ N(0, 1), pr(T = 1|X,U) = expit{U +X1 +X2},

S and Y are generated the same as in RCT data .

Case (2). For RCT data , S = U2 + 2(X2
1 + X2

2 ) + T + εS, Y =

T + 3(X1 + X2) + S + εY , X = (X1, X2)
T ∼ N(0, I2). For observational

data, X ∼ N(1, 4I2), U ∼ N(0, 1), pr(T = 1|X,U) = expit{U+X1+X2U},

S and Y are generated the same as in RCT data .

Case (3). The data generation mechanism is the same as in case (1),

except for setting U ∼ N(1, 4) in observational data.

Case (4). The data generation mechanism is the same as in case (2),

except for setting U ∼ N(1, 4) in observational data.
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The unmeasured confounder U influences both T and S in observational

data for all cases (1)-(4). The distribution of U in RCT data is the same

as that in observational data for cases (1) and (2) and is different from

that in observational data for cases (3) and (4). As discussed in Section 2,

Assumptions 1-3 hold for all cases (1)-(4), while Assumption 4 holds only

for cases (1)-(2) and is violated for cases (3)-(4). In addition, to mimic the

real-world data, we set the distributions of covariates between the RCT and

observational data to be different for all cases (1)-(4), and the surrogates

S may be a linear function of (T,X, U) (cases (1) and (3)), or a non-linear

function of (T,X, U) (cases (2) and (4)).

Each simulation study is based on 1000 replicates. In the following ta-

bles, Bias and SD are the Monte Carlo bias and standard deviation over the

1000 simulations of the points estimates. ESE and CP95 are the averages of

estimated asymptotic standard error and coverage proportions of the 95%

confidence intervals based on the plug-in method, respectively. ESE.b and

CP95.b have the same meaning as ESE and CP95 but are derived from 200

bootstraps. The true value of τ is obtained by generating RCT data with

a sample size of 100000.

Table 1 summarizes the numeric results of the proposed estimators

(doubly robust estimator τ̂dr, IPW estimators τ̂ipw and τ̃ipw) and the com-
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Table 1: Comparison of various estimators for cases (1)-(4), continuous
outcome. The distributions of U between the RCT and observational data
are the same for cases (1)-(2) and different for cases (3)-(4).

n1 = 50 n1 = 100 n1 = 200
Case Bias (SD) ESE CP95 ESE.b CP95.b Bias (SD) ESE CP95 ESE.b CP95.b Bias (SD) ESE CP95 ESE.b CP95.b

IPW Estimator (τ̂ipw), with True Propensity Score

(1) 8.1 (210.5) 206.2 93.3 202.3 92.7 8.7 (144.8) 146.6 94.9 145.4 94.0 -2.1 (105.2) 103.5 93.7 102.5 92.8
(2) 1.7 (240.0) 239.3 94.7 235.9 94.2 -7.4 (176.4) 171.3 93.9 169.3 93.1 2.1 (119.5) 121.2 95.8 121.0 95.8
(3) 13.1 (206.6) 206.6 93.9 202.9 93.6 1.1 (147.5) 145.2 95.3 144.1 95.0 9.8 (100.2) 103.4 95.7 102.2 95.2
(4) 7.0 (250.0) 239.5 93.9 236.3 93.3 13.6 (168.2) 171.4 95.9 169.8 95.1 8.2 (120.1) 121.6 94.9 121.0 94.5

IPW Estimator (τ̃ipw), with Estimated Propensity Score

(1) 5.0 (51.6) 55.6 96.4 92.1 98.6 2.9 (32.4) 33.9 96.1 39.4 97.1 2.1 (23.9) 24.4 95.0 25.4 95.1
(2) 1.2 (138.8) 125.9 91.4 163.7 95.4 0.7 (94.1) 89.5 94.1 97.4 95.4 2.4 (66.2) 63.5 94.2 65.4 94.7
(3) 8.0 (52.1) 55.6 96.4 95.8 99.4 7.0 (32.3) 34.4 95.3 40.1 97.2 8.4 (23.8) 24.8 94.3 25.8 93.6
(4) 3.2 (150.0) 128.0 92.3 174.9 95.8 7.9 (95.2) 89.5 94.3 97.4 95.7 7.6 (66.0) 63.6 93.9 65.3 94.0

Doubly Robust Estimator (τ̂dr)

(1) -1.5 (41.9) 48.7 96.8 39.4 91.8 0.3 (30.9) 35.9 97.4 30.3 94.3 0.8 (23.8) 28.0 97.4 24.2 94.9
(2) -4.7 (116.7) 118.1 94.8 104.0 91.6 -1.4 (86.3) 87.5 95.9 80.9 92.9 0.9 (63.9) 63.8 95.3 60.7 93.3
(3) 2.3 (41.2) 49.0 98.2 39.5 93.2 4.9 (30.7) 37.1 98.6 31.1 95.4 6.9 (25.3) 30.7 98.4 25.5 93.6
(4) -0.6 (123.3) 119.3 95.1 104.9 91.4 4.1 (88.1) 88.8 95.6 82.2 93.2 5.9 (65.8) 65.4 95.3 61.9 92.5

Athey et al. (2019)’s Method

(1) -83.2 (214.4) 212.1 93.6 206.3 92.0 -83.1 (147.3) 149.9 91.9 148.2 92.0 -93.9 (108.0) 106.4 86.0 106.7 85.4
(2) -101.2 (242.7) 243.5 92.9 238.6 91.9 -112.1 (178.0) 173.5 88.6 171.2 87.1 -108.9 (121.1) 122.5 84.1 122.2 83.8
(3) -80.7 (210.1) 211.5 92.1 206.2 92.0 -94.3 (149.6) 148.2 89.3 147.3 88.2 -90.4 (124.9) 114.6 87.1 124.2 86.8
(4) -99.5 (254.5) 245.3 91.6 240.8 89.7 -99.0 (170.8) 175.0 91.8 173.2 91.0 -115.4 (123.0) 124.9 83.3 124.9 82.9

Note: All the values in this table have been magnified 100 times. Bias and SD are the

Monte Carlo bias and standard deviation over the 1000 simulations of the points

estimates. ESE and CP95 are the averages of estimated asymptotic standard error and

coverage proportions of the 95% confidence intervals based on the plug-in method,

respectively. ESE.b and CP95.b have the same meaning as ESE and CP95 but are

derived from 200 bootstraps.
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peting estimator in Athey et al. (2019) for cases (1)-(4). For all the proposed

estimators τ̂dr, τ̂ipw and τ̃ipw, the Bias is small, ESE is close to SD and CP95

is close to its nominal value of 0.95. This shows the validity of the asymp-

totic variance estimation using the plug-in method. As expected, τ̂dr and

τ̃ipw have better performance than the τ̂ipw in terms of smaller Bias and SD.

Remarkably, the results of the IPW estimator with estimated propensity

score are similar to those of the doubly robust estimator. In addition, the

method of Athey et al. (2019) has a significantly larger Bias than the other

three approaches, and its CP95 is less than 0.95. A possible reason is that

Athey et al. (2019)’s method does not allow T to have a direct effect on Y ,

whereas in our setups we set T to have a direct effect on Y .

In the setup of simulation study, we assume that the treatment has a di-

rect effect on the outcome. However, , see Assumption 2 and the associated

discussion in Athey et al. (2019).

To verify the conclusion of Corollary 1, we conduct two additional sim-

ulation scenarios (cases (5)-(6)). The data generating process of cases (5)-

(6) are the same as cases (1)-(2), respectively, except that setting X and

S as discrete variables. For cases (5)-(6), the covariates X consisting of

two binary variables (X1, X2), X1 and X2 are independent and identically

distributed from a Binomial distribution B(1, 0.5) for both the RCT and
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Table 2: Comparison of various estimators for cases (5)-(6), continuous
outcome, discrete X and S.

n1 = 50 n1 = 100 n1 = 200
Case Bias (SD) ESE CP95 ESE.b CP95.b Bias (SD) ESE CP95 ESE.b CP95.b Bias (SD) ESE CP95 ESE.b CP95.b

IPW Estimator (τ̂ipw), with True Propensity Score

(5) -1.3 (122.1) 120.4 94.2 118.9 93.2 1.2 (85.1) 85.7 94.6 85.2 94.3 -1.4 (58.5) 61.0 96.0 60.6 95.0
(6) 8.2 (123.0) 123.7 94.4 121.9 93.4 4.1 (88.6) 87.8 93.7 86.8 92.5 -0.9 (63.5) 62.6 94.6 62.1 94.1

IPW Estimator (τ̃ipw), with Estimated Propensity Score

(5) -1.5 (16.7) 18.0 96.2 26.0 98.7 -0.7 (12.5) 13.2 95.1 14.0 96.3 -0.7 (11.4) 11.7 95.9 11.7 95.9
(6) -0.2 (17.5) 18.6 96.3 25.7 98.9 -0.2 (13.3) 13.7 94.9 14.4 95.6 -0.3 (11.6) 11.8 94.9 11.9 94.6

Doubly Robust Estimator (τ̂dr)

(5) -2.0 (15.3) 21.3 98.3 15.3 94.7 -1.0 (12.6) 16.3 98.3 13.2 95.7 -0.9 (11.8) 13.1 97.2 12.0 95.5
(6) -0.8 (16.1) 22.1 98.7 16.0 94.9 -0.6 (13.4) 16.8 98.2 13.5 94.2 -0.4 (11.7) 13.4 97.4 12.1 94.5

Athey et al. (2019)’s Method

(5) -97.8 (127.6) 128.5 88.5 124.8 85.7 -94.7 (88.5) 90.3 83.0 89.0 81.5 -97.4 (60.8) 63.5 66.9 62.9 65.8
(6) -89.8 (128.9) 131.8 89.4 127.6 88.2 -93.7 (92.7) 92.3 81.9 90.6 81.0 -99.4 (65.9) 65.1 67.9 64.3 66.7

observational data. The surrogate S is generated through a logistic regres-

sion with pr(S = 1|X,S, U, T ) = expit{U − 2(X1 + X2) + T} for case (5)

and pr(S = 1|X,S, U, T ) = expit{U2− 2(X2
1 +X2

2 )+T} for case (6). Table

2 shows the simulation results for cases (5)-(6). As expected, the IPW es-

timator with estimated propensity scores and the doubly robust estimator

have similar performance for discrete X and S.

Binary outcome. Corresponding to cases (1)-(6), we set 6 simulations

(cases (7)-(12)) to evaluate the performance of the proposed methods with

binary outcomes. The data generation mechanisms for cases (7)-(12) are

provided in Section 5.1 of Supplementary Material. Tables 3-4 summarize

the numeric results for cases (7)-(12).

The results presented in Table 3 are similar to those in Table 1, other

than the CP95 of the doubly robust estimator is significantly lower than
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Table 3: Comparison of various estimators for cases (7)-(10), binary out-
come. The distributions of U between the RCT and observational data are
the same for cases (7)-(8) and different for cases (9)-(10).

n1 = 50 n1 = 100 n1 = 200
Case Bias (SD) ESE CP95 ESE.b CP95.b Bias (SD) ESE CP95 ESE.b CP95.b Bias (SD) ESE CP95 ESE.b CP95.b

IPW Estimator (τ̂ipw), with True Propensity Score

(7) 0.0 (20.7) 20.3 93.7 20.2 92.3 0.0 (14.7) 14.7 95.0 14.7 94.0 -0.4 (10.7) 10.6 94.2 10.7 93.8
(8) 0.1 (25.0) 25.6 95.2 25.3 94.3 0.4 (18.2) 18.3 95.2 18.3 94.6 -0.2 (12.9) 13.3 95.5 13.3 95.0
(9) 0.9 (19.6) 20.5 95.0 20.3 94.4 0.4 (15.0) 14.8 93.9 14.8 93.9 0.0 (10.8) 10.8 94.8 10.9 94.6
(10) -0.2 (24.5) 27.3 95.9 25.7 94.7 1.6 (18.8) 18.7 94.5 18.7 93.4 0.5 (14.3) 13.8 93.3 13.8 92.9

IPW Estimator (τ̃ipw), with Estimated Propensity Score

(7) 0.0 (8.0) 7.9 94.3 9.7 96.9 0.0 (6.3) 6.0 94.0 6.4 94.8 -0.1 (5.0) 4.9 93.6 5.2 94.4
(8) 0.1 (9.6) 8.5 95.8 11.2 98.5 0.8 (6.1) 6.1 94.5 6.7 95.9 0.7 (5.2) 5.1 94.4 5.3 94.5
(9) 0.0 (8.2) 8.3 95.1 10.3 97.5 0.4 (6.3) 6.3 94.8 6.7 95.6 0.1 (5.4) 5.3 93.7 5.5 94.7
(10) 0.3 (8.8) 10.4 95.1 12.0 98.1 0.7 (7.4) 6.9 92.4 7.6 94.5 0.5 (6.5) 6.1 92.6 6.5 93.8

Doubly Robust Estimator (τ̂dr)

(7) -0.3 (7.8) 7.1 93.1 8.3 95.6 -0.1 (6.5) 5.2 88.4 6.7 95.0 -0.1 (5.3) 3.9 86.4 5.5 94.8
(8) 0.2 (7.5) 7.6 95.0 8.3 95.9 0.4 (6.3) 6.0 94.5 6.9 95.9 0.4 (5.6) 5.0 92.8 5.8 95.1
(9) 0.0 (8.1) 7.1 92.1 8.7 95.2 0.2 (6.5) 5.3 89.1 7.2 95.4 0.0 (5.8) 4.1 82.8 6.0 94.7
(10) -0.5 (9.3) 8.6 94.5 9.9 96.4 -0.3 (8.3) 7.0 90.8 8.1 94.1 -0.2 (7.2) 5.9 89.3 7.2 93.1

Athey et al. (2019)’s Method

(7) -4.4 (20.5) 20.2 94.1 19.8 92.4 -4.7 (14.2) 14.2 93.5 14.2 92.7 -4.9 (10.1) 10.0 91.5 10.0 91.0
(8) -6.0 (24.3) 25.3 95.1 24.7 93.7 -5.8 (17.4) 17.8 94.2 17.6 93.9 -6.5 (12.4) 12.6 92.2 12.5 91.8
(9) -4.0 (19.4) 20.3 95.4 19.9 93.9 -4.5 (14.6) 14.2 94.0 14.1 92.8 -4.7 (9.9) 10.0 92.7 10.0 92.0
(10) -6.1 (23.8) 25.1 95.7 24.8 94.4 -4.6 (18.0) 17.8 93.4 17.8 92.3 -5.8 (13.2) 13.0 91.5 12.7 90.5

Table 4: Comparison of various estimators for cases (11)-(12), binary out-
come, discrete X and S.

n1 = 50 n1 = 100 n1 = 200
Case Bias (SD) ESE CP95 ESE.b CP95.b Bias (SD) ESE CP95 ESE.b CP95.b Bias (SD) ESE CP95 ESE.b CP95.b

IPW Estimator (τ̂ipw), with True Propensity Score

(11) 0.3 (26.8) 26.5 93.5 26.1 92.8 0.7 (18.7) 18.7 94.9 18.5 93.8 0.3 (13.1) 13.3 94.7 13.1 94.6
(12) -0.3 (25.7) 26.7 95.8 26.3 95.0 0.1 (18.7) 18.9 94.9 18.7 94.2 -0.2 (14.2) 13.4 93.2 13.3 93.2

IPW Estimator (τ̃ipw), with Estimated Propensity Score

(11) 0.0 (3.4) 3.7 97.0 5.7 99.4 0.0 (2.5) 2.6 95.0 2.8 96.2 0.1 (2.1) 2.1 96.0 2.1 95.8
(12) 0.1 (3.5) 3.5 97.0 5.4 99.7 0.0 (2.4) 2.4 95.5 2.6 96.4 0.1 (1.9) 2.0 95.4 2.0 95.4

Doubly Robust Estimator (τ̂dr)

(11) -0.1 (3.2) 3.3 94.6 3.2 93.1 0.0 (2.5) 2.7 95.7 2.6 95.4 0.0 (2.2) 2.3 95.9 2.2 94.5
(12) 0.1 (2.9) 3.1 95.6 2.9 93.7 0.0 (2.4) 2.5 95.1 2.4 93.2 0.1 (2.0) 2.2 96.8 2.1 94.8

Athey et al. (2019)’s Method

(11) -4.5 (26.6) 27.3 94.8 26.0 93.0 -4.2 (18.5) 19.0 94.9 18.4 93.8 -4.6 (13.0) 13.3 94.4 13.1 93.9
(12) -4.9 (25.8) 27.4 96.0 26.3 94.9 -4.5 (18.7) 19.1 94.6 18.7 92.9 -4.8 (14.1) 13.4 92.3 13.2 91.2

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



0.95 for all cases (7)-(10). In comparison, the CP95 of IPW estimators τ̂ipw

and τ̃ipw still have good performance. This indicates the asymptotic vari-

ance estimation of IPW estimators based on the plug-in method is more

robust than that of the doubly robust estimator. A possible reason is that

the estimation of the doubly robust estimator relies on many paramet-

ric model specifications and the asymptotic variance formula based on the

plug-in method is valid only when all the models are correctly specified.

Nonetheless, the CP95.b of both the doubly robust estimator and IPW es-

timators performs well in all cases (1)-(12), which means that bootstrap

can produce more robust variance estimates than the plug-in method, at a

high computational cost. Table 4 shows the results for discrete X and S,

again demonstrating the equivalence of the IPW estimator with estimated

propensity score and the doubly robust estimator.

We further explore the finite sample behaviors of the proposed estima-

tors in the scenarios where the unmeasured confounder U affects both S

and Y in observational data. In this case, Assumption 3 may not be sat-

isfied. The corresponding numeric results are similar to those in Tables 1

and 3 and are presented in Tables S1 and S2 of Supplementary Material.

In summary, the simulation results reveal the following phenomena:

(1) the IPW estimators (τ̂ipw and τ̃ipw) have more stable performance than
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the other two estimators, a possible reason is that IPW estimators rely on

parsimonious model specifications; (2) using the estimated propensity scores

can significantly improve the efficiency of IPW estimator; (3) the doubly

robust estimator has similar performance to IPW estimator with estimated

propensity score concerning Bias and SD. (4) the method of Athey et al.

(2019) is less attractive in terms of both Bias and SD.

6. Real data analysis

Immunoglobulin A nephropathy (IgAN), also called Berger disease, is the

most prevalent chronic and primary glomerular disease worldwide (Haas,

1997; D’amico, 1987). The renin-angiotensin-aldosterone system (RAAS)

inhibition is a standard therapy for IgAN disease by slowing proteinuria

and lowing blood pressure (Zhang et al., 2021). Despite the usage of RAAS,

lgAN patients are still at risk of renal failure (Liu et al., 2019). Hydrox-

ychloroquine (HCQ), an immunomodulator, is a current therapeutic op-

tion for lgAN. Evidence suggests that combination therapy with HCQ and

RAAS is effective in reducing proteinuria in patients with IgAN compared

to RAAS alone over 6 months (Yang et al., 2018). However, the long-term

effect of HCQ on renal outcomes is less clear (Zhang et al., 2021). This study

aims to explore the treatment effect of HCQ on renal failure by combing an
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RCT dataset and an observational dataset obtained from Peking University

First Hospital.

The RCT data come from a double-blind, randomized, and placebo-

controlled trial consisting of 60 observations, of which 30 patients are as-

signed to the combination therapy with HCQ and RAAS and the rest are

assigned to standard RAAS therapy. More details of the RCT data can be

found in Liu et al. (2019). The observational data contain 547 observations,

of which 91 patients accept the combination therapy. The endpoint (out-

come) of interest is a binary variable indicating whether a patient developed

renal failure within 3, 4, or 5 years. In this analysis, we consider two end-

points. endpoint 1 is defined as whether glomerular filtration rate (GFR)

decreased by 30%, 40%, or 50% from baseline to the end time, endpoint 2

is an indicator of whether the GFR is less than 15 ml/min per 1.73 m2. Since

the randomized controlled trial lasted only six months, no endpoints were

observed in RCT data. The surrogate is chosen as the percentage change in

proteinuria between baseline and six months. The baseline covariates are

the same between the RCT data and observational data, including gender,

age, baseline proteinuria, baseline GFR, and some pathologic predictors of

renal failure (Shi et al., 2011).

The analysis in Liu et al. (2019) shows that the new therapy has better
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Table 5: Estimated effects of HCQ on renal failure.
proportion = 0.3 proportion = 0.4 proportion = 0.5

End time Endpoint 1 Endpoint 2 Endpoint 1 Endpoint 2 Endpoint 1 Endpoint 2

IPW Estimator (τ̂ipw), with True Propensity Score

3
Estimate (ESE.b) -0.376 (0.11) -0.202 (0.098) -0.162 (0.065) -0.202 (0.103) -0.123 (0.071) -0.202 (0.100)

p-value < 10−3 0.020 0.006 0.024 0.041 0.022

4
Estimate (ESE.b) -0.418 (0.105) -0.157 (0.085) -0.211 (0.073) -0.157 (0.084) -0.172 (0.083) -0.157 (0.077)

p-value < 10−3 0.033 0.002 0.032 0.019 0.021

5
Estimate (ESE.b) -0.488 (0.109) -0.192 (0.080) -0.265 (0.083) -0.192 (0.080) -0.211 (0.072) -0.192 (0.084)

p-value < 10−3 0.008 < 10−3 0.008 0.002 0.011

IPW Estimator (τ̃ipw), with Estimated Propensity Score

3
Estimate (ESE.b) -0.318 (0.082) -0.178 (0.087) -0.138 (0.058) -0.178 (0.089) -0.102 (0.066) -0.178 (0.092)

p-value < 10−3 0.020 0.009 0.023 0.062 0.027

4
Estimate (ESE.b) -0.36 (0.079) -0.145 (0.082) -0.182 (0.063) -0.145 (0.089) -0.155 (0.063) -0.145 (0.075)

p-value < 10−3 0.040 0.002 0.051 0.007 0.026

5
Estimate (ESE.b) -0.423 (0.082) -0.178 (0.082) -0.232 (0.062) -0.178 (0.074) -0.189 (0.065) -0.178 (0.069)

p-value < 10−3 0.015 < 10−3 0.008 0.002 0.005

Doubly Robust Estimator (τ̂dr)

3
Estimate (ESE.b) -0.256 (0.108) -0.187 (0.069) -0.073 (0.102) -0.187 (0.076) -0.034 (0.097) -0.187 (0.073)

p-value 0.009 0.004 0.237 0.007 0.362 0.005

4
Estimate (ESE.b) -0.337 (0.090) -0.148 (0.065) -0.125 (0.112) -0.148 (0.060) -0.092 (0.099) -0.148 (0.062)

p-value < 10−3 0.011 0.132 0.006 0.176 0.008

5
Estimate (ESE.b) -0.396 (0.088) -0.195 (0.062) -0.169 (0.116) -0.195 (0.065) -0.119 (0.100) -0.195 (0.064)

p-value < 10−3 < 10−3 0.074 0.001 0.118 0.001

Athey et al. (2019)’s Method

3
Estimate (ESE.b) -0.034 (0.135) -0.05 (0.084) -0.045 (0.132) -0.05 (0.093) -0.03 (0.082) -0.05 (0.092)

p-value 0.400 0.276 0.367 0.296 0.355 0.293

4
Estimate (ESE.b) -0.039 (0.124) -0.043 (0.071) -0.071 (0.177) -0.043 (0.086) -0.046 (0.100) -0.043 (0.085)

p-value 0.376 0.274 0.344 0.309 0.322 0.306

5
Estimate (ESE.b) -0.052 (0.156) -0.023 (0.090) -0.082 (0.15) -0.023 (0.105) -0.060 (0.096) -0.023 (0.085)

p-value 0.368 0.397 0.292 0.412 0.266 0.392

Note: ESE.b is estimated asymptotic standard error based on 200 bootstraps. The

p-values are obtained by two-sided test, that is H0 : τ = 0 against H1 : τ ̸= 0
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efficacy for the surrogate. In our analysis, we are interested in estimating the

average treatment effect for the long-term outcome in RCT data, thus can

determine whether the new therapy has better efficacy than the standard

therapy. The point estimate and corresponding confidence interval is given

in Table 5. We also test the null hypothesisH0 : τ = 0 versusH1 : τ ̸= 0. As

Y is a binary outcome, the regression model µt(X,S) is fitted with logistic

regression, and µt(X) is fitted by linear regression of µt(X,S) on X. The

asymptotic standard errors are obtained based on 200 bootstraps. As shown

in Table 5, IPW method and the doubly robust method have similar point

estimates while having different standard errors. The point estimates of τ

are smaller than zero, indicating the potential benefit of the new therapy

against the standard therapy. The p-value for the hypothesis test calculated

by IPW and doubly robust methods are smaller than 0.05 in most cases,

which means that we can reject the null hypothesis at a significance level

of 0.05. Besides, with the end time increasing from 3 years to 5 years, the

absolute value of the point estimate of τ becomes bigger, which indicates

that the efficacy of the new therapy against the standard therapy amplifies

over time. This result shows a similar pattern that is observed in Liu et al.

(2019), where the treatment effects on surrogates are analyzed. We also

report the results where the asymptotic standard errors are computed with

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



the plug-in method, which are similar to those in Table 5 and are presented

in Table S3 of Supplementary Material.

7. Discussion

This article investigates the average causal effects on the long-term out-

come. Under weaker assumptions than the existing methods, we derive the

semiparametric efficiency bound, propose two new estimators and establish

their large sample properties. Both simulation studies and real data anal-

ysis demonstrate the advantages of the proposed method compared with

competing ones. The proposed approach is suitable for various data types

of X, S, and Y and thus has wide application scenarios.

We illustrate the proposed estimators by using generalized linear models

to estimate the nuisance parameters. It would be interesting to explore

the theoretical properties of the proposed estimators when the nuisance

parameters are estimated with machine learning methods (Chernozhukov

et al., 2018; Wager and Athey, 2018). When X is high-dimensional, one

possible extension is to consider how to obtain valid confidence intervals

of the proposed estimators when either the propensity score model or the

outcome model is correctly specified (Vermeulen and Vansteelandt, 2015;

Tan, 2020; Sun and Tan, 2021; Ning et al., 2020; Wu et al., 2022).
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