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Abstract: We consider a sparse linear model with a fixed design matrix in a high

dimensional scenario. We introduce a new variable selection procedure called

“voting”, which combines the results from multiple regression models with dif-

ferent penalized loss functions to select the relevant predictors. A predictor is

included in the final model if it receives enough votes, i.e. is selected by most of

the individual models. By employing multiple different loss functions our method

takes various properties of the error distribution into account. This is in contrast

to the standard penalized regression approach, which typically relies on just one

criterion. When that single criterion is not met the standard approach is likely

to fail, whereas our method is still able to identify the underlying sparse model.

Working with the voting procedure reduces the number of predictors that are in-

correctly selected, which simplifies the structure and improves the interpretability

of the fitted model. We prove model selection consistency and illustrate the ad-

vantages of our method numerically using simulated and real data sets.

Key words and phrases: High dimensional data; Linear model; Model selection

consistency; Sparse estimators.

1. Introduction

In the past few decades variable selection has attracted much attention

in the statistical community because of its usefulness in analyzing modern
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data sets in which the number of features can be very high, often greatly ex-

ceeding the number of observations. Variable selection is used to determine

the covariates that have an effect on an outcome and that should be in-

cluded in the model as relevant predictors. This can substantially improve

the simplicity and interpretability of a fitted statistical model. We refer

interested readers to Desboulets (2018) for a detailed overview of this topic

in a variety of regression settings. In this article we consider the variable

selection problem in a high dimensional linear model with a deterministic

design matrix, where the number of predictors can exceed the sample size.

We further assume that the model is sparse, i.e. only a fraction of the pre-

dictors significantly affects the response. Our goal is to identify this fraction

of important predictors and to exclude those with no influence.

One popular approach for variable selection in a linear model is pe-

nalized regression. It yields a sparse estimator for the parameter vector

through minimizing an objective function, which typically consists of two

parts: a loss function and a penalty term. Various types of penalties, such

as the L1 penalty (Tibshirani, 1996), the smoothly clipped absolute de-

viation (SCAD) penalty (Fan and Li, 2001), and the weighted L1 penalty

(Zou, 2006; Zou and Li, 2008), have been applied to the quadratic loss func-

tion. Also widely used has been the quantile loss function (check function),
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which, because of its robustness, is the preferred choice when the error dis-

tribution is heavy-tailed; see Wu and Liu (2009), Wang et al. (2012) and

Fan et al. (2014), among others.

In addition to these articles working with the quadratic or quantile loss

function, Zou and Yuan (2008) introduced a composite quantile regression

approach, which combines multiple quantile loss functions into one compos-

ite loss function by taking the sum. They use the adaptive Lasso penalty

to detect sparsity. An extension of their results to an ultrahigh dimen-

sional scenario is considered in Gu and Zou (2020). Bradic et al. (2011)

developed a composite quasi-likelihood function, which approximates the

log-likelihood function of the random error by a weighted linear combina-

tion of convex loss functions, and adopts a weighted L1 penalty. The use of

composite loss functions in Zou and Yuan (2008), Gu and Zou (2020) and

Bradic et al. (2011) improves the quality of the estimation. However, all the

penalized regression methods mentioned above share a common limitation

in variable selection: they work well only if certain assumptions on the error

distribution are satisfied. If not, the precision of the selection results can be

considerably impaired. For example, one should not expect the quadratic

loss function to perform satisfactorily when the error distribution has an

infinite first moment. Section 2.1 includes a detailed discussion of the lim-
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itations of loss functions for certain classes of error distributions. Since

the error distribution is usually unknown in practice, one cannot always

choose loss functions that are suitable for the underlying data generating

mechanism.

To overcome the problems of standard penalized regression based on

one single loss function and improve the quality of variable selection, we

propose a selection process that combines multiple sparse estimators calcu-

lated with different loss functions by a “voting procedure”. Only predictors

that have received the most votes, i.e. are selected by the majority of these

estimators, are included in the final model. By using different loss func-

tions we take multiple properties of the error distribution into account, not

just one feature such as the existence of a certain moment. When some of

these properties are violated so that some of the estimators fail to select the

correct model, our proposed process is still able to identify the important

predictors; see Proposition 1 and the following remark for details. This is

the key advantage of our method over existing approaches that rely on a sin-

gle property. In Theorems 1 and 2 we establish model selection consistency

of our proposed process and present a probabilistic bound for two popular

finite-sample performance measures when weighted L1 penalties are used.

This provides the theoretical foundation for our method. Numerical studies
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in Section 4 demonstrate a further advantage: even if the error distribu-

tion is well behaved and the standard penalized regression methods should

work well, our method can considerably reduce the number of incorrectly

selected unimportant predictors, yielding simpler and more interpretable

fitted models.

The rest of this article is organized as follows. In Section 2 we present

our model and some notation, followed by a discussion of the limitations of

selection methods that use one single loss functions (Section 2.1). Then, in

Section 2.2, we introduce our selection approach, which is based on multiple

estimators derived from different loss functions with general penalty terms,

and a voting step. In Section 2.3 we prove model selection consistency and

discuss theoretical properties of our method for a special case, namely when

weighted L1 penalties are used. Section 3 details the implementation of our

approach, including the algorithm, tuning parameter selection and post-

selection estimation. In Section 4 we present the results from a number of

comprehensive numerical studies. Section 5 consists of concluding remarks.

All technical details, including the assumptions and the proofs of the theo-

retical results from Section 2, additional numerical results and a discussion

on the extension of our method are deferred to the Supplementary Material.
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2. Variable selection with multiple loss functions

In the following, for convenience of notation, we let the lower case letter

c represent a generic positive constant. The symbol I(·) stands for the

indicator function. For two positive sequences an and bn, the expression

an � bn means lim supn→∞(bn/an) = 0. For a (p + 1)-dimensional vec-

tor v = (v0, v1, . . . , vp)
T let supp(v) denote the index set of the non-zero

components of v, supp(v) = {j ∈ {1, . . . , p} : vj 6= 0}. The notation |S|

denotes the cardinality of a set S ⊂ {1, . . . , p} and Sc its complement,

Sc = {1, . . . , p}\S. Lastly, we write N(µ, σ2) for a univariate normal distri-

bution with mean µ and variance σ2.

In order to introduce the linear model formally, we consider

Y = Xϑ+ ε, (2.1)

where Y = (Y1, . . . , Yn)T is an n-dimensional vector of responses, X =

(X1, . . . , Xn)T is a deterministic n × (p + 1) design matrix of predictors

with rows Xi = (1, Xi1, . . . , Xip)
T for i = 1, . . . , n, ϑ = (ϑ0, ϑ1, . . . , ϑp)

T

is a (p + 1)-dimensional vector of parameters, and ε = (ε1, . . . , εn)T is an

n-dimensional vector of independent and identically distributed random

errors. To guarantee identifiability of the intercept term ϑ0, we set the

median of the errors εi equal to zero. The number of predictors p = pn
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2.1 Limitations of methods based on single loss functions

tends to infinity as n increases and is allowed to exceed the sample size n.

We suppose that the parameter vector ϑ in (2.1) is sparse, i.e. there exists

a set Q ⊂ {1, . . . , p} such that ϑj 6= 0 for j ∈ Q and ϑj = 0 for j ∈ Qc.

Without loss of generality let Q = {1, 2, . . . , q} for some sequence q = qn of

positive integers such that q < p.

2.1 Limitations of methods based on single loss functions

To identify the set Q in model (1), we will use multiple loss functions. This

is in contrast to many existing methods that are based on a single loss

function `(·), which yields estimators of the form

ϑ̂SIN = arg minθ{
∑n

i=1`(Yi −X
T
i θ) + φ(θ)} (2.2)

with parameter vector θ = (θ0, θ1, . . . , θp)
T ∈ Rp+1 and penalty function

φ(·), e.g. the L1 penalty (Tibshirani, 1996) and the SCAD penalty (Fan

and Li, 2001).

Ideally, if the error distribution in model (2.1) is known, one could let

`(·) in (2.2) equal the negative log-likelihood of ε1. Fan and Li (2001) have

proven that a penalized maximum likelihood estimator based on the SCAD

penalty ensures, under suitable conditions, model selection consistency, i.e.

pr{supp(ϑ̂SIN) = Q} → 1. However, in practice the distribution of ε1 is

usually hard to specify, so one may just use a fixed loss function `(·), such
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2.1 Limitations of methods based on single loss functions

as `(x) = x2/2. On the other hand, desirable properties of an estimator ϑ̂SIN,

which is based on a certain loss function `(·), typically rely on the validity

of some conditions concerning the error distribution. The quadratic loss

function, for example, needs the existence of E(ε 2
1 ). The quantile loss or

check function (Koenker, 2005) requires that the density f(·) of ε1 is positive

at the considered quantile level. If the composite quantile loss function (Zou

and Yuan, 2008; Gu and Zou, 2020) is used, the error density f(·) needs

to be bounded and differentiable over its support. The performance of

the composite loss function proposed by Bradic et al. (2011) depends on

the quality of an initial estimator, which is calculated from penalized least

squares regression in that article and requires E(ε 2
1 ) <∞.

Violation of these assumptions can substantially impair the perfor-

mance of ϑ̂SIN, leading to inconsistency in model selection. An example

is provided in Section 3 of Fan et al. (2014) for a simplified version of

model (2.1) with ϑ1 = . . . = ϑq > 0. When `(·) is the quadratic loss

function and φ(·) the L1 penalty, those authors show that for heavy-tailed

error distributions with infinite first moment, e.g. the Cauchy distribution,

the estimator ϑ̂SIN does not possess model selection consistency, that is,

pr{supp(ϑ̂SIN) = Q} < exp(−c) for some constant c > 0, unless ϑ1 � n1/4.

This is quite a stringent requirement that excludes cases where ϑ1 is finite,
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2.2 Proposed method

and is therefore unrealistic in practice; see Section 3 and the Supplementary

Material of Fan et al. (2014) for the proof and further details.

2.2 Proposed method

Motivated by the above-mentioned limitations of variable selection strate-

gies that use only a single loss function, we have developed a selection pro-

cess that is based on multiple loss functions. This means that the selection

result depends on multiple properties of the error distribution and not just

one single feature, e.g. the value of density at the median. More importantly,

when some of these properties fail to hold, the proposed process should still

be able to recover the true model consistently. An intuitive and illustrative

example is the linear model (2.1) with ε1 ∼ 0.5N(-5, 1) + 0.5N(5, 1), a loca-

tion mixture normal distribution. The median point of ε1 has an extremely

low density (less than 10-5) and an estimator that uses the absolute loss

function `(x) = |x|/2 would therefore not work well. However, the values of

the error density f(·) at most other quantiles are still significantly greater

than zero: The density at the quantile level τ ∈ {0.1, . . . , 0.4, 0.6, . . . , 0.9}

is above 0.1. Hence, for k ∈ {1, . . . , 9}\{5}, we can expect an estimator

ϑ̂k based on the check function `k(x) = x{k/10 − I(x < 0)} to perform

satisfactorily in terms of variable selection. Then, if we include in our final
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2.2 Proposed method

model only the predictors identified by most of the estimators {ϑ̂1, . . . , ϑ̂9}

as influential, it is very likely that the undesirable influence of ϑ̂5, using

the absolute loss function `5(x) = |x|/2, will be reduced to an acceptable

level. A numerical analysis of this example is provided in Section 4.1. Such

a strategy that considers multiple estimators coming from different loss

functions can be applied to a variety of scenarios.

We now formulate this idea and propose our variable selection method.

For some fixed integer K ≥ 1, we use K different convex loss functions

{`1(·), . . . , `K(·)} to obtain estimators

ϑ̂k = (ϑ̂k0, ϑ̂k1, . . . , ϑ̂kp)
T = arg minθ{

∑n
i=1`k(Yi −X

T
i θ) + φk(θ)} (2.3)

for k = 1, . . . , K, where θ = (θ0, θ1, . . . , θp)
T ∈ Rp+1 and φk(·) is a penalty

function. We do not specify the form of `k(·), allowing it to be any convex

loss function such as the quadratic loss function or the check function. In

Section 3 we study in detail the special case where `k(·) is the quantile loss

function.

Write Q̂k = supp(ϑ̂k) for the index set of the non-zero components of

ϑ̂k in (2.3), excluding the intercept term, which is usually not of interest

in variable selection. Then, for some threshold α ∈ {1, . . . , K}, our final

estimator Q̂(α) for the index set Q of the relevant predictors is determined
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2.2 Proposed method

by a voting procedure, i.e.

Q̂(α) = {j ∈ {1, . . . , p} :
∑K

k=1I(j ∈ Q̂k) ≥ α}. (2.4)

This means that the jth component ϑj of ϑ is included in the final estimator

Q̂(α), only if at least α of the K estimates {ϑ̂1j, . . . , ϑ̂Kj} are non-zero, i.e.

it receives α or more votes.

In the above, the K estimated parameter vectors {ϑ̂1, . . . , ϑ̂K} result

from minimizing different objective functions in (2.3) separately. Then they

are combined, with the help of the voting step (2.4), to yield the final re-

sult Q̂(α). This process may at first glance appear similar to the “stability

selection” method proposed by Meinshausen and Bühlmann (2010), but it

is substantially different: those authors use multiple random subsets of the

data {(Xi, Yi) : i = 1, . . . , n} to calculate a set of sparse estimators. If a

predictor is identified as relevant by sufficiently many of these estimates,

it is included in the model. In contrast to our article, the estimators in

Meinshausen and Bühlmann (2010) were all computed via penalized least

squares regression, i.e. using a single loss function, and the selection consis-

tency was shown only for normal errors. The method is apparently likely to

fail in scenarios with heavy-tailed error distributions, as discussed in Sec-

tion 2.1. Illustrations in Section 4.1 will further demonstrate the advantage

of our method over this type of resampling-based approach that depends
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2.2 Proposed method

on just a single loss function.

In the voting step (2.4), even if some of the selection results {Q̂1, . . . , Q̂K}

deviate significantly from the true model Q, it is still possible that the non-

zero parameters will receive α or more votes, while the zero ones will not, so

that the final estimator Q̂(α) performs well. In other words, our proposed

method only requires a certain proportion of {ϑ̂1, . . . , ϑ̂K} to be model se-

lection consistent. This property is straightforward to see. We state this

formally in the following proposition and refer to Section S2 in the Supple-

mentary Material for a short proof.

Proposition 1. Consider a threshold α ∈ {1, . . . , K} and let K∗ = max{α,

K − α + 1}. Suppose, without loss of generality, that the first K∗ of the

K estimators given in (2.3) are model selection consistent, i.e. pr(Q̂k =

Q)→ 1 for k = 1, . . . , K∗. Then the vote estimator Q̂(α) from (2.4) is also

consistent, i.e. pr{Q̂(α) = Q} → 1.

Remark 1. Proposition 1 provides a sufficient condition for Q̂(α) to be se-

lection consistent by requiring K∗ = max{α,K−α+1} of the K estimators

{ϑ̂1, . . . , ϑ̂K} are model selection consistent. It is clear that setting

α = dK/2e or d(K + 1)/2e (2.5)

in (2.4) is optimal in the sense of minimizing K∗ and thus relaxing the
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2.2 Proposed method

requirement in Proposition 1 to the greatest extent. It means, in particular,

that for this choice of α at least half of the estimators {Q̂1, . . . , Q̂K} must

be consistent. A smaller (or larger) value of α would necessitate a larger

number of consistent estimators. Note that the optimal α is unique if K

is an odd number. The numerical results in Section 4 show that α close to

dK/2e or d(K + 1)/2e, e.g. α = 5 or 6 when K = 9, works quite well in

practice, so the optimal α in (2.5) can indeed be recommended.

The condition in Proposition 1 may be stronger than necessary. For

example, in a model with Q = {1, 2}, if we consider K = 2 estimators

such that Q̂1 = {1} and Q̂2 = {2} with probability approaching one, the

condition in Proposition 1 means that both of the two estimators {Q̂1, Q̂2}

should be consistent. This is obviously violated by the fact that Q̂1 and Q̂2

both miss an important predictor, but Q̂(α) with threshold α = 1 is still

consistent since each of the non-zero parameter {ϑ1, ϑ2} receives one vote,

i.e. Q̂(1) = {1, 2} = Q. Nevertheless, Proposition 1 still demonstrates the

key feature of our method, i.e. being consistent in model selection even if

some of the estimators {ϑ̂1, . . . , ϑ̂K} are inconsistent.
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2.3 Variable selection with a weighted L1 penalty

2.3 Variable selection with a weighted L1 penalty

In the following we will verify the condition in Proposition 1 for a special

case of the penalized estimator in (2.3), namely when the penalty function

φk(θ) is a weighted L1 penalty, φk(θ) = nλn,k
∑p

j=1dkj|θj|, with weights

dkj > 0 and tuning parameter λn,k > 0 (k = 1, . . . , K; j = 1, . . . , p). Here

no penalty is imposed on the intercept term θ0, since it is usually not of

interest in variable selection. This type of penalty function is frequently

used in the literature (Zou and Li, 2008; Bradic et al., 2011; Fan et al.,

2014). We focus on this penalty, since it is convenient in both theory and

implementation due to its convex nature. There are other reasonable choices

for φk(·), e.g. the SCAD penalty and the minimax concave penalty (Zhang,

2010), which can be treated in a similar way.

With φk(·) the weighted L1 penalty, the estimators in (2.3) become

ϑ̂k = arg minθ{
∑n

i=1`k(Yi −X
T
i θ) + nλn,k

∑p
j=1dkj|θj|} (2.6)

for k = 1, . . . , K. Recall that Q̂k contains the indices of the non-zero

components of ϑ̂k (without the intercept term), i.e. Q̂k = supp(ϑ̂k) for

k = 1, . . . , K. As stated in Proposition 1, to ensure our final vote estimator

Q̂(α) given in (2.4) satisfies pr{Q̂(α) = Q} → 1, we assume without loss of

generality that the first K∗ = max{α,K−α+1} estimators {Q̂1, . . . , Q̂K∗}

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.3 Variable selection with a weighted L1 penalty

are consistent for Q. To guarantee that this assumption holds true for

{ϑ̂1, . . . , ϑ̂K∗} defined in (6), we need to assume some regularity conditions

on (i) the properties of the loss functions {`1(·), . . . , `K∗(·)} including their

unbiasedness and smoothness, (ii) the growth rates of the full model size p

and the number q of non-zero parameters, (iii) the behavior of the design

matrix X, and (iv) the rates of the tuning parameter λn,k and weights dkj

in the weighted L1 penalty (j = 1, . . . , p; k = 1, . . . , K∗). In particular we

consider ultrahigh dimensional scenarios, where p = pn may increase expo-

nentially with n, while q = qn is only required to be of lower order than

n. Also, the entries of X are allowed to diverge. For reasons of clarity, we

provide the complete list of regularity conditions, along with detailed expla-

nations, in Section S1 of the Supplementary Material. Assumptions of this

type are common in the literature on high dimensional regression; see, e.g.

Bradic et al. (2011), Wang et al. (2012) and Fan et al. (2014). We impose

no conditions on the remaining (K −K∗) estimators {ϑ̂K∗+1, . . . , ϑ̂K}.

In the following Theorem 1 we first establish that, with probability

tending to one, the estimator ϑ̂k equals the “biased oracle estimator”, given

by ϑ̂ok = (ϑ̂ok0, ϑ̂
o
k1, . . . , ϑ̂

o
kp)

T =

arg minθ∈Θ{
∑n

i=1`k(Yi −X
T
i θ) + nλn,k

∑p
j=1dkj|θj|} (2.7)

for k = 1, . . . , K∗, which is the minimizer of the penalized objective function
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2.3 Variable selection with a weighted L1 penalty

in the set Θ = {θ = (θ0, θ1, . . . , θp)
T ∈ Rp+1 : θj = 0 for j ∈ Qc}. This

indicates that ϑ̂k (k = 1, . . . , K∗) can successfully exclude all the irrelevant

predictors. In the second part of Theorem 1, we show under the assumption

that the values of non-zero parameters do not decay too quickly to be

detected, each of {ϑ̂1, . . . , ϑ̂K∗} recovers the index set Q of the non-zero

parameters with probability tending to one. Hence the final vote estimator

Q̂(α) possesses model selection consistency, according to Proposition 1.

Theorem 1. Suppose Assumptions 1-7 given in Section S1 of the Sup-

plementary Material are satisfied. Then, for k = 1, . . . , K∗, with K∗ =

max{α,K − α + 1} as defined in Proposition 1,

pr(ϑ̂k = ϑ̂ok) ≥ 1− 2(p− q) exp(−c z2
n) → 1 (n→∞). (2.8)

Here ϑ̂ok is the estimator defined in (2.7), c > 0 is some constant and

zn = n(ν0−2ν1)+/2+ν2 with constants {ν0, ν1, ν2} specified in Assumptions 3–

5 of Section S1 in the Supplementary Material. Further, as long as the

magnitudes of the non-zero parameters do not decay too fast, i.e. they satisfy

minj∈Q|ϑj| � (q/n)1/2, we have pr(Q̂k = Q)→ 1 for k = 1, . . . , K∗, which

implies the conclusion of Proposition 1, i.e. pr{Q̂(α) = Q} → 1.

Remark 2. Theorem 1 provides the asymptotic justification of our vari-

able selection approach. In the first conclusion (2.8), the constants ν0 and
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2.3 Variable selection with a weighted L1 penalty

ν1 in the term zn respectively control the divergence rates of the non-zero

parameter size in the model (i.e. q = O(nν0) with ν0 ∈ (0, 1)) and of the

correlation coefficients between the relevant and irrelevant predictors, while

ν2 regulates the magnitude of the (possibly divergent) maximum absolute

entry in the design matrix X. Details are provided in Section S1 of the Sup-

plementary Material; see Assumptions 3–5 and the explanations thereafter.

For the probability lower bound in (2.8) to be meaningful, i.e. tending to

one, we need a restriction on the model size p. We have

1− 2(p− q) exp(−c z2
n) ≥ 1− 2 exp(log p− c z2

n), (2.9)

which tends to one if z2
n = n(ν0−2ν1)++2ν2 � log p. This is satisfied by

Assumptions 3 and 5 in Section S1 of the Supplementary Material, which

guarantee log p = O(nκ) for some κ < (ν0 − 2ν1)+ + 2ν2, and therefore

z2
n = n(ν0−2ν1)++2ν2 � nκ ≥ c log p for some constant c > 0.

This shows 1 − 2 exp(log p − c z2
n) → 1, i.e. pr(ϑ̂k = ϑ̂ok) approaches one

exponentially fast (k = 1, . . . , K∗).

To establish the consistency of Q̂k, we need, in addition to the as-

sumptions in Section S1 of the Supplementary Material, the condition

minj∈Q|ϑj| � (q/n)1/2 on the size of the non-zero parameters. This type

of “smallest signal condition” ensures that non-zero parameters can be de-
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2.3 Variable selection with a weighted L1 penalty

tected and is common in the literature on high dimensional variable selec-

tion; see Wang et al. (2012), Fan et al. (2014) and Gao and Carroll (2017),

among others. Our assumption is weaker than many of its counterparts, e.g.

Wang et al. (2012) (minj∈Q|ϑj| � (q 2/n)1/2) and Gao and Carroll (2017)

(minj∈Q|ϑj| � (q 5/n)1/2), with a sequence q = qn that is allowed to diverge.

Remark 3. Properties of the weighted L1 penalty in (2.6) have been

widely investigated in the penalized regression literature. For example,

Zou and Li (2008) prove its model selection consistency in the context of

low-dimensional likelihood models. Bradic et al. (2011) use the weighted L1

penalty to construct a penalized composite quasi-likelihood estimator, for

which they obtain a probability lower bound analogous to (2.8). However,

they do not show that their estimator is able to identify the relevant pre-

dictors, thus leaving the selection consistency unclear. In Fan et al. (2014),

the weighted L1 penalty is combined with the quantile loss function. Model

selection consistency is attained when q = o(n1/2) (Condition 2 in Fan et al.

(2014)). This is stronger than our requirements on the model sparsity that

are specified in Assumptions 3–5. In contrast to the above-mentioned arti-

cles, Theorem 1 establishes the model selection consistency of the weighted

L1 penalty under fairly weak and reasonable conditions, allowing for ultra-

high dimensional data and a general loss function. Besides this asymptotic
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2.3 Variable selection with a weighted L1 penalty

result we also show that our method performs well in finite samples; see

Theorem 2 and our remarks preceding it.

Remark 4. Theorem 1 guarantees that the voting procedure (2.4) can

identify the set Q with probability approaching one, even if some (the

last (K − K∗)) of the estimators {ϑ̂1, . . . , ϑ̂K} fail. We investigate the

finite-sample properties of our estimator in Section 4, where we conduct

a number of comprehensive numerical studies. The results in that section

show that, even if ε1 follows a common distribution, e.g. normal or double

exponential distribution, our approach, based on multiple loss functions

and the voting procedure, still outperforms the standard methods, such

as least squares/absolute deviations regression, which also attain selection

consistency when the error distribution is well-behaved.

In addition to the asymptotic result established in Theorem 1, we also

study finite-sample properties of our selection method. We assess its per-

formance by considering the F -measure and the G-measure, defined as

F (S) =
2|S ∩ Q|
|S|+ |Q|

and G(S) =
|S ∩ Q|

(|S| × |Q|)1/2
for any S ⊂ {1, . . . , p},

with the convention that 0/0 = 0 (Nan and Yang, 2014; Yu et al., 2022).

Obviously, these two measures take values in [0, 1]. Large values indicate a

set S is close to the true index set Q of the relevant predictors. Theorem 2
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2.3 Variable selection with a weighted L1 penalty

below provides a probabilistic bound for F{Q̂(α)} and G{Q̂(α)} under the

assumptions listed in the Supplementary Material.

Theorem 2. Without loss of generality let |ϑ1| ≥ |ϑ2| ≥ . . . ≥ |ϑq| > 0.

Suppose Assumptions 1-7 in Section S1 of the Supplementary Material are

satisfied. For s ∈ {1, . . . , q}, if the penalty on {ϑ1, . . . , ϑq} is sufficiently

small, i.e. λn,k(
∑q

j=1 d
2
kj)

1/2 < M1 ξ |ϑs| for some ξ ∈ (0, 1), with M1 the

constant specified in Assumption 4, then

pr(min[F{Q̂(α)}, G{Q̂(α)}] ≥ s/q)

≥ 1− 2K∗{(p− q) exp(−c1z
2
n) + q exp(−c2nϑ

2
s/q)}, (2.10)

where {c1, c2} are some positive constants, zn is the sequence specified in

Theorem 1 and K∗ = max{α,K − α + 1} as defined in Proposition 1.

Remark 5. The two terms 2(p − q) exp(−c1z
2
n) and 2q exp(−c2nϑ

2
s/q) in

(2.10) correspond to the probabilities that the kth estimator ϑ̂k successfully

excludes all unimportant predictors and identifies the first s relevant ones:

For the events Ak = ∩ pj=q+1{ϑ̂kj = 0} and Bk(s) = ∩sj=1{ϑ̂kj 6= 0}, Theorem

1 states that pr(Ak) ≥ pr(ϑ̂k = ϑ̂ok) ≥ 1− 2(p− q) exp(−c1z
2
n). In the proof

we show that pr{Bk(s)} ≥ 1−2q exp(−c2nϑ
2
s/q). Result (2.10) immediately

follows from the fact that

{min[F{Q̂(α)}, G{Q̂(α)}] ≥ s/q} ⊃ {|Q̂(α)| ≤ q} ∩ {|Q̂(α) ∩Q| ≥ s}
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⊃ ∩K∗

k=1{Ak ∩Bk(s)}.

To ensure the probability lower bound in (2.10) approaches one, we need

that (p−q) exp(−c1z
2
n)→ 0 and q exp(−c2nϑ

2
s/q)→ 0 as n→∞. The first

requirement has been verified in the discussion after (2.9). The second one

holds true whenever |ϑs| � (q log q/n)1/2. This is a condition on the signal

strength which is similar to the assumption on minj∈Q |ϑj| in Theorem 1.

3. Implementation

This section details the implementation of our method. In the following

numerical study of Section 4, we will use the check function (Koenker,

2005), given by

`k(x) = x{k/(K + 1)− I(x < 0)} (k = 1, . . . , K), (3.1)

for calculating the estimator in (2.6). Other choices of `k(·), such as the ex-

pectile loss function (Newey and Powell, 1987) that includes `(x) = x2/2 as

a special example, would work as well. The optimization problem (2.6) with

loss function (3.1) can be efficiently solved by the R package rqPen, which

implements the algorithm proposed by Yi and Huang (2017). It is straight-

forward to show that the conditions on the loss functions {`1, . . . , `K∗} that

are required by Theorems 1 and 2 (see Assumptions 1 and 2 in the Supple-
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mentary Material) are satisfied by the check function (3.1), as long as the

distribution function of ε1 is differentiable with a positive derivative value

at its k/(K + 1) quantile (k = 1, . . . , K∗).

A reasonable choice of the weights dkj for the weighted L1 penalty in

(2.6) is the derivative of the SCAD function divided by the tuning param-

eter, i.e.

dkj = I(|ϑ̂(0)
kj | ≤ λn,k) + I(|ϑ̂(0)

kj | > λn,k)(aλn,k − |ϑ̂(0)
kj |)+/{(a− 1)λn,k}, (3.2)

where a is a constant usually set to 3.7 (Fan and Li, 2001) and the ini-

tial estimator ϑ̂
(0)
k = {ϑ̂(0)

k0 , ϑ̂
(0)
k1 , . . . , ϑ̂

(0)
kp }T = arg minθ{

∑n
i=1`k(Yi −XT

i θ) +

nλn,k
∑p

j=1|θj|}. The weighted L1 penalty with such weights was also used,

along with various loss functions, by Zou and Li (2008), Bradic et al. (2011)

and Fan et al. (2014), among others. Bradic et al. (2011) showed that the

data-driven weights dkj given by (3.2) satisfy (under suitable conditions)

the requirements in Assumption 7 of Section S1 in the Supplementary Ma-

terial with probability tending to one. A detailed discussion on properties

of this class of weighted L1 penalty functions in the context of quantile

regression can be found in Section 5 of Fan et al. (2014).

Regarding the tuning parameter λn,k of the penalty in (2.6), we recom-
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3.1 Post-selection estimation

mend taking

λ̂k = arg minλ∈L
[
log{

∑n
i=1`k(Yi −X

T
i ϑ̂k,λ)}+ Cn |supp(ϑ̂k,λ)|

]
, (3.3)

where Cn is of order log p × log(logn)/n, L is a candidate grid and ϑ̂k,λ

represents the solution of (2.6) with λn,k = λ. This type of Bayesian infor-

mation criteria is a fairly popular tool for selecting the tuning parameter in

penalized regression (Chen and Chen, 2008; Wang et al., 2009; Kim et al.,

2012; Wang et al., 2013; Lee et al., 2014; Peng and Wang, 2015; Sherwood

and Wang, 2016; Dai et al., 2023). Alternatively one could use cross val-

idation to determine λn,k. However, that approach would be considerably

more time-consuming than employing the criterion (3.3), in particular for

our case with multiple optimization tasks in high dimensional scenarios.

To facilitate computation further we suggest solving the K minimization

problems (2.6) in parallel, whenever possible. The processing time of our

method on simulated data will be reported at the end of Section 4.2.

3.1 Post-selection estimation

After identifying the index set Q̂(α) of the relevant predictors, we recom-

mend estimating the slope vector ϑ−1 = (ϑ1, . . . , ϑp)
T ∈ Rp by composite

quantile regression (Zou and Yuan, 2008; Gu and Zou, 2020): Our estimator
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3.1 Post-selection estimation

θ̂−1 = (θ̂1, . . . , θ̂p)
T ∈ Rp is obtained by solving

(θ̂01, . . . , θ̂0K , θ̂1, . . . , θ̂p) =

arg min(θ01,...,θ0K)∈RK , (θ1,...,θp)∈Θ̂

∑K
k=1

∑n
i=1`k(Yi − θ0k −

∑p
j=1θjXij) (3.4)

with Θ̂ = {(θ1, . . . , θp)
T ∈ Rp : θj = 0 for j /∈ Q̂(α)} and `k(·) in (3.1).

Under the conditions in Theorem 1, our method satisfies pr{Q̂(α) =

Q} → 1, so that with probability tending to one, the number of predictors in

the selected model is less than the sample size, i.e. |Q̂(α)| = |Q| < n. Equa-

tion (3.4) therefore depicts a low-dimensional regression problem, which

can be solved by the R package cqrReg without adopting a penalty term.

Property pr{Q̂(α) = Q} → 1 also implies θ̂−1 in (3.4) is asymptotically

equivalent to the oracle estimator θ̂ o−1 which solves (3.4) with Θ̂ replaced

by {(θ1, . . . , θp)
T ∈ Rp : θj = 0 for j /∈ Q}. Zou and Yuan (2008) de-

rive the limiting distribution of θ̂ o−1 and show that it is more efficient than

other methods such as least squares regression. These properties hold un-

der rather weak conditions on the error distribution, allowing for heavy

tails and low density values at some points. In Section 4 we also imple-

ment penalized composite quantile regression, comparing its selection and

estimation performance with that of our method.
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4. Numerical studies

In this section we study the numerical performance of our method. The

response vector is Y = Xϑ+ ε throughout, with various choices of ϑ and ε.

The first component of Xi is set to be constant one, while the last p com-

ponents are drawn independently from a p-variate normal distribution with

mean zero and a covariance matrix whose (i, j)th entry equals 0.5|i−j|. The

sample size is always n = 200, whereas p will be set to different quantities.

In the optimization problem (2.6) we set K = 9 and use the quantile loss

function (3.1). The weighted L1 penalty with weights (3.2) is applied to our

method as well as to the other approaches. All the results are summarized

over 200 iterations. Our method is also applied to analyze a data set of

financial market indices. In the interest of space, we present the detailed

descriptions and results of this real data example in Section S3.2 of the

Supplementary Material.

4.1 Simple illustrations to demonstrate the key feature

We first illustrate the advantage of using multiple loss functions by means

of two simple studies. This provides an explicit comparison between our

method and a reference selection process, which is based on resampling and
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4.1 Simple illustrations to demonstrate the key feature

the estimator

ϑ̃k = arg minθ{
∑

i∈Ik`(Yi −X
T
i θ) + nλn,k

∑p
j=1dkj|θj|} (4.1)

for k = 1, . . . , K. In contrast to our estimator ϑ̂k in (2.6), the estimator

ϑ̃k involves only data with indices in Ik, which is a subset of size bn/2c

randomly selected from {1, . . . , n}. Also, all the K estimators in (4.1) are

calculated using just one loss function `(·). This is an adaption of the “sta-

bility selection” approach developed by Meinshausen and Bühlmann (2010).

That method fixes the tuning parameter λn,k = λn for all the K estimators

and yields a “stability path” along the possible values of λn, consisting of

the relative frequencies for each predictor to be selected with a randomly

chosen Ik. Our approach is different: We allow the tuning parameters for

the K estimators to vary, while aiming to obtain {ϑ̃1, . . . , ϑ̃K} for a vot-

ing procedure similar to ours, see equation (2.4) in Section 2.2, so that

the two methods are comparable. The size bn/2c of Ik was recommended

by Meinshausen and Bühlmann (2010) to resemble the bootstrap process

(Freedman, 1977; Bühlmann and Yu, 2002) and facilitate computation.

We set p = 6 and ϑ = (0, 1, 1, 0, 0, 1, 0)T ∈ Rp+1 while letting `(x) =

x2/2 or |x|/2 in (4.1). The distribution of ε1 in model (2.1) is either standard

Cauchy or mixture normal 0.5N(-5, 1) + 0.5N(5, 1). Under these two non-

standard error distributions (with an infinite first moment or extremely low
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4.1 Simple illustrations to demonstrate the key feature

density value at the median), the results of the study, visualized by box

plots, will demonstrate the superiority of our proposed method over the

resampling-based approach, which relies on a single loss function.

To reduce the impact of tuning parameter selection, we draw from the

distribution of (X1, Y1) a validation set

V = {(X ′i, Y ′i ) : i = 1, . . . , 2000} (4.2)

independent of {(Xi, Yi) : i = 1, . . . , n}. The parameter λn,k in (2.6) and

in (4.1) is optimally determined by minimizing the prediction error (based

on the corresponding loss function used for estimation) that is calculated

from the data set V , analogously to Wang et al. (2012), Mazumder et al.

(2011), etc. Up to nine votes can be received by each predictor in the 200

iterations. They are presented in the six plots of Figure 1. When referring

to “the (i, j)th plot” in the following, we mean the plot in the ith row and

the jth column (i ∈ {1, 2, 3}; j ∈ {1, 2}).

Inspecting Figure 1, we observe in the (1, 1)th and (1, 2)th plots that our

vote method with multiple quantile loss functions works very well for stan-

dard Cauchy errors (left panel) and for location mixture normal errors (right

panel), clearly separating important (highlighted in red) and unimportant

predictors. Although the check function `5(x) = |x|/2 in (3.1) is not sup-

posed to perform well when the error distribution is 0.5N(-5, 1)+0.5N(5, 1),
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4.1 Simple illustrations to demonstrate the key feature

Figure 1: Votes received by each predictor in 200 iterations. The error
distribution in the panels on the left-hand side is standard Cauchy and
on the right-hand side 0.5N(-5, 1) + 0.5N(5, 1). The first row displays the
results from our vote method with multiple quantile loss functions, while
the second and third rows present the results from the resampling-based
vote method with the quadratic and absolute loss function. The important
predictors are highlighted in red.
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4.1 Simple illustrations to demonstrate the key feature

due to its extremely low density value at the median, our vote method

still yields satisfactory selection results in this scenario. It indicates that

the undesirable effect of ϑ̂5 calculated from `5(·) has been reduced to an

acceptable level, underlining the major advantage of our method. In con-

trast, the (2, 1)th plot (Cauchy errors and quadratic loss) and the (3, 2)th

plot (location mixture normal errors and absolute loss) reveal the apparent

failure of the resampling-based selection process when the random error

follows the Cauchy or the location mixture normal distribution – all the

predictors receive almost the same amount of votes and the important ones

(highlighted in red) cannot be distinguished from the others. These results

are in agreement with the statements in Sections 2.1 and 2.2: Variable se-

lection based on the quadratic or the absolute loss function requires the

error distribution to have a finite first moment or, respectively, the den-

sity value at the median to be positive. The quadratic loss function does

not work well in the (2, 2)th plot either. This may be attributed to the

instability caused by the high variance of the mixture normal distribution

0.5N(-5, 1) + 0.5N(5, 1), which is 26. Under the Cauchy error distribution

with a high density value at the median, the (3,1)th plot shows, as expected,

that the absolute loss function gives results similar to those of our method.

In general, the outcomes of these two simple experiments corroborate the
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4.2 Simulations

advantage of our vote method with multiple loss function, i.e. the ability to

attain good selection results even if some of the loss functions fail.

4.2 Simulations

In the following we conduct simulations for high dimensional scenarios with

p = 500 or 800. The non-zero components of ϑ are

(ϑ1, ϑ3, ϑ5, ϑ8, ϑ10, ϑ13, ϑ16) = (2.00, 1.50, 0.80, 1.00, 1.75, 0.75, 0.50). (4.3)

Similar regression models were used by Fan et al. (2014) for simulations.

We consider five different error distributions: (i) a normal distribution,

N(0, 3); (ii) a t-distribution with two degrees of freedom, T2; (iii) a double

exponential distribution with mean 0 and variance 2; (iv) a location mixture

normal distribution, 0.5N(-3/2, 1) + 0.5N(3/2, 1); and (v) a scale mixture

normal distribution, 0.1N(0, 25) + 0.9N(0, 1). These choices cover a wide

range of error distributions with various features.

As well as our vote method with multiple quantile loss functions we also

implement a resampling-based version of our vote method with just one loss

function `(x) = x2/2 or `(x) = |x|/2, which recovers Q by a procedure sim-

ilar to (2.4) but with Q̂k replaced by supp(ϑ̃k) from (4.1). The resampling-

based approach serves as a reference to demonstrate the benefit of using

multiple loss functions in our method. In addition, we consider three
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standard approaches: least squares regression (LSR), least absolute de-

viations regression (LADR) and composite quantile regression (CQR) (Zou

and Yuan, 2008; Gu and Zou, 2020) with quantile levels {0.1, 0.2, . . . , 0.9}.

The threshold for all voting procedures is α = 5 or 6 (see Remark 1). For

fair comparison, we apply the same weighted L1 penalty with the weights

given in (3.2) to our method and to all the competitors. The tuning param-

eters λn,k are determined by minimizing prediction errors calculated over

the validation data (4.2), but we also use λ̂k from (3.3) for the construction

of our estimator. For each of these approaches, the means of false nega-

tives (number of missed important predictors) and false positives (number

of selected unimportant predictors), given by |Q̂c ∩Q| and |Q̂ ∩ Qc| for an

estimator Q̂ of Q, are recorded in Table 1. The lower these two indices, the

better a method performs. Based on the index set Q̂(α) given by our selec-

tion procedure, we also construct the post-selection estimator θ̂−1 for the

slope vector ϑ−1 = (ϑ1, . . . , ϑp)
T as described in Section 3.1. We compare

the L2 error E(‖θ̂−1−ϑ−1‖) of our estimator θ̂−1 with those of LSR, LADR

and CQR which conduct selection and estimation simultaneously. Here ‖·‖

means the L2 norm of a vector. The resampling-based selection approach

(RVQ and RVA in the tables) does not yield an estimator for ϑ−1 so we

do not consider its estimation error. The results of cases with p = 800 are
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Table 1: Means of false negatives (FN), false positives (FP) and L2 errors
(Err) of our vote method using multiple quantile loss functions with tuning
parameters selected by criterion (3.3) (VQC) or validation data (VQV), of
the resampling-based vote method using the quadratic (RVQ) or the abso-
lute loss function (RVA), of least squares regression (LSR), of least absolute
deviations regression (LADR) and of composite quantile regression (CQR)
for various error distributions. The lower FN, FP and Err, the better a
method performs. The numbers (in parentheses) after the four vote meth-
ods refer to the values of the threshold α in the voting procedure (2.4). Here
the sample size n = 200 and the full model size p = 500. The abbreviation
DE denotes the double exponential distribution with mean 0 and variance 2;
LMN a location mixture normal distribution, 0.5N(-3/2, 1) + 0.5N(3/2, 1);
SMN a scale mixture normal distribution, 0.1N(0, 25) + 0.9N(0, 1).

N(0, 3) T2 DE LMN SMN

FN FP Err FN FP Err FN FP Err FN FP Err FN FP Err

VQC(5) 0.59 0.41 0.55 0.36 0.15 0.40 0.10 0.13 0.28 0.69 0.92 0.57 0.12 0.12 0.28

VQV(5) 0.28 1.11 0.53 0.10 1.18 0.43 0.01 0.99 0.34 0.40 1.22 0.56 0.01 1.08 0.34

RVQ(5) 0.26 2.07 — 1.17 2.23 — 0.08 2.05 — 0.30 2.20 — 0.38 2.26 —

RVA(5) 0.36 6.88 — 0.15 6.33 — 0.04 6.73 — 0.53 7.03 — 0.03 6.92 —

VQC(6) 0.77 0.17 0.58 0.50 0.09 0.44 0.21 0.05 0.30 0.92 0.30 0.59 0.21 0.04 0.31

VQV(6) 0.42 0.42 0.58 0.17 0.44 0.39 0.06 0.33 0.29 0.56 0.48 0.61 0.02 0.45 0.29

RVQ(6) 0.39 0.77 — 1.43 0.85 — 0.14 0.80 — 0.49 0.87 — 0.55 0.89 —

RVA(6) 0.50 3.08 — 0.25 2.77 — 0.09 3.14 — 0.74 3.12 — 0.06 3.22 —

LSR 0.04 18.39 0.55 0.50 21.53 0.97 0.01 14.67 0.40 0.06 21.17 0.59 0.08 20.02 0.62

LADR 0.26 7.68 0.78 0.03 7.48 0.52 0.01 7.14 0.30 0.67 8.24 1.01 0.00 7.29 0.45

CQR 0.64 3.51 0.73 0.63 12.82 0.75 0.67 4.40 0.39 0.82 4.17 1.00 0.80 6.66 0.54

presented in Table S1 of the Supplementary Material.

In Tables 1 and S1 (of the Supplementary Material), our proposed

method (VQC and VQV) produces in all the cases the lowest false posi-

tives, along with false negatives and L2 errors that are fairly close to (if not

lower than) those from the other approaches. These results indicate that

our method achieves a good balance between the two aspects of variable
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selection: it excludes unimportant predictors effectively, while the num-

ber of missed important predictors is kept at a reasonable level. Analo-

gously to the results in Section 4.1, the approaches relying on the absolute

loss function (RVA and LADR) and the quadratic loss function (RVQ and

LSR) again break down when ε1 follows the location mixture normal (with

a low density value at the median) or the T2 (with an infinite variance)

distribution, giving high false positives or false negatives along with ex-

ceedingly large estimation errors. In contrast, our method recovers the un-

derlying models in these two non-standard cases much more precisely. On

the other hand, if the error distribution is normal or double exponential,

i.e. of the more well-behaved type, our method still performs about as well

as the resampling-based approach using the optimal loss function, i.e. the

quadratic or absolute one. In contrast to our approach that uses the voting

procedure, the approaches without voting, LSR, LADR and CQR, incor-

rectly identify considerably more unimportant predictors across all cases.

This substantially impairs the simplicity and interpretability of the fitted

models, which are the main goal of variable selection. In summary, the

simulations confirm the usefulness of the voting strategy in reducing false

positives. The numbers in Tables 1 and S1 demonstrate the advantage of our

method over the other approaches, which is achieved by the combination of

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4.2 Simulations

multiple loss functions and the voting strategy. The simulation results also

justify the recommended choices for the threshold α and tuning parameter

λn,k in equations (2.5) and (3.3). For α in the voting step (2.4), the num-

bers in Tables 1 and S1 suggest the choice α = 6 tends to underfit models

slightly (as do higher values of α), so we prefer to take α = dK/2e = 5 as

recommended in (2.5). The Bayesian-type information criterion (3.3) for

selecting λn,k has a decent performance (see the results of VQC in Tables

1 and S1): It yields, in general, smaller models than the approach using

the validation data (4.2) (VQV). The tendency of the Bayesian information

criteria to underfit models was also noticed by Lee et al. (2014) in their

numerical study. Last but not least, criterion (3.3) can be recommended

for practical applications because of its superior computational efficiency

relative to cross validation.

We measured the computing speed on a 2.6 GHz processor when p =

800, ε1 ∼ N(0, 3) and 2, 000 validation data were used to select the tuning

parameters from a candidate grid of 100 different quantities. In this setup

the mean and the median processing times of least absolute deviations re-

gression were 16 seconds in both cases, while those of our method were 63

and 62 seconds. The 9 minimization tasks in (2.6) were conducted in par-

allel using the R package foreach. Our method needed only 3 times more
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time than a single penalized quantile regression process, although 9 such

problems had to be solved. We expect that this should be almost the same

if we determine the tuning parameters using criterion (3.3), because such a

change does not increase the computational complexity. The use of parallel

computing therefore keeps the computational burden of our method at a

reasonable level.

5. Concluding remarks

In order to identify the relevant predictors in a high dimensional linear

model, we have developed a selection process that combines the results of

multiple sparse estimators. Our method was derived for linear regression,

which, thanks to its simple structure, is the most fundamental regression

model for the analysis of high dimensional data. Yet our method can be

naturally extended to variable selection in more sophisticated regression

models, e.g. nonparametric additive models (Huang et al., 2010) and semi-

parametric partially linear models (Wang et al., 2011; Sherwood and Wang,

2016). By modifying the estimation procedure (2.3) according to the spe-

cific model, we expect that in these settings a selection process based on

multiple sparse estimators and a voting procedure will be able to effectively

identify the predictors that affect the response in a linear or nonlinear way.
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As a concrete example, we elaborate the extension of our method to non-

parametric additive models in Section S4 of the Supplementary Material.

Supplementary Materials

The assumptions and proofs of the theoretical results from Section 2, as

well as additional numerical results and a discussion on the extension of

our method, are provided in the online Supplementary Material. All the

programs in Section 4 are available at https://github.com/guorongdai/

Variable-Selection-through-Vote.
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