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Abstract: The existing methods for functional regression can be roughly divided

into two categories: direct functional regression (DFR) and functional regression

based on functional principal component analysis (FR-FPCA). DFR may contain

too much noise, while FR-FPCA may be inefficient because FPCA is independen-

t of the response. In this paper, we investigate the effect of a vector of random

curves on a response by extracting the latent features of the random curves that are

associated with the response. Furthermore, to improve flexibility and predictive

accuracy, we propose a generalized additive multiple index model that captures

the relationship between the latent features and the response, without specifying

component and link functions. We form an objective function based on a penalized

quasi-likelihood function and FPCA to extract features, and to estimate the pa-

rameters and functions. We further develop an iterative algorithm, which is proven

to be convergent and can expediently implement the proposed procedures. The

convergence rates, oracle property, selection consistency and asymptotic normality
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for the proposed estimators are established. Numerical studies including extensive

simulation experiments and two empirical applications show that the proposed

procedures and methodology outperform the existing methods in interpretability,

predictive accuracy and computation.

Key words and phrases: Functional principal component analysis (FPCA), General-

ized additive functional regression model (GAFRM), Generalized linear functional

regression (GLFR), Penalized quasi-likelihood, Group-SCAD penalty.

1. Introduction

New and advanced technologies enable us to collect greater quantities of functional data, in di-

verse areas including but not limited to financial exchange, medical data from wearable devices,

MRI or CT scans, biological growth, climatology, traffic and online auction data. Consequently,

the demands for analysis and prediction based on functional data have increased exponentially.

A challenge analyzing functional data is that functional data may be irregularly and sparsely

observed and typically contain too much noise. As a result, to build the relationship between

a response and functional covariates, it is crucial to extract features from functional covariates

that are associated with the response.

Many researchers have considered functional covariate regression analysis. Examples in-

clude direct functional regression (DFR), including linear (Ramsay and Dalzell, 1991; Hall and

Horowitz, 2007), generalized linear (GLFR, Goldsmith et al., 2012; Müller and Stadtmüller,

2005), generalized additive (GAFRM, Müller et al., 2013; McLean et al., 2014) or semipara-

metric models (McLean et al., 2014; Radchenko et al., 2015). DFR focuses on the cumulative

information of functional covariates and requires that complete information for the predictor

functions be available, which is commonly infeasible in practice. As a remedy, various para-
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metric or nonparametric techniques are applied to recover whole random curves (Müller and

Stadtmüller, 2005; James and Silverman, 2005). Such a remedy immediately raises concerns

because the resultant curves may not be accurate when the original observations are sparse or

observed at irregular time points (Yao et al., 2005; Li and Hsing, 2010). Furthermore, even

when the whole curve is observed, it is well known that applying DFR to the whole functions

is often not the best strategy because the functions typically contain too much noise.

To overcome these problems, functional regression based on functional principle compo-

nent (FPC) analysis (FR-FPCA), has been developed recently (Zhu et al., 2014; Wong et al.,

2019; Liu et al., 2021; Xue and Yao, 2021; Zhou et al., 2023). Specifically, Zhou et al. (2023)

studied functional linear regression that involves irregularly, sparsely and noisily sampled func-

tional covariates, and systematically investigated the theoretical properties of the estimators

within this framework. FR-FPCA utilizes standard functional principal component analy-

sis (FPCA) on the sample variance-covariance matrix of a multivariate stochastic process

Z(t) = {Z1(t), · · · , Zp(t)}′. This approach extracts FPC scores and then performs regression

on these scores. However, FR-FPCA is unsupervised in the sense that the scores are extracted

without the use of any information on the response. As a consequence, the information on

the relationship between the response and covariates is ignored by FR-FPCA. For example,

in our motivating data, the FR-FPCA always picks the first three FPCs, while our method

finds the first, fourth and sixth FPCs for the market index of the Shanghai and Shenzhen

Stock Exchange, and the first, second and seventh FPCs for Alzheimer’s disease, which are

important to explore the relationship between the response and functional covariates. Both

out-of-sample prediction errors and AUC, displayed in Tables 4 and 6, show that the proposed
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method outperforms FR-FPCA in the analysis of real data.

Concretely, let ui = (ui1, · · · , ui,Kn)′ be the score vector from FPCA, where Kn is large

enough and can diverge to infinity to fully capture the information of functional covariates

Zi(t). The FR-FPCA produces the regression on the score by using the model, such as Yi =

g(uqi )+εi with the first q FPC scores uqi = (ui1, · · · , ui,q)′ with various link functions g(·). The

first q FPC scores may be important for the functional covariates, but not for the relationship

between the response and covariates. On the other hand, some important information on the

relationship between the response and covariates may be ignored by FR-FPCA, as mentioned

above in two real-data examples.

To extract features for the response, we rewrite the FR-FPCA model as Yi = g(Hui) + εi,

where H is a d × Kn matrix of coefficients. The introduction of H offers us an opportunity

to detect the significant scores or directions, which is realized by distinguishing columns of

H = (h1, · · · ,hd)′ = (H·1, · · · ,H·,Kn) zero or nonzero. By excluding all zero H·j’s, we can

discern the important eigenfunction directions of Z(·), which measures the features concerning

the relation between the response and the covariate curves. Moreover, to enhance flexibility

and improve predictive accuracy, we introduce a generalized additive multiple index model.

This model effectively describes the relationship between the latent features Hui and the

response variable without specifying component and link functions. The proposed models

have interesting features. First, the proposed models effectively reduce the dimension from

infinity to a fixed d and maintain the flexibility of the model by allowing complex patterns of

the relationship between the response and the features; see the related literature later. Second,

the proposed models ensure that all unknown functions are one-dimensional, so they circumvent
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the problem of fitting high-dimensional surfaces and avoid the curse of dimensionality, which

makes estimation and prediction stable. For example, the out-of-sample prediction errors

displayed in Tables 4 and 6 for the market index of the Stock Exchange and Alzheimer’s disease,

respectively, show that the proposed method performs better than do the existing DFR and

FR-FPCA methods. Finally, by investigating the shape of the eigenfunctions φ(·) and the

sparse pattern of H, we explore the features and understand how the covariate functions affect

the response variable so that interpretability is achieved.

We form an objective function by combining the quasi-likelihood function and FPCA, with

the penalty on H to extract low-dimensional latent features fi. This combination enables us

to simultaneously estimate all unknown quantities and extract related features based on all

of the available information. As a result, the estimation efficiency is improved. To overcome

the computational problem caused by the nonconvexity of the quasi-likelihood function, non-

smoothness of the penalty term and the large number of functions and ultrahigh-dimensional

parameters, we propose an iterative algorithm along with a series of linear approximations,

so that the updated estimators of the functions and high-dimensional parameters in each step

can be explicitly expressed. The implementation and calculations of the proposed procedure

hence are straightforward, even though the expressions of the estimators seem complicated.

The algorithm is proven to be convergent. An efficient and user-friendly R package is available

at our GitHub home page. After establishing the convergence rate of ûi, we give the asymp-

totic properties of the resulting estimators, including the estimation and selection consistency

and asymptotic normality. As a byproduct, we give the explicit convergence rate for the FPC

scores under a general framework, which allows Kn → ∞, and includes sparse or dense, and
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balanced or unbalanced observations. Particularly, when Kn = O(1), the convergence rate for

ûi is consistent with that established for dense observations (Li et al., 2010; Zhu et al., 2014).

The established convergent rate for ûi is also confirmed by our simulation studies.

The rest of this paper is organized as follows. In Section 2, we describe the model and

estimation procedure. Section 3 presents the algorithm for implementing the procedure. In

Section 4, we establish the estimation consistency, selection consistency and asymptotic nor-

mality for the proposed estimators. Sections 5 and 6 illustrate the numerical performance of

the proposed procedure in simulation studies and two empirical applications. Section 7 includes

concluding remarks. The technical proofs are deferred to the Supplementary Material.

2. Model and Estimation

2.1 Model

Let Y be the response. We assume that the observations {Zi(·), Yi}, i = 1, · · · , n, are in-

dependent identically distributed (i.i.d.), where Zi(t) is a realization of a vector of random

functions Z(t) with the mean function µ(t) = {µ1(t), · · · , µp(t)}′ and covariance function

G(t, s) = {Gij(t, s)}1≤i,j≤p, Gij(t, s) = cov{Zi(t), Zj(s)}. By the Karhunen-Loève theorem

and considering measurement error, the multivariate random functions can be expressed as

Zi(t) = µ(t) +
Kn∑
k=1

uikφk(t) + ei(t), (2.1)

with Kn → ∞, where ui1, · · · , uiKn are independent scores with mean zero for the ith ob-

servation, φk(t) = (φk1, · · · , φkp)′(t) are the orthogonal unit-norm eigenfunctions of G(t, s)

(Happ and Greven, 2018), ei(t) = {ei1(t), · · · , eip(t)}′ is the measurement error vector with
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2.1 Model7

Eei(t) = 0, and ei(·) and uik are independent. Let φ = (φ1, · · · ,φKn)′ and U = (u1, · · · ,un)′.

The covariate curves are described by the functions (µ,φ).

Denote fi = Hui = (fi1, · · · , fid)′ and consider the models for mi = E(Yi|Zi) = E(Yi|fi)

E(Yi|fi) = g(
d∑
j=1

ψj(fij))=̂g(
d∑
j=1

ψj(h
′
jui)), (2.2)

and var(Yi|Zi) = V (mi) < ∞, where ψj is an unknown j-th component function, g(·) is an

unknown link function, hj = (hj1, · · · , hjKn)′ is the Kn-dimensional parameter vector with

d � Kn, and V (·) is a known variance function and determined by the variable type of

Yi. In practice, it is possible that the directions that contain important information on the

relationship between Zi(·) and Yi may not be important for Zi(·) and can be easily ignored in

the model (2.1). To avoid such a scenario, we take Kn large enough so that we can keep as

much information of Zi(·) as possible. On the other hand, it is generally common that only a

few of the Kn scores are related to the response. Hence, it is critical to identify the subset of

significant scores or directions, which is equivalent to distinguishing zero and nonzero columns

of H.

We call models (2.1) and (2.2) the generalized functional feature regression model (GF-

FR). When ui is an observable covariate, model (2.2) includes a variety of commonly used

semiparametric regression models, such as generalized linear models, the single index models,

generalized additive models, and the generalized additive index model.

Denote the Euclidean norm by ‖·‖, andN =
∑n

i=1 ni where ni is the number of observations

for curve Zi(·). Models (2.1) and (2.2) are not identifiable. We impose the following assumption
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to ensure identifiability.

(C1) ‖H‖ = 1 and the first nonzero element of each column H′ is positive, h′jhj∗ = 0 for all

j 6= j∗, E{ψj(h′jui)} = 0 and
∑d

j=1 var{ψj(h′jui)} = 1, E(ui) = 0, cov(ui,ui) = IKn ,∫
φ(t)φ(t)′dt is a diagonal matrix with distinct positive elements in decreasing order,

and
∫
φk(t)dt > 0.

Conditions on H are commonly used in multiple-index models (Chiou and Müller, 2004),

and conditions on ψj(·) are often used in generalized additive models (Lin et al., 2018). Con-

ditions on ui and φ(·) are similar to those in the literature of FPCA (Yao et al., 2005; Happ

and Greven, 2018).

2.2 Estimation

We first consider the estimation of µ(·),φk(·), g(·) and ψj(·) based on spline smoothing for

its easy computation (Huang, 2003). For an easy presentation, we assume all functions

have a common compact support, and without loss of generality, to be [0, 1]. We approx-

imate µq(·), φkq(·), g(·), ψj(·) by µnq(t) = α′qBn(t), φnkq(t) = γ ′kqBn(t), gn(x) = δ′Sn(x) and

ψnj(x) = ϑ′jSn(x), respectively, where Bn(·) and Sn(·) are kn and k̃n-dimensional spline basis

functions, respectively. Here, we utilize two sets of spline basis functions due to the dif-

ferent space complexities of (µq(·), φkq(·)) and (g(·), ψj(·)). Denote α = (α1, · · · ,αp) and

γk = (γk1, · · · ,γkp).

Similar to Zhou et al. (2008), we modify the identifiability Condition (C1) to the following

empirical version (C1’) after spline approximation.

(C1’) ‖H‖ = 1 and the first nonzero element of each column H′ is positive, h′jhj∗ = 0 for all

j 6= j∗. Let N−1
n∑
i=1

niϑ
′
jSn(h′jui) = 0 for j = 1, . . . , d, N−1

d∑
j=1

n∑
i=1

ni
(
ϑ′jSn(h′jui)

)2
= 1,
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2.2 Estimation9

N−1
n∑
i=1

niui = 0 and N−1
n∑
i=1

niuiu
′
i = IKn . Suppose that

∫
Bn(t)Bn(t)′dt = Ikn , ΓΓ′ is

diagonal with decreasing order, and the first nonzero element of each row of Γ is positive,

where Γ = (−→γ 1, · · · ,−→γ Kn)′, and −→γ k denotes the vector formed by concatenating the

volumes of matrix γk.

To reflect the situation of irregular and possibly subject-specific time points, we as-

sume that Zi(·) is measured at ti = (ti1, · · · , ti,ni)′. Let n−1
∑n

i=1 `(mi, Yi; ui) be the log

quasi-likelihood function of Y = (Y1, · · · , Yn) given (u1, · · · ,un), with `(mi, Yi; ui) being de-

fined through ∂`(mi,Yi;ui)
∂mi

= Yi−mi
V (mi)

. Denote ϑ = (ϑ1, · · · ,ϑd)′, Θn = (H, δ,ϑ) and Ωn =

(α,Γ,U,H, δ,ϑ), we propose to estimate Ωn by maximizing

l(Ωn; Y,Z) = n−1
n∑
i=1

`(Θn; ui)− wn−1
n∑
i=1

p∑
q=1

‖Ziq −Bn(ti)αq −
Kn∑
k=1

uikBn(ti)γkq‖2 (2.3)

under the constraints in (C1’), where Z = (Z11,Z12, · · · ,Znp), Ziq = Ziq(ti), `(Θn; ui) is

`(mi, Yi; ui) with g and ψj replaced by gn and ψnj, and w = mini n
−v
i for v > 0. We can view

(2.3) as a penalized log quasi-likelihood function, in which we shrink ui’s toward the principal

components of Zi(·). In addition, l(Ωn; Y,Z) can also be regarded as the conditional joint

likelihood of (Yi,Zi) given ui by taking w = 1/(2σ2) when var{ei(t)} = σ2Ip.

In practice, there are only a few latent scores related to the response. In particular, if

score uik is not significant, then the component k of all hj, j = 1, · · · , d is zero, that is, the

k-th column of H is zero. Hence, the importance of the k-th score can be evaluated by the

k-th column of H. We then use a group-penalty to simultaneously detect the significant scores

and estimate unknown functions and parameters by maximizing
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Lp(Ωn) = n−1
n∑
i=1

`(Θn; ui)−
Kn∑
k=1

pλ(‖H·k‖)

−wn−1
n∑
i=1

p∑
q=1

‖Ziq −Bn(ti)αq −
Kn∑
k=1

uikBn(ti)γkq‖2, (2.4)

where pλ(·) is a group-SCAD penalty function with the regularization parameter λ.

Remark 1. If we ignore the information hidden in the relationship between Yi and ui, the

first two terms n−1
∑n

i=1 `(Θn; ui) and
∑Kn

k=1 pλ(‖H·k‖) in (2.4) are dropped and our estimator

for ui simplifies to that for the FPCA (Happ and Greven, 2018). By maximizing Lp(Ωn), our

estimators of ui use not only the information in the covariates Zi(·), but also the information

of the relationship between Yi and Zi(·). Hence the estimators for ui are an integration of

non-supervised and supervised estimators. This is different from FR-FPCA, which estimates

ui just based on Zi(·).

3. Algorithm

An Iterative Algorithm for Implementation

The penalized likelihood Lp(Ωn) involves high dimensional parameters and nonparametric

functions, so a direct maximization is not a wise choice. We develop an iterative procedure

where high dimensional parameters α, Γ, U and δ are separately estimated given others, and

their estimators can be explicitly expressed in each step.

To start the iterative algorithm, we first obtain an initial value (α(0),Γ(0),U(0)) for (α,Γ,U)

by multiple FPCA on Zi(·), which can be implemented by using an existing R package such

as MFPCA (Happ and Greven, 2018). Then, we obtain an initial value H(0) for H from direc-
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tional regression of Yi on u
(0)
i for i = 1, . . . , n (Li and Wang, 2007), and finally obtain initial

values ϑ(0) and δ(0) for ϑ and δ by the iterative backfitting algorithm (Lin et al., 2018) with

U and H fixed at their initial values.

Denote Vi1 = BniZi, Vi2 = BniB
′
ni, Zi = (Z′i1, · · · ,Z′ip)′, and Bni is the pkn × pni block

diagonal matrix with block elements Bn(ti)
′. Let Ω(o−1)

n be the estimates of Ωn after the

(o− 1)-th iteration. In the o-th iteration, we update the estimates as follows.

Update α,Γ,U. Differentiating Lp(Ωn) with respect to α, γk and ui respectively, and setting

the derivatives to zero leads to the following solutions:

−→α (o) =

{
n∑
i=1

Vi2

}−1 n∑
i=1

{Vi1 −Vi2Γ
′ui} , (3.5)

−̃→γ k =

{
n∑
i=1

(u2ik)Vi2

}−1 n∑
i=1

{
Vi1 −Vi2

−→α −Vi2

∑
r 6=k

uir
−→γr

}
uik, (3.6)

ũi = (2wΓVi2Γ
′)
−1
{
Yi −mi

V (mi)
× ∂mi

∂ui
+ 2wΓ(Vi1 −Vi2

−→α )

}
, (3.7)

where mi = g(
∑d

j=1 ψj(h
′
jui)), g(·) = δ′Sn(·), ψj(·) = ϑ′jSn(·). To adhere to the identi-

fication condition on Γ, we further perform a singular value decomposition (SVD) on Γ̃ =

(−̃→γ 1, · · · , −̃→γ Kn)′ to obtain Γ̃ = S1Λ
1/2
1 D1 and Γ(o) = Λ

1/2
1 D1 with the first nonzero ele-

ment of each row of Γ(o) positive. Likewise, denoting Ũ = (ũ1, · · · , ũn)′ − 1
N

∑n
i=1 niũ

′
i

and P = diag{√n1, · · · ,
√
nn}, we perform the SVD on PŨ to obtain PŨ = S2Λ2D2 and

U(o) =
√
NP−1S2.

Update H. To address the nonsmoothness of the SCAD penalty, we adopt the local quadratic

approximation for the penalty pλ(·) (Fan and Li, 2001):

pλ(‖H·k‖) ≈ pλ(‖H0
·k‖) +

ṗλ(‖H0
·k‖)

2‖H0
·k‖
{(H·k)′H·k − (H0

·k)
′H0
·k},
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when H·k ≈ H0
·k. Let R(H) = 1

n

∑n
i=1 `(H, g,ψ′; ui) − 1

2

−→
H ′G(H(o−1))

−→
H, where G(H) =

diag
{
ṗλ(‖H·1‖)
‖H·1‖ , · · · , ṗλ(‖H·Kn‖)‖H·Kn‖

}
⊗ Id with Kronecker product ⊗. To estimate H(o), we first

obtain H̃ = arg max‖H‖=1R(H) by one-step updating:

−̃→
H =

−→
H(o−1) −

[
∂2{‖Ṙ(H(o−1))‖2}

∂
−→
H∂
−→
H ′

]−1
∂{‖Ṙ(H(o−1))‖2}

∂
−→
H

. (3.8)

We then perform the SVD to obtain H̃ = S3Λ3D3, and H(o) = D3/‖D3‖, and adjust the signs

of each column H(o)′ to ensure that the first nonzero element is positive.

Update ϑ, δ. Let R(ϑj) = 1
n

∑n
i=1 `(H, g,ψ′; ui), and denote A⊗2 = AA′ for any matrix A.

Similar to (3.8), we obtain a one-step updating estimate ϑ̃j for ϑj by maximizing R(ϑj). We

further standardize ϑ̃ = (ϑ̃1, · · · , ϑ̃d) by (C1’) to obtain

ϑ
(o)
j =

ϑ̃j − [ 1
N

∑n
i=1 ni{Sn(h′jui)}⊗2]−1[ 1

N

∑n
i=1 niSn(h′jui)]

⊗2ϑ̃j{∑d
j=1 v̂ar(ψj)

}1/2
, (3.9)

where ψij = ϑ′jSn(h′jui), and v̂ar(ψj) is the empirical variance of ψij. Similar to (3.5),

δ(o) =

[
n∑
i=1

{Sn(
∑d

j=1 ψj(h
′
jui))}⊗2

V (mi)

]−1 n∑
i=1

YiSn(
∑d

j=1 ψj(h
′
jui))

V (mi)
. (3.10)

We estimate Ωn iteratively using expressions (3.5)-(3.10) until ‖Ω(o)
n )−Ω(o−1)

n ‖/‖Ω(o−1)
n ‖ ≤

ε or the relative difference of objective function |Lp(Ω(o)
n )−Lp(Ω(o−1)

n )|/|Lp(Ω(o−1)
n )| ≤ ε, where

ε is a prespecified small number. We summarize the computational steps in Algorithm 1.

Remark 2. The estimators of α,Γ,U and δ have closed forms and are easy to calculate. We

cannot obtain the estimators of H and ϑ directly due to the inclusion of nonlinear unknown

functions g(·), ψj(·) and their derivatives. One-step updating is used to calculate H and ϑ,
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Algorithm 1 The proposed iterative algorithm

Input: {Zi(·), Yi}, maximum iterations NI , relative tolerance of the objective function ε.

Output: (α̂, Γ̂, Û, Ĥ, ϑ̂, δ̂).
1: Initialize (α(0),Γ(0),U(0),H(0),ϑ(0), δ(0)).
2: for each o = 1, · · · , NI do
3: Update Ω(o)

n = (α(o),Γ(o),U(o),H(o),ϑ(o), δ(o)) based on Equations (3.5)–(3.10);
4: Evaluate the objective function Lo = Lp(Ω

(o)
n ) by (2.4).

5: if ‖Ω(o)
n )−Ω(o−1)

n ‖/‖Ω(o−1)
n ‖ ≤ ε or |Lo − Lo−1|/|Lo−1| ≤ ε then

6: break;
7: end if
8: end for
9: return (α̂, Γ̂, Û, Ĥ, ϑ̂, δ̂).

together with the convenient usage of the R function jacobian for calculating the derivatives.

The overall computational cost is reasonable. In addition, in Proposition 1 of Section S2 in

the Supplementary Material, we show that the proposed iterative algorithm converges.

Selection of tuning parameters

The proposed estimation procedure involves the selection of several tuning parameters: the

numbers of FPC Kn and splines kn, the dimension of index d, the tuning parameters w and λ.

The details of selection criteria are illustrated in Section S6 of the Supplementary Material.

We also test the performance of our tuning procedure via simulation studies in Section 5, the

results in Supplementary Material shows that the selection procedure works well.

4. Theoretical properties

We now establish the large sample properties, including estimation and selection consistency

as well as the asymptotic normality of the proposed estimators. Their proofs are deferred to

the Supplementary Material. Throughout the paper, we use the subscript “0” for the true

value; for example, the true value of H is denoted by H0 and s0 is the true number of the
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active group. We allow s0 to grow with the sample size n.

Denote the L2 norm by ‖ · ‖2. Define the distance between Θ1 = (
−→
H1
′, g1,ψ

′
1)
′ and

Θ2 = (
−→
H2
′, g2,ψ

′
2)
′ as d(Θ1,Θ2) = ‖H1 −H2‖+ ‖g1 − g2‖2 + ‖ψ1 −ψ2‖2. Given nonnegative

integers l, s, define the Hölder space of order r = l + s as Hr = { f(·) : |f (l)(t1)− f (l)(t2)| ≤

c|t1 − t2|s, for any 0 ≤ t1, t2 ≤ 1 } , where c is a finite positive constant. To establish the

asymptotic properties, we need the following regularity conditions.

(A1) µq0(t), φkq0(t), g0, ψj0 are in Hölder space of order r ≥ 2.

(A2) The second derivatives of `(m,Y ; u) with respect to m and u are locally Lipschitz

continuous and bounded.

(A3) The fourth moment
∑p

q=1

∫ 1

0
E{(Zq(t)− µq(t))4}dt is finite.

(A4) There exist c0 > 1 and 0 < M < ∞ such that λk − λk+1 ≥ Mk−c0−1. Furthermore,

eigenfunctions satisfy supk,q,t∈[0,1] |φkq(t)| ≤M <∞.

(A5) Kn = O(n%) with % < 1/{2(c0 + 3)}, kn = O(nν) with %(c0 + 3)/r < ν < 1/2, and

k̃n = O(nν̃) with 0 < ν̃ < 1/2.

(A6) m=̂ mini{ni} = O(nε) with ε > %(2c0 + 5) + 2ν.

Condition (A1) imposes smoothing and bounded restrictions, that are commonly used in

the semiparametric regression literature (Xie and Huang, 2009). Condition (A2) is a math-

ematical regular condition on the objective function so that the objective function is man-

ageable. Conditions (A3) and (A4) have been used in the literature of FPCA (Zhu et al.,

2014), which implies λk ≥Mk−c0 . Condition (A5) is a restriction on the number of the knots

and the principle components. This condition was also required by Happ and Greven (2018).

Note that we have different requirements on kn and k̃n. The condition on k̃n is standard (Xie
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and Huang, 2009), while kn is larger than the usual one to ensure Kn eigenfunctions to be

approximated well when Kn → ∞. Condition (A6) indicates that each functional covariate

has enough observations. Conditions (A5) and (A6) are required to assure that the scores ui

can be consistently estimated.

We first provide the rates for the case without the penalty on H, which is crucial to

establish the theoretical results for the proposed estimators. Denote (ᾰ, Γ̆, Ŭ, H̆, δ̆, ϑ̆) to be the

maximizer of (2.3) without the penalty on H, ğ(·) = δ̆
′
Sn(·), ψ̆j(·) = ϑ̆

′
jSn(·), ψ̆ = (ψ̆1, · · · , ψ̆d)

and Θ̆n is the corresponding estimator of Θ.

Lemma 1. Let ρn = k−rn +
√
Kn

√
n
N

+ kn√
Kn

√
n
N

+ 1√
n

, where r is defined in Condition (A1).

Under Conditions (C1’) and (A1)-(A6), for any i = 1, . . . , n, we have

‖ŭi − ui‖ = Op

(
Kc0+3
n ρn

)
, (4.11)

d(Θ̆n,Θ0) = Op

√ k̃n +Kn

n
+ k̃−rn +Kc0+3

n ρn

 . (4.12)

Remark 3. In (4.11), Kc0+3
n k−rn is the approximation error of the spline, which reduces to

the usual order k−rn (Xie and Huang, 2009) for a finite number of functions, that is, Kn =

O(1). The term Kc0+3
n (

√
Kn

√
n/N+ kn√

Kn

√
n/N+1/

√
n) is the estimation error. Particularly,

the estimation of ui uses only the information from the i-th sample, where the number of

time points N/n actually plays the role of the sample size in the estimation of ui. This is

reflected by the term K
c0+7/2
n

√
n/N , which reduces to K

c0+7/2
n /

√
m if ni ≡ m. The term

Kc0+3
n ( kn√

Kn

√
n/N + 1/

√
n) is the estimation error from the estimation of eigenfunctions. This

error deceases with an increase in the number of time points N/n and the sample size n.

Both the approximation and estimation errors increase as the number of principal components
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Kn increases due to the increasing number of unknown functions. While, a large number of

splines, kn, reduces the approximation error, but increases the estimation error. We numerically

demonstrate the rationale of (4.11) in Section 5.

Remark 4. (4.12) gives the rates of convergence for (g,ψ,H) without the penalty on H when

g(·) and ψ(·) are approximated by the B-spline basis. Unlike the usual B-spline approximation,

the convergence rate depends on not only the approximation error k̃−rn for the nonparametric

functions and the estimation error

√
k̃n/n for the expansion coefficients of spline, but also the

convergence rate of ŭi, K
c0+3
n ρn, for the price of unknown ui.

To gain further insight into the formula for the asymptotic results, we consider here three

special cases that are of particular interest.

Case 1. When Kn = O(1), the rate given in (4.11) reduces to ‖ŭi − ui‖ = Op(knn/N +

1/
√
n + k−rn ), which further reduces to ‖ŭi − ui‖ = Op(1/

√
n) if ni = m = O(n1+2ν) and

ν ≥ 1/2r. The rate ‖ŭi−ui‖ = Op(1/
√
n) has been established under the framework of kernel

smoothing with various assumptions. For instance, in Lemma 2 of Li et al. (2010) and Hall

and Hosseini-Nasab (2006), it was assumed that mn−5/4 →∞, while in Lemma 1 of Zhu et al.

(2014), it was assumed m = O(n3/2) for dense and balanced observations.

Case 2. When Kn → ∞, Happ and Greven (2018) established ‖ŭi − ui‖ = Op(K
c0+3
n rGn )

under Condition ‖G(j)− Ĝ(j)‖op = Op(r
G
n ) for all j ≤ p, where G(j) is the covariance operator

of Zj(t) and ‖ · ‖op is the operator norm. They also pointed out that rGn = O(1/
√
nh2) in

the case of sparse irregular observations with Gaussian assumption and bandwidth h; rGn =

O(1/
√
n) when the observations are sufficiently dense and the bandwidth is small enough, thus

‖ŭi − ui‖ = Op(K
c0+3
n /

√
n), which agrees with our result if m and kn are large enough.
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Case 3. When m = O(nK2c0+5
n k2n + nK2c0+7

n ), ν ≥ 2%(c0 + 3) + 1/(2r) and k̃n ≥ K2c0+6
n , the

effect brought by the estimation of ui is negligible, and (4.12) simplifies to the well-known result

in nonparametric estimation: d(Θ̆n,Θ0) = Op{
√
k̃n/n + k̃−rn }, which provides the ground for

Θn to achieve the optimal convergence rates (Stone, 1980).

Main results

Before presenting the main theorems, we give some notations. Without loss of generality,

we assume that the first s0 (s0 ≤ Kn) columns of H0 are nonzero. Hence, we can write

H0 = (H1,0,H2,0 = 0). Let (Û, Ĥ, δ̂, ϑ̂) be the maximizer of (2.4) and ĝ(·) = δ̂
′
Sn(·), ψ̂j(·) =

ϑ̂
′
jSn(·), ψ̂ = (ψ̂1, · · · , ψ̂d). Denote Ĥ = (Ĥ1, Ĥ2) with Ĥ1 and Ĥ2 being the corresponding

matrices of s0 and Kn − s0 columns, respectively. To obtain our main theorem, we need three

additional Conditions (A7)–(A9).

(A7)

√
k̃n+Kn

n
+ k̃−rn +Kc0+3

n ρn � λ� inf1≤k≤s0 ‖H0,·k‖.

(A8) m = O(nK2c0+5
n k2n + nK2c0+7

n ), ν ≥ 2%(c0 + 3) + 1/(2r) and k̃n ≥ K2c0+6
n .

(A9) Σ = E(S−→
H1,0

S ′−→
H1,0

), defined in the Supplementary Material, is positive definite.

Condition (A7) gives a bound for the penalty parameter λ. Condition (A8) means that the

effects from the estimation of ui are negligible on ĝ(·), ψ̂j(·) and Ĥ. These conditions are

slightly stronger than (A5) and (A6). Condition (A9) ensures the existence of the asymptotic

covariance matrix.

Theorem 1. Under Conditions (C1’) and (A1)-(A7), with s0 = o(n1/8), we have

(i) Sparsity: limn→∞ P (Ĥ2 = 0) = 1.

(ii) Convergence rate:
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‖ûi − ui‖ = Op

(
Kc0+3
n ρn

)
, i = 1, . . . , n, (4.13)

‖Ĥ1 −H1,0‖+ ‖ĝ − g0‖2 + ‖ψ̂ −ψ0‖2 = Op

(√
k̃n + s0
n

+ k̃−rn +Kc0+3
n ρn

)
. (4.14)

(iii) Furthermore, if Conditions (A8) and (A9) hold, we have asymptotic normality:
√
na′nΣ

1/2(
−→
Ĥ1−

−→
H1,0)→ N(0, 1) for any unit s0d-vector an.

Remark 5. From Theorem 1(i), it is clear that we can achieve model selection consistency

by choosing a proper λ. This also shows that s0 can be large to o(n1/8), which is slower than

that in the usual high-dimensional regression with observable covariate ui (Xie and Huang,

2009). The convergence rate given in (ii) indicates that, under the conditions of Theorem 1,

the rate of convergence of ui is the same as that without penalties on H because the penalties

are independent of ui. When (A8) holds; that is, the number of time points m = N/n, and

the numbers of spline basis kn and k̃n are sufficiently large. The order in (4.14) is dominated

by the first two terms, which implies that the uncertainty from selecting and estimating ui

can be ignored. The convergence rate given in (ii) also implies that a large m is beneficial

for the resulting estimator, which is confirmed by our simulation studies. Furthermore, as

usual, if k̃n = O(n1/(2r+1)), which can be guaranteed when % < {(2r + 1)(2c0 + 6)}−1, then

‖Ĥ1−H1,0‖+‖ĝ− g0‖2 +‖ψ̂−ψ0‖2 = Op(n
−r/(2r+1)). This is the optimal rate of convergence

for the univariate nonparametric regression (Stone, 1980). Result (iii) shows the asymptotic

normality for the nonzero columns of H, together with (i); then, we obtain the oracle property

of the SCAD penalized estimator.

5. Simulation Studies

In this section, we first illustrate (4.11) in Lemma 1 through numerical simulations. Then we
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investigate the finite-sample performance of the proposed estimation procedures. We compare

the proposed method (Prop) with the non-supervised FR-FPCA model and the direct function-

al regression (DFR) models, including generalized linear functional regression with unknown

link function (UGLFR, Müller and Stadtmüller, 2005) and generalized additive functional re-

gression (GAFRM, McLean et al., 2014). In addition, the model (2.2) can be interpreted as

a neural network (NN) comprised of 4 layers of ui (Schmidt-Hieber, 2020). We also compare

our method with the NN approach on scores ui by adopting the architecture presented in

Schmidt-Hieber (2020), resulting in what we refer to as NN-FPCA. In the FR-FPCA and

NN-FPCA, the latent scores are extracted from the covariates alone. We assess the perfor-

mance of various estimators via bias, standard deviation (SD), and root mean square error

(RMSE). Particularly, for the estimates f̂(·) of a function f(·), bias, SD and RMSE are de-

fined by bias =
[

1
ngrid

∑ngrid
i=1 {Ef̂(ti)− f(ti)}2

]1/2
, SD =

[
1

ngrid

∑ngrid
i=1 E{f̂(ti)− Ef̂(ti)}2

]1/2
and RMSE = [bias2 + SD2]

1/2
, where ti (i = 1, . . . , ngrid) are the grid points in which the

function f(·) is estimated, Ef̂(ti) is approximated by its sample mean based on N simulated

data. In the following experiments, we set ngrid = 300, and use the cubic B-spline with qn = 4

interior knots, or kn = qn + 4 = 8, the largest integer smaller than nν with ν = 1/3, so that

the theoretical requirements that ν < 1/2 and ν̃ < 1/2 in (A5) are satisfied. In fact, the

estimators of the proposed method are insensitive to the number of interior knots, as shown

in Web Table 2 by comparing the results for qn = 2, 3, 4, 5.

Simulation settings

We simulate N = 200 runs, each with the sample size n = 600. We generate functional

predictors by Zi(t) = µ(t) +
∑6

k=1 uikφk(t) + ei(t). For each trajectory Zi(t), the observation
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time points were randomly sampled from U(0, 1), and the number of measurements was chosen

from a discrete uniform distribution on {60, 61, · · · , 70}. We consider p = 1 in Examples 1-

3, and p = 2 in Example 4. Let µ(t) = t + sin πt, φ2l−1(t) = 4 cos{(2l − 1)πt}/
√

2l − 1

and φ2l(t) = 4 sin{(2l − 1)πt}/
√

2l for l = 1, 2, 3, uik follows a normal distribution N(0, 1)

and ei(t) ∼ N(0.0.52). In the following examples, we consider Bernoulli, Poisson and normal

distributions for the response.

Example 1. Set d = 2, ψ1(x) = exp−0.5(x−1)
2 −0.6, ψ2(x) = 2Φ(3x)− 1, and generate Yi from

Yi = I{ψ1(h
′
1ui) + ψ2(h

′
2ui) > Ui}, where h1 = (0, 0, 0, 0, 0.5, 0.5)′, h2 = (0, 0, 0, 0, 0.5,−0.5)′,

Ui follows a mixed normal 0.5N(1/4+0.05, 0.52)+0.5N(1/4−0.05, 0.52) and I is the indicator

function. Then, given ui, Yi has the Bernoulli distribution B(1, pi) with pi = E(Yi|ui) =

g{ψ1(h
′
1ui)+ψ2(h

′
2ui)} and g(x) = 0.5Φ {(x− 1/4− 0.05)/0.5}+0.5Φ {(x− 1/4 + 0.05)/0.5}.

It is clear that g(·) is not the commonly used logit function.

Example 2. The setting is similar to Example 1 except that g(x) = (2x + 0.5)2/5, and Yi is

independently generated from a Poisson distribution with mean g{ψ1(h
′
1ui) + ψ2(h

′
2ui)}.

Example 3. The setting is similar to Example 2 except that Yi is independently generated

from a normal distribution Yi = g{ψ1(h
′
1ui) + ψ2(h

′
2ui)}+ Ui given ui, where Ui is generated

from N(0, 0.52) and independent of ui.

Example 4. We set p = 2 and consider a joint analysis of the two curves. The setting

is similar to Example 1 except that Zi(t) are generated from Zi1(t) = µ1(t) + 2ui1(φ1(t) +

φ2(t)) + 2ui2φ2(t) + 2
√
6

3
ui3φ3(t) +

√
2ui4φ4(t) + 2

√
10
5
ui5φ5(t) + 2

√
3

3
ui6φ6(t) + ei1(t), Zi2(t) =

µ2(t) + 2
√

2ui1φ2(t) +
√

2ui2(φ1(t) − φ2(t)) + 2
√
6

3
ui3φ4(t) +

√
2ui4φ3(t) + 2

√
10
5
ui5ui5φ6(t) +

2
√
3

3
ui6φ5(t) + ei2(t), where µ1(t) = t + sin πt, µ2(t) = exp(t), φ2l−1(t) = cos{(2l − 1)πt},
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φ2l(t) = sin{(2l − 1)πt} for l = 1, 2, 3, and eiq(t) ∼ N(0.0.52), q = 1, 2.

Illustrations of the theoretical results

(4.11) shows that Kn is crucial to the error bound of ŭi. To gain deeper insight into the

theoretical error of ‖ŭi−ui‖ as a function of Kn, we conduct simulations to explore this error

term. We generated data using the setting of Example 1 with ni = 50, 30, even numbers Kn

from 4 to 26, n = 400, and kn fixed. The numerical errors are the averages of the estimated

‖ŭi − ui‖ based on 200 replications. The theoretical errors αKM
n + b are obtained by the

linear regression of estimated ‖ŭi − ui‖ on KM
n , where the regression coefficients (α, b) and

M are estimated via the R function optim. These results are summarized in Figure 1. As

expected, the numerical results closely align with the theoretical ones. Specifically, (i) when

ni and Kn are small (ni ≤ 30, Kn ≤ 16) so that the third term of ρn dominates the other three

terms, then ‖ŭi−ui‖ = Op(K
c0+5/2
n kn

√
n
N

) = Op(K
c0+5/2
n ) with c0 ≥ 1 according to Condition

(A4). The numerical results closely align with the theoretical errors O(K4.5
n ), as shown by

the orange dashed line in the lower panel of Figure 1; (ii) when ni is small but Kn is large

(ni ≤ 30 and Kn > 16) so that the second term of ρn dominates the other terms in order,

then ‖ŭi−ui‖ = Op(K
c0+7/2
n

√
n
N

) = Op(K
c0+7/2
n ). The numerical results closely align with the

theoretical errors O(K5.5
n ), as shown by the blue dotted line in the lower panel of Figure 1; (iii)

If increasing the number of time points (ni ≥ 50) so that (
√
Kn+kn/

√
Kn)

√
n
N

are dominated

by k−rn + 1√
n

in order, then ‖ŭi − ui‖ = Op{Kc0+3
n (k−rn + 1√

n
)} = Op(K

c0+3
n ). The numerical

results closely align with the theoretical errors with K5
n, as shown by the orange dashed line

in the top panel of Figure 1. These findings also imply that c0 = 2 seems appropriate.

We also carefully examine the effect of increasing the number of the observation times,
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Figure 1: The simulated (solid line) and theoretical (broken line) values of ‖ŭi − ui‖ when
i = 1, 200, 400 (from left to right), and ni = 50 (upper panel) and 30 (lower panel).

ni, on the estimation accuracy. We set the combinations of n = 100, 300, 600 and ni =

10, 30, 60, 100. The accuracy of the estimator Û1 is measured by the smallest nonzero canonical

correlation between Û1 and U1, denoted by ccor(Û1,U1), where U1 is the score matrix

corresponding to H1,0. Web Figures 1 and 2 display the average of ccor(Û1,U1) and the

RMSE of (Ĥ1, ĝ, ψ̂) for Examples 1 and 2. From Web Figures 1 and 2, we can see that the

canonical correlation increases and the RMSE decreases as n or ni increases. When ni is

smaller, for example, ni ≤ 30, the estimation accuracy is more sensitive to ni than n, and ni

plays a crucial role in the estimation. When ni is larger, for example, ni ≥ 60, the estimation

accuracy is more sensitive to n than ni. These observations confirm the theoretical results in

Theorem 1.

Comparisons with the FR-FPCA method

We compare the proposed method with the FR-FPCA that is implemented by using the
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proposed estimation procedure with ui being estimated by the conventional FPCA (Ram-

say and Silverman, 2005) and without the penalty term on H. We take (Kn, kn, d, λ, v) =

(6, 8, 2, 0.6, 0.7) by the approach described in Section 3. Table 1 and Web Table 1 present the

bias, empirical SD and RMSE of the parametric and nonparametric estimates for Examples

1-4. It is clear that the FR-FPCA method produces larger biases and variances. The RMSE

of the proposed method is consistently smaller than that of the FR-FPCA method for all

estimators, which indicates that the proposed method is superior to the FR-FPCA method.

This superiority is attributed to the use of penalties, which select information directions that

are important for the relationship between the response and the covariate curves. In addition,

we also observe that the improvement of the proposed estimators for the component and link

functions is more remarkable than that for the mean functions. This is because correct extrac-

tion of information on the relationship between the response and the covariates is crucial to

estimate the component and link functions, while the estimates of the mean and eigenfunctions

mainly rely on the information from the covariate curves Zi(t).

Table 1: The estimation results for Examples 1-3.

Prop FR-FPCA

µ(·) φ5(·) φ6(·) h15 h16 h25 h26 g(·) ψ1(·) ψ2(·) µ(·) g(·) ψ1(·) ψ2(·)
Example 1 bias 0.002 0.008 0.008 0.006 0.004 0.006 0.002 0.031 0.016 0.015 0.004 0.317 0.059 0.066

SD 0.030 0.054 0.042 0.024 0.028 0.020 0.022 0.126 0.082 0.071 0.037 0.225 0.474 0.629
RMSE 0.030 0.055 0.043 0.025 0.028 0.021 0.023 0.129 0.084 0.072 0.037 0.388 0.478 0.632

Example 2 bias 0.002 0.008 0.008 0.008 0.006 0.007 0.007 0.029 0.017 0.010 0.004 0.267 0.131 0.141
SD 0.030 0.069 0.073 0.033 0.030 0.035 0.028 0.101 0.050 0.037 0.054 0.381 1.315 1.397

RMSE 0.030 0.069 0.073 0.034 0.031 0.036 0.029 0.105 0.053 0.038 0.054 0.466 1.322 1.404
Example 3 bias 0.002 0.010 0.010 0.002 0.007 0.003 0.005 0.020 0.015 0.010 0.002 0.409 0.102 0.101

SD 0.028 0.084 0.059 0.031 0.030 0.025 0.022 0.082 0.039 0.052 0.038 0.398 0.782 1.199
RMSE 0.028 0.085 0.060 0.031 0.031 0.025 0.022 0.084 0.042 0.053 0.038 0.570 0.788 1.203

To assess the performance in the selection of features, we present the number of groups

selected (]G) and variables selected (]var), true positive rate (TPR) and false positive rate
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Table 2: The results of selected number of group (]G), number of variables (]var), and TPR,
FPR for Examples 1-4.

]G ]var TPR FPR

bias SD RMSE bias SD RMSE mean mean
Example 1 0.025 0.157 0.159 0.020 0.140 0.142 0.970 0.000
Example 2 0.101 0.427 0.439 0.101 0.483 0.494 0.919 0.001
Example 3 0.071 0.422 0.427 0.066 0.391 0.397 0.943 0.000
Example 4 0.041 0.264 0.267 0.036 0.211 0.214 0.958 0.004

(FPR) in Table 2 based on 200 replications for Examples 1-4. The numbers of selected groups

and variables are close to the true values. The TPR is close to 1 and the FPR is close to 0.

These results suggest that the proposed method not only selects important variables but also

rules out unimportant variables with high probabilities.

Web Figure 3 displays the average estimates of the link and component functions, along

with the associated 95% pointwise confidence bands for Examples 1-3, which shows that the

proposed estimators for the link and component functions are close to the true curves.

Comparisons with the direct functional regression models and NN-FPCA

We compare the proposed method with the existing direct functional regression models,

including UGLFR and GAFRM, and NN-FPCA. Since the model settings are different, we

assess the performance of the estimators in terms of the predicted error. To be fair, we further

consider two settings.

Example 5. The data are generated from UGLFR with the same setting as that of Müller

and Stadtmüller (2005). Particularly, p = 1, Zi(t) =
∑20

k=1 uikφk(t), φk(t) =
√

2 sin(πkt) and

uik ∼ N(0, 1/k2). Yi is generated from the Bernoulli distribution B(1, pi) with pi = g(b0+h′1ui),

g(x) = exp(x)/{1 + exp(x)}, b0 = 1, h1 = 6
7
(1, 1/2, 1/3, 0, · · · , 0)′, where ui = (ui1, · · · , ui,20)′.

Example 6. The data are generated from GAFRM with the same setting as that of McLean
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et al. (2014). Concretely, p = 1, Zi(t) =
∑5

k=1wk[u1ikφ1k(t) + u2ikφ2k(t)], where u1ik, u2ik ∼

N(0, 1), φ1k(t) =
√

2 cos(πkt), φ2k(t) =
√

2 sin(πkt), and wk = 2/k. Let F (x, t) = −0.5 +

exp[−(x
5
)2 − ( t−0.5

0.3
)2], we generate Yi from Yi = g[b0 +

∫ 1

0
F{Zi(t), t}dt] + Ui, where Ui is

generated from N(0, σ2) and σ2 = 1
n−1

∑n
i=1[
∫ 1

0
F{Zi(t), t}dt− n−1

∑n
i=1

∫ 1

0
F{Zi(t), t}dt]2.

We assess the performance of the estimators by the quantity PE = 1
K

∑
i∈test(Yi − Ŷi)2,

where K is the size of the test set which is independent of the training data. We take K = 400

and the sample size n = 600. Figure 2 shows the boxplots of the PE based on the proposed,

UGLFR, GAFRM and NN-FPCA in Examples 1, 5 and 6, which follow the model requirements

of the proposed, the UGLFR and the GAFRM, respectively. From Figure 2, we can see

that the proposed method is more accurate than UGLFR, GAFRM and NN-FPCA when the

models are correctly specified, and is better than UGLFR, GAFRM and NN-FPCA when the

models are misspecified. The results indicate the robustness and accuracy of the proposed

procedures. Interestingly, all of the proposed methods, UGLFR, and GAFRM outperform

NN-FPCA in terms of prediction accuracy. The comparison of the proposed method and NN-

FPCA suggests the importance of estimating the activation function, rather than specifying

it, particularly when utilizing a simple neural network architecture for datasets with limited

sample sizes. Additionally, the enhancement achieved by the proposed method might be

attributed to the selection of importance scores, which results in the reduced dimension of the

input and subsequently improves accuracy compared to that of NN-FPCA.

6. Applications: Stock Index and Alzheimer’s disease

Stock Data Study

In a well-established stock market, prices fully reflect available information about the
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Figure 2: Prediction error across 200 simulations based on the proposed method, UGLFR,
GAFRM and NN-FPCA for Examples 1, 5 and 6 (from left to right).

market and its constituents (Wang et al., 2014; Cao et al., 2020). However, it is well known

that directly predicting stock prices is difficult and less reliable due to high volatility. Here, we

model and predict the direction of price movement for the market index of the Shanghai and

Shenzhen Stock Exchanges, two of the fastest growing financial exchanges in developing Asian

countries. The dataset collected from a financial service provider records the Shanghai and

Shenzhen Composite Index from January 2017 to November 2019 in daily minute observations.

To ensure independence, we analyze the observations on Tuesday out of 145 weeks. In practice,

to test the null hypothesis that the functional time series data in 145 weeks is independent,

we define Ĉn,h(t, s) = 1
n

∑n−h
i=1 {Zi(t) −

1
n

∑n
i′=1 Zi′(t)}{Zi+h(s) −

1
n

∑n
i′=1 Zi′(s)} and V̂n,H =∑H

h=1

∫ 1

0

∫ 1

0
Ĉ2
n,h(t, s)dtds, where H is the number of lags. Following Horváth et al. (2013),

the testing statistics
nV̂n,H−H∗(

∫ 1
0 Ĉn,0(t,t)dt)

2√
2H(

∫ 1
0

∫ 1
0 Ĉ

2
n,0(t,s)dtds)

2
with H∗ = H − H(H + 1)/(2n) is distributed as

a standard normal distribution under the null hypothesis. As shown in Web Figure 5 of the

Supplementary Material, all p-values for lags H = 1, · · · , 90 (week) exceed 0.08 with p-value

being 0.12 for H = 7 (week). This indicates that we do not have sufficient evidence to reject

the null hypothesis of indenpendence at the 0.05 significant level. Furthermore, we plot the
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Candlestick chart of stock index curves on 145 days in Figure 3(a) after removing missing

values, distortions and incorrect records.
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Figure 3: (a) The Candlestick chart of Stock Index data. (b)-(h) Estimated mean, eigenfunc-
tions, component and link functions (dashed lines) and their 95% confidence bands (dotted
lines) by the proposed method for the Stock data. (i) The ROC curves of the proposed, the
non-supervise FR-FPCA method, KGLFR, UGLFR, GAFRM and MIFR for the stock study.

Let Zi(t) be the stock index curve in the morning of day i, Yi = 1 if the stock went up,

and 0 otherwise at the end of day i. We try to determine how Zi(t) in the morning leads to a

stock increasing at the end of the day. We first rescale the observed time of Zi(·) to [0, 1] and

fit the data by using the proposed method and the FR-FPCA method. The tuning parameters
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(Kn, kn, d, λ, v) = (6, 8, 2, 0.9, 0.7) were obtained by the approach described in Section 3.

The resulting estimates for the parameters are displayed in Table 3, and indicate that both

methods select three characteristics of the covariate curves. However, the FR-FPCA method

picks the first three FPCs while the proposed method picks the first, fourth and sixth FPCs.

Figures 3(c)-3(e) plot the estimated first, fourth and sixth eigenfunctions, component functions

and link function along with their corresponding 95% point-wise confidence bands, based on

200 bootstrap replications. These three figures show that all of the first, fourth and sixth

eigenfunctions have a similar U-shape, which is consistent with the results reported in Wang

et al. (2014) and Cao et al. (2020). Figures 3(c)-3(e) also show that the first eigenfunction has

an apparent positive effect on the rise of stock when t < 0.2 or t > 0.8, and a negative effect

when 0.2 ≤ t ≤ 0.8, which may be attributed to a large volume of transactions and intense

trading at the start and end of the morning market, and the positive effects of the fourth and

sixth eigenfunctions vigorously exhibit the financial market.

Table 3: The estimated coefficients for the Stock data.

Prop FR-FPCA

h1 0.662 0 0 -0.188 0 -0.162 0.368 0.342 0.498 0 0 0
h2 0.203 0 0 0.676 0 0.046 0.495 0.164 -0.478 0 0 0

Furthermore, to check the reliability and prediction accuracy of the proposed method,

we calculate the prediction errors based on the proposed method, the FR-FPCA method, the

GLFR with the logit link function (KGLFR), UGLFR, GAFRM, the multiple index functional

regression models (MIFR) (Radchenko et al., 2015) and NN-FPCA. We randomly divide the

data into training and testing sets with ratios of 1:2, 1:1 and 2:1. For each subject in the

testing sets, we predict Y by using the model obtained from the training datasets and compute
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the mean square prediction errors, which are displayed in Table 4. We further evaluate the

classification performance by presenting the receiver operating characteristic (ROC) curves for

all six methods in Figure 3(i), and the associated area under the curve (AUC) values in Table

4. From Table 4 and Figure 3(i), we can see that the prediction error of the proposed method

is smaller and the AUC value is larger than those of the other six methods. These superiorities

indicate that the proposed method can accurately extract the relevant information about the

response from the covariate curves and improve the prediction accuracy.

Table 4: Prediction error of Y and AUC values for the Stock data.

Training set rate Prop FR-FPCA KGLFR UGLFR GAFRM MIFR NN-FPCA

1/3 0.195 0.258 0.237 0.225 0.198 0.249 0.458
1/2 0.179 0.205 0.192 0.192 0.219 0.250 0.373
2/3 0.143 0.146 0.174 0.167 0.165 0.250 0.850

AUC 0.836 0.622 0.570 0.619 0.618 0.624 0.884

ADNI Study

We continue with our study on Alzheimer’s disease (AD), which is irreversible and the

most common form of dementia and can result in the loss of thinking, memory and language

skills. It is of substantial interest to unravel the complex brain changes involved in the onset

and progression of AD. The brain volume of the hippocampus, which is the brain region

associated with memory loss and disorientation, has been found to be associated with human

cognitive function. We use the density of brain volume of the hippocampus to determine

whether patients have cognitive impairment. The dataset includes 390 participants enrolled in

the first phase of the Alzheimer’s Disease Neuroimaging Initiative (ANDI) study, a large cohort

study designed to prevent and to treat Alzheimer’s disease. Each patient’s record consists of

the density for each of the observed 501 equispaced sampling volumes in the interval of [-255,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



30

255]. Among the 390 patients, 172 subjects were diagnosed with cognitive impairment (AD)

and 218 were cognitively normal (CN).

Let Zi(t) be the density curve of the log of the Jacobian volume of the hippocampus (t),

Yi = 1 if cognitive impairment, and 0 otherwise for subject i. We are interested in what general

shape or feature of Zi(t) is associated with cognitive impairment. The density curves for all

the subjects are plotted in Figure 4(a) and available at http://adni.loni.usc.edu.
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Figure 4: (a) The density curves of the log Jacobian volume for ADNI data. (b)-(h) Estimated
mean, eigenfunctions, component and link functions (dashed lines) and their 95% confidence
bands (dotted lines) by the proposed method for the ADNI data. (i) The ROC curves of the
proposed, the non-supervise FR-FPCA method, KGLFR, UGLFR, GAFRM and MIFR for
the ADNI study.
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We scale the log Jacobian volume into [0,1] and fit the data by using the proposed method

and the FR-FPCA method. The tuning parameters (Kn, kn, d, λ, v) = (6, 8, 2, 0.9, 0.7) are ob-

tained by using the procedure described in Section 3. The estimated coefficients of the latent

scores when using the proposed and FR-FPCA methods are presented in Table 5, which indi-

cates that both methods select three latent scores. However, the FR-FPCA method picks the

first three scores while the proposed method extracts the first two and the last scores. Figures

4(c)-4(e) plot the estimated first, second and sixth eigenfunctions, component functions and

link function as well as their corresponding 95% point-wise confidence bands based on 200

bootstrap replications. Looking closer at the shape of the eigenfunctions, we can see that the

shape of the first eigenfunction is similar to that of Happ and Greven (2018), which is inter-

pretable as a related AD effect, and there is a positive relationship between the density curve

and the first eigenfunction. The shapes of the second and sixth eigenfunctions are opposite

to those of the density curves and there is a bend upward on the large t since AD patients

tend to have low hippocampal volumes which indicate a high level of cognitive impairment.

It appears that CN is more sensitive to the second and sixth eigenfunctions. Table 6 reports

the prediction error of Y and AUC values when using the proposed method, the FR-FPCA

method, KGLFR, UGLFR, GAFRM, MIFR and NN-FPCA. Figure 4(i) displays the ROC

curves, which along with the results in Table 6 indicate that the proposed method has better

performance.

Table 5: The results for the ADNI data: parametric part.

Prop FR-FPCA

h1 0.493 -0.499 0 0 0 0.093 0.669 0.056 0.222 0 0 0
h2 0.507 0.486 0 0 0 -0.083 0.111 -0.679 -0.163 0 0 0
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Table 6: Prediction error of Y and AUC values for the ADNI data.

Training set rate Prop FR-FPCA KGLFR UGLFR GAFRM MIFR NN-FPCA

1/3 0.162 0.212 0.163 0.173 0.162 0.254 0.629
1/2 0.010 0.138 0.030 0.020 0.032 0.289 0.644
2/3 0.054 0.238 0.592 0.408 0.585 0.254 0.205

AUC 0.974 0.942 0.957 0.958 0.964 0.970 1.000

7. Concluding Remarks

In this paper, we have proposed to evaluate the effect of functional covariate curves through the

regression of the response on features of the curve. Differing from existing approaches, we allow

the distributions of the response and the scores, as well as the link between the response and

the latent scores to be unknown, making the models very flexible and the methods applicable

to broader situations. Furthermore, to reduce the difficulty of optimizing the target function,

we have developed a convenient iterative algorithm which benefits from the one-step updating

with R function jacobian, and obtained a closed form for the shape function in each step.

Extensive simulation studies and real data analyses illustrate that the proposed procedure is

efficient, stable and computationally simple.

In the FPCA literature, one generally pays more attention to the first few scores associated

with large eigenvalues. These so-called important latent scores do not necessarily carry the

most relevant information for the response. Instead the latent scores corresponding to the

smaller eigenvalues may play a more important role to the response. This observation may

partially explain why FR-FPCA methods work poorly in the real data analyses. It is also

worth pointing out that regressing the response on latent scores also brings many conveniences

technically because latent scores are formed in vectors, instead of functions like functional

curves, and more powerful tools developed for vectors can be applied for expedient calculations.
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Furthermore, such a regression strategy may also make the regression more stable because noise

in functional covariates has been pre-reduced.

Various extensions can be considered in the future. It is possible to extend the mod-

el to consider multiple covariates or high-dimensional covariates which characterize features

of individuals. Given such possible covariates, functional feature regression analysis for the

high-dimensional covariates is noteworthy of investigation for gaining more efficiency and for

addressing specific scientific questions. An investigation of the current setting with high-

dimensional functional covariates could also be of interest.

SUPPLEMENTARY MATERIAL

The Supplementary Materials contains abbreviation and notation, detailed proofs of Lemma

1 and Theorem 1 in Section 4, and relevant Tables and Figures in Section 5.
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