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Abstract: The development of high-dimensional white noise test is important in

both statistical theories and applications, where the dimension of the time se-

ries can be comparable to or exceed the length of the time series. This paper

proposes several distribution-free tests using the rank based statistics for testing

the high-dimensional white noise, which are robust to the heavy tails and do not

quire the finite-order moment assumptions for the sample distributions. Three

families of rank based tests are analyzed in this paper, including the simple lin-

ear rank statistics, non-degenerate U-statistics and degenerate U-statistics. The

asymptotic null distributions and rate optimality are established for each family

of these tests. Among these tests, the test based on degenerate U-statistics can

also detect the non-linear and non-monotone relationships in the autocorrela-

tions. Moreover, this is the first result on the asymptotic distributions of rank

correlation statistics which allowing for the cross-sectional dependence in high

dimensional data.

Key words and phrases: Key Words: White noise test, Serial correlation, High

dimensionality, Simple linear rank statistics, Non-degenerate U-statistics, Degen-

erate U-statistics.
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1. Introduction

The hypothesis test for white noise is a critical methodology in statistical

inference and modeling. It is necessary in diagnosis checking for the lin-

ear regression and time series modeling. There has been a vast increase

in the amount of high-dimensional data available in recent years, which

has received increasing attention from statisticians. The existence of such

high-dimensional data is widespread, including the areas of genomics, neu-

roscience, finance, economics and so on. This brings additional difficulties

for the problem of diagnosis checking, which means that in the theoretical

development of the test for high-dimensional white noise, the dimension of

the time series can be comparable to or exceed the length of the time series.

For the white noise tests designed for univariate time series, many com-

monly used methodologies are well documented in Li (2004). The alterna-

tive hypothesis of these tests can be grouped into two different classes: (i)

specified alternative in form of some explicit parametric model; (ii) com-

pletely unspecified alternative, which means that the departure from white

noise can be arbitrary. It is well known that likelihood based tests are more

powerful than the omnibus tests under the first class of the alternatives,

see, e.g. Chang et al. (2017). Under the second class of alternatives, the

Box-Pierce portmanteau test and its variations are most popular because of
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its ease of use in practice and motivate the white noise tests for multivariate

time series such as Hosking (1980) and Li and McLeod (1981). Specially,

the Ljung–Box test is a type of statistical test of whether any of a group of

autocorrelations of a time series are different from zero. Instead of testing

randomness at each distinct lag, it tests the “overall” randomness based on

a number of lags. These tests enjoy the theoretical benefits of asymptoti-

cally distribution-free and χ2-distributed properties under null hypothesis,

see, e.g. Li (2004) and Lütkepohl (2005).

There are also some white noise tests constructed for the multivariate

time series which assuming that the dimension of the times series is smaller

than the length of the time series in asymptotics, see, e.g., Hosking (1980)

and Li and McLeod (1981). However, the existing literature suggests that

these tests suffer from the slow convergence to their asymptotic null distri-

butions, see Li et al. (2019). This fact calls for the more efficient testing

methodologies for multivariate time series, or even high-dimensional time

series.

Several omnibus tests for high-dimensional white noise have been de-

veloped in recent years, see, e.g., Chang et al. (2017), Li et al. (2019), Tsay

(2020) and Feng et al. (2022b). Among these existing theories, the tests

proposed in Chang et al. (2017), Li et al. (2019) and Feng et al. (2022b) are
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distribution-dependent, while the test in Tsay (2020) is distribution-free.

Chang et al. (2017) developed a max-type test for this purpose based on

the maximum absolute auto-correlations and cross-correlations of the com-

ponent series. Li et al. (2019) proposed a sum-type test for high dimensional

white noise by summing up the squared singular values of the first several

lagged sample auto-covariance matrices. In general, the max-type test can

only work well under the sparse alternatives where only a few elements in

the auto-correlations are nonzero. In contrast, the sum-type test can only

work well under the dense alternatives. To test the high dimensional white

noise, Feng et al. (2022b) show the asymptotic independence between the

max-type test statistic and a new sum-type test statistic. Based on this the-

oretical result, this paper constructed the Fisher’s combination test which

is robust to both sparse and dense alternatives. As a distribution-free ap-

proach, Tsay (2020) developed the high-dimensional white noise test based

on the Spearman’s rank correlation and the theory of extreme values.

More accurately, in this paper we consider the following hypothesis

testing problem. Let εt be a p-dimensional weakly stationary time series

with mean zero. We want to test the following hypothesis:

H0 : {εt} is white noise versus H1 : {εt} is not white noise (1.1)

In this paper, we said a time series x1, · · · , xT are white noise if they are
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all independent and identically distributed. So, under the null hypothesis,

εt+k is independent of εt for all k > 0. Here the dimension of the time series

p is comparable to or even larger than the sample size n.

In this paper, we develop the rank based tests for testing the high-

dimensional white noise, which are distribution-free. The proposed tests

are robust to the heavy tails and do not require the finite-order moment

assumptions or any tail assumptions for the sample distribution. There

are three families of rank based tests investigated in this paper, including

the simple linear rank statistics, non-degenerate U-statistics and degenerate

U-statistics, with the examples of Spearman’s rho, Kendall’s tau, Hoeffd-

ing’s D, Blum-Kiefer-Rosenblatt’s R and Bergsma-Dassios-Yanagimoto’s

τ ∗. Among these tests, simple linear rank statistics and non-degenerate

U-statistics can only work well with the linear or monotone relationships in

autocorrelations. In contrast, the degenerate U-statistics can also work well

with the non-linear and non-monotone relationships in autocorrelations. As

the theoretical results of this paper, we have established the asymptotic null

distribution, the power analysis and the rate optimality in terms of power

for each family of the rank based test statistics.

Because this paper shows one possible application of the rank corre-

lation statistics in high-dimensional data analysis, we here provide a brief
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literature review for the rank correlation statistics and point out the the-

oretical contribution of this paper. Han et al. (2017) proposed the rank

based tests based on the simple linear rank statistics and non-degenerate

U-statistics for testing the mutual independence among all elements in the

high-dimensional random vectors. Drton et al. (2020) proposed the hypoth-

esis test based on the degenerate U-statistics with the same purpose as Han

et al. (2017). As mentioned earlier, Tsay (2020) applied the Spearman’s

rank correlation to the test of high-dimensional white noise. However, the

asymptotic distributions of the rank correlation statistics in these three ex-

isting literature are all derived based on the assumption of cross-sectional

independence in high-dimensional data. Therefore, as the theoretical con-

tribution of our result, this is the first paper in existing literature which

established the asymptotic distribution of the rank correlation statistics

without assuming the cross-sectional independence.

The main contributions of this paper are summarized as follows.

1. We develop the rank based tests for testing the high dimensional white

noise, which are distribution free. Our test are robust to the heavy

tails and do not require the finite-order moment assumptions.

2. Besides the simple linear rank statistics and non-degenerate U-statistics,

we also develop the tests for the degenerate U-statistics, which are
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very useful to detect the non-linear and non-monotone relationships

in autocorrelations. Limiting null distributions and the rate optimal-

ity in terms of power of these three families of tests are established in

this paper.

3. In the existing literature concerning the asymptotic distribution of

rank correlation statistics, this paper is the first one on this topic

which allowing for the cross-sectional dependence in the high-dimensional

data. In contrast, the other existing results are all based on the as-

sumption of cross-sectional independence of the data, see, e.g., Han

et al. (2017), Drton et al. (2020) and Tsay (2020).

This paper is organized as follows. Section 2 proposes the theoretical

results about three families of distribution-free test statistics, including the

simple linear rank statistics, non-degenerate U-statistics and degenerate U-

statistics. The limiting null distributions of these tests are derived and their

rate-optimality in terms of power is also analyzed. Section 3 shows the em-

pirical sizes and the power comparison of the proposed test statistics based

on Monte Carlo simulation. Section 4 concludes this paper and discusses

several possible directions for the research in the future. All mathematical

proofs of the theoretical results in this paper are collected in supplementary

material. In the supplementary material, we also consider high dimensional
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white noise test based on Chatterjee’s rank Correlation (Chatterjee , 2021)

and L-statistics with the above three-type rank based correlations (Chang

et al. , 2023).

2. Rank based tests

In this section, we state the theoretical results for three families of rank

based methodologies for testing the high-dimensional white noise, including

simple linear rank statistics, non-degenerate U-statistics and degenerate U-

statistics.

2.1 Simple linear rank statistics

First, we restate the definition of relative ranks in Han et al. (2017). Con-

sider the dependence between {(ε1,i, εk+1,j), · · · , (εn−k,i, εn,j)} for any two

entries i, j ∈ {1, . . . , p}. Let Qi
n−k,t(k) be the rank of εt,i in {ε1,i, . . . , εn−k,i}

and let Q̃j
n−k,t+k(k) be the rank of εt+k,j in {εk+1,j, · · · , εn,j}. LetRij

n−k,t+k(k)

be the relative rank of εt+k,j compared to εt,i; that is, Rij
n−k,t+k(k) ≡

Q̃j
n−k,t′+k(k) subject to the constraint that Qi

n−k,t′(k) = t for t = 1, · · · , n−

k.

The first family includes tests based on simple linear rank statistics of
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2.1 Simple linear rank statistics

the form

Vij(k) ≡ (n−k)1/2
n−k∑
t=1

cn−k,tg
{
Rij

n−k,t+k(k)/(n− k + 1)
}

(i, j ∈ {1, . . . , p})

where {cn−k,t, t = 1, . . . , n− k} form an array of constants called the re-

gression constants and g(·) is a Lipschitz function called the score function.

We assume
∑n−k

t=1 c2n−k,t > 0 to avoid triviality. It is immediately clear that

Spearman’s rho belongs to the family of simple linear rank statistics. To

accommodate tests of high-dimensional white noise, we further pose the

alignment assumption

cn−k,t = (n− k)−1f{t/(n− k + 1)}

where f(·) is a Lipschitz function. Under this assumption, the simple linear

rank statistic is a general measure of the agreement between the ranks of

two sequences. The Spearman’s rho belongs to the family of simple linear

rank statistics with g(x) = f(x) = x− 1
2
.

Under H0, the distribution of Vij(k) is irrelevant to the specific distri-

bution of εt for all i, j ∈ {1, . . . , p}. Accordingly, the mean and variance of

Vij(k) are calculable without knowing the true distribution. Let EH0(·) and

varH0(·) be the expectation and variance of a certain statistic under H0. We

have

EH0 (Vij(k)) = (n− k)1/2ḡn−k

n−k∑
t=1

cn−k,t, (2.2)
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2.1 Simple linear rank statistics

σ2
V = varH0 (Vij(k)) =

n− k

n− k − 1

n−k∑
t=1

[g{i/(n− k + 1)} − ḡn−k]
2
n−k∑
t=1

(cn−k,t − c̄n−k)
2

(2.3)

where ḡn−k ≡ (n − k)−1
∑n−k

t=1 g{t/(n − k + 1)} is the sample mean of

g
{
Rij

n−k,t/(n− k + 1)
}
(t = 1, . . . , n− k) and c̄n−k = (n− k)−1

∑n−k
t=1 cn−k,t.

Based on {Vij(k), 1 ⩽ i, j ⩽ p, 1 ≤ k ≤ K} , we propose the following statis-

tic for testing H0 :

Vn ≡ max
1≤k≤K

max
1≤i,j≤p

|Vij(k)− EH0 (Vij(k))|

Note that we can allow K to grow as n increase. Let N = Kp2. We define

the following assumption for any matrix Σ:

(A1) Let Σ = (σij)1≤i,j≤N . For some ϱ ∈ (0, 1), assume |σij| ≤ ϱ for all

1 ≤ i < j ≤ N and N ≥ 2. Suppose {δN ;N ≥ 1} and {ςN ;N ≥ 1}

are positive constants with δN = o(1/ logN) and ς = ςN → 0 as

N → ∞. For 1 ≤ i ≤ N, define BN,i = {1 ≤ j ≤ N ; |σij| ≥ δN} and

CN = {1 ≤ i ≤ N ; |BN,i| ≥ N ς} . We assume that |CN | /N → 0 as

N → ∞.

Here we define {ν1, · · · , νKp2} = {Vij(k)/σV }1≤i,j≤p,1≤k≤K . Define σ
V
ij =

cor(νi, νj) and ΣV = (σV
ij )1≤i,j≤N .

To derive the limiting null distribution of simple linear rank statistics,

we need the following conditions.
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2.1 Simple linear rank statistics

(C1) The regression constants {cn−k,1, . . . , cn−k,n−k} satisfying

max
1⩽i⩽n−k

|cn−k,i − c̄n−k|2 ⩽
C2

1

n− k

n−k∑
i=1

(cn−k,i − c̄n−k)
2 ,∣∣∣∣∣

n−k∑
i=1

(cn−k,i − c̄n−k)
3

∣∣∣∣∣
2

⩽
C2

2

n− k

{
n−k∑
i=1

(cn−k,i − c̄n−k)
2

}3

where c̄n−k ≡
∑n−k

i=1 cn−k,i represents the sample mean of the regres-

sion constants and C1 and C2 are two constants.

(C2) The score function g(·) is differentiable with bounded Lipschitz con-

stant.

(C3) The correlation matrix ΣV satisfies Assumption (A1).

Remark: The assumption (A1) is the same as the condition (2.2)

in Feng et al. (2022a), which demands the number of variables that are

strongly-correlated with many other variables should not be too much. If

the eigenvalues of ΣV are all bounded, we have max1≤i≤N

∑N
j=1 σ

V 2
ij ≤ C

for some constant C > 0. Then, let δN = (logN)−2 for N ≥ ee, so for each

1 ⩽ i ⩽ N, δ2N · |BN,i| ⩽
∑N

j=1 σ
V 2
ij ⩽ C. Hence, |BN,i| ⩽ C · (logN)2 < Nκ

where κ = κN := 5(log logN)/ logN for large N . As a result, |CN | = 0

and condition (C3) holds. Condition (C1) is commonly used to deviate the

asymptotical normality of the simple linear rank statistics, see Hájek et al.

(1999) and Kallenberg (1982). If f is a linear function, Condition (C1) will
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2.1 Simple linear rank statistics

hold directly.

Next, we state the theoretical result about the limiting null distribution

of simple linear rank statistics.

Theorem 1. Suppose (C1)-(C3) hold. Then, under H0, for any y ∈ R, we

have

∣∣P (
V 2
n /σ

2
V − 2 log(Kp2) + log log(Kp2) ⩽ y

)
− exp

{
−π−1/2 exp(−y/2)

}∣∣ = o(1)

where σ2
V = varH0(Vij(k)) if N = o(nϵ) as n → ∞ for some positive constant

ϵ.

We propose the following size-α test T V
α of H0:

T V
α

.
= I

(
V 2
n /σ

2
V − 2 log(Kp2) + log log(Kp2) ≥ qα

)
, (2.4)

where qα = − log(π)− 2 log log(1− α)−1.

To specify the alternative hypothesis, we introduce a notation for a set

of vectors which satisfying some specific condition. Define N = Kp2. Let

U(c) be a set of vectors indexed by a constant c:

U(c) ≡
{
M = (ml)1≤l≤N ∈ RN | max

1≤l≤N
ml ⩾ c(logN)1/2

}
.

Based on the above definition, we know that U(c) is the set of vectors of

which at least one element has magnitude greater than c(logN)1/2 for some

large enough constant c > 0.
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2.1 Simple linear rank statistics

Next, we specify the sparse local alternative based on U(c). We define

the random vector V̂ =
[
V̂ij(k)

]
∈ RN by

V̂ij(k) = σ−1
V {Vij(k)− EH0 (Vij(k))} , (1 ⩽ i, j ⩽ p; 1 ⩽ k ⩽ K)

where σV is defined in (2.3) and {Vij(k), 1 ⩽ i, j ⩽ p, 1 ≤ k ≤ K} are the

simple linear rank statistics. Let the population version of V̂ be V ≡ E(V̂ ).

We study the power of tests against the alternative

HV
a (c) ≡ {F (ε) : V {F (ε)} ∈ U(c)}

where F (ε) is the joint distribution function of ε and we write V {F (ε)} to

emphasize that V = E(V̂ ) =
∫
V̂ dF (ε) is a function of F (ε).

The following theorem now describe the conditions under which the

power of the test based on simple linear rank statistics converges to one as

n and p going to infinity, under the sparse local alternative HV
a .

Theorem 2. Assume Conditions (C1)-(C3) hold. And assume that σ2
V =

A1{1 + o(1)} and max{|f(0)|, |g(0)|} ⩽ A2 for some positive constants A1

and A2. Further assume that f(·) and g(·) have bounded Lipschitz constants.

Then, for some large scalar B1 depending only on A1, A2 and the Lipschitz

constants of f(·) and g(·)

inf
F (ε)∈HV

a (B1)
pr

(
T V
α = 1

)
= 1− o(1)
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2.1 Simple linear rank statistics

where the infimum is taken over all distributions F (ε) such that V {F (ε)} ∈

U (B1).

Define rij(k) is the correlation between εt,i and εt+k,j. To investigate

the rate optimality of the test based on simple linear rank statistics, we

need the following assumption for the distribution:

(A2) When ε is Gaussian, suppose that for large n and p, cVij(k) ⩽ rij(k) ⩽

CVij(k) for 1 ≤ i, j ≤ p, 1 ≤ k ≤ K with probability tending to one,

where c and C are two constants.

For each n, define Tα to be the set of all measurable size-α tests. In

other words, Tα := {Tα : pr(Tα = 1|H0) ≤ α}.

Finally, the rate optimality result can be stated by the following theo-

rem. Recall that T V
α defined in (2.4) can correctly reject the null hypoth-

esis provided that at least one element in V has magnitude greater than

c(logN)1/2 for some constant c. In the following theorem, we show that the

rate of the signal gap (logN)1/2 cannot be further relaxed.

Theorem 3. Suppose that the simple linear rank statistics {Vij(k), 1 ⩽ i, j ⩽ p, 1 ≤ k ≤ K}

satisfy all the conditions in Theorems 1 and 2. Suppose also that Assump-

tion (A2) holds. Then, the corresponding size-α test T V
α is rate-optimal. In

other words, there exist two constants D1 < D2 such that:
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2.1 Simple linear rank statistics

(i) supF (ε)∈HV
a (D2) pr (Tα = 0) = o(1);

(ii) for any β > 0 satisfying α + β < 1, for large n and p we have

inf
Tα∈Tα

sup
F (ε)∈HV

a (D1)

pr (Tα = 0) ⩾ 1− α− β

The above theorem means that any measurable size-α test cannot dis-

tinguish between the null hypothesis and the sparse alternative when the

coefficient c in HV
a (c) is small enough.

As an example of simple linear rank statistic, we state the high-dimensional

white noise test based on the Spearman’s rho as follows.

Example 1 (Spearman’s rho). Recall that Qi
n−k,t(k) and Q̃j

n−k,t+k(k)

be the ranks of εt,i and εt+k,j among {ε1,i, . . . , εn−k,i} and {εk+1,j, · · · , εn,j},

respectively. Let Rij
n−k,t+k(k) be the relative rank of εt+k,j compared to

εt,i; that is, Rij
n−k,t+k(k) ≡ Q̃j

n−k,t′+k(k) subject to the constraint that

Qi
n−k,t′(k) = t for t = 1, · · · , n− k. Spearman’s rho is defined as

ρij(k) =

∑n−k
t=1

(
Qi

n−k,t(k)− Q̄i
n−k(k)

) (
Q̃j

n−k,t+k(k)−
¯̃Qj
n−k(k)

)
{∑n−k

t=1

(
Qi

n−k,t(k)− Q̄i
n−k(k)

)2∑n−k
t=1

(
Q̃j

n−k,t+k(k)−
¯̃Qj
n−k(k)

)2
}1/2

=
12

(n− k) ((n− k)2 − 1)

n−k∑
t=1

(
i− n− k + 1

2

)(
Rij

n−k,t+k(k)−
n− k + 1

2

)
(i, j ∈ {1, . . . , p})
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2.2 Non-degenerate U-statistics

where Q̄i
n−k(k) = ¯̃Qj

n−k(k) ≡ (n − k + 1)/2. This is a simple linear rank

statistic, and we have

EH0 (ρij(k)) = 0, varH0 (ρij(k)) = (n− k − 1)−1 (i, j ∈ {1, . . . , p})

According to (2.4), the corresponding test statistic is

Lρ = I

{
max
1≤k≤K

max
1≤i,j≤p

(n− k)ρij(k)
2 − 2 log(Kp2) + log log(Kp2) ⩾ qα

}

where qα ≡ − log(π)− 2 log log(1− α)−1.

2.2 Non-degenerate U-statistics

The second family includes the tests based on non-degenerate U-statistics

of the form (Han et al. 2017)

Un = max
1≤k≤K

max
1≤i,j≤p

(n− k)1/2 |Uij(k)− EH0(Uij(k))| (2.5)

where Am
n−k = (n− k)(n− k − 1) · · · (n− k −m+ 1),

Uij(k) =
1

Am
n−k

∑
1≤t1 ̸=t2,··· ,̸=tm≤n−k

h((εt1,i, εt1+k,j)
⊤, · · · , (εtm,i, εtm+k,j)

⊤)

(2.6)

Here Uij(k) depends only on {Rij
n−k,t(k)}nt=k+1. For our purposes h may

always be assumed to be bounded but not necessarily symmetric. The

boundedness assumption is mild since correlation is the object of interest.
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2.2 Non-degenerate U-statistics

Further concepts concerning U-statistics are needed to state the as-

sumption for the derivation of the limiting null distribution. For m ∈ Z+,

we define [m] = {1, 2, · · · ,m} and write Pm for the set of all m! permuta-

tions of [m]. For any kernel h(·), any number ℓ ∈ [m], and any measure PZ ,

we write

hℓ (z1 . . . , zℓ;PZ) := Eh (z1 . . . , zℓ,Zℓ+1, . . . ,Zm) (2.7)

and

h(ℓ) (z1, . . . ,zℓ;PZ) := hℓ (z1, . . . ,zℓ;PZ)−Eh−
ℓ−1∑
k=1

∑
1≤i1<···<ik≤ℓ

h(k) (zi1 , . . . ,zik ;PZ)

(2.8)

where Z1, . . . ,Zm are m independent random vectors with distribution PZ

and Eh := Eh (Z1, . . . ,Zm). The kernel as well as the corresponding U-

statistic is non-degenerate under PZ if the variance of h1(·) is not zero.

Based on above definitions, we state the following conditions which are

needed to derive the limiting null distribution.

(C4) The kernel function h(·) is bounded and non-degenerate.

(C5) The correlation matrix of Uij(k)–ΣU satisfies Assumption (A1).

The following theorem show the asymptotic distribution of the non-

degenerate U-statistics under the null hypothesis.
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2.2 Non-degenerate U-statistics

Theorem 4. Suppose (C4)-(C5) hold. Then under H0, for any y ∈ R we

have

∣∣P (
U2
n/σ

2
U − 2 log(Kp2) + log log(Kp2) ⩽ y

)
− exp

{
−π−1/2 exp(−y/2)

}∣∣ = o(1)

where σ2
U = (n− k)varH0(Uij(k)) if N = o(nϵ) as n → ∞ for some positive

constant ϵ.

We propose the following size-α test TU
α of H0:

TU
α

.
= I

(
U2
n/σ

2
U − 2 log(Kp2) + log log(Kp2) ≥ qα

)
(2.9)

where qα = − log(π)− 2 log log(1− α)−1.

To specify the sparse local alternative for the tests based on non-

degenerate U-statistics, we first define the random vector Û =
[
Ûij(k)

]
∈

RN by

Ûij(k) = σ−1
U (n−k)1/2 {Uij(k)− EH0 (Uij(k))} , (1 ⩽ i, j ⩽ p; 1 ⩽ k ⩽ K)

where σU is defined in Theorem 4 and {Uij(k), 1 ⩽ i, j ⩽ p, 1 ≤ k ≤ K}

are the non-degenerate U-statistics. Let the population version of Û be

U ≡ E(Û). We study the power of tests against the alternative

HU
a (c) ≡ {F (ε) : U{F (ε)} ∈ U(c)}

where F (ε) is the joint distribution function of ε and we write U{F (ε)} to

emphasize that U = E(Û) =
∫
ÛdF (ε) is a function of F (ε).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.2 Non-degenerate U-statistics

The following theorem states the conditions which are required to es-

tablish the convergence of the power of TU
α to one as n and p going to

infinity under the sparse alternative.

Theorem 5. Suppose that the kernel function h(·) in (2.6) is bounded with

|h(·)| ⩽ A3 and

m2 varH0

[
EH0

{
h
(
(X11, X12)

⊤, . . . , (Xm1, Xm2)
⊤) | (X11, X12)

⊤}] = A4{1+o(1)}

for some positive constants A3 and A4. Then, for some large scalar B2

depending only on A3, A4 and m,

inf
F (ε)∈HU

a (B2)
P (Tα = 1) = 1− o(1)

where the infimum is taken over all distributions F (ε) such that U{F (ε)} ∈

U (B2) .

To study the rate optimality in terms of power for the tests based

on non-degenerate U-statistics, we need the following assumption for the

distribution:

(A3) When ε is Gaussian, suppose that for non-degenerate U-statistics

Uij(k) and large n and p, cUij(k) ⩽ rij(k) ⩽ CUij(k) for 1 ≤ i, j ≤

p, 1 ≤ k ≤ K with probability tending to one, where c and C are two

constants.
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2.2 Non-degenerate U-statistics

The rate optimality result and related conditions for the tests based on

the non-degenerate U-statistics can be shown as follows, which implies that

the rate of the signal gap (logN)1/2 cannot be further relaxed.

Theorem 6. Suppose that Non-degenerate U-statistics {Uij(k), 1 ⩽ i, j ⩽ p, 1 ≤ k ≤ K}

satisfy all the conditions in Theorems 4 and 5. Suppose also that Assump-

tion (A3) holds. Then, the corresponding size-α test TU
α is rate-optimal. In

other words, there exist two constants D3 < D4 such that:

(i) supF (ε)∈HU
a (D4) pr (Tα = 0) = o(1);

(ii) for any β > 0 satisfying α + β < 1, for large n and p we have

inf
Tα∈Tα

sup
F (ε)∈HU

a (D3)

pr (Tα = 0) ⩾ 1− α− β.

As an example of non-degenerate U-statistics, we state the high-dimensional

white noise test based on the Kendall’s tau as follows.

Example 2 (Kendall’s tau). Kendall’s tau is defined, for i, j ∈ {1, . . . , p},

by

τij(k) =
2

(n− k)(n− k − 1)

∑
1≤l<l′≤n−k

sign (εl′,i − εl,i) sign (εl′+k,j − εl+k,j)

=
2

(n− k)(n− k − 1)

∑
1≤l<l′≤n−k

sign
(
Rij

n−k,l′+k(k)−Rij
n−k,l+k(k)

)
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2.3 Degenerate U-statistics

where the sign function sign(·) is defined as sign(x) = x/|x| with the

convention 0/0 = 0. This statistic is a function of the relative ranks{
Rij

n−k,t+k(k), t = 1, . . . , n− k
}
and is also a U -statistic with bounded ker-

nel h
(
x1,{1,2}, x2,{1,2}

)
≡ sign (x1,1 − x2,1) sign (x1,2 − x2,2). Accordingly,

Kendall’s tau is a rank-type U -statistic. Moreover,

EH0 (τij(k)) = 0, varH0 (τij(k)) =
2(2(n− k) + 5)

9(n− k)(n− k − 1)
(i, j ∈ {1, . . . , p})

According to (8), the proposed test statistic based on Kendall’s tau is

Lτ = I

{
max
1≤k≤K

max
1≤i,j≤p

9(n− k)(n− k − 1)

2(2(n− k) + 5)
τij(k)

2 − 2 log(Kp2) + log log(Kp2) ⩾ qα

}

2.3 Degenerate U-statistics

The third family includes the tests based on degenerate U-statistics, which

are very useful to detect the non-linear and non-monotone relationships in

the autocorrelations. We use the term completely degenerate to indicate

that the variances of h1(·), . . . , hm−1(·) are all zero. Finally, let P0 be the

uniform distribution on [0, 1], and write P0 ⊗ P0 for its product measure,

the uniform distribution on [0, 1]2.

In order to derive the limiting null distribution and establish the the-

oretical results related to the power of the tests based on the degenerate

U-statistics, we need the following assumption concerning the kernel func-

tion h.
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2.3 Degenerate U-statistics

(C6) The kernel h is rank-based, symmetric, and has the following three

properties:

(i) h is bounded.

(ii) h is mean-zero and degenerate under independent continuous

margins, i.e., E {h1 (Z1;P0⊗ P0)}2 = 0 as Z1 ∼ P0 ⊗ P0

(iii) h2 (z1, z2;P0 ⊗ P0) has uniformly bounded eigenfunctions, that

is, it admits the expansion

h2 (z1, z2;P0 ⊗ P0) =
∞∑
v=1

λvϕv (z1)ϕv (z2)

where {λv} and {ϕv} are the eigenvalues and eigenfunctions sat-

isfying the integral equation

Eh2 (z1,Z2)ϕ (Z2) = λϕ (z1) for all z1 ∈ R2

with Z2 ∼ P0 ⊗ P0, λ1 ≥ λ2 ≥ · · · ≥ 0,Λ =
∞∑
v=1

λv ∈ (0,∞), and sup
v

∥ϕv∥∞ < ∞.

The first requirement about boundedness property can be easily verified

for the rank correlations which are commonly used, for example, Spearman’s

rho, Kendall’s tau and many others. The other two requirements are much

more specific, but can be satisfied by some typical rank correlation measures

as long as their consistency properties are known. Moreover, it is easy to

see that the assumption Λ > 0 implies λ1 > 0, so that h2(·) is not a constant

function.
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2.3 Degenerate U-statistics

We also need the following condition to derive the limiting null dis-

tribution for the degenerate U-statistics. We first make several definitions

which will be used in the following condition. Define a quantity θ, which is

any absolute constant such that

θ < sup

q ∈ [0, 1/3) :
∑

v>[n(1−3q)/5]

λv = O(n−q)


if infinitely many eigenvalues λv are nonzero, and θ = 1/3 otherwise. Define

ωl,v = (n − kl)
−1/2

∑n−kl
t=1 ϕv(Zt,l) for l = 1, · · · , N , v = 1, · · · ,M where

M = [n(1−3θ)/5] and Zt,l is the corresponding Z of Uij(k) in Condition (C6).

Let blv,rs = cov(ωl,v, ωr,s) for 1 ≤ l, r ≤ N, 1 ≤ v, s ≤ M . Let ωl =

(ωl,1, · · · , ωl,M) and Ξl = ΣlΣ
⊤
l where Σl ∈ RM×(N−1)M is the covariance

matrix between ωl with ωr, r ∈ {1, · · · , N} \ {l}.

(C7) There exists a constant δ ∈ (0, 1) satisfying λmax(Ξl) ≤ δ for all

1 ≤ l ≤ N . Suppose {δN ;N ≥ 1} and {ςN ;N ≥ 1} are positive con-

stants with δN = o(1/ logN) and ς = ςN → 0 as N → ∞. Let Ξij =

cov(ωi,ωj). For 1 ≤ i ≤ N, defineBN,i =
{
1 ≤ j ≤ N | λmax(ΞijΞ

⊤
ij) ≥ δ2+2c

N

}
for some constant c > 0 and CN = {1 ≤ i ≤ N ; |BN,i| ≥ N ς} . We as-

sume that |CN | /N → 0 as N → ∞.

In the following theorem, we show the limiting null distribution and

related conditions for the degenerate U-statistics.
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2.3 Degenerate U-statistics

Theorem 7. Under conditions (C6)-(C7). Then for any absolute constant

y ∈ R that

P


max
1≤k≤K

max
1≤i,j≤p

n− k − 1

λ1

 m

2


Uij(k)− 2 log(Kp2)− (µ1 − 2) log log(Kp2) +

Λ

λ1

≤ y


=exp

{
− κ

Γ (µ1/2)
exp

(
−y

2

)}
+ o(1)

for logN = o(nθ) as n → ∞. Here µ1 is the multiplicity of the largest

eigenvalue λ1 in the sequence {λ1, λ2, . . .}, κ :=
∏∞

v=µ1+1(1 − λv/λ1)
−1/2

and Γ(z) :=
∫∞
0

xz−1e−xdx is the gamma function.

We propose the following size-α test TD
α for degenerate U-statistics:

TD
α = I


max
1≤k≤K

max
1≤i,j≤p

n− k − 1

λ1

 m

2


Uij(k)− 2 log(Kp2)− (µ1 − 2) log log(Kp2) +

Λ

λ1

≥ q̃α


(2.10)

where q̃α is the 1−α quantile of the Gumbel distribution function exp {−κ/Γ (µ1/2) exp (−y/2)},

i.e.,

q̃α = − log

(
Γ2 (µ1/2)

κ2

)
− 2 log log(1− α)−1.
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2.3 Degenerate U-statistics

It is easy to show that PH0

(
TD
α = 1

)
= α + o(1)

We study the power of the proposed test based on the degenerate U-

statistics from now on. It is necessary to introduce a new distribution

family which is also useful to specify the alternative. Recall the definition of

h(1)(·) in (2.8) . For any kernel function h(·) and constants γ > 0 and n, p ∈

Z+, define a general p-dimensional (not necessarily continuous) distribution

family as follows:

D(γ, np;h) :=
{
F (X) : X ∈ Rnp,Varijk

{
h(1) (·;Pijk)

}
≤ γEijkh for all 1 ≤ i, j ≤ p, 1 ≤ k ≤ K

}
where F (X) is the distribution (law) of X, and Pijk,Eijk(·), and Varijk(·)

stand for the probability measure, expectation, and variance operated on

the bivariate distribution of (εti, εt+k,j)
⊤ , respectively. The familyD(γ, np;h)

intrinsically characterizes the slope of the non-negative function Varijk
{
h(1) (·;Pijk)

}
with regard to the dependence between εti and εt+k,j, characterized by the

non-negative correlation measure Eijkh. Under the null hypothesis, we have

Varijk
{
h(1) (·;Pijk)

}
= Eijkh = 0

provided that Condition (C6) holds for h(·). Therefore, as the depen-

dence between εti and εt+k,j increasing, it can be expected that the variance

Varijk
{
h(1) (·;Pijk)

}
will depart away from zero with the same or a slower

rate compared to Eijkh.
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2.3 Degenerate U-statistics

In the following theorem, we show that the power of the proposed test

TD
α converges to one as n and p increasing to infinity under a newly specified

sparse alternative.

Theorem 8. Given any γ > 0 and a kernel h(·) satisfying Condition (C6),

there exists some sufficiently large B3 depending on γ such that

inf
F (ε)∈D(γ,np;h)∩HU

a (B3)
P
(
TD
α = 1

)
= 1− o(1)

The establishment of the rate optimality of the tests based on degener-

ate U-statistics requires the following assumption for the distribution:

(A4) When ε is Gaussian, suppose that for degenerate U-statistics Uij(k)

and large n and p, cUij(k) ⩽ rij(k) ⩽ CUij(k) for 1 ≤ i, j ≤ p, 1 ≤ k ≤

K with probability tending to one, where c and C are two constants.

Under the new type of sparse local alternative, we could show the rate

optimality in terms of power for the proposed test in the following theorem.

Theorem 9. Suppose that Degenerate U-statistics {Uij(k), 1 ⩽ i, j ⩽ p, 1 ≤ k ≤ K}

satisfy all the conditions in Theorems 7 and 8. Suppose also that Assump-

tion (A4) holds. Then, the corresponding size-α test TD
α is rate-optimal. In

other words, there exist two constants D5 < D6 such that:

(i) supF (ε)∈D(γ,np;h)∩HU
a (D6) pr (Tα = 0) = o(1);
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2.3 Degenerate U-statistics

(ii) for any β > 0 satisfying α + β < 1, for large n and p we have

inf
Tα∈Tα

sup
F (ε)∈D(γ,np;h)∩HU

a (D5)

pr (Tα = 0) ⩾ 1− α− β

Three examples belonging to the family of degenerate U-statistics are

provided to test the high dimensional white noise as follows.

Example 3 (Hoeffding’s D). The Hoeffding’sD statistic is a rank-based

U-statistic of order 5, which is based on the symmetric kernel

hD (z1, . . . , z5) :=
1
16

∑
(i1,...,i5)∈P5

[{I (zi1,1 ≤ zi5,1)− I (zi2,1 ≤ zi5,1)} {I (zi3,1 ≤ zi5,1)− I (zi4,1 ≤ zi5,1)}]

[{I (zi1,2 ≤ zi5,2)− I (zi2,2 ≤ zi5,2)} {I (zi3,2 ≤ zi5,2)− I (zi4,2 ≤ zi5,2)}].

Thus, the Hoeffding’s D correlation measure is given by EhD. Based on

Weihs et al. (2018, Proposition 7) or Nandy et al. (2016, Theorem 4.4),

under the measure P0⊗P0, the eigenvalues and corresponding eigenfunctions

of hD,2(·) are:

λi,j;D = 3/
(
π4i2j2

)
> 0, i, j ∈ Z+

and

ϕi,j;D

{
(z1,1, z1,2)

⊤
}
= 2 cos (πiz1,1) cos (πjz1,2) , i, j ∈ Z+,

where ΛD :=
∑

i,j λi,j;D = 1/12 and supi,j ∥ϕi,j;D∥∞ ≤ 2. Therefore, by

considering the results in Hoeffding (1948), the kernel hD(·) satisfies the
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2.3 Degenerate U-statistics

three properties in Condition (C6). Based on the result in Hoeffding (1948,

p. 547), the correlation measure EhD is non-negative for arbitrary pair of

random variables. Moreover, as shown by Hoeffding (1948) and Yanagimoto

(1970), for a pair of random variables which is absolutely continuous in

R2, the sufficient and necessary condition for their independence is that

EhD = 0. However, this result does not hold when the data is discrete or

is continuous but not absolute continuous, e.g. a counter example is given

in Remark 1 of Yanagimoto (1970).

Define {X tijk} = {(εt,i, εt+k,j)
⊤}1≤t≤n−k. According to (2.10), the cor-

responding test is

D̂ij(k) :=

 n− k

5


−1 ∑

t1<···<t5

hD (X t1,ijk, . . . ,X t5,ijk) (2.11)

and

LD :=I

{
max
1≤k≤K

max
1≤i,j≤p

π4(n− k − 1)

30
D̂ij(k)− 2 log(Kp2) + log log(Kp2) +

π4

36
> QD,α

}
(2.12)

where QD,α := log {κ2
D/π} − 2 log log(1− α)−1 and

κD :=

{
2

∞∏
n=2

π/n

sin(π/n)

}1/2

≈ 2.467.

Example 4 (Blum-Kiefer-Rosenblatt’s R). The Blum-Kiefer-Rosenblatt’s

R statistic (Blum et al. (1961)) is a rank-based U-statistic of order 6, which

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.3 Degenerate U-statistics

is based on the symmetric kernel:

hR (z1, . . . , z6) :=
1
32

∑
(i1,...,i6)∈P6

[{I (zi1,1 ≤ zi5,1)− I (zi2,1 ≤ zi5,1)} {I (zi3,1 ≤ zi5,1)− I (zi4,1 ≤ zi5,1)}]

[{1 (zi1,2 ≤ zi6,2)− I (zi2,2 ≤ zi6,2)} {I (zi3,2 ≤ zi6,2)− 1 (zi4,2 ≤ zi6,2)}].

The three properties in Condition (C6) can be easily verified based on the

fact that hR,2 = 2hD,2. Similarly, the correlation measure EhR is non-

negative for arbitrary pair of random variables. EhR = 0 if and only if the

pair of random variables are independent (without requiring the continuity

properties), see, e.g. page 490 of Blum et al. (1961).

According to (2.10), the corresponding test is

R̂ij(k) :=

 n− k

6


−1 ∑

t1<···<t6

hR (X t1,ijk, . . . ,X t6,ijk)

and

LR := I

{
max
1≤k≤K

max
1≤i,j≤p

π4(n− k − 1)

90
R̂ij(k)− 2 log(Kp2) + log log(Kp2) +

π4

36
> QR,α

}
where QR,α := QD,α

Example 5 (Bergsma-Dassios-Yanagimoto’s τ ∗). Bergsma and Das-

sios (2014) introduced a rank correlation statistic as a U-statistic of order

4 with the symmetric kernel

hτ∗ (z1, . . . , z4)
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2.3 Degenerate U-statistics

:=
1

16

∑
(i1,...,i4)∈P4

{1 (zi1,1, zi3,1 < zi2,1, zi4,1) + I (zi2,1, zi4,1 < zi1,1, zi3,1)

−I (zi1,1, zi4,1 < zi2,1, zi3,1)− I (zi2,1, zi3,1 < zi1,1, zi4,1)}

{I (zi1,2, zi3,2 < zi2,2, zi4,2) + I (zi2,2, zi4,2 < zi1,2, zi3,2)

−I (zi1,2, zi4,2 < zi2,2, zi3,2)− I (zi2,2, zi3,2 < zi1,2, zi4,2)} ,

where I (y1, y2 < y3, y4) := I (y1 < y3) I (y1 < y4) I (y2 < y3) I (y2 < y4). Based

on the fact that hτ∗,2 = 3hD,2, all properties in Condition (C6) can be veri-

fied for hτ∗(·). As shown by Theorem 1 in Bergsma and Dassios (2014), for

a pair of random variables whose distribution is discrete, absolutely contin-

uous, or a mixture of both, the correlation measure Ehτ∗ is non-negative

and Ehτ∗ = 0 if and only if the pair is independent.

According to (2.10), it yields the test

τ̂ ∗ij(k) :=

 n− k

4


−1 ∑

t1<···<t4

hτ∗ (X t1,ijk, . . . ,X t4,ijk)

and

Lτ∗ := I

{
max
1≤k≤K

max
1≤i,j≤p

π4(n− k − 1)

54
τ̂ ∗ij(k)− 2 log(Kp2) + log log(Kp2) +

π4

36
> Qτ∗,α

}

where Qτ∗,α := QD,α
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3. Simulation

In this section, we evaluate the empirical sizes and powers of several test

statistics based on Monte Carlo simulation. We mainly compare the per-

formance of the following test statistics:

� Lr: the max-type test statistic provided by Chang et al. (2017);

� Sr: the sum-type test statistic provided by Li et al. (2019);

� Lρ: the Spearman’s rho statistic defined in Example 1;

� Lτ : the Kendall’s tau statistic defined in Example 2;

� LD: the Hoeffding’s D statistic defined in Example 3;

� LR: the Blum-Kiefer-Rosenblatt’s R statistic defined in Example 4;

� Lτ∗ : the Bergsma-Dassios-Yanagimoto’s τ ∗ statistic defined Example

5.

3.1 Empirical sizes

Let εt = Azt. We consider the following four distribution for zt: (a)

zt ∼ N(0, Ip); (b) zt = w
1/3
t with wt ∼ N(0, Ip); (c) zt = w3

t with

wt ∼ N(0, Ip); (d) zt = (zt1, · · · , ztp)⊤ with zti
i.i.d∼ t(3)/

√
3. For the Models

(i)-(iv), we consider A = Σ1/2 with Σ = (0.5|i−j|)1≤i,j≤p and zt follows the
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settings of (a)-(d). For the Models (v)-(viii), we set A = (aij)1≤i,j≤p with

aij
i.i.d∼ U(−1, 1) and zt follows the settings of (a)-(d).

Here we use parametric bootstrap method to determine the critical

value of Lr; The empirical sizes of the seven test statistics listed above are

reported in Tables 1 for K = 2. The simulation results with K = 4, 6 are in

the Supplementary Material. In each table, the results are summarized for

Models (i)-(viii) with different combinations of n and p, i.e., n = 100, 200

and p = 30, 60, 120, 240. It is easy to see that the degenerate U-statistics

LD, LR and Lτ∗ can control the sizes very well in most of the cases. How-

ever, the empirical sizes of the sum-type statistic Sr, the simple linear rank

statistic Lρ and non-degenerate U-statistic Lτ are a little smaller than the

nominal level. The parametric bootstrap method proposed by Chang et al.

(2017) can control the empirical sizes of Lr in most cases. In the supple-

mental material, we also proposed a permutation procedure to control the

empirical sizes of the above rank-based test statistics. Additional simula-

tion studies show the good performance of the permutation procedure.

3.2 Power comparison

We consider the following eight examples as the data generation proce-

dure in order to investigate the powers of different test statistics. Let
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Table 1: Sizes of tests with K = 2 under Model (i)-(viii).

n p i ii
Lr Lτ Lρ Lτ∗ LD LR Sr Lr Lτ Lρ Lτ∗ LD LR Sr

100 30 0.043 0.013 0.014 0.054 0.067 0.05 0.02 0.045 0.016 0.015 0.046 0.065 0.04 0.027
100 60 0.036 0.01 0.008 0.052 0.073 0.041 0.018 0.039 0.016 0.011 0.047 0.076 0.031 0.015
100 120 0.034 0.007 0.006 0.029 0.073 0.023 0.002 0.042 0.009 0.007 0.033 0.068 0.026 0.004
100 240 0.044 0.009 0.009 0.034 0.081 0.027 0 0.043 0.009 0.005 0.04 0.082 0.028 0
200 30 0.035 0.017 0.016 0.045 0.05 0.04 0.034 0.056 0.016 0.015 0.04 0.056 0.035 0.042
200 60 0.038 0.022 0.023 0.045 0.054 0.046 0.025 0.042 0.014 0.016 0.034 0.044 0.03 0.027
200 120 0.039 0.012 0.008 0.032 0.056 0.025 0.015 0.046 0.015 0.018 0.04 0.044 0.034 0.008
200 240 0.043 0.008 0.01 0.037 0.06 0.032 0.005 0.047 0.018 0.014 0.051 0.067 0.046 0

iii iv
100 30 0.022 0.009 0.007 0.03 0.052 0.026 0.085 0.038 0.011 0.012 0.044 0.061 0.034 0.038
100 60 0.024 0.006 0.004 0.034 0.05 0.027 0.089 0.042 0.008 0.005 0.028 0.057 0.022 0.05
100 120 0.032 0.01 0.011 0.044 0.087 0.029 0.055 0.061 0.011 0.009 0.055 0.097 0.042 0.057
100 240 0.036 0.033 0.01 0.035 0.086 0.03 0.034 0.054 0.009 0.008 0.04 0.088 0.028 0.035
200 30 0.051 0.014 0.015 0.041 0.056 0.04 0.08 0.037 0.018 0.019 0.044 0.055 0.046 0.071
200 60 0.035 0.015 0.014 0.04 0.054 0.035 0.08 0.043 0.019 0.018 0.048 0.059 0.045 0.075
200 120 0.036 0.016 0.011 0.046 0.062 0.039 0.086 0.047 0.016 0.017 0.039 0.066 0.039 0.056
200 240 0.042 0.021 0.016 0.041 0.062 0.035 0.034 0.036 0.014 0.012 0.045 0.068 0.041 0.062

v vi
100 30 0.044 0.018 0.017 0.049 0.067 0.041 0.031 0.051 0.017 0.012 0.049 0.067 0.043 0.033
100 60 0.038 0.015 0.013 0.05 0.082 0.044 0.015 0.043 0.011 0.012 0.042 0.066 0.039 0.016
100 120 0.035 0.008 0.006 0.034 0.073 0.026 0.001 0.036 0.011 0.007 0.035 0.076 0.025 0.004
100 240 0.044 0.012 0.009 0.045 0.097 0.036 0 0.029 0.009 0.003 0.045 0.091 0.027 0
200 30 0.057 0.013 0.012 0.031 0.046 0.031 0.055 0.061 0.018 0.022 0.054 0.063 0.044 0.035
200 60 0.037 0.009 0.008 0.038 0.053 0.034 0.038 0.043 0.014 0.013 0.043 0.06 0.043 0.029
200 120 0.044 0.018 0.017 0.049 0.075 0.043 0.021 0.039 0.016 0.012 0.046 0.061 0.04 0.016
200 240 0.037 0.008 0.009 0.032 0.065 0.034 0.008 0.052 0.014 0.016 0.052 0.068 0.048 0.003

vii viii
100 30 0.041 0.01 0.009 0.037 0.056 0.031 0.09 0.053 0.013 0.015 0.055 0.072 0.05 0.047
100 60 0.038 0.011 0.009 0.045 0.07 0.037 0.063 0.041 0.010 0.006 0.041 0.075 0.035 0.057
100 120 0.037 0.017 0.008 0.046 0.087 0.036 0.055 0.045 0.008 0.008 0.035 0.075 0.026 0.04
100 240 0.053 0.009 0.005 0.034 0.085 0.022 0.023 0.038 0.009 0.005 0.042 0.094 0.028 0.037
200 30 0.061 0.024 0.024 0.053 0.063 0.053 0.087 0.048 0.011 0.013 0.032 0.04 0.03 0.067
200 60 0.036 0.02 0.017 0.049 0.066 0.046 0.075 0.045 0.015 0.016 0.046 0.058 0.046 0.058
200 120 0.048 0.021 0.02 0.05 0.077 0.042 0.064 0.039 0.019 0.016 0.055 0.081 0.047 0.063
200 240 0.049 0.01 0.011 0.039 0.056 0.036 0.041 0.054 0.02 0.023 0.041 0.063 0.036 0.056
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3.2 Power comparison

zt ∼ N(0, Ip). In the following, with slight abuse of notation, we write

f(v) = (f (v1) , . . . , f (vp))
⊤ for any univariate function f : R → R and v =

(v1, . . . , vp)
⊤ ∈ Rp. That is, (I) εt = Aεt−1+zt; (II) εt = sin(2π

3
Aεt−1)+zt;

(III) εt = sin(π
3
(Aεt−1)

1/3) + zt; (IV) εt = (Aεt−1)
1/3 + zt; (V) εt =

zt +Azt−1; (VI) εt = zt + sin(2π
3
Azt−1); (VII) εt = zt + sin(π

3
(Azt−1)

1/3);

(VIII) εt = zt + (Azt−1)
1/3.

We consider A = (aij)1≤i,j≤p with aij ∼ U(−ρ, ρ) if 1 ≤ i, j ≤ k0 and

aij = 0 otherwise. Models (I) and (V) can be classified as the linear rela-

tionship in autocorrelations, while Models (IV) and (VIII) can be classified

as the monotone relationship in autocorrelations. The rest of the models

are the non-linear and non-monotone relationships in autocorrelation.

Figures 1 report the power curves with different ρ for K = 2. The

power curves with K = 4, 6 are in the Supplementary Material. For these

three figures, we set k0 = 2, n = 100 and p = 30. It is clear that the param-

eter ρ controls the level of the autocorrelation. Therefore, as ρ increasing,

the power curves show the upward trend as well for most of the models.

Moreover, the power curves of the degenerate U-statistics LD, LR and Lτ∗

are higher than that of other max-type test statistics, i.e., Lr, Lρ and Lτ .

The sum-type test statistic Sr has the lowest power curve in most cases.

It is not surprising because k0 was set as 2 here and sum-type test cannot
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work well under the sparse alternatives.

Figure 2 shows the power curves with different k0. For fixed p and ρ,

the parameter k0 is used to control the sparsity of the autocorrelations. The

higher value of k0 yields the lower level of the sparsity in the autocorrela-

tions. As expected, the power curves of the max-type test statistics, i.e.,

Lr, Lρ, Lτ , LD, LR and Lτ∗ have the downward trend when k0 increasing in

most of the models. Moreover, among the six max-type test statistics, the

power curves of the degenerate U-statistics LD, LR and Lτ∗ are relatively

higher than that of the other three test statistics. In contrast, the power

curve of the sum-type test statistic Sr has the upward trend as k0 increasing

in most models.

Figure 3 shows the power curves with different p. For fixed ρ and k0, as

the parameter p increasing, the signal strength tends to decrease. Therefore,

it is not surprising that all power curves of the seven test statistics show

the downward trend as p increasing. The power curves of degenerate U-

statistics LD, LR and Lτ∗ are the highest in the seven test statistics. In

contrast, the power curve of the sum-type test statistic Sr is the lowest

among the seven statistics.
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Figure 1: Power curves of different methods with different ρ and k0 = 2, n =

100, p = 30, K = 2.
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Figure 2: Power curves of different methods with different k0 and ρ =

0.6, n = 100, p = 30, K = 2.
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Figure 3: Power curves of different methods with different p and ρ =

0.6, n = 100, k0 = 2, K = 2.

4. Conclusion

To test the high-dimensional white noise, we develop the max-type tests

based on three families of rank based statistics, including the simple lin-

ear rank statistics, non-degenerate U-statistics and degenerate U-statistics.

The proposed tests are distribution free and in particular, the degenerate

U-statistics can be used to detect the non-linear and non-monotone rela-

tionships in autocorrelations. Finally, as the theoretical contribution of

this paper, we have relaxed the cross-sectional independence assumption in

existing literature when deriving the asymptotic distributions for the rank

correlation statistics. From the simulation studies, we found that the power

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



of degenerate U-statistics LD, LR, Lτ∗ have the best performance. So we

suggest the degenerate U-statistics proposed in subsection 2.3 in practice.

For the future directions related to the high-dimensional white noise

test, it is also important to develop the theory for the sum-type tests based

on the rank based statistics. The asymptotic independence between the

max-type test and sum-type test based on the rank based statistics is also

necessary to be established because of its usefulness in constructing some

combination test which can be robust to both sparse and dense alternatives.
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