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Abstract: Distributed estimation and statistical inference for linear models have

drawn much attention recently, but few studies focus on robust learning in the

presence of heavy-tailed/asymmetric errors and high-dimensional covariates. Based

on adaptive Huber regression to achieve the bias-robustness tradeoff, two classes of

sparse and debiased lasso estimators are proposed using aggregated and communication-

efficient approaches. To be specific, an aggregated `1-penalized and a multi-round

`1-penalized communication-efficient adaptive Huber estimators are respectively pro-

posed in the first stage to handle the distributed data with high-dimensional covari-

ates and heavy-tailed/asymmetric errors. To correct the biases caused by the lasso

penalty, a unified debiasing framework based on the decorrelated score equations

is considered in the second stage. In the third stage, hard-thresholding is used to

produce the sparse and debiased lasso estimators. The convergence rates and asymp-

totic properties of the proposed two estimators are established. The finite-sample

performance is studied through simulations and a real data application to Commu-
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nities and Crime Data Set is also presented to illustrate the validity and feasibility

of the proposed estimators.

Key words and phrases: Asymptotic normality; convergence rates; debiased lasso;

decorrelated score; thresholding; multi-round.

1. Introduction

With the advancement of science and technology, massive data with large

sample size and high-dimensional covariates are stored independently in many

different sites, and referred to as distributed data. Due to the limitation of stor-

age, computing capability and personal privacy in practice, traditional meth-

ods by processing all data simultaneously in one central site are not practical

for distributed data. To overcome this problem, distributed estimation and

statistical inference have drawn much attention in modern statistical learning

recently. The aggregated/divide-and-conquer (Chen and Xie, 2014; Battey et

al., 2018; Volgushev et al., 2019) and communication-efficient surrogate like-

lihood (CSL; Wang et al., 2017; Jordan et al., 2019) are the two well-known

methods for dealing with distributed data. The aggregated method conducts

local estimators independently and obtains a final estimator via one round

communication between the local sites. Unfortunately, a small number sites

condition is required to achieve the same convergence rate as using the en-

tire data. On the other hand, the CSL method optimizes a surrogate loss on
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the central site utilizing the gradient information from all local sites, which is

called as communication-efficient since only the gradient information is com-

municated between the central and local sites at each round. Compared with

the aggregated method, the CSL method achieves the optimal convergence

rate and relieves the restriction on the number of local sites. However, the

majority of existing work focuses on the least squares loss (Lee et al., 2017;

Battey et al., 2018; Jordan et al., 2019; Zhao et al., 2020; Fan et al., 2021;

Duan et al., 2022), which is not resistant to heavy-tailed/asymmetric errors

or outliers, and little knowledge is available about statistical inference for

high-dimensional robust regression.

In practice, since distributed data are often collected from different en-

vironments/sources with low quality or high level of noise, e.g., misjudgment

in functional magnetic resonance imaging studies (Eklund et al., 2016) and

large kurtosis values of the gene expression levels (Wang et al., 2015), di-

rectly applying the existing distributed methods may lead to large bias and

erroneous statistical inference (Chen et al., 2020; Tan et al., 2022), thus it

is crucial to analyze the distributed and high-dimensional data robustly and

rapidly with theoretical guarantee. In the literature, to overcome both the

high dimensionality and heavy-tailed/asymmetric errors, `1-penalized Huber

regression is always considered (Po-Ling Loh, 2018; Han et al., 2022) and then
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is improved by adaptive Huber regression with a data-driven robustification

parameter rather than a fixed one (Fan et al., 2017; Sun et al., 2020; Wang

et al., 2021) to balance the tradeoff between bias and robustness. Recently,

Luo et al. (2022) studied the `1-penalized communication-efficient adaptive

Huber estimator, but did not obtain a tractable limiting distribution due to

the biases caused by the lasso penalty. On the other hand, to produce sparse

and asymptotically unbiased estimators for high-dimensional linear and quan-

tile regression models with distributed data, Lee et al. (2017) and Zhao et

al. (2020) proposed aggregating the debiased lasso estimators from the local

sites and then applying thresholding strategies, which can not be applied to

the Huber loss directly.

In this paper, we consider adaptive Huber regression as a robust alter-

native to the least squares regression, and our goal is to develop two classes

of sparse and debiased lasso estimation and statistical inference methods. To

the best of our knowledge, these problems have not been investigated due to

the following reasons. First, different from the aggregated estimators in Lee

et al. (2017) and Zhao et al. (2020), it is difficult to carry out the debiased

lasso estimation and statistical inference for adaptive Huber regression, since

its loss function is non-smooth and depends on a data-driven robustification

parameter. Second, there is no literature studying the debiased lasso estima-
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tion and statistical inference for `1-penalized CSL estimation, which hinders

its application in practice. Moreover, since Luo et al. (2022) only considered

the first site as the central site for solving the CSL optimization problems

and the others just for evaluating gradients, the computing power is not fully

utilized and the estimation stability can be improved.

Based on the aggregated and communication-efficient approaches, two

classes of sparse and debiased adaptive Huber estimators are respectively pro-

posed based on the following three stages. (i) An aggregated `1-penalized

adaptive Huber estimator as well as a multi-round `1-penalized communication-

efficient adaptive Huber estimator are proposed respectively in the first stage.

Although the above two `1-penalized adaptive Huber estimators are sparse,

their limiting distributions are untractable due to the biases. (ii) A unified de-

biasing lasso framework based on the decorrelated score equations is proposed

in the second stage and then we establish asymptotic normality of estimators

with explicit formulas of asymptotic covariance matrices, which can be used to

construct confidence intervals or test statistical hypotheses. (iii) Due to the

debiasing and/or aggregated procedures, the debiased lasso estimators in the

second stage are not sparse such that hard-thresholding is necessary to pro-

duce the sparse and debiased lasso estimators in the third stage. After these

three stages, we show that the proposed two classes of sparse and debiased
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lasso estimators have the same statistical accuracy as using the entire samples

under some regular conditions and have good finite-sample performance in

simulation studies.

The rest of the article is organized as follows. In Sections 2 and 3, we in-

troduce the sparse aggregated and communication-efficient debiased adaptive

Huber estimators and then investigate their asymptotic properties, respec-

tively. Extensive simulation results are provided in Section 4. An application

to the Communities and Crime Data Set is illustrated in Section 5. Some

conclusions are given in Section 6. All proofs of Theorems and Corollaries are

relegated in the Supplementary Material.

2. Sparse and debiased lasso estimator via aggregation

We adopt the following notations throughout the paper. For a vector u =

(u1, . . . , up)
> ∈ Rp, denote ‖ · ‖q (1 ≤ q ≤ ∞) as the `q-norm in Rp :

‖u‖q = (
∑p

j=1 |uj|q)1/q, ‖u‖∞ = max1≤j≤p |uj| and ‖u‖0 = | supp(u)|, where

supp(u) = {j : uj 6= 0, j = 1, · · · , p} and | · | denotes the absolute value for a

vector or the cardinality for a set. Use uj and u−j to represent the jth element

and the remaining vector when the jth element is removed, respectively. De-

note aN . bN (aN & bN) if aN is less than (greater than) bN up to a constant;

aN � bN if aN . bN and bN . aN .
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2.1 Aggregated adaptive Huber estimator

2.1 Aggregated adaptive Huber estimator

AssumeN independent and identically distributed (i.i.d.) observations {(yi,xi)}Ni=1

are collected from the following linear regression model:

yi = x>i β
∗ + εi, i = 1, . . . , N, (2.1)

where xi ∈ Rp with xi,1 ≡ 1 is a p-dimensional vector of covariates, β∗ ∈ Rp is

the true parameter, εi is a zero-mean error term independent of xi with a finite

variance σ2 but can be heavy-tailed and asymmetrically distributed. In this

paper, we consider high-dimensional linear models under sparsity, i.e., ‖β∗‖0 =

s, and the global `1-penalized adaptive Huber estimator can be obtained as

follows:

β̂τN ∈ argmin
β∈Rp

{LτN (β) + λN‖β‖1}, (2.2)

where Lτ (β) = N−1
∑N

i=1 `τ (yi−x>i β) with `τ (s) = (s2/2)I(|s| ≤ τ) + (τ |s|−

τ 2/2)I(|s| > τ), the global robustification parameter τN > 0 is allowed to

scale with the sample size and parameter dimension, i.e., τN � σ
√
N/ log p,

and λN > 0 is the global regularization parameter. Under model (2.1), define

β∗τ ∈ argmin
β∈Rp

E{Lτ (β)} for any τ . Wang et al. (2021) and Han et al. (2022)

showed that the slope parts of β∗τ and β∗ are the same but the intercept terms

have a constant difference depending on τ under some regular conditions, i.e.,

β∗τ,−1 = β∗−1 and β∗τ,1 = β∗1 + ατ . Statistical properties of β̂τN and β∗τN have
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2.1 Aggregated adaptive Huber estimator

been thoroughly studied by Fan et al. (2017) and Sun et al. (2020), and

they showed the estimator β̂τN with τN � σ
√
N/ log p achieves the optimal

tradeoff between estimation error and approximation bias.

While in the distributed setting, it is impractical to store the entire dataset

for computing the global estimator based on (2.2) due to the constraint of

storage capacity and privacy protocols. In this paper, we assume the entire

N observations are stored on M different sites independently and identically,

i.e., the mth site has nm samples such that N =
∑M

m=1 nm for 1 ≤ m ≤ M .

Without loss of generality, we consider n1 = . . . = nM = n = N/M and

refer to n as the local sample size. Let Im ⊂ {1, . . . , N} be the index set

corresponding to the elements of the mth site, satisfying ∪Mm=1Im = {1, . . . , N}

and Im∩I` = ∅ for all 1 ≤ m 6= ` ≤M . The mth local `1-penalized adaptive

Huber estimator can be obtained by

β̂m,τn ∈ argmin
β∈Rp

{Lm,τn(β) + λm‖β‖1}, (2.3)

where Lm,τ (β) = n−1
∑

i∈Im `τ (yi − x
>
i β) is the mth local adaptive Huber

loss function, τn > 0 and λm > 0 are the mth local robustification and reg-

ularization parameters, respectively. It should be pointed out the optimal

τn � σ
√
N/(M log p) differs from τN , since the local site can only access to

n = N/M samples. Subsequently, the aggregated `1-penalized adaptive Huber
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2.2 Thresholding aggregated debiased lasso estimator

estimator of β∗ is defined as follows:

β̄τn =
1

M

M∑
m=1

β̂m,τn , (2.4)

where β̂m,τn is obtained from (2.3). For ease of notations, we omit τn and τN

of the estimators in the rest of this paper, but we should remember that they

are τn or/and τN specifically.

2.2 Thresholding aggregated debiased lasso estimator

Due to the lasso penalty in (2.3) and the aggregation step, β̄ is non-sparse and

generally biased such that its asymptotic distribution is difficult to derive. Our

first goal is to propose a sparse aggregated debiased lasso (SADL) adaptive

Huber estimator for distributed data.

Without loss of generality, we focus on the estimation and inference of β∗j ,

the jth component of β∗ for 1 ≤ j ≤ p. Motivated by Ning and Liu (2017),

the decorrelated score estimating equation for βj based on the mth site is

given as follows:

1

n

∑
i∈Im

(−xi,j + x>i,−jγ̂
(m)
j )ψτn(yi − x>i,−jβ̂m,−j − xi,jβj) = 0, (2.5)

where ψτ (s) = ∇s`τ (s), β̂m,−j ≡ {β̂m,k : k 6= j, 1 ≤ k ≤ p}, xi,−j ≡ {xi,k : k 6=

j, 1 ≤ k ≤ p}, γ̂(m)
j is a consistent estimator of γ∗j ≡ argminγj∈Rp−1E(xi,j −
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2.2 Thresholding aggregated debiased lasso estimator

x>i,−jγj)
2 and γ̂

(m)
j can be obtained by

γ̂
(m)
j ∈ argmin

γj∈Rp−1

{ 1

2n

∑
i∈Im

(xi,j − x>i,−jγj)2 + ωjm‖γj‖1
}
, (2.6)

with the regularization parameter ωjm. Actually, (2.5) can be viewed as the

residuals of the projection of the score function for βj onto the closure of the

linear span of the score function for the other parameters. The orthogonal

property makes sure that the asymptotic normality of the estimator obtained

by (2.5) will not be influenced by the slower convergence rate of β̂m,−j. By re-

placing E[(xi,j−γ∗>j xi,−j)I(|yi−x>i β∗τn| ≤ τn)] with its empirical counterpart,

we get the jth element of the debiased estimator based on the mth site:

β̂d
m,j = β̂m,j−

∑
i∈Im(−xi,j + x>i,−jγ̂

(m)
j )ψτn(yi − x>i β̂m)∑

i∈Im xi,j(xi,j − x
>
i,−jγ̂

(m)
j )× n−1

∑
i∈Im I(|yi − x>i β̂m| ≤ τn)

.

Let β̂
d

m = (β̂d
m,1, · · · , β̂d

m,p)
> and we propose to aggregate the debiased lasso

adaptive Huber estimators among the M local sites as

β̄
d

=
1

M

M∑
m=1

β̂
d

m.

Although β̄
d

is an asymptotically unbiased estimator, it is not sparse

due to the debiasing and averaging procedures. Therefore, hard-thresholding

should be applied as a post-processing step to produce a sparse estimator.

Given the threshold level ν, we define the hard-thresholding operator Tν such

that the jth element of Tν(β) is Tν(βj) = βjI{|βj| ≥ ν} for 1 ≤ j ≤ p. Finally,
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2.3 Theoretical results

we get the SADL adaptive Huber estimator

Tν(β̄
d
) = (Tν(β̄d

1 ), · · · , Tν(β̄d
p ))>, (2.7)

and we will show that Tν(β̄
d
) has the same convergence rate as the global

adaptive Huber estimator in `2 error with ν �
√

log p/N . Denote β̂
d

as the

debiased lasso adaptive Huber estimator using the entire data.

2.3 Theoretical results

(C1) (i) The error term εi’s are i.i.d. and independent with xi; (ii) εi fol-

lows an absolutely continuous random variable with zero-mean and fi-

nite variance σ2; (iii) For any τ > 0, the function α 7→ E {`τ (ε− α)}

has a unique minimizer ατ = argminα∈RE {`τ (ε− α)} and satisfies

P (|ε− ατ | ≤ τ) > 0.

(C2) (i) The covariate xi = (xi,1, . . . , xi,p)
> ∈ Rp with xi,1 ≡ 1 is bounded

and has bounded kurtosis uniformly, i.e., for some constant B ≥ 1,

max1≤i≤N ‖xi‖∞ ≤ B and supu∈Sp−1 E(z>i u)4 < ∞ with zi = Ξ−1/2xi,

Ξ = (Ξjk)1≤j,k≤p = E(xix
>
i ) and Sp−1 = {u ∈ Rp : ‖u‖2 = 1}; (ii)

For any p × p positive semi-definite matrix A = [Ajk]1≤j,k≤p, denote

λmin(A) and λmax(A) as the smallest and largest eigenvalues of A re-

spectively. Assume 0 < Cmin ≤ λmin(Ξ) ≤ λmax(Ξ) ≤ Cmax < ∞ and

max1≤j≤p Ξjj = O(1).
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2.3 Theoretical results

(C3) (i) β∗ is sparse with sparsity s and s2M log p/N = o(1); (ii) Ω is the

inverse matrix of Ξ. For any 1 ≤ j ≤ p, max1≤j≤p ‖Ωj‖0 ≤ s1 for some

positive integer s1, where Ωj is the jth row of Ω; (iii) maxi,j |x>i,−jγ∗j | ≤

B, s � s1 for notational simplicity.

Condition (C1) is often used in robust regression (Han et al., 2022; Luo et

al., 2022) and the errors satisfied Condition (C1) include many distributions,

such as normal distribution, Chi-square distribution, Student’s t-distribution

with degrees of freedom greater than 2. (iii) in Condition (C1) ensures that

the slope parts of β∗τ and β∗ are the same but the intercept terms have a

constant difference depending on τ (Proposition 5, Wang et al., 2021). Unlike

the Gaussian/sub-Gaussian covariates assumption, Condition (C2) requires a

bounded assumption on covariates due to technical barriers, this assumption

is widely applied in many literatures, see van de Geer et al. (2014), Zhao et

al. (2020), Wang et al. (2021) and Lv and Lian (2022). The compatibility

condition is satisfied from the restriction on the eigenvalues (Lee et al., 2017;

Battey et al., 2018). Condition (C3) is a common regular condition for the

high-dimensional regression models. For example, s2M log p/N = o(1) is a

standard sparsity assumption (Han et al., 2022) and maxi,j |x>i,−jγ∗j | ≤ B

makes sure that the strongly bounded assumption holds.

Theorem 1. Under Conditions (C1)-(C3), if τn � σ
√
N/(M log p), λm �
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2.3 Theoretical results√
M log p/N uniformly in m and ωjm �

√
M log p/N uniformly in m and j,

with logM = O(log p), then we have

‖β̄d
−1 − β∗−1‖∞ = Op

(√ log p

N
+
s3/2M log p

N

)
, |β̄d

1 − β∗1 | = Op

(√M log p

N
+
s3/2M log p

N

)
.

In addition, if E(|ε|3) <∞, we have

‖β̄d − β∗‖∞ = Op

(√ log p

N
+
s3/2M log p

N

)
.

Remark 1. For the intercept term, the convergence rate of |β̄d
1 −β∗1 | is slower

than that of the slope parts ‖β̄d
−1 −β∗−1‖∞. The reason is that β̄

d
only using

τn is not large enough to correct the approximation bias |ατn| .
√
M log p/N

of the intercept term. Furthermore, given the condition E(|ε|3) <∞, we can

show that the approximation bias |ατn| .M log p/N , which is negligible com-

pared with ‖β̄d
−1−β∗−1‖∞, and thus ‖β̄d−β∗‖∞ attains the same convergence

rate of ‖β̄d
−1−β∗−1‖∞. For the golden standard estimator β̂

d
using the entire

data, we know that ‖β̂
d
−β∗‖∞ .

√
log p/N . When M = O(

√
N/(s3 log p)),

it can be seen that Op(s
3/2M log p/N) becomes Op(

√
log p/N), then ‖β̄d −

β∗‖∞ = Op(
√

log p/N). Thus, β̄
d

attains the same statistical accuracy as β̂
d

in term of `∞ error. The uniform convergence rates of some statistics among

M sites can be the same as the rates of the statistics based on the one site as

long as M is not too large, e.g., logM = O(log p), which is a relatively weak

condition and has been used in Lian and Fan (2018).
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2.3 Theoretical results

For any 1 ≤ j ≤ p, denote Θj as the jth row of Θ with Θ being the

inverse matrix of Σ = E{xix>i I(|εi,τn| ≤ τn)}, where εi,τn = yi − x>i β∗τn . It

can be verified that Θj = ρj/{E[xi,j(xi,j − x>i,−jγ∗j)]E[I(|εi,τn| ≤ τn)]}, where

ρj = (−γ∗j,1, . . . ,−γ∗j,(j−1), 1,−γ∗j,j, . . . ,−γ∗j,(p−1)). Thus, for 1 ≤ m ≤ M , an

estimator of Θj based on the mth site can be obtained by

Θ̂
(m)

j = ρ̂
(m)
j /

{
n−2

∑
i∈Im

xi,j(xi,j − x>i,−jγ̂
(m)
j )

∑
i∈Im

I(|yi − x>i β̂m| ≤ τn)
}
,

where ρ̂
(m)
j = (−γ̂(m)

j,1 , . . . ,−γ̂
(m)
j,(j−1), 1,−γ̂

(m)
j,j , . . . ,−γ̂

(m)
j,(p−1)).

Theorem 2. Under the conditions in Theorem 1 and M = o(
√
N/(s3/2 log p)).

For any 1 ≤ j ≤ p, we have

β̄d
j − β∗j =

1

N

M∑
m=1

Θ̂
(m)

j

∑
i∈Im

xiψτn(εi,τn) + op(N
−1/2).

Remark 2. Compared with Theorem 1, a stronger condition on M is needed

to derive the asymptotic normality since a faster convergence rate is required

for the high order term in Taylor expansion of β̄d
j around β∗j .

Corollary 1. Under the conditions in Theorem 2, as N →∞, for 1 ≤ j ≤ p,

we have

√
N(β̄d

j − β∗j )/σj
d→ N(0, 1),

where σ2
j = E{ε2i,τnI(|εi,τn| ≤ τn) + τ 2nI(|εi,τn| > τn)}/{E(xi,j − x>i,−jγ∗j)2[P (|εi,τn| ≤ τn)]2}.
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With Corollary 1, σ2
j can be estimated consistently by σ̂2

j = M−1∑M
m=1 σ̂

2
jm

with σ̂2
jm=n−1

∑
i∈Im{(yi−x

>
i β̂m)2I(|yi−x>i β̂m| ≤ τn)+ τn

2I(|yi−x>i β̂m| >

τn)}Θ̂
(m)

j Σ̂
(m)

Θ̂
(m)>
j and Σ̂

(m)
= n−1

∑
i∈Im xix

>
i . We construct the 100(1 −

α)% confidence interval for β∗j as

[β̄d
j −N−1/2σ̂jΦ−1(1− α/2), β̄d

j +N−1/2σ̂jΦ
−1(1− α/2)],

where Φ−1(1 − α/2) is the (1 − α/2) upper quantile of standard normal dis-

tribution.

Theorem 3. Under the conditions in Theorem 1, assume ν = C0

√
log p/N

for some sufficiently large constant C0 and M = O(
√
N/(s3 log p)), then we

have

‖Tν(β̄
d
)− β∗‖∞ = Op

(√ log p

N

)
, ‖Tν(β̄

d
)− β∗‖2 = Op

(√s log p

N

)
.

3. Sparse and debiased lasso estimator via CSL

3.1 Multi-round communication-efficient adaptive Huber estima-

tor

Although the proposed SADL estimator only needs one round communication

between the local and the central sites, evaluating Θ̂
(m)

on the mth site still

requires to solve p lasso problems, which incurs exorbitant communication or

computation costs. Alternatively, it is well-known that the gradient vectors
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3.1 Multi-round communication-efficient adaptive Huber estimator

can be easily calculated and communicated between the central and local

sites. In this section, we propose another distributed estimator with lower

communication cost and higher accuracy.

Inspired by Jordan et al. (2019) and Luo et al. (2022), without loss of

generality we regard the first site as the central site, given the total number of

rounds T and the estimator β̃
[t−1]

after the (t− 1)th iterations for 1 ≤ t ≤ T ,

the tth round `1-penalized communication-efficient adaptive Huber estimator

is given as follows:

β̃
[t]≡β̃[t]

τn,τN
∈ argmin

β∈Rp

{L̃1(β|β̃
[t−1]

) + λ̃
[t]
1 ‖β‖1}, (3.8)

where

L̃1(β|β̃
[t−1]

) = L1,τn(β)− 〈∇βL1,τn(β̃
[t−1]

)−∇βLτN (β̃
[t−1]

),β〉

= L1,τn(β)− 〈∇βL1,τn(β̃
[t−1]

)− 1

M

M∑
m=1

∇βLm,τN (β̃
[t−1]

),β〉,

and ∇βLm,τ (β) denotes the gradient of the function Lm,τ (β) and 〈·, ·〉 rep-

resents the inner product of two vectors. When t = 1, we set the initial

value β̃
[0]

= β̂1 obtained by (2.3). Note that L̃[t]
1 (β) depends on both τn and

τN . For the only nonlocal component ∇βLτN (β̃
[t−1]

), each site can calculate

∇βLm,τN (β̃
[t−1]

) locally with τN and communicate this gradient to the central

site. Hence, it can be seen that this procedure only communicates gradient

information and requires one communication round with order O((M − 1)p).
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3.2 Thresholding communication-efficient debiased lasso estimator

To further reduce the impact of the choice of the central site and improve the

stability of the estimator, every site can be regarded as a central site and op-

timize their corresponding optimization problem in parallel. When using the

mth site as the central site, the tth round `1-penalized communication-efficient

adaptive Huber estimator is defined as follows:

β̃
[t]

m = argmin
β∈Rp

{L̃m(β|β̃[t−1]
m ) + λ̃[t]m‖β‖1},

where L̃m(β|β̃[t−1]
m ) = Lm,τn(β)−〈∇βLm,τn(β̃

[t−1]
m )−M−1∑M

m=1∇βLm,τN (β̃
[t−1]
m ),β〉

and β̃
[t−1]
m is the resulting estimator after (t− 1)th iterations of the mth site.

Finally, we derive the tth round aggregated communication-efficient adaptive

Huber estimator:

β̃
[t]

all =
1

M

M∑
m=1

β̃
[t]

m. (3.9)

3.2 Thresholding communication-efficient debiased lasso estimator

Similar with the discussion in Section 2.2, both β̃
[t]

and β̃
[t]

all are generally

biased and it is hard to obtain their asymptotic distributions. Our second

goal is to propose a sparse communication-efficient debiased lasso (SCDL)

adaptive Huber estimator. To correct the biases, as long as we get β̃
[t]

from

(3.8), the decorrelated score estimating equation based on L̃1(β|β̃
[t]

) for βj is

formulated as:

∇βj L̃1(βj, β̃
[t]

−j|β̃
[t]

)− γ̂(1)>
j ∇β−j

L̃1(βj, β̃
[t]

−j|β̃
[t]

) = 0,
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3.2 Thresholding communication-efficient debiased lasso estimator

where ∇βj L̃1(βj, β̃
[t]

−j|β̃
[t]

) and ∇β−j
L̃1(βj, β̃

[t]

−j|β̃
[t]

) denote the gradients of

function L̃1(β|β̃
[t]

) with respect to βj and β−j respectively, and γ̂
(1)
j is obtained

by (2.6) based on the central cite. Given the tth round estimator β̃
[t]

from

(3.8), we use the same technique as (2.5) and construct the communication-

efficient debiased lasso estimator for β∗j as follows:

β̃
d[t]
j = β̃

[t]
j −

∇βj L̃1(β̃
[t]
j , β̃

[t]

−j|β̃
[t]

)− γ̂(1)>
j ∇β−j

L̃1(β̃
[t]
j , β̃

[t]

−j|β̃
[t]

)

n−2
∑

i∈I1(xi,j − x
>
i,−jγ̂

(1)
j )
∑

i∈I1 I(|yi − x>i β̃
[t]| ≤ τn)

,

and then obtain the multi-round communication-efficient debiased lasso esti-

mator β̃
d[t]

= (β̃
d[t]
1 , · · · , β̃d[t]

p )>. However, the debiased lasso estimator β̃
d[t]

is no longer sparse such that hard-thresholding is needed to achieve sparsity

and reduce the `2 error. Using the hard-thresholding operator in Section 2.2,

finally we get the tth multi-round SCDL adaptive Huber estimator

Tν(β̃
d[t]

) = (Tν(β̃d[t]
1 ), · · · , Tν(β̃d[t]

p ))>. (3.10)

Similarly, the tth multi-round aggregated SCDL estimator is

Tν(β̃
d[t]

all ) = Tν
( 1

M

M∑
m=1

β̃
d[t]

m

)
, (3.11)

with ν �
√

log p/N . We summarize the procedures for computing the SADL

and SCDL estimators into two algorithms in the Supplementary Material.

Remark 3. Under some regular conditions, the estimator β̃
[T ]

obtained from

(3.8) with T � dlogMe satisfies the bound ‖β̃[T ]−β∗‖2 .
√
s log p/N , which
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3.3 Theoretical results

is the optimal convergence rate of the lasso estimator using the entire data

(Luo et al., 2022). Here, denote dae as the minimum integer bigger than a

for a ∈ R. After the debiasing and hard-thresholding procedure, we will show

that the SCDL estimator not only achieves the optimal convergence rate in

accuracy of estimation, but also has the asymptotic normality property. To

solve (3.8), we apply the local adaptive majorize-minimize (MM) algorithm

as in Luo et al. (2022), which is an extended form of the traditional MM

algorithm to accommodate the lasso penalty.

3.3 Theoretical results

Theorem 4. Under Conditions (C1)-(C3), if τN � σ
√
N/log p, τn � σ

√
N/(M log p),

λ̃
[t]
m �

√
log p/N + (s2M log p/N)t/2

√
log p/N uniformly in m for t = 1, . . . , T

and ωjm �
√
M log p/N uniformly in m and j, with logM = O(log p), then

after T � dlogMe rounds of communication, we have

‖β̃d[T ] − β∗‖∞ = Op

(√ log p

N
+
s
√
M log p

N

)
,

‖β̃d[T ]

all − β∗‖∞ = Op

(√ log p

N
+
s
√
M log p

N

)
.

Remark 4. Benefiting from the double robustification parameters to adjust

bias, the condition E(|ε|3) < ∞ in Theorem 1 is not needed in Theorem 4

because the approximation error |ατN | ≤
√

log p/N is comparable with the

main term. Moreover, in order to attain the same statistical accuracy in term
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3.3 Theoretical results

of `∞ error, the condition on the number of sites M for β̃
d[T ]

can be weakened

from M = O(
√
N/(s3 log p)) in Theorem 1 to M = o(N/(s2 log p)), due to

the communication-efficient method and double data-adaptive robustification

parameters.

Theorem 5. Under the conditions in Theorem 4 and M = o(N/(s2 log2 p)).

If E(|ε|3) <∞ holds, then for any 1 ≤ j ≤ p, we have

β̃
d[T ]
j − β∗j =

1

N
Θ̃

(1)

j

N∑
i=1

xiψτN (εi,τN ) + op(N
−1/2),

β̃
d[T ]
all,j − β

∗
j =

1

M

M∑
m=1

1

N
Θ̃

(m)

j

N∑
i=1

xiψτN (εi,τN ) + op(N
−1/2),

where Θ̃
(m)

j = ρ̂
(m)
j /{n−2

∑
i∈Im xi,j(xi,j − x

>
i,−jγ̂

(m)
j )

∑
i∈Im I(|yi − x>i β̃

[T ]

m | ≤

τn)} and ρ̂
(m)
j = (−γ̂(m)

j,1 , . . . ,−γ̂
(m)
j,(j−1), 1,−γ̂

(m)
j,j , . . . ,−γ̂

(m)
j,(p−1)).

Remark 5. Compared with Theorem 2, the condition on M that guarantees

the asymptotic normality in Theorem 5 is weaker. In addition, it should be

pointed out that ‖β̃d[T ]

all − β∗‖∞ attains the same convergence rate as that

of ‖β̃d[T ] − β∗‖∞ after several iterations. Here, E(|ε|3) < ∞ is necessary to

derive the asymptotic normality in Theorem 5 such that the approximation

bias β∗τN − β
∗ is asymptotically negligible.

Corollary 2. Under the conditions in Theorem 5, as N →∞, for 1 ≤ j ≤ p,

we have

√
N(β̃

d[T ]
j − β∗j )/%j

d→ N(0, 1),
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where %2j = E{ε2i,τN I(|εi,τN | ≤ τN) + τ 2NI(|εi,τN | > τN)}/{E(xi,j−x>i,−jγ∗j)2[P (|εi,τN | ≤

τn)]2}.

With Corollary 2, %2j can be estimated by %̃2j = M−1∑M
m=1 %̃

2
jm consistently

with %̃2jm = n−1
∑

i∈Im{(yi−x
>
i β̃

[T ]
)2I(|ỹi−x>i β̃

[T ]| ≤ τN)+τ 2NI(|yi−x>i β̃
[T ]| >

τN)}Θ̃(m)

j Σ̂
(m)

Θ̃
(m)>
j . Therefore, we can construct the 100(1−α)% confidence

interval for β∗j as

[β̃
d[T ]
j −N−1/2σ̃jΦ−1(1− α/2), β̃

d[T ]
j +N−1/2σ̃jΦ

−1(1− α/2)].

Theorem 6. Under the conditions in Theorem 4, assume ν = C0

√
log p/N

for some sufficiently large constant C0, then we have

‖Tν(β̃
d[T ]

)− β∗‖∞ = Op

(√ log p

N

)
, ‖Tν(β̃

d[T ]
)− β∗‖2 = Op

(√s log p

N

)
,

‖Tν(β̃
d[T ]

all )− β∗‖∞ = Op

(√ log p

N

)
, ‖Tν(β̃

d[T ]

all )− β∗‖2 = Op

(√s log p

N

)
.

Remark 6. Compared with the condition M = O(
√
N/(s3 log p)) of the

SADL estimator in Theorem 3, the SCDL estimator allows a weaker condition

M = o(N/(s2 log p)) to attain the optimal convergence rate in Theorem 6,

which also coincides with our simulation results in Section 4.

4. Simulation studies

In this section, we evaluate the performance of two proposed sparse and de-

biased adaptive Huber estimators through extensive simulation studies. Con-
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sider the following model:

yi = x>i β
∗ + εi, i = 1, . . . , N,

where β∗ = (5, 5, 5, 5, 5, 5, 0, · · · )>, s = 6, xi,1 ≡ 1 and xi,j ∼ N(0, 1) are in-

dependently and identically distributed for j = 2, . . . , p. Five different errors

εi are considered: (1) N(0, 1): standard normal; (2) t3: t-distribution with 3

degrees of freedom; (3) Pareto(2, 4): Pareto distribution with scale parame-

ter 2 and shape parameter 4; (4) χ2
3: Chi-square distribution with degrees of

freedom 3; (5) LogN(0, 1): Log-normal distribution with local parameter 0

and scale parameter 1. It can be seen that the first two errors are symmetric

and the last three errors are skewed. Moreover, t3, Pareto(2, 4) and χ2
3 er-

rors are heavy-tailed distributions. In addition, we center the skewed χ2
3 and

LogN(0, 1) errors to identify the intercept term.

All simulations are repeated 200 times and we compare the `∞ and `2

errors, i.e., ‖β − β∗‖∞ and ‖β − β∗‖2, of the following eight estimators.

(a) the global `1-penalized adaptive Huber estimator β̂ using N = nM

samples in (2.2);

(b) the sparse and debiased global estimator Tν(β̂
d
) based on the estimator

(a);

(c) the aggregated `1-penalized adaptive Huber estimator β̄ in (2.4);

(d) the SADL adaptive Huber estimator Tν(β̄
d
) in (2.7);
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4.1 Effect of number of rounds and aggregation

(e) the `1-penalized communication-efficient adaptive Huber estimator β̃
[t]

in (3.8);

(f) the SCDL adaptive Huber estimator Tν(β̃
d[t]

) in (3.10);

(g) the aggregated `1-penalized communication-efficient adaptive Huber es-

timator β̃
[t]

all in (3.9);

(h) the aggregated SCDL adaptive Huber estimator Tν(β̃
d[t]

all ) in (3.11).

In practice, the regularization parameters λm in (2.3) and ωjm in (2.6) are

selected by cross-validation using R packages adaHuber and glmnet, respec-

tively. The robustification parameter τn is determined by a tuning-free prin-

ciple (Wang et al., 2021; Sun et al., 2020) and we choose τN = ηM1/2τn

according to Theorem 4, where η is a constant determined by the validation

set approach. The hard-thresholding parameter ν is determined by five-fold

cross-validation according to Theorems 3 and 6.

4.1 Effect of number of rounds and aggregation

In the first experiment, we investigate the performance of the multi-round

SCDL and aggregated SCDL estimators, i.e., Tν(β̃
d[t]

) and Tν(β̃
d[t]

all ), by vary-

ing the number of rounds from t = 1, . . . , 5. To be specific, we consider the

t3 error with n = 100, p = 200 and M = 20. Based on β̃
[t]

and β̃
[t]

all as well

as Tν(β̃
d[t]

) and Tν(β̃
d[t]

all ), the simulated `∞ and `2 results versus the number
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4.1 Effect of number of rounds and aggregation

of rounds are plotted in Figure 1. In addition, the simulated results of the

global estimators β̂ and Tν(β̂
d
) are also provided for comparison.

We have the following findings. (i) With t increasing, both the `∞ and `2

errors of β̃
[t]

, β̃
[t]

all, Tν(β̃
d[t]

) and Tν(β̃
d[t]

all ) decrease rapidly and usually attain

stable performance after t = 3 rounds. Moreover, when t ≥ 4, β̃
[t]

and β̃
[t]

all are

close to β̂ as well as Tν(β̃
d[t]

) and Tν(β̃
d[t]

all ) are close to Tν(β̂
d
), respectively.

In particular, the differences of the `∞ and `2 errors between Tν(β̃
d[t]

) and

Tν(β̃
d[t]

all ) are negligible. (ii) For any fixed t, compared with β̃
[t]

and β̃
[t]

all,

both the `∞ and `2 errors of Tν(β̃
d[t]

) and Tν(β̃
d[t]

all ) are much smaller, which

means the debiasing and thresholding procedures are helpful to improve the

accuracy of estimation. Compared with β̃
[t]

and Tν(β̃
d[t]

), β̃
[t]

all and Tν(β̃
d[t]

all )

perform slightly better when t is small, respectively, by efficiently utilizing

statistical structures and similarities among the local losses and benefiting

from the averaging step. However, when t increases, the differences become

negligible.

Based on the above findings, in the following simulations we fix T = 5

and only report the results of β̃
d[T ]

and Tν(β̃
d[T ]

) for comparison. To sim-

plify notation, we omit “[T ]” in β̃
[T ]

and Tν(β̃
d[T ]

) and use β̃ and Tν(β̃
d
),

respectively.
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4.2 Effect of heavy-tailed and asymmetric errors

4.2 Effect of heavy-tailed and asymmetric errors

We consider (n,M) = (100, 5) and p = 200, 300, 400 under the five different

errors (1)-(5). The simulated `∞ and `2 results versus different values of p

based on the six estimators (a)-(f) are shown in Figure 2, respectively. To

save space, we only show the simulated results under the first three errors

and the results under χ2
3 and LogN(0, 1) errors are given in the Supplemen-

tary Material. In addition, the computing time and performance of the eight

estimators under heteroskedastic error and outliers are also compared in the

Supplementary Material.

The three columns in Figure 2 correspond to the three errors N(0, 1),

t3 and Pareto(2, 4), respectively. (i) For any fixed p, n and M , compared

with the existing distributed estimators β̄, β̃ and β̂ without bias correction,

it can be seen that Tν(β̄
d
), Tν(β̃

d
) and Tν(β̂

d
) perform much better, respec-

tively, in terms of the `∞ and `2 errors, which implies that the debiasing and

thresholding procedures are not sensitive to the errors and can efficiently re-

duce estimation errors for the high-dimensional models. In particular, the bias

reduction is substantial under the t3 and Pareto(2, 4) errors. On the other

hand, compared with the aggregated estimators β̄ and Tν(β̄
d
), it can be seen

that the communication-efficient estimators β̃ and Tν(β̃
d
) always have much

smaller `∞ and `2 errors, respectively. Moreover, the performance of Tν(β̃
d
)
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4.3 Effect of number of sites

is comparable with the golden standard estimator Tν(β̂
d
). It can be seen that

both the proposed two estimators Tν(β̄
d
) and Tν(β̃

d
) can improve the `∞ and

`2 errors, but Tν(β̃
d
) performs better than Tν(β̄

d
) due to the following reasons.

Compared with β̄ and Tν(β̄
d
), both β̃ and Tν(β̃

d
) use double robustification

parameters to adjust bias and engage the gradient information of the entire

data in the central site. Unfortunately, β̄ and Tν(β̄
d
) may involve additional

variability from computing the nodewise lasso. Moreover, β̃ and Tν(β̃
d
) re-

quire much weaker conditions on the number of sites M than that of β̄ and

Tν(β̄
d
) to achieve the optimal convergence rates. (ii) When the dimension p

increases, the `∞ and `2 errors of all estimators increase slightly, except for β̄.

4.3 Effect of number of sites

We fix the local sample size n = 100 and the dimension p = 200, but vary

M = 5, 20, 50 to see the influence of the number of sites. The simulated

results of the `∞ and `2 errors with the different M are reported in Figure 3.

(i) When the number of sites M increases, the performance of all estimators

becomes better as expected, since the total sample size N increases. Compared

with the estimators β̄, β̃ and β̂, the sparse and debiased lasso estimators

Tν(β̄
d
), Tν(β̃

d
) and Tν(β̂

d
) have better performance on the `∞ and `2 results,

respectively. Moreover, Tν(β̃
d
) achieves the similar performance with the
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Figure 1: The `∞ and `2 errors versus the number of rounds when (n,M, p) =

(100, 20, 200) under t3 error. Here, β̃
[t]

( ), β̃
[t]

all( ), β̂( ), Tν(β̃
d[t]

)( ),

Tν(β̃
d[t]

all )( ) and Tν(β̂
d
) ( ).

golden standard Tν(β̂
d
). (ii) An interesting finding is that the `∞ and `2 errors

of β̃ and Tν(β̃
d
) are decreasing faster than β̄ and Tν(β̄

d
), especially when M

is small, which shows the advantage of our proposed communication-efficient

estimators. Moreover, it can be seen that all errors of β̂ are even smaller

than the errors of Tν(β̄
d
) when the error follows t3 distribution and M ≥ 20,

which can be partly explained by the variability of computing nodewise lasso

when M is large, i.e., there may exist some unstable estimates in the M local

estimators. If one local site returns a bad estimator, the SADL estimator

performs worse due to the averaging approach.
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Figure 2: The `∞ and `2 errors for N(0, 1), t3 and Pareto(2, 4) with varying

p = 200, 300, 400 when (n,M) = (100, 5). Here, β̄ ( ), β̃ ( ), β̂( ), Tν(β̄
d
)

( ), Tν(β̃
d
) ( ) and Tν(β̂

d
) ( ).

4.4 Coverage probability

We set n = 200 and consider the t3 error to investigate the confidence intervals

(CIs) of the proposed two estimators based on the following two cases: (i)

varying p = 200, 400, 600 with the fixed M = 5; (ii) varying M = 5, 10, 20
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Figure 3: The `∞ and `2 errors for N(0, 1), t3 and Pareto(2, 4) with varying

number of sites M = 5, 20, 50 when (n, p) = (100, 200). Here, β̄ ( ), β̃ ( ),

β̂( ), Tν(β̄
d
) ( ), Tν(β̃

d
) ( ) and Tν(β̂

d
) ( ).

with the fixed p = 200. Note S = {j|β∗j 6= 0, 1 ≤ j ≤ p} and Sc = {j|β∗j =

0, 1 ≤ j ≤ p}. For a given set A ⊂ S ∪ Sc = {1, . . . , p}, define the average of

the coverage probabilities (ACP) of the 95% confidence intervals over the setA

as ACP(A) =
∑

j∈ACPj/|A|, where CPj is the empirical coverage probability
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4.4 Coverage probability

of the 95% confidence interval for β∗j . The average lengths (AL) can also be

defined similarly. For comparison, we consider the distributed estimators of

Battey et al. (2018) by adopting the least squares loss function and denote the

resulting estimators as β̄
d
ols, β̃

d

ols and β̂
d

ols, respectively. Table 1 reports the

simulated ACPs with 500 repetitions over the parameter sets S, Sc and S∪Sc,

respectively. When N is fixed, from Corollaries 1 and 2, the ALs of proposed

estimators depend on the estimation of variance and simulation results show

that their values have slight changes across the three different parameter sets,

which coincides with the results in Han et al. (2022). Hence, we only report

the ALs of the S∪Sc in Table 1. Under the case (i): for any fixed p, the ACPs

of the CIs based on Battey et al. (2018) perform badly in all scenarios while

the ACPs of the estimators β̄
d

and β̃
d

are close to the nominal level 95% under

the three sets S, Sc and S ∪Sc. When p increases, the ACPs of the CIs based

on the estimators β̄
d

and β̃
d

only decrease slightly in Sc. The main reason is

that the model complexity increases when p becomes larger. In addition, the

ACPs of β̄
d

are lower than the results of β̃
d

due to the extra variability from

the estimation of the inverse covariance matrix. It can be seen that the ALs of

β̄
d

and β̃
d

keep stable when p increases. Under the case (ii): as M increases,

all the ALs become shorter. According to our theoretical results, the lengths

of the ALs are proportional to M−1/2 when n is fixed, which is validated by
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our simulation results in Table 1. These simulation results show the proposed

two estimators can make accurate statistical inference.

5. Application

In this section, we apply our method to the Communities and Crime Data

Set from the UCI Machine Learning Repository. The data combines socio-

economic data from the 1990 US Census, law enforcement data from the 1990

US LEMAS survey, and crime data from the 1995 FBI UCR. After removing

missing values, there are 101 variables with 1993 observations in the 49 states

of the United States. We assign each community by the state number to

identify its division, which is defined by the Census Bureau-designated regions

and divisions, including New England, Mid-Atlantic and so on. Thus there are

9 units, and the number of observations in each unit is 258, 358, 217, 87, 262,

122, 239, 98 and 352. In the real data analysis, we use the total number of

violent crimes per 100K population (ViolentCrimesPerPop) as the response and

the other variables as predictors. After scaling the responses and predictors,

we set M = 9 by the division and compare the performance of proposed

estimators Tν(β̄
d
) and Tν(β̃

d
) with the global estimator. First, we calculate

the estimates of β̂
d
, β̄

d
, β̃

d
and obtain their computation time as 12.753,

4.972, 4.240 seconds, respectively, which also indicates the distributed methods
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Table 1: The average of the coverage probabilities (ACPs) and average lengths

(ALs) of the 95% confidence intervals over S, Sc and S∪Sc, respectively, with

varying p and M .

S Sc S ∪ Sc AL S Sc S ∪ Sc AL S Sc S ∪ Sc AL

p = 200 p = 400 p = 600

β̄
d
ols 0.681 0.750 0.748 0.125 0.644 0.755 0.753 0.125 0.607 0.751 0.750 0.125

β̃
d
ols 0.752 0.746 0.746 0.125 0.743 0.747 0.747 0.125 0.698 0.743 0.743 0.125

β̂
d

ols 0.774 0.751 0.751 0.124 0.756 0.755 0.755 0.125 0.740 0.751 0.751 0.124

β̄
d

0.915 0.950 0.949 0.211 0.881 0.952 0.951 0.211 0.894 0.952 0.951 0.212

β̃
d

0.946 0.943 0.943 0.209 0.945 0.943 0.943 0.207 0.925 0.943 0.943 0.207

β̂
d

0.947 0.950 0.950 0.210 0.946 0.950 0.950 0.208 0.942 0.950 0.950 0.206

M = 5 M = 10 M = 20

β̄
d
ols 0.681 0.750 0.748 0.125 0.585 0.691 0.688 0.088 0.552 0.736 0.731 0.063

β̃
d
ols 0.752 0.746 0.746 0.125 0.698 0.738 0.737 0.088 0.731 0.738 0.738 0.062

β̂
d

ols 0.774 0.751 0.751 0.124 0.713 0.746 0.745 0.087 0.754 0.749 0.749 0.062

β̄
d

0.915 0.950 0.949 0.211 0.901 0.939 0.938 0.150 0.919 0.936 0.935 0.107

β̃
d

0.946 0.943 0.943 0.209 0.939 0.942 0.942 0.150 0.945 0.941 0.941 0.107

β̂
d

0.947 0.950 0.950 0.210 0.938 0.950 0.950 0.149 0.960 0.951 0.951 0.107
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reduce the computation and storage burden a lot. To further reduce the model

complexity, we obtain the sparse estimates Tν(β̄
d
), Tν(β̃

d
) and Tν(β̂

d
) with

ν = 0.06 and the 95% confidence intervals are also calculated by the normal

approximation in Corollaries 1 and 2. It can be seen that 12 predictors are

selected by the three estimators and the analysis results are shown in Table

2. We find that the point estimates and confidence intervals of the proposed

Tν(β̄
d
) and Tν(β̃

d
) are similar to the results of Tν(β̂

d
), which means our

proposed estimates and inference results are stable and valid. According to

Table 2, we observe that the coefficients of MalePctDivorce and HousVacant

are positive, which means higher percentage of males who are divorced and

vacant households may lead to increase the number of violent crimes. In

addition, the lengths of confidence intervals for Tν(β̃
d
) are shorter than the

lengths for Tν(β̄
d
), which also means Tν(β̃

d
) is better than Tν(β̄

d
). Of course,

Tν(β̂
d
) has the shortest confidence interval lengths. If we set ν = 0.1, the

selected predictors of the three different estimators have slight differences.

For example, different from β̂
d

and β̃
d
, β̄

d
selects NumStreet, but tends to

not select PctEmploy and MalePctNevMarr; compared with β̂
d
, β̃

d
tends to

PctUrban.
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Table 2: Estimates and 95% confidence intervals for Communities and Crime

data.

M = 9 M = 1

Variables T0.06(β̄
d
) T0.06(β̃

d
) T0.06(β̂

d
)

Racepctblack 0.212( 0.112,0.312) 0.191(0.094,0.288) 0.196(0.103,0.289)

PctUrban 0.080( 0.025,0.135) 0.110(0.054,0.166) 0.086(0.032,0.140)

PctEmploy 0.069(-0.031,0.169) 0.162(0.066,0.259) 0.110(0.014,0.206)

MalePctDivorce 0.206( 0.015,0.398) 0.219(0.040,0.398) 0.220(0.059,0.381)

MalePctNevMarr 0.068(-0.019,0.155) 0.109(0.023,0.195) 0.113(0.030,0.196)

PctIlleg 0.183( 0.098,0.268) 0.176(0.093,0.259) 0.175(0.096,0.254)

PersPerOccupHous 0.264( 0.063,0.465) 0.327(0.129,0.525) 0.271(0.074,0.468)

PctPersDenseHous 0.148( 0.033,0.263) 0.171(0.058,0.284) 0.154(0.044,0.264)

HousVacant 0.149( 0.052,0.246) 0.184(0.094,0.274) 0.129(0.043,0.215)

PctHousOwnOcc 0.330( 0.080,0.580) 0.328(0.087,0.569) 0.275(0.042,0.508)

MedRent 0.191( 0.007,0.374) 0.224(0.045,0.403) 0.206(0.032,0.380)

NumStreet 0.111( 0.065,0.157) 0.086(0.043,0.129) 0.089(0.051,0.127)

Racepctblack: percentage of population that is African American; PctUrban:

percentage of people living in areas classified as urban; PctEmploy: percentage

of people 16 and over who are employed; MalePctDivorce: percentage of males

who are divorced; MalePctNevMarr: percentage of males who have never

married; PctIlleg: percentage of kids born to never married; PersPerOccup-

Hous: mean persons per household; PctPersDenseHous: percent of persons

in dense housing (more than 1 person per room); HousVacant: number of

vacant households; PctHousOwnOcc: percent of households owner occupied;

MedRent: median gross rent; NumStreet: number of homeless people counted

in the street.
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6. Conclusion

In this paper, we propose two sparse and debiased lasso distributed adaptive

Huber regression estimators for distributed data in the presence of the heavy-

tailed/asymmetric error and high-dimensional covariates. It should be pointed

out that our first proposal is convenient to implement in practice; the second

proposal uses double data-adaptive robustification parameters to achieve a

balanced tradeoff between statistical optimality and communication efficiency.

Compared with the first proposal, the second proposal performs better in

simulation studies. In this paper, we consider the covariates are bounded

and it is of interest to extend our methods to sub-Gaussian or heavy-tailed

predictors in high-dimensional Huber regression models.

Supplementary Material

The Supplementary Material contains the algorithms for computing the pro-

posed two estimators, additional simulation results, and proofs of Theorems

and Corollaries.
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