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A Functional Coefficients Network Autoregressive Model

Hang Yin, Abolfazl Safikhani and George Michailidis

University of Florida, George Mason University and University of California, Los Angeles

Abstract: The paper introduces a flexible model for the analysis of multivari-

ate nonlinear time series data. The proposed Functional Coefficients Network

Autoregressive (FCNAR) model considers the response of each node in the net-

work to depend in a nonlinear fashion to each own past values (autoregressive

component), as well as past values of each neighbor (network component). Key

issues of model stability/stationarity, together with model parameter identifiabil-

ity, estimation and inference are addressed for error processes that can be heavier

than Gaussian for both fixed and growing number of network nodes. The perfor-

mance of the estimators for the FCNAR model is assessed on synthetic data and

the applicability of the model is illustrated on two data sets; the first on multi-

ple indicators of air pollution data and the second on Covid-19 cases in Florida

counties.

Key words and phrases: functional-coefficient regression model; network autore-

gressive model; ridge penalty; polynomial spline
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1. Introduction

Nonlinear time series models gained prominence because of their ability

to model, analyze and predict complex patterns in data in a wide range

of fields, including economics and finance Franses et al. (2000), climate

Donges et al. (2015), cognitive science Ward (2002), geosciences Donner

and Barbosa (2008) and engineering Zou et al. (2019). Departure from

linearity opens different possibilities of developing nonlinear models. How-

ever, a fully nonparametric model that does not impose any constraints on

the autoregressive form becomes harder to estimate with limited data or

in a multivariate setting (Fan and Yao, 2003). Hence, the literature fo-

cused on specific classes of parametric nonlinear models for the conditional

mean for univariate time series data, such as the exponential autoregressive

(EXPAR) (Haggan and Ozaki, 1981), the threshold autoregressive (TAR)

(Tong, 1990) and the smooth transition autoregressive models (Dijk et al.,

2002) that added modeling flexibility. The Functional Coeffecient Autore-

gressive Model (FAR) introduced by Chen and Tsay (1993) encompassed

these other classes of models and ergodicity, estimation and inference issues

were addressed. Follow-up work by Huang and Shen (2004); Chen and Liu

(2001) and Cao et al. (2010) proposed alternative estimation procedures

for FAR models, as well as tests of whether the functional form of the FAR
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model is constant and hence it reduces to a linear one.

Note that a different line of work focused on nonlinear models for the

conditional variance, including nonlinear ARCH (Higgins and Bera, 1992),

nonlinear thresholded ARCH (Gourieroux and Monfort, 1992) and nonlin-

ear GARCH (Hamadeh and Zaköıan, 2011) models.

In many applications, one is interested in modeling a large number of

time series, whose interrelations are reflected through a network structure.

Motivated by social network related applications, Zhu et al. (2017) devel-

oped a network vector autoregression (NAR) that captures the temporal

dependence for the time series of each network node through its own his-

tory, as well as through that of neighboring nodes. A general form that

encompasses various extensions of the basic NAR model for numerical vari-

ables was studied in Yin et al. (2023), while Armillotta and Fokianos (2021)

considered a basic NAR model for Poisson count data.

Next, we present the general form of the NAR model presented in Yin

et al. (2023). Consider a network comprising ofN nodes, for which measure-

ments have been collected for T time periods for a variable of interest X;

i.e. Xit, i = 1, · · · , N, t = 1, · · · , T . Assuming lag-1 temporal dependence

for ease of presentation, the model is given by

Xi,t = aiXi,(t−1) + biw
T
i Xt−1 + γT

i Yi,(t−1) + ϵi,t, (1.1)
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where ai, bi ∈ R, γi ∈ Rp are regression coefficients, Yi,(t−1) a p-dimensional

time-varying covariate vector, and wi a N -dimensional weight vector com-

prising of non-negative elements and summing to 1. Hence, in the NAR

model, measurements Xit for node i are influenced by their own past val-

ues, plus past values of combinations of “related” nodes (network lags), plus

time-varying covariates. Constrained versions of the NAR model (e.g., as-

suming that all autoregressive/network effects are common across all nodes,

i.e. ai = a and/or bi = b for all or selected groups of nodes i = 1, · · · , N

are special cases of the model in (1.1); for details see Yin et al. (2023).

However, analogously to the univariate FAR model, both autoregressive

and network effect coefficients ai/bi can be time-varying. Consider the daily

PM10 air quality indicator data, discussed in detail in Section 5. As can

be seen in Figure 1, the autoregressive and network coefficient functions for

selected monitoring stations exhibit strong nonlinear patterns.

(1.1) ai(·) (1.2) bi(·)

Figure 1: Plot of ai(·) and bi(·) with nonlinear patterns

Airborne particulate matter pollutants smaller in diameter than 10 microns
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To accommodate such time-varying behavior, we introduce a Functional

Coefficients Network Autoregressive (FCNAR) model described next. The

FCNAR(q1,q2) model with q1 autoregressive lags and q2 network lags takes

the form

Xit =

q1∑
j=1

ai,j(Uit)Xi,(t−j) +

q2∑
j=1

bi,j(Uit)w
T
i Xt−j + ϵit, (1.2)

where Uit denotes a threshold variable for node i, and can be either ex-

ogenously determined or can correspond to lagged values of the outcome

variable Xit. Hence, for node i and lag j, ai,j(·) and bi,j(·) are unknown

functions of the threshold variables Uit.

The presence of the threshold variables Uit introduces a number of tech-

nical challenges that relate to (i) the stability of the FCNAR process, (ii)

the identifiability of the autoregressive and network effect parameters and

(iii) the asymptotics for the ai(·)/bi(·) functions and the FCNAR model

parameters that require careful handling and resolved in the sequel.

The remainder of the paper is organized as follows. Section 2 dis-

cusses conditions to ensure the stability of the FCNAR process. Section

3 addresses model estimation, inference and testing issues, while Section

4 presents results from synthetic data showcasing the performance of the

developed estimators in different simulation settings. Section 5 uses the

FCNAR model to analyze the followoing two data sets: (i) air pollution
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indicators and (ii) new Covid-19 cases at the county level in the state of

Florida. Finally, some concluding remarks are summarized in Section 6.

Notation. Throughout the paper, R denotes the set of real numbers, re-

spectively. We use ||A|| and ||A||F to denote the operator norm and Frobe-

nius norm of a matrix A, ⊕ the direct sum of two matrices, and ⊗ the

Kronecker product of two matrices of appropriate dimensions, diag(A) a

diagonal matrix A and aT/AT the transpose of a vector/matrix, respec-

tively. For matrices, we use →p to denote element-wise convergence in

probability, and →d to denote convergence in distribution. For a symmet-

ric or Hermitian matrix A, we denote its spectral radius by ρ(A).

2. Stability of the FCNAR process

The first issue addressed is to derive the stability condition of the FCNAR(q1, q2)

process for the model defined in (1.2). To proceed, we rewrite equation (1.2)

in matrix form:

Xt =

q1∑
j=1

Aj(Ut)Xt−j +

q2∑
j=1

Bj(Ut)WXt−j + ϵt, (2.3)

where Ut is the threshold variable, Aj(Ut) := diag{a1,j(U1,(t−1)) · · · aN,j(UN,(t−1))},

Bj(Ut) := diag{b1,j(U1,(t−1)) · · · bN,j(UN,(t−1))} and W denotes the network

weight matrix.
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Define Gj(Ut) := Aj(Ut) + Bj(Ut)W. We can rewrite (2.3) as Xt =

q∑
j=1

Gj(Ut)Xt−j + ϵt, wherein j = 1, 2, · · · ,max{q1, q2}, with the convention

that zero matrices are included/padded for the relationship to hold; namely,

if q1 > q2, Bj(Ut) = 0 for j > q2, whereas if q1 < q2, Aj(Ut) = 0 for j > q1.

Let q = max{q1, q2}. Note that the model (2.3) can also be expressed as a

Vector Autoregressive model with a single lag (VAR(1)) (Lütkepohl, 2005)

as:

X t = G(Ut)X t−1 + Et, with (2.4)

X t :=

 XT
t

XT
t−1

...
XT
t−q+1

, Et :=

 ϵTt
0T

...
0T

,G(Ut) :=

 G1(Ut) ··· Gq−1(Ut) Gq(Ut)
IN ··· 0 0

...
...

...
...

0 ··· IN 0

. (2.5)

Next, we introduce the needed assumptions to establish the stability

result.

Assumption 1. The autorgressive ai,j(·) and network effect bi,j(·) functions

are bounded by universal constants ãi,j and b̃i,j for all i = 1, 2, · · · , N and

j = 1, 2, · · · , q.

Assumption 2. The error process {ϵt, t ∈ N} is a sequence of independent

and identically distributed (iid) random vectors with E(ϵt) = 0. Further,

the marginal distribution of ϵt is absolutely continuous with respect to the

Lebesgue measure and its density function is positive everywhere on RN .

Next, define Ãj := diag{ã1,j, ã2,j, · · · , ãN,j}, B̃j := diag{b̃1,j, b̃2,j, · · · , b̃N,j},
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and hence G̃j := Ãj+B̃jW , Then, due to Assumption 1, G(·) is elementwise

bounded by G̃ where

G̃ :=

 G̃1 ··· G̃q−1 G̃q

IN ··· 0 0

...
...

...
...

0 ··· IN 0

.
We can then establish the following result.

Theorem 1. Suppose Assumptions 1-2 hold. Then, the FCNAR(q1, q2) pro-

cess defined in (1.2) is geometrically ergodic (and hence stable), if ρ(G̃) < 1.

Remark 1. The density (number of neighbors) of the weight matrix W

impacts the structure of G̃ and thus of the spectral radius ρ(G̃). Numer-

ical evidence (presented in the Supplement, Section 0.2.1) indicates that

the value of the spectral radius gradually decreases, once the bandwidth

(number of neighbors) of the weight matrix W exceeds a certain threshold.

3. Estimation of the FCNARmodel parameters and their Asymp-

totic Properties

3.1 Estimation Procedure

As mentioned in the introductory section, the functions of univariate FAR

models can be estimated by various approaches, including using local poly-

nomial and locally constant methods, local linear regression techniques, as

well as polynomial and penalized splines methods.
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3.1 Estimation Procedure

In this work, for estimating the unknown functions ai,j(·) and bi,j(·) of

the FCNAR model, we use splines. Further, for ease of presentation, we

assume that q1 = q2 = 1. The extension to general q1, q2 is straightforward.

For the order-M spline constructed by the truncated-power basis set,

define the spline basis for ai,j(·) and bi,j(·) to be Φi(u), where:

Φi(u) = [ ϕi1(u) ϕi12(u) ··· ϕi(M+K)(u) ] (3.6)

where ϕi1(u) := 1, ϕi2(u) := u, ϕi3(u) := u2, · · · , ϕiM(u) := uM−1,

ϕi(M+1)(u) := (u− k
(i)
1 )M−1

+ , · · · , ϕi(M+K)(u) := (u− k
(i)
K )M−1

+ .

We can then express the autoregressive and network effect coefficient

functions as follows:

ai,j(u) =aij1 + · · · aijMuM−1 + aij(M+1)(u− k
(i)
1 )M−1

+ + · · · aij(M+K)(u− k
(i)
K )M−1

+ ,

bi,j(u) =bij1 + · · · bijMuM−1 + bij(M+1)(u− k
(i)
1 )M−1

+ + · · · bij(M+K)(u− k
(i)
K )M−1

+ ,

where M denotes the order of the spline and {k(i)
j }Kj=1 the sequence of spline

knots for node i. Hence, estimating the autoregressive ai,j(·) and networ

effect bi,j(·) coefficient functions is equivalent to estimating the parameters

aij1, aij2 · · · , aij(M+K) and bij1, bij2 · · · , bij(M+K) for the corresponding spline

bases.

In the sequel, we consider both ordinary least squares and ridge esti-
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3.1 Estimation Procedure

mators for the spline base parameters. Defining

Zi1(Xi(t−j), Uit) := [ ϕi1(Uit)Xi(t−j) ϕi2(Uit)Xi(t−j) ··· ϕi(M+K)(Uit)Xi(t−j) ],

Zi2(w
T
i Xt−j, Uit) := [ ϕi1(Uit)w

T
i Xt−j ϕi2(Uit)w

T
i Xt−j ··· ϕi(M+K)(Uit)w

T
i Xt−j ],

Zi(t−j) =

[
Zi1(Xi(t−j), Uit) Zi2(w

T
i Xt−j, Uit)

]
,

Zi(t−1) := [ Zi(t−1) Zi(t−2) ··· Zi(t−q) ],

the model can then be written in compact form as:

Xt = Zt−1β + ϵt, (3.7)

where

Zt−1 :=

 Z1(t−1) 0 ··· 0

0 Z2(t−1) ··· 0

...
...

...
...

0 0 ··· ZN(t−1)

,
β := [ βT

1 βT
2 ··· βT

N ]T , βi := [ βT
i1 βT

i2 ··· βT
iq ]

T , and

βij := [ aij1 aij2 ··· aij(M+K) bij1 bij2 ··· bij(M+K) ]T .

Then, the least squares (LS) estimator is given by:

β̂ = (
T∑
t=1

ZT
t−1Zt−1)

−1

T∑
t=1

ZT
t−1Xt.

Note that the number of knots K, the placement of knots and the spline

order M are critical tuning parameters that impact the quality of the LS

estimator in empirical work and are investigated in detail in Section 4.
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3.2 Asymptotic Properties of the Estimators

In the presence of many lags and a large network size, the columns

of the design matrix Z may be fairly strongly correlated. Hence, a ridge

estimator may be preferable in empirical work. Further, Cao et al. (2010)

mention that the number and the location of knots are no longer as critical

to be carefully selected (unlike the LS estimator) and can be controlled by

the tuning parameter λ of the ridge estimator, the latter defined as:

β̂ridge = (
T∑
t=1

ZT
t−1Zt−1 + λTΨ)−1

T∑
t=1

ZT
t−1Xt, (3.8)

where Ψ is a diagonal matrix with its (1 + iM+iK)-th diagonal elements

equal to 0 and the rest equal to 1 for i = 0, 1, · · · , 2Nq− 1, which penalizes

the higher order coefficients.

3.2 Asymptotic Properties of the Estimators

Next, we introduce the needed assumptions for the main results.

Assumption 3. Assumptions on the network matrix W :

(a) The eigenvalues of E(YitY
T
it |Uit = u) are uniformly bounded away

from both 0 and infinity for all u ∈ R and i = 1, 2, · · · , N , where

Yit :=

[
Xit wT

i Xt

]T
.

(b) W ∈ RN×N is a row-normalized matrix; i.e.,
∑N

j=1wij = 1 with wij ≥

0.
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3.2 Asymptotic Properties of the Estimators

Assumption 4. Assumptions on Ut:

(a) The marginal density of Uit is bounded away from both zero and in-

finity uniformly on R.

(b) One of the following cases needs to hold:

• The threshold process Ut corresponds the lagged values of the

outcome process Xt, or

• Ut is an exogenous process (independent of ϵt) and strictly sta-

tionary. Further, for some sufficiently large m > 0, E(|Uit|m) <

∞.

Assumption 5. The error process {ϵt, t ∈ N} satisfies E(ϵt) = 0, Σϵ = σ2I,

and E(|ϵit|4) < ∞.

Assumptions 3(a) and 4(a) are needed to ensure the identifiability of

the autoregressive and network effect coefficient functions (see discussion

in Huang and Shen (2004)). Further, assumptions 3(b), 4(b) and 5 are

required for establishing the asymptotic properties of the LS and ridge esti-

mators of the model parameters. Specifically, the moment conditions on Xit

and Uit ensure the martingale central limit theorem. Note that 4(b) is also

used in univariate FAR models. Assumptions 1, 2 together with 4(b) imply
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3.2 Asymptotic Properties of the Estimators

that {Ut,Xt} is jointly strictly stationary. Further, note that Assumption

2 ensures identifiability of the autoregressive (q1) and network effect (q2)

lag-orders. It is also worth noting that this is a standard assumption used

also in univariate autoregressive time series models (Hamilton, 2020) to en-

sure identifiability of the lag-order. Finally, note that since we assume that

Σϵ = σ2I, the FCNAR parameter β can be estimated element-wise.

Remark 2. Note that the density (number of neighbors) of the network ma-

trix W impact the maximum and minimum eigenvalue of E(YitY
T
it |Uit = u).

Numerical evidence (presented in the Supplement, Section 0.2.1) indicates

that the both the maximum and minimum eigenvalues do not change, once

the bandwidth (number of neighbors) of the network matrix W is above a

certain number. Further, the minimum eigenvalue clearly remains bounded

away from zero.

Hence, for both fixed and diverging (with T ) network size N , we estab-

lish the following three results:

Theorem 2 (Asymptotic Properties of the LS Estimator). Suppose As-

sumptions 1-5 hold. Then, the node parameters of the FCNAR model (3.7),

i.e., Xt = Zt−1β + ϵt, satisfy as T → ∞

√
T (β̂i − βi) →d N(0, σ2P−1

i ), i = 1, · · · , N,
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3.2 Asymptotic Properties of the Estimators

where Pi := E(ZT
i(t−1)Zi(t−1)).

Remark 3. In practice, the quantity E(ZT
i(t−1)Zi(t−1)) can be estimated by

1
T

T∑
t=1

ZT
i(t−1)Zi(t−1).

Remark 4. Note that a uniform convergence result over the domain of

the autoregressive ai(·) and network effect bi(·) functions is given in Section

0.2.1 of the Supplement.

Theorem 3 (Asymptotic Properties of the Ridge Estimator). Suppose As-

sumptions 1-5 hold and further assume that λ = o( 1√
T
). Then, the regres-

sion coefficient of the FCNAR model satisfies, as T → ∞

√
T (β̂ridge

i − βi) →d N(0, σ2P−1
i ),

where Pi := E(ZT
i(t−1)Zi(t−1)).

The next result provides the asymptotic distribution of any point in

the domain of the autoregressive and network effect coefficient functions.

Define

βi(u) := [ ai,1(u) bi,1(u) ··· ai,q(u) bi,q(u) ]T ∈ R2q

to be a vector of the unknown autoregressive and network effect coefficient

functions, we then have that βi(u) = (I2q ⊗ Φi(u))βi.
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3.2 Asymptotic Properties of the Estimators

Theorem 4. Suppose Assumptions 1-5 hold. Let β̂i(u) be vectors of either

the LS or the ridge estimator. Further, for the ridge estimator, assume that

λ = o( 1√
T
). Then, for Uit = u,

√
T (β̂i(u)− βi(u)) →d N(0, σ2(I2q ⊗ Φi(u))P

−1
i (I2q ⊗ Φi(u))

T ).

Remark 5. In practice, we use the AIC criterion to select the lags of Uit,

the number of knots K and the spline order M (for a discussion, see Huang

and Shen (2004)).

Also, note that since we assume Σϵ = σ2I, for diverging N and T , we

can get the joint asymptotic distribution of any sub-vector of the FCNAR

parameter β of fixed dimension. Suppose we are interested in a subset of

nodes in S := {N1, N2, · · · , NS} ⊂ {1, 2, · · · , N}, which is of fixed cardi-

nality S. Denote βsv :=

[
βT
N1

βT
N2

· · · βT
NS

]T
∈ R2S(M+K)q to be the

sub-vector of β. For example, if we are interested in the joint asymptotic

distribution of β1 and β2, in this case, βsv =

[
βT
1 βT

2

]T
. Similarly, define

βsv(u) := [ βN1
(u)T βN2

(u)T ··· βNS
(u)T ]T ∈ R2Sq,

and Φsv(u) := ⊕i∈SI2q ⊗ Φi(u). We then have that βsv(u) = Φsv(u)βsv.

Theorem 5. Suppose assumptions 1-5 hold. Then, for any sub-vector βsv ∈

R2S(M+K)q of β, the regression coefficient of the FCNAR model satisfies, as
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3.3 Hypothesis Testing in FCNAR Models

T → ∞
√
T (β̂sv − βsv) →d N(0, σ2P−1

sv ),

where Psv := ⊕i∈SPi.

Further, assume that λ = o( 1√
T
). Then, the regression coefficient of the

ridge satisfies, as T → ∞

√
T (β̂ridge

sv − βsv) →d N(0, σ2P−1
sv ).

And for Uit = u,

√
T (β̂sv(u)− βsv(u)) →d N(0, σ2Φsv(u)P

−1
sv Φsv(u)

T ).

3.3 Hypothesis Testing in FCNAR Models

The technical results established in Theorem 2 enable testing hypotheses of

interest on a fixed subset of network nodes, as discussed next. Recall that

a hypothesis involving p linear constraints on β can be written as:

H0 : Dβ = r vs Ha : Dβ ̸= r,

where D for the FCNAR model is a p× (2NMq + 2NKq) matrix and r is

a p× 1 column vector. Then, the test statistic takes the form

F = ((Dβ̂)′(σ̂2D(
T∑
t=1

ZT
t−1Zt−1)

−1D′)−1(Dβ̂))/p ∼ F (p,N(T − 2Mq− 2Kq))
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3.3 Hypothesis Testing in FCNAR Models

and follows an F -distribution with the provided degrees of freedom, where

σ̂2 = 1
NT

N∑
i=1

T∑
t=1

(Xit − ZT
i(t−1)β̂i)

2.

For the FCNAR model, hypotheses of particular interest are whether

the autoregressive effects aij(u) or the network effects bij(u) are the same

among nodes, and take the following form:

(A) Homogeneity of the autoregressive effects amongst nodes :

H0 : aijk = ai′jk, ∀ k = 1, 2, · · · , (M+K), ∀ i, i′ = 1, 2, · · · , N and i ̸= i′.

(B) Homogeneity of network effects amongst the nodes :

H0 : bijk = bi′jk, ∀ k = 1, 2, · · · , (M +K), ∀ i, i′ = 1, 2, · · · , N and i ̸= i′.

Let 0̃ denote the zero matrix of dimension (M+K)×(2q−1)(M+K) and

0̄ the zero matrix of dimension (M +K)× (M +K). For the homogeneity

test of the lag-1 autoregressive effect, the constraint matrix D takes the

form

D :=



IM+K 0̃ −IM+K 0̃ 0̄ 0̃ · · · 0̄ 0̃

0̄ 0̃ IM+K 0̃ −IM+K 0̃ · · · 0̄ 0̃

...
...

...
...

...
... · · · ...

...

0̄ 0̃ 0̄ 0̃ 0̄ 0̃ · · · −IM+K 0̃


.

Another set of hypotheses of particular interest are those pertaining to

the functions of the autoregressive effects and the network effects being con-
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3.3 Hypothesis Testing in FCNAR Models

stant, which translates that the corresponding relationship to the outcome

variable is linear. These hypotheses take the form:

(C1) Linearity of the autoregressive effects :

H0 : aij2 = aij3 = · · · = aij(M+K) = 0.

(C2) Linearity of the network effects :

H0 : bij2 = bij3 = · · · = bij(M+K) = 0.

If the null hypothesis in any of these two cases holds, it leads to a

simplification in the FCNAR model specification and a reduction in the

number of model parameters to be estimated. If both hypotheses (A) and

(B) hold, the FCNAR model can be reduced to the NAR model.

For hypothesis (A) the constraint matrix D takes the form

D :=



0 1 0 · · · 0 0T
M+K

0 0 1 · · · 0 0T
M+K

...
...

...
...

...
...

0 0 0 · · · 1 0T
M+K


.

Then, the F-test statistic is given by:

F = ((Dβ̂ij)
′(σ̂2D(

T∑
t=1

ZT
i(t−j)Zi(t−j))

−1D′)−1(Dβ̂ij))/(M +K − 1)

has a F-distribution with (M +K− 1, T − 2Mq− 2Kq) degrees of freedom,

and σ̂2 = 1
T

T∑
t=1

(Xit − ZT
i(t−1)β̂i)

2.
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Under the alternative hypothesis, the non-centrality parameter is given

by δ = (Dβij)
′(σ2D(

∑T
t=1 Z

T
i(t−j)Zi(t−j))

−1)D′)−1(Dβij). Analogous expres-

sions can be derived for testing hypothesis (B).

4. Performance Evaluation of the LS and Ridge Estimators

We examine the performance of the LS and the ridge estimators for the

FCNAR model through numerical experiments based on synthetic data,

and the impact that the sample size T , the spline order M , the number of

knots K, the size of the neighborhood in W can have.

The data are generated from the following FCNAR(1, 1) model

Xt = A(Ut)Xt−1 +B(Ut)WXt−1 + ϵt, (4.9)

where ai(u) := 0.138+(0.316+0.982u)e−3.89u2
and bi(u) := −0.437−(0.659+

1.260u)e−3.89u2
, i = 1, 2, · · · , N . The network size is fixed as N = 100.

Further, the K knots (k1, k2, ...kK) in the spline basis functions are evenly

placed between the 1% quantile and the 99% quantile of the threshold

variable Uit.
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4.1 Estimation of the Autoregressive and Network Effect Functions

4.1 Estimation of the Autoregressive and Network Effect Func-

tions

We examine the influence of the sample size T , the number of knots K, the

spline order M and the number of neighbors (bandwidth) of the network

matrix W on the estimation of the a(·) and b(·) functions. For a grid

(k1, k2, ...k200) of 200 points evenly placed between 5% quantile and 95%

quantile of the threshold variable Uit, âi(u) and b̂i(u) are calculated. The

experiment is replicated 50 times, and the 95% quantile, the median and

the 5% quantile of the values of the functions at the 200 grid of knots are

plotted and compared with the true functions.

The following simulation scenarios are considered:

A.1: ϵit ∼ N(0, 1), Uit ∼ N(0, 1) andW is a banded matrix with bandwidth

2 neighbors. The order of the splines is set to 4, and K = 10. Finally,

the following 3 sample sizes are used: T = 200, 400, 3200.

A.2: The sample size is set to T = 400 and 2400, and the spline order varies

between M = 2, 4, 6. Further, the error and threshold processes and

W are set as in scenario A.1.

A.3: The order of the spline basis is set to M = 4, while the number of

knots varies according to K = 5, 10, 15. The sample size, the error
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4.1 Estimation of the Autoregressive and Network Effect Functions

and threshold processes and the network matrix W are as in scenario

A.2.

A.4: The order of the spline basis is set to M = 4 with K = 10 knots.

The sample size and the error and threshold processes are set as in

scenario A.2. The network matrix W is banded and the bandwidth

is set to 2, 10, 50.

Figures 2 and 3 depict the true functions ai(·)/bi(·) and their estimated

counterparts âi(·)/b̂i(·). It can be seen that the estimated functions get

closer to the true coefficient functions as the sample size T increases. In

particular, for sample sizes larger than 800, the approximation is becoming

fairly accurate.

Figures 1 and 2 in the supplementary material suggest that for ex-

ponential autoregressive and network effect functions, splines of low or-

der (M = 2) provide good estimates compared to higher order splines for

T = 400. This may be related to the limited sample size. As T increases

to 2400, the performance of splines with M = 4 and 6 improve.

Figures 3 and 4 in the supplementary material show that the number of

knots K needs to be selected in accordance with the sample size T . Specif-

ically, K = 10 gives the best result, while for smaller K, there might be

bias for the estimated functions, and for larger K the estimated functions
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4.1 Estimation of the Autoregressive and Network Effect Functions

become unstable near the boundary. Finally, Figures 5 and 6 in the sup-

plementary material confirm the robustness of the autoregressive function

estimates over network matrices W with different bandwidths (number of

neighboring nodes included), while the network effect estimates become less

accurate for more connected W matrices.

The results confirm that in empirical work wherein the sample size T is

given, the spline order M and the number of knots K need to be selected

judiciously; for example, Huang and Shen (2004) propose using the AIC

criterion for this task.

(2.1) T=200 (2.2) T=800 (2.3) T=3200

Figure 2: ai(·) and âi(·) autoregressive functions in scenario A.1.

(3.1) T=200 (3.2) T=800 (3.3) T=3200

Figure 3: bi(·) and b̂i(·) network effect functions in scenario A.1.
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4.2 Confidence Intervals and Coverage Probabilities

4.2 Confidence Intervals and Coverage Probabilities

Next, we examine the coverage of the confidence intervals based on the

results of Theorem 4. The setting considered is as follows: the network size

is set to N = 100, the error process is distributed according to ϵit ∼ N(0, 1),

Uit ∼ N(0, 1) and W is a banded matrix of bandwidth 2. A spline of order

M = 4 with K = 20 knots is used to estimate the functions ai(·) and

bi(·) while the sample size varies as T = 200, 400, 800, 1600, 3200. The

experiment is replicated 100 times.

Figure 4 depicts the length of the confidence intervals (CI) and the

coverage probabilities (CP) for different thresholds Uit. The 95% CI is

calculated using CIai = (âi(u)−z0.975SE(âi(u)), âi(u)+z0.975SE(âi(u))) and

CIbi = (b̂i(u) − z0.975SE(b̂i(u)), b̂i(u) + z0.975SE(b̂i(u))), where SE(âi(u))

and SE(b̂i(u)) are calculated according to Theorem 4.

It can be seen that the length of the CIs become smaller as the sample

size T increases. Further, for any fixed sample size, the length of the CIs

is larger for points closer to the boundary of the domain of the threshold

variable. On the other hand, with the exception of rather small sample sizes

(T = 200), the CP is close to the nominal level, especially for larger values

of T . For points closer to the boundary, a larger sample size is required for

the CP to be close to the nominal level.
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4.2 Confidence Intervals and Coverage Probabilities

(4.1) Uit = −1.25 (4.2) Uit = −1.25

(4.3) Uit = −0.75 (4.4) Uit = −0.75

(4.5) Uit = 0 (4.6) Uit = 0

(4.7) Uit = 0.75 (4.8) Uit = 0.75

(4.9) Uit = 1.25 (4.10) Uit = 1.25

Figure 4: CI and CP at different threshold of Uit
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4.3 Prediction Performance

4.3 Prediction Performance

Next, we compare the predicted RMSE of different models, defined as:

predicted RMSE :=

√√√√ 1

NT

T∑
t=1

||Xt − X̂t||2F .

The data is generated by (4.9) with N = 100. Two sets of functions ai(·)

and bi(·) are tested:

B.1 ai(u) := 0.138+(0.316+0.982u)e−3.89u2
and bi(u) := −0.437−(0.659+

1.260u)e−3.89u2
, i = 1, 2, · · · , N .

B.2 ai(u) := 0.3I(u ≤ 1) − 0.7I(u > 1) and bi(u) := −0.6I(u ≤ 1) +

0.2I(u > 1), i = 1, 2, · · · , N .

B.3 ai(u) := 0.138+(0.316+0.682u)e−0.5u2
and bi(u) := −0.437−(0.259+

0.560u)e−0.5u2
, i = 1, 2, · · · , N .

The first T = 1550 time points of the data are used for estimating

the model parameters, while the last T = 50 time points to calibrate the

prediction performance. We employ a FCNAR(1, 1), with an order-4 spline

with K = 10 knots to estimate the autoregressive ai(·) and network ef-

fect bi(·) parameters. Competing methods include a NAR(1,1) model (i.e,

ai(·) = ai, bi(·) = bi, both constants) and a univariate autorgressive time

series model with a single lag (as selected by the AIC criterion) applied to
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each node i (AR(1)). It can be seen that FCNAR can capture the non-

linearity in the data, and thus outperforms the competing models.

Table 1: predicted RMSE for different estimators

B.1 B.2 B.3

FCNAR(1,1) 1.015 1.022 1.017

NAR(1,1) 1.041 1.104 1.106

AR(1) 1.097 1.135 1.161

5. Applications of the FCNAR model to Real Data Sets

5.1 Application of the FCNAR model to Air Quality Indicators

The proposed FCNAR model is employed to analyze 6 different air quality

indicators, namely CO (carbon monoxide), O3 (ozone), SO2 (sulfur diox-

ide), NO2 (nitrogen dioxide), PM2.5 and PM10 (particulate matter in the

air that are less than 2.5 and 10 micrometers in diameter, respectively). The

data come from N = 346 monitoring stations across China and are collected

by the the China National Environmental Monitoring Center. After aggre-

gating the original hourly data for the period 01/02/2015 to 09/05/2020

to a daily cadence and removing missing values, we end up with T = 1999

daily measurements (observations). The first 1800 days are used to estimate
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5.1 Application of the FCNAR model to Air Quality Indicators

the FCNAR model parameters, while the last 200 days are used for testing

purposes. The AIC = log |Σ̂ϵ|+ 2(K+M)(q1+q2)
T

information criterion is used

to select the number of knots, the lag order, the lag of the threshold vari-

able (which corresponds to the response variable) and the spline order. The

selected spline order is M = 3, the number of knots K = 5 and Ut := Xt−4.

The network matrix W is obtained as follows: let Dij be the spatial

distance between two monitoring stations, then the ij-th element of W is

defined as:

The F-test (for details see Section 3.3) for the following two null hy-

potheses

H0 : ai2 = ai3 = · · · = ai8 = 0, or

H0 : bi2 = bi3 = · · · = bi8 = 0

is used to test, if each node exhibits a non-linear autoregressive or network

effect. The location of the monitoring stations that exhibit such non-linear

stations are depicted in Figure 5; specifically, red points represent nodes

with non-linear autoregressive coefficients, green points represent nodes

with non-linear network coefficients, and blue points represent nodes with

both non-linear autoregressive and network coefficients. Figure 5 indicates

that for most of the stations, there exist either non-linear autoregressive or

network coefficients. Hence, the proposed FCNAR model that accounts for
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5.1 Application of the FCNAR model to Air Quality Indicators

heterogeneity proves useful for modeling these 6 air quality indicators.

(5.1) CO (5.2) O3 (5.3) SO2

(5.4) NO2 (5.5) PM 2.5 (5.6) PM 10

Figure 5: Stations with Non-linear a(·) (red), b(·) (green) and both a(·) and

b(·) (blue)

Next, we assess the predictive performance of the FCNAR vis-a-vis

selected competitors. Specifically, the predicted RMSE of the ridge based

FCNAR(1,1) model is compared to that of a NAR(1,1) model (with linear

autoregressive and network effects), a univariate AR(1) model applied to

each node, as well as a NAR(1,1) model with homogeneous coefficients (i.e,
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5.1 Application of the FCNAR model to Air Quality Indicators

ai = a, bi = b for all i nodes). The tuning parameter λ for the ridge based

FCNAR(1,1) model is selected by cross-validation. The predicted RMSE of

the competing models is given in Table 2. Overall, FCNAR(1,1) performs

the best across all air quality indicators, with the linear NAR(1,1) following

behind.

Table 2: predicted RMSE for different estimators

PM10 PM2.5 SO2 NO2 O3 CO

FCNAR(1,1) 0.93425 0.87453 0.71338 0.95353 0.83950 0.66762

NAR(1,1) 0.93575 0.87645 0.71433 0.95380 0.84014 0.66863

AR(1) 0.94832 0.88824 0.72411 0.96565 0.84507 0.67376

NAR with A = aI and B = bI 0.94060 0.88210 0.72097 0.96192 0.84420 0.67306

We also compare the relative predicted RMSE improvement of the

FCNAR(1,1) model compared to its FAR component (i.e, assuming all

bi(·) = 0), and the results are depicted in the next Figure. It can be seen

that for the coastal area, the functional network effects are more significant,

bringing 4%-6% improvement in predictive performance.
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5.1 Application of the FCNAR model to Air Quality Indicators

(6.1) CO (6.2) O3 (6.3) SO2

(6.4) NO2 (6.5) PM 2.5 (6.6) PM 10

Figure 6: Relative predicted RMSE improvement compared with pure FAR

component

Based on the previous finding, we focus on the predictive performance

for the stations in Southeast China - the provinces of Fujian and Guang-

dong. Table 3 compares the predicted RMSE of the FCNAR(1,1) model

with the FAR(1) and AR(1) model for the respective stations. Overall,

compared to a pure FAR model, there’s a 3%-4% improvement in predicted

RMSE for the stations in the Southeast by incorporating information from

neighboring stations through the FCNAR model.
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5.1 Application of the FCNAR model to Air Quality Indicators

Table 3: predicted RMSE for different estimators (southeast)

PM10 PM2.5 SO2 NO2 O3 CO

FCNAR(1,1) 0.84700 0.87803 0.64093 0.87323 0.82152 0.69485

AR(1) 0.88033 0.90849 0.65938 0.89514 0.82630 0.70224

FAR(1) 0.87931 0.90807 0.65787 0.89576 0.82657 0.70220

For a grid (k1, k2, ...k200) of 200 points evenly placed between 1% quan-

tile and 99% quantile of the threshold variable Uit, âi(u) and b̂i(u) for

i = 1, 2, · · · , 346 are calculated. Based on the 200 âi(u) values and 200

b̂i(u) values, a total of 400 values for each station, k-means is utilized to

partition 346 stations into three clusters. It can be seen that there’s a sig-

nificant geometric pattern of the functional coefficients, from the southeast

to the northwest.
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5.2 Application to Florida County Level COVID-19 Data

(7.1) CO (7.2) O3 (7.3) SO2

(7.4) NO2 (7.5) PM 2.5 (7.6) PM 10

Figure 7: Clusters

5.2 Application to Florida County Level COVID-19 Data

The COVID-19 data used in this study are obtained from The New York

Times (2022) website. The analysis focuses on the 67 counties in the state

of Florida and the raw data include both cases and deaths, as reported by

state and local health departments and compiled by the newspaper. The

network matrix W is calculated from the county adjacency file obtained

from the U.S. Census Bureau (2010). The network matrix is normalized

with each row summing up to 1.
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5.2 Application to Florida County Level COVID-19 Data

The data we focused on is the daily count of new COVID-19 cases for

the N = 67 Florida counties, covering the period from March 2, 2020 (when

the Center for Disease Control reported the first Covid-19 cases in the state

of Florida), to Dec 31, 2022, for a total T = 1036 observations. The first

900 days are used as the training set, up to 08/17/2022, and the last 136

days are used as the test set.

The AIC = log |Σ̂ϵ| + 2(K+M)(q1+q2)
T

information criterion is used to

select the number of knots, the lag order, the lag of the threshold variable

(which corresponds to the response variable) and the spline order. The

model selected is FCNAR(2, 2) with spline order M = 3 and K = 3 knots,

with Ut := Xt−1.

Plots of selected autoregressive ai(·) and network effect bi(·) functions

that exhibit strong nonlinear patterns are depicted in Figure 8. It can be

seen that the larger the lag-value, the larger the autoregressive/network

effect. Further, as gleaned from Figure 9 mostly coastal counties exhibit

nonlinear network effects
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5.2 Application to Florida County Level COVID-19 Data

(8.1) ai(·) (8.2) bi(·)

Figure 8: Plot of autoregressive (ai(·)) and network (bi(·)) effects with

strong nonlinear patterns

(9.1) a(·) (9.2) b(·)

Figure 9: Counties with Non-linear autoregressive (a(·)i) and network (bi(·))

effects.

A closer examination of the network effect functions (bi(·)) shows two

distinct patterns, as shown in Figure 10. The first is increasing/decreasing

(Figure 10(10.1) and the counties associated with it are shown in Figure

10(10.2), while the other is a quadratic one (Figure 10(10.3)) and the cor-

responding counties depicted in Figure 10(10.4).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



5.2 Application to Florida County Level COVID-19 Data

(10.1) (10.2) (10.3) (10.4)

Figure 10: The left panels (10(10.1), 10(10.2)) and the right panels

(10(10.3), 10(10.4)) depict bi(·) of the two patterns with their correspond-

ing locations

Next, the predictive performance of the developed FCNAR model is

compared with a standard NAR model and a node-wise AR model.

Table 4: predicted RMSE for different estimators

Model FCNAR(2,2) FCNAR(2,2) with ridge NAR(2,2) AR(2)

predicted RMSE 0.6791 0.6777 0.7521 0.7781

It can be seen that the proposed FCNAR model clearly outperforms the

standard NAR one by over 10% in terms of predicted RMSE. The latter

also exhibits a small advantage over a univariate AR model fitted to each

county separately. For this data set, the added flexibility encompassed in

FCNAR contributes to the improved performance.
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6. Concluding Remarks

The paper introduces the FCNAR modeling framework that extends both

the linear (heterogeneous) NAR model of Yin et al. (2023) by accommo-

dating nonlinear autoregressive and network effects and the univariate FAR

model of Chen and Tsay (1993) to a multivariate setting characterized by

an underlying network structure. A sufficient condition for the FCNAR

process to be stable is provided and we also present least squares and ridge

estimators for the functional model parameters that are expressed in spline

bases. We establish their asymptotic properties that enable testing of a

number of interesting hypotheses, including (i) whether the autoregressive

and/or network effects are linear or nonlinear, and (ii) whether the func-

tional network effects components are zero or not, thus reducing the FC-

NAR to a collection of unrelated FAR models for each node. Experiments

on synthetic data assess the performance of the FCNAR model for differ-

ent sample sizes, and selection of spline basis parameters (order, number

of knots). Finally, application to 6 air quality indicators collected across a

network of monitoring stations, and on new COVID-19 cases in the state

of Florida show that the data exhibit both nonlinear autoregressive and

network effects, as well as heterogeneity and hence the proposed FCNAR

model has better predictive performance, and also provides better insights
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into patterns of the data.

Supplementary Material

The Supplementary material contains statements of auxiliary technical re-

sults, the proofs of all Lemmas and Theorems, additional simulation results

showcasing the sensitivity of the model parameter estimates to the specifi-

cation of the network weight matrix W and analysis of an additional data

set on wind speeds.
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Dijk, D. v., T. Teräsvirta, and P. H. Franses (2002). Smooth transition autoregressive models—a

survey of recent developments. Econometric reviews 21 (1), 1–47.

Donges, J. F., J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q. Y. Feng, L. Tupikina,

V. Stolbova, R. V. Donner, N. Marwan, et al. (2015). Unified functional network and

nonlinear time series analysis for complex systems science: The pyunicorn package. Chaos:

An Interdisciplinary Journal of Nonlinear Science 25 (11), 113101.

Donner, R. V. and S. M. Barbosa (2008). Nonlinear time series analysis in the geosciences.

Lecture Notes in Earth Sciences 112, 37.

Fan, J. and Q. Yao (2003). Nonlinear time series: nonparametric and parametric methods,

Volume 20. Springer.

Franses, P. H., D. Van Dijk, et al. (2000). Non-linear time series models in empirical finance.

Cambridge university press.

Gourieroux, C. and A. Monfort (1992). Qualitative threshold arch models. Journal of econo-

metrics 52 (1-2), 159–199.

Haggan, V. and T. Ozaki (1981). Modelling nonlinear random vibrations using an amplitude-

dependent autoregressive time series model. Biometrika 68 (1), 189–196.
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