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Abstract: Extraction of information from data is critical in the age of data science.

Probability density function theoretically provides comprehensive information on the

data. But, practically, different probability density models, either parametric or non-

parametric, can often characterize partial features on the data, e.g., owing to model

bias or less efficiency in estimation. In this paper we suggest a framework to optimally

combine different density models to catch the comprehensive data features by a new

information criterion (IC) based unsupervised learning approach. Our optimal informa-

tion extraction is in the sense that the resultant density averaging or selected density

minimises the Kullback-Leibler (KL) information loss function. Differently from the

usual supervised learning IC for model selection or averaging, we first need to derive an

estimator of the KL loss function in our setting, which takes the Akaike and Takeuchi

information criteria as two special cases. A feasible density model averaging (DMA) pro-

cedure is accordingly suggested, with the DMA estimation achieving the lowest possible

KL loss asymptotically. Further, the consistency of the weights of the DMA estimator

∗Co-first authors.
¶Corresponding author: Guohua Zou. Email: ghzou@amss.ac.cn.
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tending to the optimal averaging weights minimizing the KL distance is obtained, and

the convergence rate of our empirical weights is also derived. Simulation studies show

that the DMA performs overall better and more robustly than the commonly used para-

metric or nonparametric density models, including kernel, finite mixture, logarithmic

scoring rule and selection methods for density estimation in the literature. The real data

analysis further demonstrates the performance of the proposed method.

Key words and phrases: Asymptotic optimality, Density estimation, Density averaging,

Weight choice.
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1. Introduction

Extracting knowledge from data is key to data science (c.f., Baimuratov et al.,

2019). As is well known, density function of a data-generating random vari-

able theoretically provides comprehensive information on the data, estimation

of which is hence a fundamental problem in Econometrics, Statistics and data

science. Usually there are two types of approaches that are widely applied to

estimate a density function. One is parametric approach depending on a given

parametric form of the density function family, which may suffer from model

bias, and the other is nonparametric approach like kernel, nearest neighbor and

other density estimation methods depending on some local parameters such as

bandwidths for kernel estimation, possibly suffering from less efficiency in estima-

tion. Hence, practically, different probability density models, either parametric

or non-parametric, can often characterize partial features on the data. From

the learning perspective, probability density estimation is a kind of unsupervised

learning, and how to learn to optimally combine different density models to catch

the comprehensive data features is an important but difficult task.

As is well addressed in the literature (e.g., Baimuratov et al., 2019), data

processing techniques require a set of tools for evaluating knowledge extracted

from data. In unsupervised learning it is impossible to use referential or pre-

dictive estimation, and the only reliable way to evaluate results of unsupervised
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learning is information estimation. It is well known that information estimation

unfortunately suffers from under-fitting and over-fitting; see Baimuratov et al.

(2019) and the related references therein.

In this paper we are hence concerned with how to optimally combine differ-

ent density models to extract more comprehensive data features. Our optimal

information extraction is in the sense that the resultant density averaging or se-

lected density minimises the Kullback-Leibler (KL) information loss function. In

particular, with the parametric approach, we generally have different families of

density functions such as normal, log-normal, and gamma, and we usually need

to select one from them. Many methods have been proposed for selecting an

appropriate density function from different families of candidate density func-

tions. For instance, Claeskens and Hjort (2008) used AIC (Akaike, 1973) and

BIC (Schwarz, 1978) to select a density model for real data, and Saumard and

Navarro (2021) provided a novel model selection method in the context of density

estimation, which is a correction of the AIC criterion by developing a new penal-

ty term. Similarly, in nonparametric density estimation, often a local smoothing

parameter also needs to be selected. Although such selection strategies may be

sensible when the true density model is included in the candidate density model

set, it is often not wise when the candidate models compete with each other.

This is because different probability density models often have different features
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that may partially capture the pattern on the data. In fact, a real data set can

often be approximately described by different density functions. Therefore, to

avoid the risk of “putting all eggs in one basket”, a more rational procedure is

to combine all the possible candidate density models by averaging, i.e., density

model averaging (DMA). Concerning some specific feature, e.g., clustering, of the

data, Baimuratov et al. (2019) have also proposed a new method for evaluating

unsupervised learning results, which is based on the Bayesian criterion for optimal

decision and an objective prior probability distribution of partitions. Under a rea-

sonable knowledge on the objective prior of partitions, their method was shown to

perform well with their problem and prevention of under-fitting and over-fitting.

However, we may lack such prior knowledge for our density combination for more

comprehensive data features in practice. Different from the references above, our

main objective is to suggest a framework to optimally averaging different density

models to more fully capture the data features in information extraction. In fact,

from the aspect of estimation or forecast, model selection can be seen as a special

case of the model averaging with the selected model weight being one while zeros

for other models.

In the setting of regression modelling under supervised learning, the idea of

model averaging (MA) has been popular. Generally, estimation and prediction

risks can be substantially reduced by model averaging instead of model selection
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(Hansen, 2014). In particular, frequentist MA methods play an important role;

see Hjort and Claeskens (2003) for early relevant study. The optimal frequentist

MA was proposed in the seminal work of Hansen (2007). There, he derived the

Mallows model averaging (MMA) criterion, which is an unbiased estimator of

the mean squared error up to a constant, and showed that the MMA estimator

is asymptotically optimal in terms of minimizing the squared error loss. Wan

et al. (2010) further demonstrated such an asymptotic optimality for MMA in

a more general setting. For heteroscedastic error cases, see Hansen and Racine

(2012) for the Jackknife MA and Liu and Okui (2013) for robust MA. For time

series cases, the reader is referred to Hansen (2008) for the application of MMA

in prediction, Cheng and Hansen (2015) for the cross-validation MA prediction

with factor-augmented regression, and Liao et al. (2019) for the leave-subject-

out cross-validation MA for vector autoregressive models. Zhang et al. (2016)

further developed a weight choice criterion for generalized linear models. For high-

dimensional regression cases, one is referred to Ando and Li (2014). Recently,

Li et al. (2015) and Chen et al. (2018) have moreover developed semiparametric

model averaging procedures for nonlinear dynamic high-dimensional time series

modelling and forecasting.

Unlike the setting of regression modelling averaging under supervised learning

in the literature, we are suggesting an unsupervised learning framework to opti-

6

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Optimal averaging estimation for density functions

mally averaging different density models to more fully capture the data features.

In the unsupervised learning setting, we need to directly study the estimation

of the density without the information on correct answers (e.g., the class label)

(Maggioni and Murphy, 2019), so the learning for this case is challenging (Hastie

et al., 2009; Safarinejadian et al., 2010). Differently from the regression setting,

the averaging for which is mostly squared error loss based, we suggest the DMA

procedure by proposing a new IC from the KL information loss function. Starting

from the KL distance between the true density and its averaging estimator, we will

propose and derive an appropriate, feasible estimator of the KL loss, which takes

the Akaike and Takeuchi information criteria as two special cases (c.f. Remark 1

in Subsection 3.1). Like other information criteria, this DMA criterion consists

of two terms with the first being negative logarithm of the averaging likelihood

and the second penalizing the complexities of the candidate density functions.

Thus, the proposed criterion shares the useful property with the frequently used

information criteria (e.g., AIC).

It is worth pointing out that the derivation of our proposed DMA criterion is

not trivial and involves quite complicated technical details because the candidate

density functions have no specific expressions and thus the methods used for de-

riving common regression model averaging criteria (like MMA) no longer apply.

Based on the techniques of Taylor expansion and some large sample theories, we
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first obtain the approximate bias between the KL loss and its empirical estima-

tor. Then such a bias serves as the penalty term of the DMA and accordingly

our DMA criterion yields. Earlier, Hall and Mitchell (2007) also considered the

density averaging forecast, who selected weights by the logarithmic scoring rule,

i.e., minimizing the empirical estimator of the KL loss directly (see Geweke and

Amisano (2011) as well). Such a method ignores the bias mentioned above and

may lead to the poor estimation and forecast for finite sample sizes. In addition,

the KL loss was applied by Zhang et al. (2015) and Zhang et al. (2016) for re-

gression model averaging. It can be found that the former requires the normal

distribution assumption for the derivation of the weight choice criterion and the

latter constructs the weight choice criterion in an intuitive way, which also implies

the difficulty of developing weight choice criterion for general models like those

considered in the current paper.

We will theoretically verify that the DMA procedure is asymptotically opti-

mal in the sense that the DMA estimator achieves the lowest possible KL loss

asymptotically. Further, we will derive the rate of convergence of the estimated

DMA weights to the optimal ones that minimize the KL loss for parametric DMA.

Not only so, based on the optimal DMA criterion and the frequently used kernel

density estimation, a data driven semiparametric density averaging method is

also developed, which combines parametric and nonparametric density estima-
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tors adaptively. Our simulation studies will show that the DMA performs overall

better and more robustly than the commonly used parametric or nonparametric

density models, including kernel, finite mixture, logarithmic scoring rule and se-

lection methods for density estimation in the literature. The analysis of real data

will further demonstrate the performance of the proposed method.

The remainder of this paper is organized as follows. Section 2 proposes the

framework of the DMA criterion. Section 3 develops the estimation of the KL

loss based DMA criterion with the asymptotic optimality of the resultant density

averaging estimator established and the rate of the DMA based weights tending

to the optimal weights minimizing the KL distance derived. Extension of the

DMA method to semiparametric density averaging estimation is also considered.

Section 4 demonstrates the performance of DMA by both simulation trials and

the real data example. Section 5 concludes. The proofs of the theorems are

contained in Appendices, which are placed in the supplementary document.

2. The framework of optimal density averaging criterion

Let X1, ..., Xn be independent and identically distributed (i.i.d.) data from the

distribution generating random variable X. Denote by g the true density of the

random variable X, and suppose that there are candidate model density functions

that, extracting the information from the data, are f1(x, θ1),..., and fM(x, θM),
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where θm = (θm1, ..., θmpm)
′ is the parameter vector for the mth model density

and pm is the dimension of θm with m = 1, ...,M . Define the information loss of

the KL distance between g and fm(x, θm), m = 1, ...,M , as

KL(g, fm(x, θm)) =

∫
g(x) log

g(x)

fm(x, θm)
dx, (2.1)

based on which we seek the optimal information extraction from the data.

For the mth candidate model fm(x, θm), let θ̂m be the maximum likelihood

estimator of θm based on the data {Xi}, and define the theoretically optimal

parameter vector

θm0 = argminθm{KL(g, fm(x, θm))}. (2.2)

In order to more comprehensively catch the features from the different candi-

date densities for the data, we propose an optimal density averaging approach

by combining the candidate model densities to approximate the true density g.

Let w ∈ W = {w = (w1, · · · , wM)′ ∈ [0, 1]M :
∑M

m=1wm = 1}. The averaging

estimator for g is

f(x, θ̂, w) =
M∑

m=1

wmfm(x, θ̂m), (2.3)

where θ̂ = (θ̂′1, ..., θ̂
′
M)′. Let R(θ̂, w) =

∫
g(x) log f(x, θ̂, w)dx. Then the KL

distance between g and f(x, θ̂, w) is given by

KL(g, f(x, θ̂, w)) =

∫
g(x) log g(x)dx−R(θ̂, w), (2.4)
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in which the first term is unrelated to candidate models. Thus, the optimal

weights which minimize (2.4) will minimize −R(θ̂, w). Correspondingly, the the-

oretical density averaging for g is

f(x, θ0, w) =
M∑

m=1

wmfm(x, θm0), (2.5)

where θ0 = (θ′10, ..., θ
′
M0)

′, with the optimal vector of weights w0 = (w10, ..., wM0)
′,

which minimizes KL(g, f(x, θ0, w)), minimizing −R(θ0, w), w.r.t. w ∈ W .

Before ending this section, we comment that the DMA procedure based den-

sity function looks like the form of the well-known finite mixture models (FMM)

for density estimation (McLachlan and Peel, 2000; Chen and Khalili, 2008), but

they are essentially different. Note that the FMM method estimates the true

density f(x) that is supposed to be a mixture of a finite number of density func-

tions, i.e., f(x) =
∑S

j=1 λjfj(x, θj), where S is some positive integer, λj is the

mixing probability for the jth component fj(x, θj), and θj is the associated pa-

rameters in fj(x, θj). Usually, the mixture components are assumed to be from

the same class, such as Gaussian (i.e., all of fj(x, θj), 1 ≤ j ≤ S, are Gaussian).

The parameters {λj, θj} are estimated by maximizing the log-likelihood function∑n
i=1 log

{∑S
j=1 λjfj(Xi, θj)

}
. To achieve such a maximum, the EM algorithm

is often needed. Differently from the FMM, the DMA combines different density

functions by the asymptotically optimal weights in the sense of minimizing the

KL distance, hence it will extract useful information as much as possible with fea-
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tures of different density functions from the data. Moreover, the implementation

of the DMA is very convenient without need of the EM algorithm. In addition,

the order S of the FMM is selected by some criterion (e.g., BIC) in practice and

thus some drawbacks of model selection may also remain for the FMM. To some

extent, an FMM can be viewed as a special version of the DMA based density

estimation method; see Remark 1.

With the optimal criterion framework above, unfortunately the optimal weight-

s in (2.5) are infeasible to estimate from minimizing (2.4) because of the unknown

R(θ̂, w) depending on the (unknown) true density g. We will hence need to con-

sider how to estimate them first.

3. Estimation of optimal density model averaging

In the following, we will suggest an estimator of R(θ̂, w), and the feasible weights

will be obtained based on this estimator. Let

Qn = E(R(θ̂, w)) = E

∫
g(x) log f(x, θ̂, w)dx. (3.1)

Then the empirical estimator of Qn is defined as

Q̂n(θ̂, w) = n−1

n∑
i=1

log f(Xi, θ̂, w). (3.2)

We first consider the parametric case in Subsection 3.1 and extension to nonpara-

metric case in Subsection 3.2.
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3.1 Parametric density model averaging estimation

3.1.1 Estimation

To study E(Q̂n(θ̂, w)−Qn), we will first consider the parametric density averaging

by giving the asymptotic distribution of
√
n(θ̂−θ0), where θ0 = (θ′10, ..., θ

′
M0)

′. To

facilitate the derivation of the weight choice criterion, we assume that the dimen-

sion of parameters
∑M

m=1 pm is fixed, but it is not necessary for the theoretical

analysis. Let

um(x, θm) =
∂ log fm(x, θm)

∂θm
, (3.3)

Im(x, θm) =
∂2 log fm(x, θm)

∂θmθ′m
, (3.4)

Jm(θm0) = −EIm(X, θm0), and Ûm(θm0) = n−1
∑n

i=1 um(Xi, θm0) with

E (um(Xi, θm0)) = 0 (3.5)

by the definition of θm0 in (2.2). Further, denote J−1(θ0) = diag
(
J−1
1 (θ10), ..., J

−1
M (θM0)

)
,

Û(θ0) =
(
Û1(θ10)

′, ..., ÛM(θM0)
′
)′
, and K(θ0) = p limn→∞ Var(

√
nÛ(θ0)). Then,

we obtain from Lemma 1 in Appendix A.2 that

θ̂ = θ0 + J−1(θ0)Û(θ0) + op(n
−1/2), (3.6)

and

√
n(θ̂ − θ0)

d−→ Nk(0, J
−1(θ0)K(θ0)J

−1(θ0)), (3.7)
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the k-dimensional (k =
∑M

m=1 pm) normal distribution with mean 0 and covari-

ance matrix J−1(θ0) K(θ0)J
−1(θ0).

Now denote

u(x, θ, w) =
∂ log f(x, θ, w)

∂θ
, (3.8)

and

I(x, θ, w) =
∂2 log f(x, θ, w)

∂θθ′
, (3.9)

and let Q(θ0, w) =
∫
g(x) log f(x, θ0, w)dx, Z(Xi, θ0, w) = log f(Xi, θ0, w) −

Q(θ0, w), Ẑ(θ0, w) = n−1
∑n

i=1 Z(Xi, θ0, w), and Û(θ0, w) = n−1
∑n

i=1 u(Xi, θ0, w).

By Taylor expansion and (3.7), we have

Q̂n(θ̂, w) ≈ n−1

n∑
i=1

{
log f(Xi, θ0, w) + u(Xi, θ0, w)

′(θ̂ − θ0)

+
1

2
(θ̂ − θ0)

′I(Xi, θ0, w)(θ̂ − θ0)

}
= Q(θ0, w) + Ẑ(θ0, w) + Û(θ0, w)

′(θ̂ − θ0)

−1

2
(θ̂ − θ0)

′Ĵ(θ0, w)(θ̂ − θ0), (3.10)

where Ĵ(θ0, w) = −n−1
∑n

i=1 I(Xi, θ0, w).

In addition, it follows from Taylor expansion and (3.7) again that

R(θ̂, w) ≈
∫

g(x)
{
log f(x, θ0, w) + u(x, θ0, w)

′(θ̂ − θ0)

+
1

2
(θ̂ − θ0)

′I(x, θ0, w)(θ̂ − θ0)

}
dx
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= Q(θ0, w)−
1

2
(θ̂ − θ0)

′J(θ0, w)(θ̂ − θ0)

+

∫
g(x)u(x, θ0, w)

′(θ̂ − θ0)dx, (3.11)

where J(θ0, w) = −EI(Xi, θ0, w).

Supposing that E ∥I(Xi, θ0, w)∥ < ∞, we have Ĵ(θ0, w)
p−→ J(θ0, w) because

{Xi, i = 1, ..., n} are i.i.d. Then, by (3.10) and (3.11), we have

Q̂n(θ̂, w)−R(θ̂, w) ≈ Ẑ(θ0, w) + Û(θ0, w)
′(θ̂ − θ0)

−
∫

g(x)u(x, θ0, w)
′(θ̂ − θ0)dx. (3.12)

Therefore,

E(Q̂n(θ̂, w)−Qn)

≈ E

{
Û(θ0, w)

′(θ̂ − θ0)−
∫

g(x)u(x, θ0, w)
′(θ̂ − θ0)dx

}
= E

[{
Û(θ0, w)−

∫
g(x)u(x, θ0, w)dx

}′ (
θ̂ − θ0

)]
≈ E

[{
Û(θ0, w)−

∫
g(x)u(x, θ0, w)dx

}′ {
J−1(θ0)Û(θ0)

}]
= trE

[{
J−1(θ0)Û(θ0)

}{
Û(θ0, w)−

∫
g(x)u(x, θ0, w)dx

}′]
,

(3.13)

where the first and second approximations are obtained from (3.12) andE
(
Ẑ(θ0, w)

)
=

0, and (3.6), respectively.

Let Z = (Z ′
1, Z

′
2)

′ =

[{
J−1(θ0)Û(θ0)

}′
,
{
Û(θ0, w)−

∫
g(x)u(x, θ0, w)dx

}′
]′
.

Supposing that um(X, θm0) and u(X, θ0, w) have finite covariance matrices, by
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the Central Limit Theorem (CLT) for i.i.d. variables,
√
nZ has an asymptotic

normal distribution N(0,Σ), where

Σ =

Σ11 Σ12

Σ12 Σ22

 (3.14)

with Σ11 = Var (
√
nZ1), Σ22 = Var (

√
nZ2), and

Σ12 = Cov
(√

nZ1,
√
nZ2

)
. (3.15)

Accordingly, (3.13) can be simply expressed as

E
(
Q̂n(θ̂, w)−Qn

)
≈ tr (Σ12) /n. (3.16)

In Appendix A.1, we show that tr (Σ12) can be approximated by

M∑
m=1

E

{
wmfm(X, θm0)

f(X, θ0, w)

}
tr
{
J−1
m (θm0)Km(θm0)

}
, (3.17)

where Km(θm0) = E {um(X, θm0)um(X, θm0)
′}. As a result, combining (3.16) and

(3.17), we yield that

nE
(
Q̂n(θ̂, w)−Qn

)
≈

M∑
m=1

n−1

n∑
i=1

{
wmfm(Xi, θ̂m)

f(Xi, θ̂, w)

}
tr
{
Ĵ−1
m (θ̂m)K̂m(θ̂m)

}
,

where

Ĵm(θ̂m) = −n−1

n∑
i=1

Im(Xi, θ̂m) (3.18)

and

K̂m(θ̂m) = n−1

n∑
i=1

um(Xi, θ̂m)um(Xi, θ̂m)
′. (3.19)
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Thus, we propose the following density model averaging (DMA) criterion

CDMA(w) = −nQ̂n(θ̂, w) +
M∑

m=1

n−1

n∑
i=1

{
wmfm(Xi, θ̂m)

f(Xi, θ̂, w)

}
tr
{
Ĵ−1
m (θ̂m)K̂m(θ̂m)

}
= −

n∑
i=1

log f(Xi, θ̂, w) +
M∑

m=1

wmdm, (3.20)

in which,

dm = n−1

n∑
i=1

{
fm(Xi, θ̂m)

f(Xi, θ̂, w)

}
tr
{
Ĵ−1
m (θ̂m)K̂m(θ̂m)

}
. (3.21)

The resultant weight estimator is defined as

ŵ = argminw∈WCDMA(w). (3.22)

Remark 1. If the weight vector is set as that with the m-th element being one

and others being zeros, then the DMA criterion becomes the following form

−
n∑

i=1

log fm(Xi, θ̂m) + tr
{
Ĵ−1
m (θ̂m)K̂m(θ̂m)

}
, (3.23)

which is the Takeuchi information criterion (TIC) (Takeuchi, 1976). Furthermore,

if fm(x, θm0) is the true density function, then the DMA criterion is the AIC by

(A.3) in Appendix A.1. In addition, when the candidate density set consists

of the mixture models (discussed in Section 1) with different number of mixing

components, the DMA based density estimator becomes an FMM averaging es-

timator and reduces to the usual FMM for the special weight vector mentioned

above. So FMM can be included in our current framework (see Section 4.2 for the
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pertinent example). An exhaustive analysis (theoretical and practical) on DMA

for this case is left for future research.

Remark 2. The implementation of our method is convenient and the compu-

tational burden is not heavy. In addition, when M is very large, some methods

can be utilized to screen candidate density functions before performing our pro-

cedure. For instance, we can use the ‘top m’ method of Yuan and Yang (2005) to

obtain the candidate density functions, which have ‘top m’ AIC or BIC scores.

The resultant number of candidate density functions is at most 2m.

Remark 3. Note that dm in (3.21) can be viewed as the penalty for the mth

density model, and the term in dm, n−1
∑n

i=1

{
fm(Xi, θ̂m)/f(Xi, θ̂, w)

}
, is an

adjusted factor which varies for different models. Intuitively, this adjusted factor

is the averaged proportion of the mth candidate density in the density averaging

estimator, which means that if the proportion is large, the penalty dm for this

density model will be also large. Thus, the DMA will overcome the overfitting

automatically.

In the above analyses, the specific forms of the candidate density functions

are not assumed. Two illustrating examples on the proposed method DMA can

be found in Appendix A.7.
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3.1.2 Asymptotic properties

Denote KL(w) = KL(g, f(x, θ̂, w)). In the following, we establish the asymptotic

optimality for DMA.

Let λmin(B) and λmax(B) be the minimum and maximum singular value of

a general real matrix B. Define ∥B∥ = tr1/2(B′B) for a real matrix B. Let

KL∗(w) = KL(g, f(x, θ0, w)), ξn = inf
w∈W

KL∗(w), and Θm be the compact param-

eter space of θm. ℵ denotes some neighbourhood of θ0. In the following, c and C

denote two generic constants.

We need the following regularity conditions for Theorem 1.

Condition (C.1). The random variable X has a bounded compact support C.

Furthermore, c ≤ inf
x∈C

inf
θm∈Θm

fm(x, θm) ≤ sup
x∈C

sup
θm∈Θm

fm(x, θm) ≤ C uniformly in m

(1 ≤ m ≤ M).

Condition (C.2).
∑n

i=1

∥∥∥∂ log fm(Xi,θm)
∂θm

|θm=θm0

∥∥∥ = Op(n) for m = 1, ...,M .

Condition (C.3). E
[
supw∈W supθ∈ℵ λmax

{
∂2 log f(Xi,θ,w)

∂θ∂θ′

}]
< C.

Condition (C.4). E
{
supw∈W supθ∈ℵ

∥∥∥∂ log f(X,θ,w)
∂θ

∥∥∥} < C.

Condition (C.5). λmax

{
K̂m(θ̂m)

}
= Op(1), and λmax

{
Ĵ−1
m (θ̂m)

}
= Op(1), uni-

formly in m.

Condition (C.6). 1/(n
1−δ
2 ξn) = O(1) for some 0 < δ < 1.
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The first part of Condition (C.1) is on the boundedness of random vari-

able X which holds in most real applications. Since C is bounded, the second

part of Condition (C.1) is reasonable. The similar condition can be found in

Chen et al. (2018). Condition (C.2) is an assumption on the boundedness of

1/n
∑n

i=1 ∥∂ log fm(Xi, θm)/∂θm|θm=θm0∥, which can be rigorously established un-

der certain regularity conditions. Condition (C.3) is similar to Assumption 1.6

of Hansen (2016) if f(x, θ, w) is the true density for Xi. Conditions (C.4) is

a standard moment bound for the asymptotic theory. Condition (C.5) implies

that maximum singular values of K̂m(θ̂m) and Ĵ−1
m (θ̂m) are bounded. As an

example, supposing that the m∗th model (1 ≤ m∗ ≤ M), fm∗(x, θm∗0) with

θm∗0 = (θm∗01, θm∗02)
′, is the true density of normal distribution N(θm∗01, θm∗02)

generating data {Xi}, we have λmax {Km∗(θm∗0)} = max{1/θm∗02, 1/(2θ
2
m∗02)}

and λmax

{
J−1
m∗(θm∗0)

}
= max{θm∗02, 2θ

2
m∗02}, and hence Condition (C.5) is rea-

sonable since K̂m∗(θ̂m∗) and Ĵm∗(θ̂m∗) can approach Km∗(θm∗0) and Jm∗(θm∗0)

under some conditions, respectively. Condition (C.6) illustrates that nξn increas-

es at a rate faster than n1/2, which is similar to Condition C.3 of Zhang et al.

(2016).

Theorem 1. Under Conditions (C.1)-(C.6) and Conditions 1-2 in the supple-
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mentary material, for fixed pmax = max{p1, ..., pM} and M , we have

KL(ŵ)

inf
w∈W

KL(w)

p−→ 1, (3.24)

as n → ∞.

Proof. See Appendix A.3.

Theorem 1 shows that the DMA based density averaging estimator is asymp-

totically optimal in the sense of achieving the lowest KL loss.

Next, we consider the case with diverging pmax and M , and establish the

following theorem. We list the additional conditions for Theorem 2.

Condition (C.7). max
1≤m≤M

∑n
i=1

∥∥∥∂ log fm(Xi,θm)
∂θm

|θm=θm0

∥∥∥ = Op(np
1/2
max).

Condition (C.8). E
{
supw∈W supθ∈ℵ

∥∥∥k−1/2 ∂ log f(X,θ,w)
∂θ

∥∥∥} = O(1), where k =∑M
m=1 pm.

Condition (C.9). max1≤m≤M ∥θ̂m − θm0∥ = Op(p
1/2
maxn−1/2).

Condition (C.10). pmaxM/(n
1−δ
2 ξn) = O(1) for some 0 < δ < 1.

Conditions (C.7) and (C.8) are the corresponding versions of Conditions (C.2)

and (C.4), respectively, for the cases with diverging M and pmax. Condition (C.9)

is a high level condition which can be proved under some weak conditions; see

White (1982) and Zhang et al. (2016) for the relevant verifications. Condition

(C.10) is stronger than Condition (C.6) and is the same as it when pmaxM is

fixed.
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Theorem 2. Under Conditions (C.1), (C.3), (C.5), and (C.7)-(C.10), if

M log(n
1−δ
2 log n)/nδ → 0, then for diverging pmax and M ,

KL(ŵ)

inf
w∈W

KL(w)

p−→ 1, (3.25)

as n → ∞.

Proof. See Appendix A.4.

Theorem 2 shows that, under regularity conditions, the asymptotic optimality

established in Theorem 1 still holds for diverging pmax and M .

In the following, we study the consistency and convergence rate of the DMA

based weights. Recall that KL∗(w) = KL(g, f(x, θ0, w)) and the optimal weight

vector w0 = argminw∈WKL∗(w). We suppose that w0 is an interior point of W for

the following theorem, which gives the rate of the DMA based weights tending

to the infeasible optimal weight vector w0. We consider the case with diverging

pmax and M . Obviously, the theory is also valid for fixed pmax and M .

We list the conditions for Theorem 3. Let F (Xi, θ) = (f1(Xi, θ1), ..., fM(Xi, θM))′

and F (Xi, θ̂) = (f1(Xi, θ̂1), ..., fM(Xi, θ̂M))′.

Condition (C.11). E
{
sup1≤m≤M f 4

m(Xi, θm0)
}
= O(1).

Condition (C.12). E

{
supw∈W supθ∈ℵ

∥∥∥k−1/2 ∂log f(Xi,θ,w)
∂θ

∥∥∥2
}

= O(1).

Condition (C.13). E {supw∈W supθ∈ℵ f
−4(Xi, θ, w)} = O(1).
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Condition (C.14).

(
E supθ∈ℵ

[
λmax

{
∂F (Xi,θ)

∂θ′

}]4)1/4

= O(M1/2k1/2).

Condition (C.15). kpmaxMn−1 = O(1).

Condition (C.16). For some positive constant κ1, λmin

(∑n
i=1 F (Xi, θ̂)F (Xi, θ̂)

′/n
)
>

κ1 > 0 in probability tending to 1.

Conditions (C.11), (C.12) and (C.13) are standard moment bounds for the

asymptotic theory, where Condition (C.12) is similar to and sightly stronger than

Condition (C.8). Furthermore, it is evident that under Condition (C.1), we have

E
{
sup1≤m≤M f 4

m(Xi, θm0)
}
= O(1) and E {supw∈W supθ∈ℵ f

−4(Xi, θ, w)} = O(1),

i.e., Conditions (C.11) and (C.13) are naturally satisfied. Therefore, Conditions

(C.11) and (C.13) can be replaced by Condition (C.1) but the formers are relative-

ly weaker. Condition (C.14) is mild since ∂F (Xi,θ)
∂θ′

is the M×k matrix. Conditions

(C.15) restricts the relationship among {pmax, M , n}; for fixed pmax and M , Con-

dition (C.15) is naturally satisfied. Condition (C.16) requires that the minimum

singular value of
∑n

i=1 F (Xi, θ̂)F (Xi, θ̂)
′/n is bounded asymptotically (Fan and

Peng, 2004; Bickel and Levina, 2008).

Theorem 3. If Conditions (C.5), (C.9) and (C.11)-(C.16) hold, then there exists

a local minimizer ŵ of CDMA(w) such that

∥ŵ − w0∥ = Op

(
k1/2p1/2maxMn−1/2+α

)
, (3.26)

where k =
∑M

m=1 pm and α < 1/2 is a positive constant.

23

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Optimal averaging estimation for density functions

Proof. See Appendix A.5.

Theorem 3 shows that ŵ approaches the optimal weight vector w0 at the rate

no slower than k1/2p
1/2
maxMn−1/2+α, where α > 0 can be sufficiently small. For

fixed pmax and M , we have ∥ŵ − w0∥ = Op

(
n−1/2+α

)
.

3.2 Extension to semiparametric density averaging estimation

As introduced in Section 1, the kernel density estimation (KDE) is one of the most

important density estimation approaches. As a nonparametric method, KDE may

capture some useful information that could not be utilized by parametric DMA

in some cases, which is also reflected in our simulation study. So in this section,

we extend the proposed DMA method above to semiparametric density averaging

estimation by combining parametric DMA and KDE. Specifically, let the kernel

density estimator of the true density function g(x) be

fh(x) =
1

nh

n∑
i=1

K

(
Xi − x

h

)
,

where K(·) is a kernel function and h represents the bandwidth, which can be

determined by some bandwidth selection methods, such as the rules of thumb,

unbiased cross validation, biased cross validation, and smoothed bootstrap (see

Jones et al. (1996) and the references therein). Then, the semiparametric density

averaging estimator is defined as

f̃(x, ρ) = (1− ρ)f(x, θ̂, ŵ) + ρfh(x), (3.27)
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where ρ is a tuning parameter satisfying 0 ≤ ρ ≤ 1, which controls the balance

between DMA and KDE.

Further, let the KL distance between g and f̃(x, ρ) be

KL(g, f̃(x, ρ)) =

∫
g(x) log

g(x)

f̃(x, ρ)
dx

=

∫
g(x) log g(x)dx−

∫
g(x) log f̃(x, ρ)dx,

where
∫
g(x) log g(x)dx is unrelated to ρ. Clearly, the ideal ρ is obtained by

minimizing −
∫
g(x) log f̃(x, ρ)dx, but unfortunately, it is not feasible in practice.

To address the issue of selecting ρ, we suggest the following cross validation

approach. Let f̃ [−i](Xi, ρ) = (1 − ρ)f(Xi, θ̂
[−i], ŵ[−i]) + ρf

[−i]
h (Xi), where θ̂[−i],

ŵ[−i] and f
[−i]
h (Xi) are the same as θ̂, ŵ and fh(Xi), respectively, except that the

formers are obtained with Xi removed. Then, the feasible estimator ρ̃ of ρ is

obtained by

ρ̃ = argmin
0≤ρ≤1

{
−

n∑
i=1

log f̃ [−i](Xi, ρ)

}
.

The resultant semiparametric density averaging estimator is given by

f̃(x, ρ̃) = (1− ρ̃)f(x, θ̂, ŵ) + ρ̃fh(x).

Next, we explore the convergence of ρ̃. Define the optimal weight coefficient

for the semiparametric density averaging estimator as

ρ0 = argmin
0≤ρ≤1

{
KL

(
g, f̃ 0(x, ρ)

)}
,
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where f̃ 0(x, ρ) = (1 − ρ)f(x, θ0, w
0) + ρEfh(x). We suppose that the minimum

of limn→∞ KL
(
g, f̃ 0(x, ρ)

)
on [0, 1] is achieved uniquely.

We list the conditions for Theorem 4.

Condition (C.17). n−1
∑n

i=1

{
log f̃ [−i](Xi, ρ)− log f̃ 0(Xi, ρ)

}
a.s.−−→ 0 uniformly

in ρ.

Condition (C.18). There exists a function H(x) such that EH(X) < ∞, and∣∣∣log f̃ 0(x, ρ)
∣∣∣ < H(x) for all x and ρ.

Condition (C.19). There exists a continuous function T (ρ) such that

sup
0≤ρ≤1

∣∣∣E [
log f̃ 0(X, ρ)

]
− T (ρ)

∣∣∣ → 0.

Condition (C.17) requires that the density estimator DMA (KDE) based on

the data with the ith observation removed approaches the limit of the entire data

based DMA (KDE). Although such a condition is a high-level assumption, it is

reasonable for the large sample cases. Similar conditions can be found in Hansen

and Racine (2012). Condition (C.18) is the regularity assumption on the moment

bound; see, for example, Ferguson (1996) and Hansen (2016). Condition (C.19)

is mild because E
[
log f̃ 0(X, ρ)

]
approaches its limit when n is sufficiently large.

Theorem 4. If Conditions (C.17) - (C.19) are satisfied, then we have ρ̃−ρ0
p−→ 0.

Proof. See Appendix A.6.
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Theorem 4 shows that the weight estimator that combines the DMA and

KDE approaches the optimal weight in the sense of the KL distance for large

sample sizes.

4. Numerical data examples

We demonstrate our proposed method by both simulation and real data examples.

4.1 Simulations

In the context of density estimation, AIC and BIC have been widely used, e.g., for

the selection of finite mixture model; see Leroux (1992), Ishwaran et al. (2001),

among others. Specifically, AIC and BIC choose the density functions minimizing

AIC(m) = −2
n∑

i=1

log fm(Xi, θ̂m) + 2pm,

and

BIC(m) = −2
n∑

i=1

log fm(Xi, θ̂m) + pm log n,

respectively, and SAIC assigns weights

wm = exp(−AIC(m)/2)/
M∑

m=1

exp(−AIC(m)/2)

to the mth density function. SBIC is the same as SAIC except with AIC(m) re-

placed by BIC(m). Also, we consider the corrected AIC criterion developed by
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Saumard and Navarro (2021) and such a criterion is labeled as IAIC. Specifically,

IAIC consists of two terms, where the first term is the negative logarithm likeli-

hood for themth candidate model and the second term (i.e., the penalty term) for

the mth model is (1+Cam)pm, where pm is the dimension of parametric vector in

the mth model, am = max{
√

pm log(n+ 1)/n,
√
log(n+ 1)/pm, log(n+ 1)/pm},

1 ≤ m ≤ M , and C is a constant. As discussed by Saumard and Navarro (2021),

considering the prediction accuracy and computation efficiency, we take C = 1.

As we know, the kernel density estimation (KDE) is commonly used in prac-

tice and the bandwidth choice is necessary for KDE. Here, we perform KDE using

Gaussian kernel and the bandwidths are selected by the four well-known method-

s: the rules of thumb, unbiased cross validation, biased cross validation and the

method of Sheather and Jones (1991) (Jones et al., 1996). To obtain such four

bandwidth selectors, the four functions (bw.nrd, bw.ucv, bw.bcv and bw.SJ) with

all the default settings in R package “stats” are used and the associated KDEs

are denoted as K.nrd, K.ucv, K.bcv and K.SJ, respectively. In addition, to im-

plement the FMM method (i.e., the finite mixture model) mentioned before, we

apply the “densityMclust” function with all the default setting in the R language,

which performs the density estimation by finite mixture of Gaussian components.

Also, we consider the adaptive mixing strategy for the density aggregation (Yang,

2000;Yang, 2004), which is labeled as ADA. To be specific, divide the sample into
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two parts with the first part D1 and the second part D2, and then the ADA

weight for the jth density function is given by wj =
πj

∏
i∈D2

f̂j(Xi;D1)∑M
m=1 πm

∏
i∈D2

f̂m(Xi;D1)
, where

f̂j(Xi;D1) is the estimator of true density f(Xi) (i ∈ D2) based on the data in

D1 and πj ≥ 0 satisfying
∑M

j=1 πj = 1. Data splittings are done 100 times and

then the averaged weight estimator is computed for the ADA method. We set

πj = 1/M , j = 1, ...,M , and the sample size of the first part to be 0.5n for

ADA. In this section, we compare the finite sample performance of these density

estimation methods.

To evaluate these methods, we calculate the KL loss as follows:

n−1
0

n0∑
i=1

{
log g(X∗

i )− log f(X∗
i , θ̂, w)

}
, (4.1)

where n0 = 500 and {X∗
i }

n0
1 are independent of {Xi}n1 (n = 200, 300, 500) but

from the same distribution as {Xi}n1 .

The candidate density functions include those of the normal, log-normal,

exponential, gamma, Cauchy distributions, and the mixture models with two

and three mixing components (the variances in the mixing components are set

to be equal). Assume that the true distribution function of X is given by the

following cases:

1. Mixture of Log-normal distribution (LN (µ, σ2) with mean µ and standard

deviation σ of the logarithm) and normal distribution (N (µ, σ2) with mean µ and

standard deviation σ) λ1×LN (0.5, 0.52) + λ2×N (4, 0.52) for λ1 = 0, 0.3, 0.5, 0.7
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and λ2 = 1− λ1;

2. Mixture of LN distribution and gamma distribution (Gamma (a,b) with pa-

rameters shape a and scale 1/b) λ1×LN (0.5, 0.52) + λ2×Gamma (2, 1);

3. Mixture of LN and beta distributions λ1×LN (0.5, 0.52) + λ2×Beta (2, 2),

where the density of Beta (a, b) is Γ(a+b)
Γ(a)Γ(b)

xa−1(1 − x)b−1 with a > 0, b > 0 and

0 < x < 1;

4. Mixture of beta distribution and exponential distribution (E (a) with mean

1/a) λ1×Beta (2, 2) + λ2× E(1).

Based on 500 replications, the simulation results are shown in Figures 1-4

in Appendix A.10. Because either K.nrd or K.bcv performs the best among the

four KDE methods, i.e., K.nrd, K.ucv, K.bcv, K.SJ, for the most cases considered

here, we only present the results for K.nrd and K.bcv.

The findings are summarized as follows:

(1) DMA, and AIC/BIC/SAIC/SBIC/IAIC/ADA. From Figures 1-4, we see that,

DMA dominates AIC, BIC, SAIC and SBIC for most cases with λ1 ̸= 0, and the

superiority is evident. Moreover, Figures 1-4 show that DMA performs better

than IAIC for most cases with λ1 ̸= 0 and the improvement over IAIC is often

remarkable. For instance, in Case 1, when λ1 = 0.3, DMA is superior to IAIC

with a little margin; when λ1 = 0.5 and 0.7, the superiority of DMA is obvious.

Also, as expected, the risks of IAIC and DMA reduce with the sample size n
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increasing.

From Figures 1-4, it is seen that, for λ1 ̸= 0, ADA and DMA are comparable

for Cases 2 and 3, but DMA often performs better in Cases 1 and 4 especially

for the relatively large sample sizes (e.g., n = 500). Also, these two methods

are superior to the model selection methods for most cases. This implies that

model averaging will often reduce the prediction risk relative to model selection.

Moreover, using the optimal weights may further reduce such risks.

Further, when λ1 = 0, all the model selection and averaging methods (i.e.,

AIC, BIC, SAIC, SBIC, IAIC, ADA and DMA) have similar performance. This

is reasonable. In fact, in Cases 1, 2, and 4, λ1 = 0 means that the candidate

model set includes the true density model, which often has the best performance

in the current simulation study. Accordingly, both model selection and averaging

methods tend to choose the true density model and hence have the close results.

In Case 3, although the true density model is not included in the candidate set,

the true distribution of the data has a simple form and the true density can

be approximated well by a single candidate density, which leads to the similar

simulation results for all the model selection and averaging methods.

(2) DMA and FMM. For Case 1 with λ1 = 0 shown in Figure 1 and Case 4 with

λ1 = 0.7 shown in Figure 4, DMA is comparable or slightly inferior to FMM.

However, for the other cases, DMA usually outperforms FMM by a large margin.
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(3) DMA and KDE (K.nrd/K.bcv). For most cases, DMA performs better than

K.nrd and K.bcv remarkably; see Figures 1-4. In addition, K.bcv has better

performance than DMA in Case 1 with λ1 = 0.7 for n = 500 but the variation of

DMA is often smaller (see Figure 1); for Case 3 with λ1 = 0, the DMA and KDE

methods have similar performance and the former produces the slightly lower

risks.

In addition, we have also conducted a simulation comparison of DMA and

the logarithmic scoring rule (LS) of Hall and Mitchell (2007) discussed in the

Introduction section, where the LS based weight vector is obtained by minimizing

the first part of (3.20) over W , i.e., the LS density estimator is f(x, θ̂, w̃) with

w̃ = argminw∈W{−
∑n

i=1 log f(Xi, θ̂, w)}. Let n = 50, 100 and 200. The other

settings are the same as those described before. We only present the simulation

results for Case 1 (reported in Figure 5 in Appendix A.10), and the simulation

results for the other cases are similar to those for Case 1. From Figure 5, it

is observed that DMA is clearly superior to LS for most cases with small and

moderate sample sizes (n = 50, 100) and they are comparable for the relatively

large sample size (n = 200).

Overall, the DMA has a desirable performance in our simulation study, which

suggests that DMA is worth recommending for density estimation.
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4.2 Empirical applications

In this section, we investigate the life length data in Roman Egypt which have

been analysed based on model selection by Claeskens and Hjort (2008). This data

set contains the age at death for 141 Egyptian mummies in the Roman period

dating from around year 100 B.C. For this life length data, Claeskens and Hjort

(2008) tried using AIC to select an appropriate density model. Although the

selected model is the best in terms of AIC score, it seems not perfect for this data

since some fluctuations are not captured by the selected model as Claeskens and

Hjort (2008) commented. Here, we utilize the DMA method to obtain a more

appropriate density estimation.

Specifically, as in Example 2.6 of Claeskens and Hjort (2008), the candidate

set includes the density functions of the exponential, gamma, and log-normal

distributions used in Section 4.1, and the Gompertz Models 1 and 2 whose density

functions are f(t) = e−
∫ t
0 h(s)dsh(t) with h(t) = aebt and k + aebt(k + aeb >

0), respectively, where t is the life length and {a, b, k} denote the parameters.

Claeskens and Hjort (2008) concluded that the Gompertz Model 1 is the best

in terms of AIC and perhaps an acceptable approximation, but Claeskens and

Hjort (2008) also realized that some fluctuations for this data, such as the extra

mortality at age around 25, were not captured by such a model. The histogram for

the full data and the Gompertz Model 1 based density estimation curve indicate
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this issue (see the left graph of Figure 6 in Appendix A.10). To make a more

accurate estimation, we include the mixture models with two and three mixing

components (the variances in the mixing components are set to be unequal) in the

candidate set, because both seem to be sensible for describing the structure of this

data; see the right graph of Figure 6. So, there are seven candidate models totally.

Now, we use the model selection and averaging methods (AIC, BIC, SAIC, SBIC,

LS, IAIC, ADA and DMA), KDE methods (K.nrd, K.ucv, K.bcv, and K.SJ) and

FMM to estimate the density for this data, where the implementations of these

methods are the same as in Section 4.1 (except that considering the relatively

small sample size, we set the size of the first part sample for ADA to be 0.9n

so that it can be performed). To assess the estimation accuracy, the data are

randomly split into two parts with the first being the training sample of size

n = 100 and the rest for testing. The log-likelihood of the test sample (denoted

by EL) is computed as
∑141−n

i=1 log f̂(X∗
i ), where {X∗

i } is the test sample and

f̂(X∗
i ) represents a density estimator. We repeat this process 2000 times for the

eleven methods and then obtain the distributions of the EL values.

It is seen from Figure 7 in Appendix A.10 that DMA, IAIC, LS, AIC, SAIC

and FMM have clearly much higher EL values (say, in median) than the other

methods. Although the variations of BIC, SBIC, K.nrd, K.bcv and K.SJ are

slightly smaller than that of DMA, the DMA method is superior to them re-
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markably in terms of median of EL values. Further, in order to compare the

performance of DMA with those of IAIC, LS, AIC, SAIC and FMM, we examine

the kernel density estimates (by R code ’density’) of the EL values for DMA, IA-

IC, LS, AIC, SAIC and FMM, which are plotted in Figure 8 in Appendix A.10.

It is clear from Figure 8 that the density of the EL values of DMA looks very

different from those of IAIC, LS, AIC, SAIC and FMM (which appear to be quite

similar). The former has much higher peaks and lighter tails, implying that our

proposed DMA method performs more stable. So DMA performs the best for

this data globally. Finally, for the full data, the DMA based density estimation

curve is shown on the left of Figure 6, which seems to be a more reasonable ap-

proximation to the true density than the Gompertz Model 1 used by Claeskens

and Hjort (2008).

5. Conclusion

In this paper, we have developed a model averaging procedure of density estima-

tion, DMA, for optimal extraction of information from data under unsupervised

learning. The asymptotic optimality of the DMA estimator has been established.

The convergence rate of the DMA based weights tending to the optimal weight-

s minimizing the KL distance has also been derived. We have also proposed a

semiparametric density averaging method, which combines parametric and non-
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parametric density estimators in a data driven fashion. Sufficient simulation trials

show that the DMA has desirable finite sample performance that is robust for

different simulating density models. The real data example also supports the

DMA method.

Many issues deserve to be further investigated. For instance, we propose the

DMA and derive its asymptotic properties for the independent and identically

distributed case. How to extend the DMA method to the dependent data case

warrants the future researches.

In addition, different nonparametric density estimations (e.g., the kernel

method, local likelihood method and wavelet estimation) may have different ad-

vantages, so how to combine these nonparametric estimation methods will also

be an interesting topic for study.

Supplementary Material

The Supplementary Material contains the derivation of tr (Σ12), Lemma 1,

the proofs of all theorems, some illustrating examples, the explanations on the

technical conditions, the discussion on the different density aggregation methods

and the numerical results (Figures 1–8).
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