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Abstract: In this paper, we propose a scale invariant linear discriminant analysis

classifier for high-dimensional data with dense signals. The method is valid for

both cases that the data dimension is smaller or greater than the sample size.

Based on recent advances of the sample correlation matrix in random matrix

theory, we derive the asymptotic limits of the error rate which characterizes the

influences of the data dimension and the tuning parameter. The major advantage

of our proposed classifier is scale invariant and it is applicable to any variances of

the feature. Several numerical studies are investigated and our proposed classifier

performs favorably in comparison to some existing methods.

Key words and phrases: Discriminant analysis, dimension effect, random matrix

theory, sample correlation matrix, scale invariant.
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1. Introduction

Linear discriminant analysis (LDA), which can be dated back to Fisher

(1936), is a fundamental problem in multivariate statistical analysis (An-

derson, 2003, Chapter 6). From the perspective of methodology, LDA is

closely related to many other important statistical methods such as prin-

cipal component analysis, analysis of variance and regression analysis etc.

In real problems, LDA usually has a reliable performance and can compete

with many sophisticated methods such as neural networks and support vec-

tor machines (Hand, 2006).

In the era of high-dimensional data, many improved methods have been

proposed for linear discriminant analysis. For example, to address the sin-

gularity of the sample covariance matrix, Dudoit et al. (2002) proposed a

diagonal linear discriminant analysis (DLDA) which is valid for the situa-

tion that the data dimension p is greater than the sample size n. To reduce

the dispersion of the eigenvalues of the sample covariance matrix, Fried-

man (1989) conducted a regularized linear discriminant analysis (RLDA)

and see also Guo et al. (2007) for RLDA. Moreover, various other improved

LDA methods were studied under some certain assumptions. One may re-

fer to the papers (Shao et al., 2011; Cai and Liu, 2011; Mai et al., 2012;

Fan et al., 2012, 2013; Hao et al., 2015) and references therein for high-
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dimensional discriminant analysis under sparse assumption. Chen and Tan

(2021) considered the classification of high-dimensional data with spiked co-

variance matrix structure while Jiang et al. (2021) studied high-dimensional

classification with mixed variables. Auguin et al. (2021) proposed a robust

classifier when there are outlying samples in the training data and Park

et al. (2022) used non-parametric methods for high-dimensional discrimi-

nant analysis. Cai and Zhang (2019) considered linear discriminant analysis

with missing data.

To better understand the performance of LDA for high-dimensional

data, one may focus on the effect of a diverging dimension p. For instance,

Bickel and Levina (2004) found that the well-known linear discriminant

analysis is no better than random guessing as p/n→∞. Shao et al. (2011)

further showed that the empirical LDA is consistent if and only if p/n→ 0.

For the asymptotic regime that the data dimension p is comparable to the

sample size n, Dobriban and Wager (2018) studied the misclassification rate

of RLDA and Wang and Jiang (2018) further extended the result to general

settings. The technical analysis builds on results of the sample covariance

matrix in the random matrix theory.

In specific, considering two classes Π1 : N(u1,Σ) and Π2 : N(u2,Σ), we

have independent and identically distributed samples {xi,j : i = 1, 2, j =

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



1, . . . , ni} where x1,1, . . . ,x1,n1 ∼ N(u1,Σ) and x2,1, . . . ,x2,n2 ∼ N(u2,Σ).

Here, u1, u2 ∈ Rp are the two population means and Σ ∈ Rp×p is the

covariance matrix. Based on the samples, we define the pooled sample

covariance matrix

Sn = (n1 + n2 − 2)−1

2∑
i=1

ni∑
j=1

(xi,j − x̄i) (xi,j − x̄i)
T , (1.1)

where x̄1 = n−1
1

n1∑
j=1

x1,j and x̄2 = n−1
2

n2∑
j=1

x2,j are the sample means. In this

work, we study a Scale-Invariant Discriminant Analysis (SIDA)

SIDA : Ds(x) = δ

{(
x− x̄1 + x̄2

2

)T

(Sn + λ · diag(Sn))−1 (x̄1 − x̄2) > 0

}
,

(1.2)

where x ∈ Rp is a new observation, λ ≥ 0 is a tuning parameter. Here,

δ(·) is an indicator function and diag(Sn) being a diagonal matrix from the

diagonal elements of a matrix Sn. Discriminant rule is as follows

• If Ds(x) = 1, then x is regarded as being from the population Π1;

• If Ds(x) = 0, then x is regarded as being from the population Π2.

When λ = 0 and the sample covariance matrix is invertible, the SIDA will

be reduced to the classical Fisher’s LDA. If the tuning parameter tends to

infinity, the SIDA will comes to DLDA (Dudoit et al., 2002). If diag(Sn) is
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replaced by an p-dimension identity matrix Ip, we have the RLDA (Fried-

man, 1989; Guo et al., 2007), i.e.,

RLDA : Dr(x) = δ

{(
x− x̄1 + x̄2

2

)T

(Sn + λIp)
−1 (x̄1 − x̄2) > 0

}
.

(1.3)

One obvious advantage of SIDA over RLDA is that SIDA is scale-invariant.

That is, for any diagonal matrix Λ = diag{σ1, . . . , σp}, the performance of

SIDA is invariant if we make the transformations xi,j → Λxi,j and x →

Λx. Dobriban and Wager (2018) and Wang and Jiang (2018) analyzed the

misclassification rates of RLDA. In this work, we study the performance

of SIDA under the regime that the data dimension is comparable with the

sample size.

In analysis of real data, the normalization is a usual procedure. Given

the training data {xi,j : i = 1, 2, j = 1, . . . , ni} and the test data x, we

can re-scale the data as follows:

yi,j = {diag(Sn)}−1/2xi,j, y = {diag(Sn)}−1/2x

For the normalized data {yi,j : i = 1, 2, j = 1, . . . , ni} and y, the RLDA is

equivalent to our SIDA. In other works, if we make the data normalization

and then apply RLDA to a real data, we are actually using the SIDA

method. Thus, studying SIDA is more realistic to the real applications.
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Table 1: Percentages of misclassification rates of RLDA

p=100 p=150 p=200

n 40 120 200 60 180 300 80 240 400

RLDA1 31.64 32.02 21.52 29.16 27.25 20.25 24.26 23.73 13.35

RLDA2 44.89 35.87 29.26 43.86 36.02 27.83 40.67 29.05 26.19

Furthermore, from the perspective of statistical methods, the scale-

invariant property is attractive and can bring the improvement of the

method. To illustrate this issue of RLDA and SIDA, we conduct an toy

experiment. In details, we simulate the data as follows.

• The data dimension p is taken as p = 100, 150, 200 and p/n = 5/2, 5/6, 1/2,

where n = n1 + n2. Set λ = 0.1;

• For RLDA1, the data {xi,j : i = 1, 2, j = 1, . . . , ni} are an i.i.d.

sample from a p-dimensional population with mean vector ui and

covariance matrix Σ for i = 1, 2 with the elements of u1 being i.i.d.

from the standard uniform distribution, u2 = (0, 0, ..., 0)T and Σ =

diag(5, 10, . . . , 5, 10).

• For RLDA2, the data are {Λxi,j : i = 1, 2, j = 1, . . . , ni} with

Λ = diag(0.001, 1000, . . . , 0.001, 1000).
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From Table 1, we can see that the data {xi,j : i = 1, 2, j = 1, . . . , ni}

and {Λxi,j : i = 1, 2, j = 1, . . . , ni} are different only in the scales. But

the misclassification rates of RLDA1 and RLDA2 are very different, for

example, 24.26 and 40.67. Thus, the target of this paper is to propose

a scale-invariant discriminant analysis classifier which is valid for both the

low-dimensional situation and the high-dimensional situation.

The present work is motivated by the recent interest in ridge regres-

sion (Dobriban and Liu, 2019; Liu and Dobriban, 2020; Kobak et al., 2020;

Dobriban and Sheng, 2021; Hastie et al., 2022). The ridge regression is

a bias-variance tradeoff. Under high-dimensional setting that the number

of unknown parameters p is of the same order as the number of samples

n, several interesting phenomena are observed for the classical ridge re-

gression. For example, Hastie et al. (2022) recovered the “double descent”

behavior in the simple linear model. Liu and Dobriban (2020) proposed a

bias-correction to the tuning parameter of the well-known K−fold cross-

validation procedure and Kobak et al. (2020) provided a situation where

the optimal value of the ridge penalty can be negative. The regularized

LDA connects to the ridge regression and intuitively, we expect that these

interesting phenomena also hold for RLDA. Furthermore, from the per-

spective of statistical methods, the scale-invariant property can provide the
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classification improvement. To verify these intuitions, this paper studies

the properties of the scale-invariant discriminant analysis classifier and we

leave the demonstration of other phenomena as future works.

The remainder of this paper is organized as follows. In Section 2, we

present the assumptions and the main results. Specially, we derive the ex-

plicit limits of the misclassification error rates and propose a bias correction

to the SIDA. Several interesting examples are also discussed in this part.

To demonstrate the performance of SIDA, we conduct several simulation

studies in Section 3 and we conclude the paper in Section 4 with discus-

sions. The proofs of main results and technical details are relegated to the

Appendix.

2. Scale invariant discriminant analysis

Given the classifier

SIDA : Ds(x) = δ

{(
x− x̄1 + x̄2

2

)T

(Sn + λ · diag(Sn))−1 (x̄1 − x̄2) > 0

}
,
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and assuming x ∼ N(u1,Σ) or x ∼ N(u2,Σ) with equal prior probability,

we can get the misclassification rate of SIDA conditional on the samples

Rn =
1

2
P (Ds(x) = 0|x ∼ N(u1,Σ)) +

1

2
P (Ds(x) = 1|x ∼ N(u2,Σ))

=
1

2

2∑
i=1

Φ

(
(−1)i (2ui − x̄1 − x̄2)T (Sn + λ · diag(Sn))−1(x̄1 − x̄2)

2
√

(x̄1 − x̄2)T(Sn + λ · diag(Sn))−1Σ(Sn + λ · diag(Sn))−1(x̄1 − x̄2)

)
,

(2.4)

where Φ(·) is the distribution function of the standard normal population.

The main contribution of this work is to derive the asymptotic properties

of Rn from which we can gain insights of how the increasing dimension and

the tuning parameter λ affect the classification rate.

First of all, we review some key basics and notations in random ma-

trix theory (RMT). Suppose Dm is an m ×m Hermitian matrix with real

eigenvalues λj, j = 1, ...,m. The empirical spectral distribution (ESD) of

the matrix Dm is defined as

FDm(x) =
1

m

m∑
j=1

I(λj ≤ x).

One of the important problems in RMT is to investigate the convergence of

the sequence of empirical spectral distributions FDm for a given sequence of

random matrices {Dm}. The limit of FDm , if it exists and is non-random,

is called the limiting spectral distribution (LSD) of the sequence Dm. In

RMT, the Stieltjes transform of a function F (x) bounded variation on the
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real line is defined by

mF (z) =

∫
1

t− z
dF (t), z ∈ C+,

where C+ = {z ∈ C : =z > 0} and =z is the imaginary part of z. For any

continuity points a < b of F , one could get

F{[a, b]} = lim
ε→0+

1

π

∫ b

a

=mF (x+ iε)dx,

which is the famous Inversion formula. The Inversion formula shows a one-

to-one correspondence between the distribution functions and their Stieltjes

transforms.

Noting x̄1, x̄2 and Sn are independent, we can write

x̄1 = u1 +
1
√
n1

Σ1/2z1, x̄2 = u2 +
1
√
n2

Σ1/2z2

where z1, z2 ∼ N(0, I) are independent with Sn. Then, the numerator

parts of the error rate (2.4) are

− (2u1 − x̄1 − x̄2)T (Sn + λ · diag(Sn))−1(x̄1 − x̄2)

=− ũTAnũ +

(
1

n1

− 1

n2

)
tr (An) + op(1),

(2u2 − x̄1 − x̄2)T (Sn + λ · diag(Sn))−1(x̄1 − x̄2)

=− ũTAnũ−
(

1

n1

− 1

n2

)
tr (An) + op(1),
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and the denominator part is

(x̄1 − x̄2)T(Sn + λ · diag(Sn))−1Σ(Sn + λ · diag(Sn))−1(x̄1 − x̄2)

=ũTA2
nũ +

(
1

n1

+
1

n2

)
tr
(
A2
n

)
+ op(1),

where

ũ = Σ−1/2u1 −Σ−1/2u2, An = Σ1/2(Sn + λ · diag(Sn))−1Σ1/2.

To derive the limits of these terms, we need to study the eigenvalues of

An and the quadratic forms involving An (Karoui and Kösters, 2011). The

technical challenge is to deal with two random matrices Sn and diag(Sn).

Some knowing results in random matrix theory about the sample covariance

matrix (Karoui and Kösters, 2011; Ledoit and Péché, 2011, e.g.,) are not

applicable. Noting

An = Σ1/2diag(Sn)−1/2(Rn + λIp)
−1diag(Sn)−1/2Σ1/2,

where Rn is the sample correlation matrix, we need to study asymptotic

properties of the correlation matrix (El Karoui, 2009; Yin et al., 2023). The

key element of the argument is to consider another random matrix

Bn = Σ1/2(Sn + λ · diag(Σ))−1Σ1/2,

and we bound the difference between An and Bn. We will present the

details in next section.
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2.1 Main results

2.1 Main results

Without loss of generality, we let Σ = ΛRΛ where Λ = diag(σ1, · · · , σp), σi >

0 and R is a correlation matrix. We first present the assumptions on the

populations means u1,u2 and the population covariance matrix Σ.

(C1) p/n1 → y1 ∈ (0,∞), p/n2 → y2 ∈ (0,∞) and denote y = y1y2/(y1 +

y2).

(C2) For the population correlation matrix R, the eigenvalues of R are

bounded, i.e., 1/c ≤ λ(R) ≤ c for some c > 1. The empirical spectral

distribution of the eigenvalues converges to a distribution function

G(·) in distribution.

(C3) For any t ≥ 0 and p→ +∞,

∆−2
(
Λ−1u1 −Λ−1u2

)T
(R + tIp)

−1
(
Λ−1u1 −Λ−1u2

)
→ f1(t),

∆−2
(
Λ−1u1 −Λ−1u2

)T
(R + tIp)

−2
(
Λ−1u1 −Λ−1u2

)
→ f2(t).

Assumptions (C1) − (C2) are two common conditions in random matrix

theory. Assumption (C3) could be regarded as a technical assumption to

express explicit limits. For brevity, we let ∆ =
√

(u1 − u2)TΣ−1(u1 − u2)

be a constant. Compared with the conditions of Wang and Jiang (2018)

and Dobriban and Wager (2018), the main difference is that our assumption
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2.1 Main results

is on the correlation matrix R and we do not impose any conditions on the

variances σ2
i . Thus, our proposed SIDA is scale invariant and can handle

the data with very different scales.

Let m0(z) be the Stieltjes transform of the limiting spectral distribu-

tion with G(·), e.g., m0(z) is the unique solution to the Marčenko-Pastur

equation

m0(z) =

∫
1

t (1− y − yzm0(z))− z
dG(t). (2.5)

Theorem 1. Under Conditions (C1) − (C2), for any λ > 0, as n → ∞,

we have

p−1tr (An)
a.s.−→h1(λ) (2.6)

p−1tr
(
A2
n

) a.s.−→h2(λ), (2.7)

where

h1(λ) =
1− λm0(−λ)

1− y (1− λm0(−λ))
,

h2(λ) =
1− λm0(−λ)

[1− y (1− λm0(−λ))]3
− λm0(−λ)− λ2m′0(−λ)

[1− y (1− λm0(−λ))]4
,

and m′0(−λ) is the derivative of the Stieltjes transform m0(z) evaluated at

z = −λ.

The condition (C3) is used to derive the limits of the quadratic forms

involving An. In summary, we can get the limit of the misclassification
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2.2 Bias correction

error rate.

Theorem 2. Under Conditions (C1)-(C3), we have

Rn
p−→ 1

2

2∑
i=1

Φ

(
−H1(λ)∆2 + (−1)i(y1 − y2)h1(λ)

2
√
H2(λ)∆2 + (y1 + y2)h2(λ)

)
, (2.8)

where

H1(λ) =
1

1− y (1− λm0(−λ))
f1

(
λ

1− y (1− λm0(−λ))

)
,

H2(λ) =[(1 + yh1(λ))2 + yh2(λ)]f2

(
λ

1− y (1− λm0(−λ))

)
.

Theorem 2 provides the explicit effects of the ratios p/n1, p/n2 and the

tuning parameter λ. Before presenting the illustration of the results, we

turn to a bias correction for unequal sample sizes.

2.2 Bias correction

From (2.8), we can see that the misclassification rates are different for the

two classes, e.g.,

Φ

(
−H1(λ)∆2 + (−1)(y1 − y2)h1(λ)

2
√
H2(λ)∆2 + (y1 + y2)h2(λ)

)
6= Φ

(
− H1(λ)∆2 + (y1 − y2)h1(λ)

2
√
H2(λ)∆2 + (y1 + y2)h2(λ)

)
as y1 6= y2. That is, the unequal sample sizes lead to different misclassifi-

cation rates. This is due to the estimation bias of intercept part in SIDA.

As we know, Φ(x) is strictly convex for x < 0, which implies that the mis-

classification rate can be improved if we can remove the unnecessary term

(y1 − y2)h1(λ).
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2.2 Bias correction

To reduce the bias of SIDA brought by the different sample sizes, follow-

ing the bias correction in Wang and Jiang (2018), we consider the following

classifier,

D(x) = δ{xT (Sn + λdiag(Sn))−1(x̄1 − x̄2) + α > 0}. (2.9)

By the Proposition 2 in Mai et al. (2012), when the classification direc-

tion is (Sn +λdiag(Sn))−1(x̄1− x̄2), the optimal intercept corresponding to

minimum misclassification rate is

αo = −1

2
(u1 + u2)T (Sn + λdiag(Sn))−1(x̄1 − x̄2),

while for SIDA the intercept is set to be

αs = −1

2
(x̄1 + x̄2)T (Sn + λdiag(Sn))−1(x̄1 − x̄2).

Then,

αs − αo

=− 1

2n1

zT1 Σ1/2(Sn + λdiag(Sn))−1Σ1/2z1 +
1

2n2

(z2)T Σ1/2(Sn + λdiag(Sn))−1Σ1/2z2

+
1

2

(
1
√
n1

Σ1/2z1 +
1
√
n2

Σ1/2z2

)T
(Sn + λdiag(Sn))−1(u1 − u2)

=− 1

2n1

zT1 Σ1/2(Sn + λdiag(Sn))−1Σ1/2z1 +
1

2n2

zT2 Σ1/2(Sn + λdiag(Sn))−1Σ1/2z2

+ op(1)

∆
=− α + op(1),
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2.2 Bias correction

As can be noticed, the α depends on the population covariance matrix Σ

which is unknown in practice, we need to find a consistent estimator of it.

Based on the formula of h1(λ), we propose the corrected SIDA

Dc
s(x) = δ

{(
x− x̄1 + x̄2

2

)T

(Sn + λ · diag(Sn))−1 (x̄1 − x̄2) + α̂ > 0

}
,

(2.10)

with

α̂ =

(
p

2n1

− p

2n2

)
1− 1

p
tr
(

1
λ
Rn + Ip

)−1

1− p
n−2

+ 1
n−2

tr
(

1
λ
Rn + Ip

)−1

and n = n1 +n2. About the conduction of α̂, one could refer to Chen et al.

(2011) for more details.

Let Rc
n be the misclassification rate of SIDA after bias correction. Then,

the misclassification rate of corrected SIDA is

Rc
n =

1

2

2∑
i=1

Φ

(
(−1)i

[
(2ui − x̄1 − x̄2)T (Sn + λ · diag(Sn))−1(x̄1 − x̄2) + 2α̂

]
2
√

(x̄1 − x̄2)T(Sn + λ · diag(Sn))−1Σ(Sn + λ · diag(Sn))−1(x̄1 − x̄2)

)
.

(2.11)

The dimension effect of the bias-corrected SIDA is described in Proposition

1 below.

Proposition 1. Under the conditions of Theorem 2, for the corrected SIDA,

we have

Rc
n

p−→Φ

(
− H1(λ)∆2

2
√
H2(λ)∆2 + (y1 + y2)h2(λ)

)
, (2.12)
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2.3 Examples

As Φ(x) is strictly convex in (−∞, 0), which implies that the asymptotic

misclassification rate of the bias-corrected SIDA given in (2.12) is smaller

than that of SIDA given in (2.8).

2.3 Examples

In this part, we use several examples to illustrate our Theorem 2 and we

assume n1 = n2 for brevity. Specially, we consider Σ = σ2Ip and Σ =

diag(σ2
1, . . . , σ

2
p). Then, the true population correlation matrix is an identity

matrix, which means f1(t) = (1 + t)−1 and f2(t) = (1 + t)−2.

Example 1. Assuming Σ = σ2Ip, we have

m0(−λ) =

√
(1− y + λ)2 + 4yλ− (1− y + λ)

2yλ
,

m′0(−λ) =
λ(1 + y) + (1− y)2

2yλ2
√

(1− y + λ)2 + 4yλ
− 1− y

2yλ2
,

h1(λ) = m0(−λ), h2(λ) = m′0(−λ),

H1(λ) =
1

1− y (1− λm0(−λ)) + λ
,

H2(λ) =
[(1 + ym0(−λ))2 + ym′0(−λ)][1− y (1− λm0(−λ))]2

[1− y (1− λm0(−λ)) + λ]2
.

Then the misclassification rate of SIDA is

Φ

{
− ∆2

2
√

∆2 + y1 + y2

√
2
√

(1 + y + λ)2 − 4y√
(1 + y + λ)2 − 4y + (1 + y + λ)

}
. (2.13)
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2.3 Examples

As a comparison, the misclassification rate of RLDA is provided by Wang

and Jiang (2018) as follows

Φ

{
− ∆2

2
√

∆2 + y1 + y2

√
2
√

(1 + y + λσ−2)2 − 4y√
(1 + y + λσ−2)2 − 4y + (1 + y + λσ−2)

}
.

(2.14)

From the error rates (2.13) and (2.14), we can see that the SIDA is not

influenced by the scale σ. In other words, if we set λ1 = σ2λ for RLDA,

our SIDA have the exact performance as RLDA which means inducting

diag(Sn) do not loss any information even if we know all the variances are

the same.

Example 2. Assuming Σ = diag(σ2
1, . . . , σ

2
p), we have

m0(−λ) =

√
(1− y + λ)2 + 4yλ− (1− y + λ)

2yλ
,

m′0(−λ) =
λ(1 + y) + (1− y)2

2yλ2
√

(1− y + λ)2 + 4yλ
− 1− y

2yλ2
,

h1(λ) = m0(−λ), h2(λ) = m′0(−λ).

Then the misclassification rate of SIDA is

Φ

{
− ∆2

2
√

∆2 + y1 + y2

√
2
√

(1 + y + λ)2 − 4y√
(1 + y + λ)2 − 4y + (1 + y + λ)

}
. (2.15)

From (2.15), we can see again that SIDA is not influenced by the variances

σ2
1, · · · , σ2

p. For RLDA, we can not derive the explicit result and more
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importantly, some additional conditions on σ2
i are needed to guarantee the

limits.

3. Simulation

In this section, we conduct several simulations to show the performance

of our proposed SIDA. For comparison, we also include the diagonal LDA

(“DLDA”) and the regularized LDA (“RLDA”). Here, we focus on the

dense case (Dobriban and Wager, 2018) where many features contribute to

the classification rule and therefore we do not compare SIDA with many

sparse methods.

We generate the training samples x1,1, . . . ,x1,n1 ∼ N(u1,Σ) and x2,1, . . . ,

x2,n2 ∼ N(u2,Σ). Here the population covariance matrix and the popula-

tion means are defined as follows.

• To compare these methods for different covariance structures, we con-

sider five cases. For the first four cases, we set Σ = ΛRΛ where

Λ = diag(σ1, · · · , σp) and R = (0.5|i−j|)p×p. The variances are gener-
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3.1 Performance of Classifiers

ated as follows:

Case 1: σ1 = . . . = σp = 1;

Case 2: σ1 = . . . = σp/2 = 1, σp/2+1 = . . . = σp = 10;

Case 3: σ1, . . . , σp are i.i.d from |Z| where Z ∼ Cauchy(0, 1);

Case 4: σ1, . . . , σp are i.i.d from |Z| where Z ∼ Cauchy(5, 10).

To evaluate the methods on strong correction structure, we also in-

clude the model

Case 5: Σ = (σij)p×p, σij = δ(i = j) + 0.5 · δ(i 6= j).

• The elements of u1 are independent and identically distributed from

N(0, 1) and u2 = 0p. As a benchmark, u1 will be re-scaled to let

uT
1Σ−1u1 = 6.57 and the true Bayes error is 10%.

3.1 Performance of Classifiers

In this part, we compare the misclassification rates of SIDA, DLDA and

RLDA under cases 1-5. The tuning parameter λ is selected by 5−fold

cross-validation. For each case, we fix p = 100 or n = 200. Figures 1 and 2

show the empirical misclassification rates based on 1000 replications. The

vertical axis is the percentage of empirical misclassification rates and the

horizontal axis is the training sample size n or the dimension p. From these
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3.1 Performance of Classifiers

simulation results, we can see that the proposed SIDA has better perfor-

mance than RLDA under cases 2-4 where the variances are heterogeneous.

For case 1 and case 5 with homogeneous variances, SIDA and RLDA have

similar performance. For all the cases, SIDA can achieve smaller error rates

than DLDA since DLDA dose not utilize the correlation information of

the covariance structure. In other words, DLDA can be considered as a

special case of the SIDA method with λ = ∞. Consequently, SIDA con-

sistently outperforms DLDA when an appropriate λ value is chosen. The

performance of RLDA and DLDA varies depending on cases, as RLDA is

sensitive to different variances and DLDA ignores the correlation structure.

For example, RLDA can achieve a better performance on case 1 and case

5 where the variances are homogeneous and RLDA also includes the corre-

lation information. Conversely, for case 3 and case 4 where the variances

are generated from Cauchy distributions, DLDA outperforms RLDA since

DLDA is also scale-invariant. For case 2, the variances are different, but

the difference in scale is not so significant. Interestingly, a phase transition

can be observed, where RLDA perform better for small p/n ratios and DL-

DA has advantages for large p/n ratios. In summary, our proposed SIDA

method is both scale-invariant and leverages correlation information.
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3.2 Theoretical and empirical dimension effect of SIDA
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Figure 1: Misclassification rates of DLDA, RLDA and SIDA where p is

fixed.

3.2 Theoretical and empirical dimension effect of SIDA

We will compare the theoretical dimension effect in (2.8) and the empirical

dimension effect of SIDA. For convenience, we set Σ = Ip and λ = 0.1.

The data dimension p ranges from 20 to 200 and the ratio p/n is fixed as

0.5, 1, 2. Figure 3 presents the box plot of the error rate based on 1000

replications. The horizontal axis is the dimension p and the vertical axis

is the error rate. From Figure 3, we observe that the empirical error rates
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3.3 Bias correction of SIDA
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Figure 2: Misclassification rates of DLDA, RLDA and SIDA where n is

fixed.

Rn converges to the theoretical results (2.13) which is consistent with the

conclusion of our Theorem 2.

3.3 Bias correction of SIDA

In this subsection, we will compare “SIDA” and the corrected “SIDA” in

(2.10) denoted by “C-SIDA” in Case 1. The simulation times are 1000. As

a benchmark, the linear classifier with optimal constant αo = −1

2
(u(1) +
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3.4 Real Data Analysis
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Figure 3: Consistency of theoretical and empirical dimension effects of SI-

DA.

u(2))T (Sn + λdiag(Sn))−1(ȳ(1) − ȳ(2)) in Mai et al. (2012) is also included

and it is written as “O-SIDA”. The total sample size is n = n1 + n2 = 200

and n1 ranges from 30 to 170. The testing sample size is set as 100 and

the data dimension p is set as 100, 200, 400. λ is set to be 0, 0.1, 0.5 for

p < n and 1, 0.5, 0.1 for p ≥ n. Figure 4 shows that “C-SIDA, O-SIDA”

have lower empirical misclassification rates than SIDA and they have lower

empirical misclassification rates when n1 = n2.

3.4 Real Data Analysis

In this section, we utilize two real datasets to demonstrate the performance

of our proposed classifier SIDA. The first dataset is the central nervous

system embryonal tumor data which was analyzed by Pomeroy et al. (2002).

This dataset consists of 60 individuals, each with 7128 gene data. The
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3.4 Real Data Analysis
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Figure 4: Empirical misclassification rates for SIDA, C-SIDA and O-SIDA

for n1 + n2 = 200.
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3.4 Real Data Analysis

individuals are categorized into two classes: 21 in the ”died” class and 39

in the ”survived” class. The second dataset is the classical breast cancer

data which was analyzed by Gravier et al. (2010). There are 168 individuals,

with each individual having 2905 gene data. The 168 individuals are from

two classes: 111 in the “good” class and 57 in the “poor” class. Since these

datasets are high-dimensional, we use a screening procedure (Fan and Lv,

2008) to select features of order O(n). Specially, we employ a two-sample t

test to select 50, 100, 150 or 200 important features which are comparable

to the sample size. The tuning parameter λ is selected using a five-fold

cross-validation approach.

Tables 2 and 3 show the empirical misclassification error rates for the

embryonal tumor dataset and the breast cancer dataset, respectively. Each

dataset is evaluated using two different methods: leave-one-out cross-validation

(LOOCV) and random sampling, where approximately 80% of the individ-

uals are randomly selected as training data and the remaining 20% are used

as test data. From Tables 2 and 3, we can see that RLDA and SIDA con-

sistently outperform DLDA in most cases. Specifically, SIDA demonstrates

superior performance on the embryonal tumor dataset, while for the breast

cancer dataset, SIDA and RLDA exhibit similar error rates.

Figure 5 further show the variances of the selected 200 important fea-
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3.4 Real Data Analysis

tures. The variances of the embryonal tumor dataset show more hetero-

geneity, whereas the variances of the breast cancer dataset are more homo-

geneous. All these results demonstrate the advantage of SIDA on data with

heterogeneous variances.

Table 2: Misclassification error rates for Embryonal tumor dataset

p DLDA RLDA SIDA DLDA RLDA SIDA

LOOCV(n = 59) random sample(n = 48)

50 15.25% 18.64% 6.78% 15.73% 16.86% 11.04%

100 18.64% 22.03% 13.56% 17.88% 25.08% 13.05%

150 20.34% 22.03% 3.39% 18.91% 26.87% 8.08%

200 20.34% 25.42% 1.69% 20.27% 29.01% 6.06%

Table 3: Misclassification error rates for Breast cancer dataset

p DLDA RLDA SIDA DLDA RLDA SIDA

LOOCV(n = 167) random sample(n = 134)

50 20.36% 19.16% 17.96% 21.16% 18.15% 17.45%

100 17.96% 16.17% 17.96% 19.20% 17.92% 17.78%

150 20.36% 14.97% 14.97% 19.79% 17.32% 16.74%

200 18.56% 15.57% 14.97% 18.94% 16.14% 15.39%
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Figure 5: The variances of top 200 features for Embryonal tumor dataset

and Breast cancer dataset.

4. Discussions

In this paper, we study a scale-invariant discriminant analysis classifier

(
x− x̄1 + x̄2

2

)T

(Sn + λ · diag(Sn))−1 (x̄1 − x̄2)

=

(
[diag(Sn)]−1/2(x− x̄1 + x̄2

2
)

)T

(Rn + λIp)
−1 [diag(Sn)]−1/2(x̄1 − x̄2).

In specific, we derive the limits of the misclassification error rates under

the regime that the data dimension p and the sample sizes n1, n2 both

tend to infinity with fixed ratios. Technically, we relax the assumptions on

the variance of each component, which is an improvement of Dobriban and

Wager (2018) and Wang and Jiang (2018). The results are based on random

matrix theory of the sample correlation matrix, which is more challenging
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than those based on the sample covariance matrix. Moreover, simulation

study and real data analysis show the advantages of the proposed SIDA.

This paper establishes the theoretical properties of SIDA under Gaus-

sian settings where the misclassification error rate has a closed form on pop-

ulation means and covariance matrices. A natural extension is to consider

more general population distributions. In multivariate statistical analysis

(Anderson, 2003), we can consider the the elliptical distribution for which

Hu et al. (2019) recently established random matrix theory for the sample

covariance matrix. Another direction is to study SIDA for non-paranormal

distributions (Liu et al., 2009; Mai et al., 2022) where a normalization

procedure can be applied to the rank statistics. For these complicated dis-

tributions, studying SIDA is important from both empirical and theoretical

aspects. All these extensions are interesting future work.
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5. Appendix

The key step of the technical analysis is to bound diag(Sn)− diag(Σ). Let

‖ · ‖ denote the spectral norm of matrices. Specially, we have the following

lemma.

Lemma 1. Under Assumptions (C1)− (C3), we have

∥∥∥Σ−1/2diag(Sn −Σ)Σ−1/2
∥∥∥ a.s.−→ 0, ‖An −Bn‖

a.s.−→ 0.

proof. Let z1, z2, . . . , i.i.d. ∼ N(0, I), we know

Sn
d
= Σ1/2

{
1

n1 + n2 − 2

n1+n2−2∑
i=1

ziz
T

i

}
Σ1/2.

Since Σ = ΛRΛ, we can set Σ1/2 = ΛR1/2 and then

Σ−1/2diag(Sn −Σ)Σ−1/2 = R−1/2diag(Λ−1SnΛ
−1 −R)R−1/2.

Note Λ−1SnΛ
−1 d

= R1/2
{

1
n1+n2−2

∑n1+n2−2
i=1 ziz

T
i

}
R1/2, which can be regard-

ed as a sample covariance matrix with the true population covariance matrix

R. By Lemma 4 of El Karoui (2009), we have

∥∥diag(Λ−1SnΛ
−1 −R)

∥∥ a.s.−→ 0.
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Thus
∥∥∥Σ−1/2diag(Sn −Σ)Σ−1/2

∥∥∥ ≤ ‖R‖ ‖diag(Λ−1SnΛ
−1 −R)‖ a.s.−→ 0. For

the second conclusion, by Weyl’s inequality

λmin(Σ−1/2diag(Sn)Σ−1/2)

≥λmin(Σ−1/2diag(Σ)Σ−1/2)−
∥∥∥Σ−1/2diag(Sn −Σ)Σ−1/2

∥∥∥
=‖R‖−1 −

∥∥∥Σ−1/2diag(Sn −Σ)Σ−1/2
∥∥∥ ,

together with the assumption 1/c ≤ λ(R) ≤ c, with probability 1, we have

λmin(Σ−1/2diag(Sn)Σ−1/2) ≥ 1
2c
. Noting

An =Σ1/2(Sn + λ · diag(Sn))−1Σ1/2

=(Σ−1/2SnΣ
−1/2 + λ ·Σ−1/2diag(Sn)Σ−1/2)−1,

we can get

‖An‖ ≤
1

λmin(Σ−1/2diag(Sn)Σ−1/2)
≤ 2c, a.s..

For Bn = Σ1/2(Sn+λ·diag(Σ))−1Σ1/2, we have ‖Bn‖ ≤ 1

λmin(Σ−1/2diag(Σ)Σ−1/2)
=

‖R‖ ≤ c. Since

An −Bn

=Σ1/2(Sn + λ · diag(Sn))−1Σ1/2 −Σ1/2(Sn + λ · diag(Σ))−1Σ1/2

=λΣ1/2(Sn + λ · diag(Sn))−1 (diag(Σ)− diag(Sn)) (Sn + λ · diag(Σ))−1Σ1/2

=λAnΣ
−1/2diag(Σ− Sn)Σ−1/2Bn,

thus we can show ‖An−Bn‖ ≤ λ‖An‖‖Bn‖
∥∥∥Σ−1/2diag(Sn −Σ)Σ−1/2

∥∥∥ a.s.−→ 0.
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5.1 Proofs of Theorems 1 and 2

5.1 Proofs of Theorems 1 and 2

Noting x̄1, x̄2 and Sn are independent, we can write

x̄1 = u1 +
1
√
n1

Σ1/2z1, x̄2 = u2 +
1
√
n2

Σ1/2z2

where z1, z2 ∼ N(0, I) are independent with Sn. Then,

(2u1 − x̄1 − x̄2)T (Sn + λ · diag(Sn))−1(x̄1 − x̄2)

=ũTAnũ−
1

n1

zT

1Anz1 +
1

n2

zT

2Anz2 −
2
√
n2

zT

2Anũ

where ũ = Σ−1/2u1 − Σ−1/2u2. Let ‖ · ‖2 denote the Euclidean norm of

vectors. For each part, it is trivial to show

|ũTAnũ− ũTBnũ| ≤ ‖ũ‖2
2‖An −Bn‖

a.s.−→ 0;∣∣∣∣ 1

n1

zT

1Anz1 −
1

n1

zT

1Bnz1

∣∣∣∣ ≤ p

n1

‖z1‖2
2

p
‖An −Bn‖

a.s.−→ 0;∣∣∣∣ 1

n2

zT

2Anz2 −
1

n2

zT

2Bnz2

∣∣∣∣ ≤ p

n2

‖z2‖2
2

p
‖An −Bn‖

a.s.−→ 0;∣∣∣∣ 2
√
n2

zT

2Anũ−
2
√
n2

zT

2Bnũ

∣∣∣∣ ≤ ∥∥∥∥ 2
√
n2

z2

∥∥∥∥
2

‖Anũ−Bnũ‖2

a.s.−→ 0.

Thus, we have

(2u1 − x̄1 − x̄2)T (Sn + λ · diag(Sn))−1(x̄1 − x̄2)

− (2u1 − x̄1 − x̄2)T (Sn + λ · diag(Σ))−1(x̄1 − x̄2)
a.s.−→ 0. (5.16)
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5.1 Proofs of Theorems 1 and 2

and similarly

(2u2 − x̄1 − x̄2)T (Sn + λ · diag(Sn))−1(x̄1 − x̄2)

− (2u2 − x̄1 − x̄2)T (Sn + λ · diag(Σ))−1(x̄1 − x̄2)
a.s.−→ 0. (5.17)

For the denominator

(x̄1 − x̄2)T(Sn + λ · diag(Sn))−1Σ(Sn + λ · diag(Sn))−1(x̄1 − x̄2)

=
(
Σ−1/2x̄1 −Σ−1/2x̄2

)T

A2
n

(
Σ−1/2x̄1 −Σ−1/2x̄2

)
=

(
ũ +

1
√
n1

z1 −
1
√
n2

z2

)T

A2
n

(
ũ +

1
√
n1

z1 −
1
√
n2

z2

)
and noting

‖A2
n −B2

n‖ ≤ (‖An‖+ ‖Bn‖) ‖An −Bn‖
a.s.−→ 0,

we can show

(x̄1 − x̄2)T(Sn + λ · diag(Sn))−1Σ(Sn + λ · diag(Sn))−1(x̄1 − x̄2)

− (x̄1 − x̄2)T(Sn + λ · diag(Σ))−1Σ(Sn + λ · diag(Σ))−1(x̄1 − x̄2)
a.s.−→ 0.

Finally, we know (Sn+λ·diag(Σ))−1 = Λ−1 (Λ−1SnΛ
−1 + λIp)

−1
Λ−1 which

yields that we can standardize the sample means x̄1, x̄2 and the sample

covariance matrix Sn with the true standard deviations Λ. To study the

asymptotic performances of our SIDA, it is reduced to the case of Wang

and Jiang (2018) with Σ = R. The proof is completed.
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