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Abstract: The paper considers simultaneous statistical inference for mean curves

of functional and longitudinal data in a unified framework. We establish the

asymptotic distribution for the normalized maximum deviations of the local linear

estimators from the true mean functions. The asymptotic distribution leads to

simultaneous confidence bands with asymptotically correct coverage probabilities.

A Gaussian multiplier bootstrap procedure is proposed to obtain the cutoff values

and our fully data-driven approach has a good finite sample performance. All

the results obtained in the present paper are unified with respect to the sampling

schemes.
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1. Introduction

Functional and longitudinal data arise in many disciplines and have re-

ceived considerable attention in the statistics community over the last two

decades. Notable work includes Ramsay and Silverman (2005), Ferraty and

Vieu (2006), Wu and Zhang (2006), Ramsay and Silverman (2007), Horváth

and Kokoszka (2012), Hsing and Eubank (2015); see also Cuevas (2014)

and Wang et al. (2016) for a comprehensive overview. As a typical setting,

one considers independent and identically distributed (i.i.d.) random func-

tions X1(t), . . . , Xn(t) defined on a compact interval T , with mean function

µ(t) = E{X1(t)} and covariance function γ(t, s) = cov{X1(t), X1(s)}. In

practice, the entire trajectory of Xi(t) is not observable as data can only be

collected discretely over time. Correspondingly, as a more realistic formu-

lation, each process is supposed to be observed with additive measurement

errors at mi ≥ 1 discrete random time points tij ∈ T , j = 1, . . . ,mi. The

actual observations then follow

Yij = Xi(tij) + εij = µ(tij) + νi(tij) + εij, (1.1)

where {εij}i,j∈N are i.i.d. centered random errors with variance var(ε11) =

σ2
ε , {tij}i,j∈N are i.i.d. random times with density function f(t), {νi(·)}ni=1

are i.i.d. zero-mean random processes, and Xi’s, tij’s and εij’s are mutu-
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ally independent. In (1.1) above, νi(·) can be interpreted as random effect

and (1.1) is a special case of functional mixed effect model (Guo, 2002).

A fundamental problem associated with model (1.1) is the statistical

inference of the mean function µ(·). The latter problem has been well

studied under different settings in the literature. One commonly focused

on only one type (dense or sparse) of functional data depending on the

magnitude of the mi’s relative to the sample size n. Conventionally, if all

the mi’s are larger than some order of n, the observations are referred to

as dense functional data (Ramsay and Silverman, 2005; Zhang and Chen,

2007), while the sparse case concerns uniformly bounded mi’s or that mi’s

follow some fixed distribution with bounded moment (Yao et al., 2005a,b;

Hall et al., 2006). For these two cases, different estimation procedures

were adopted and different asymptotic properties may be derived for the

estimators; see Wang et al. (2016) for a review of various nonparametric

estimation methods. With the asymptotic distribution, one can perform

statistical inference for the mean function; see Degras (2011), Choi and

Reimherr (2018), Cao et al. (2012) for the dense case and Ma et al. (2012),

Zheng et al. (2014), Cao et al. (2018) for the sparse case.

The primary goal of the paper is to construct simultaneous confidence

bands (SCBs) for the mean function µ with asymptotically correct coverage
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probabilities. Namely based on the observations from model (1.1), we shall

find two functions µ−(t) and µ+(t) such that

lim
n→∞

P{µ−(t) ≤ µ(t) ≤ µ+(t) for all t ∈ T } = 1− α,

where α ∈ (0, 1) is a prespecified significance level. Thus the confidence

band (µ−(t), µ+(t))t∈T is constructed with an asymptotically correct cov-

erage probability, by which one can efficiently infer the shape of the mean

curve µ such as monotonicity, convexity, linearity, unimodality or other

forms. In particular, the confidence bands provide guidelines for para-

metric modelling of the mean function. On the other hand, simultaneous

inference also enables us to perform uniform hypothesis testing of the mean

curve such as testing whether µ = µ0 for some given function µ0 (Degras,

2017). Moreover, the constructed confidence bands can also be applied to

two-sample mean function testing such as testing the equality of the ECG

curves from the patients and control groups (Cuevas, 2014) and the equal-

ity of the fractional anisotropy curves between the control subjects and the

multiple sclerosis patients (Degras, 2017), see also (Wang, 2021).

The SCBs is more informative than the point-wise version in terms of

making statistical inference on patterns of the mean curve. See Degras

(2017) for an excellent overview. As commented in the latter paper, the

construction of SCBs with sparse functional data is markedly different from
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the case of dense data since the sparsity of observations within curves leads

to longitudinal dependence asymptotically negligible as n → ∞. In prac-

tice, it can be nontrivial to predetermine a scenario since sparse and dense

functional data are asymptotic concepts. Furthermore, a mixture of sparse

and dense data may be collected in real applications, which can create extra

difficulty in data analysis. Li and Hsing (2010) have made some progress

towards a general estimation theory by proposing a unified local linear esti-

mator; see also Cai and Yuan (2011) and Zhang and Wang (2016). Kim and

Zhao (2013) proposed two unified approaches based on self-normalization

to construct point-wise confidence intervals for µ(t) at a fixed t. It is still

an open problem on simultaneous statistical inference for mean functions in

a unified framework, which gives more insights by accounting for the entire

curve. The nature that the repeated measurements on the same subject

are correlated also imposes challenges on the construction of SCBs. Earlier

researchers derived conservative confidence bands based on the Bonferroni

correction procedure (Wu et al., 1998; Chiang et al., 2001; Huang et al.,

2004). However, such confidence bands are known to be too wide and are

therefore less informative about the overall shape of the mean curves.

In this paper, we will apply the recently developed high dimensional

central limit theory in Chernozhukov et al. (2013, 2017) and provide an
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answer to this open problem by providing a unified SCBs construction for

both sparse and dense settings. In particular, we shall construct SCBs

for the mean curves based on a weighted local linear estimator (cf. (2.2)),

incorporating all types of functional data in a unified framework in which

the magnitudes of m1, . . . ,mn can be very flexible relative to the sample

size n.

The rest of the paper is structured as follows. In Section 2, we shall

introduce the weighted local linear estimate and establish the asymptotic

distribution of the normalized maximum deviation of the mean estimator.

We remark that our convergence result is new: neither
√
n-convergence

using stochastic equicontinuity in the dense case nor Gumbel convergence

in the sparse case as established in some existing work. We provide a de-

tailed characterization of the asymptotic distributional approximations un-

der different sampling schemes which can range from sparse cases to dense

cases. In Section 3, we address implementation challenges in constructing

the SCBs and tackle some key issues including asymptotic variance func-

tion estimation, bandwidth selection and bias correction. We conduct a

simulation study in Section 4 to investigate the finite sample performance

of the proposed method. All the technical proofs are given in online Sup-

plementary Material.
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We now introduce some notation. For q > 0, let ∥X∥q = (E|X|q)1/q if

E|X|q < ∞. Denote by I{·} the indicator function. For a, b ∈ R, denote

a ∨ b = max{a, b} and a ∧ b = min{a, b}. For two sequences of positive

numbers {an}n∈N and {bn}n∈N, we write an ≈ bn if an/bn → 1 and write

an ≲ bn (resp. an ≍ bn) if there exists some positive constant C such that

an ≤ Cbn (resp. C−1 ≤ an/bn ≤ C) for all sufficiently large n. For a

sequence of random variables {ξn}n∈N, we write ξn = OP(an) if |ξn/an| is

bounded in probability and write ξn = oP(an) if ξn/an converges to zero

in probability. Throughout the article, we shall use C,C1, C2, . . . to denote

generic positive constants whose values may vary from place to place.

2. Theoretical properties

In this section, we shall present the main theoretical results concerning the

asymptotic properties of the local linear estimators. To quantify the impact

of different sampling schemes, we shall firstly define

Vϕ =
1

n

n∑
i=1

m−ϕ
i , ϕ > 0.

Observe that smaller Vϕ corresponds to denser observation time points.

If m1, . . . ,mn are i.i.d. random variables with probability mass function

P(m1 = j) = θj, j ≥ 1, then by law of large numbers Vϕ ≈
∑∞

j=1 j
−ϕθj.

Note that 1/V1 is the harmonic mean of {m1, . . . ,mn} and it is related to
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2.1 Local linear smoothing

the asymptotic variance of the local linear estimator; cf. (2.7).

2.1 Local linear smoothing

To estimate the mean curve µ, we shall use the local linear smoothing (Fan

and Gijbels, 1996) due to its simple and explicit mathematical expression

and good boundary performance. Let K(u) be a symmetric probability

density function and Kb(u) = K(u/b)/b, where b > 0 is the bandwidth

satisfying b → 0. Following Li and Hsing (2010), we apply the local linear

smoother to the observations D = {(tij, Yij), 1 ≤ j ≤ mi, 1 ≤ i ≤ n} and

attach weightm−1
i to each observation of the ith subject. Then the resulting

mean estimator is µ̂b(t) = ω̂1, where

(ω̂1, ω̂2) = argmin
ω1,ω2∈R

n∑
i=1

1

mi

mi∑
j=1

{Yij − ω1 − ω2(tij − t)}2Kb(tij − t).

It follows that

µ̂b(t) =
R0(t)S2(t)−R1(t)S1(t)

S0(t)S2(t)− S1(t)2
, (2.2)

where for k = 0, 1, 2,

Sk(t) =
1

n

n∑
i=1

1

mi

mi∑
j=1

Kb(tij − t){(tij − t)/b}k,

Rk(t) =
1

n

n∑
i=1

1

mi

mi∑
j=1

Kb(tij − t){(tij − t)/b}kYij.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.1 Local linear smoothing

To study the theoretical properties of µ̂b(t), we need the following regularity

assumptions. Recall νi(t) = Xi(t)− µ(t), i = 1, . . . , n.

Assumption 1. The density function f(t) is Lipschitz continuous on T

and there exist positive constants mf and Mf such that

0 < mf ≤ inf
t∈T

f(t) ≤ sup
t∈T

f(t) ≤ Mf < ∞.

Assumption 2. For some constant q > 3, we have ∥ supt∈T |ν1(t)|∥q < ∞

and ∥ε11∥q < ∞.

Assumption 3. The kernel function K(u) is a symmetric probability den-

sity function with bounded support [−1, 1]. There exists some positive

constant LK < ∞ such that

|K(u)−K(v)| ≤ LK |u− v|, u, v ∈ R.

Assumption 4. There exists a positive constant γ0 < ∞ such that σ2
ε ≥ γ0

and inft∈T γ(t, t) ≥ γ0.

Assumption 5. There exist positive constants Lγ and α such that

|γ(t+ h, s)− γ(t, s)| ≤ Lγ|h|α, t, s ∈ T . (2.3)

Assumption 6. µ(t) is twice continuously differentiable on T .
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2.1 Local linear smoothing

Remark 1. Assumptions 1 and 2 are similar to that in Li and Hsing

(2010) and Zhang and Wang (2016). Assumption 3 is fairly mild and

holds for many popular kernels. For example, it is satisfied by the pop-

ular Epanechnikov kernel K(u) = 0.75(1 − u2)1{|u| ≤ 1} and the triangle

kernel K(u) = (1 − |u|)1{|u| ≤ 1}. Moreover, Assumption 3 implies K(u)

is uniformly upper bounded by some positive constant MK < ∞. As-

sumption 4 ensures that the process ν(t) is nondegenerate for all t ∈ T .

Assumption 5 concerns the Hölder continuity of the covariance function

γ(t, s). Degras (2011) proposed a stochastic Hölder continuity condition on

the process νi(t), and his condition implies ∥νi(s)− νi(t)∥2 ≤ cν |s− t|β for

some cν , β > 0. Consequently, it follows that

|γ(t+ h, s)− γ(t, s)| ≤
√
cν sup

s∈T
∥νi(s)∥|h|β/2.

Then, (2.3) holds with Lγ ≥ √
cν sups∈T ∥νi(s)∥ and α ≤ β/2. The smooth-

ness condition for µ in Assumption 6 is commonly used in the literature for

nonparametric regression.

Remark 2. In the classical dense functional data analysis, it is often as-

sumed that data are observed over a fine grid of deterministic points tij = tj

and mi = m (Degras, 2011, 2017) for all i = 1, . . . , n. Let T = [0, 1],

tj = F−1(j/m) or tj = F−1((j − 1/2)/m), j = 1, . . . ,m, where F ′ = f sat-
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2.2 Variance function

isfies Assumption 1. Then a careful check of the proofs of our main results

indicates that they are also valid for this deterministic design case.

2.2 Variance function

We now derive the asymptotic variance function of the local linear estimator

µ̂b(t) for each t ∈ T . Define f̃b(t) = S0(t)− S1(t)
2/S2(t) and

R∗
k(t) = Rk(t)− Sk(t)µ(t)− bSk+1(t)µ

′(t), k = 0, 1.

Note that f̃b(t)S2(t) is the denominator of µ̂b(t) in (2.2). With this notation,

we may write

f̃b(t){µ̂b(t)− µ(t)} = η̄n(t) +
1

n

n∑
i=1

φi(t) +
R∗

1(t)S1(t)

S2(t)
, (2.4)

where η̄n(t) = n−1
∑n

i=1 ηi(t),

ηi(t) =
1

mi

mi∑
j=1

Kb(tij − t){νi(tij) + εij} (2.5)

and the bias term

φi(t) =
1

mi

mi∑
j=1

Kb(tij − t){µ(tij)− µ(t)− (tij − t)µ′(t)}.

For ease of illustration, we assume hereafter that the numbers of observa-

tions m1, . . . ,mn are deterministic. Note that the first term η̄n(t) on the

right-hand side of (2.4) determines the asymptotic distribution of µ̂b(t).
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2.2 Variance function

Hence it is needed to deal with the variance function

σ2(t) = var{
√
nη̄n(t)}. (2.6)

In the case where m1, . . . ,mn are random, σ2(t) above could be similarly

defined conditional on these mi’s. Under Assumptions 1–5, it follows that

for each i = 1, . . . , n,

var{ηi(t)} =
var{Kb(ti1 − t)(νi(ti1) + εi1)}

mi

+
cov{Kb(ti1 − t)(νi(ti1) + εi1), Kb(ti2 − t)(νi(ti2) + εi2)}

mi/(mi − 1)

≈ f(t)λK{γ(t, t) + σ2
ε}

mib
+

f 2(t)γ(t, t)(mi − 1)

mi

,

where λK =
∫
K2(u)du. Consequently, for any fixed interior point t ∈ T ,

σ2(t) ≈ f(t)V1λK{γ(t, t) + σ2
ε}

b
+ f 2(t)γ(t, t)(1− V1). (2.7)

Note that the magnitude of σ(t) can be quite different under different sam-

pling schemes, which consequently can lead to different convergence rates

of µ̂b(t). In particular, under Assumptions 1–5, it satisfies uniformly that

σ2(t) ≍ V1

b
+ 1 =: ϑ2. (2.8)

Let πi(t) = ηi(t)/σ(t) for each i = 1, . . . , n and π̄n(t) = n−1
∑n

i=1 πi(t).

Observe that π1(t), . . . , πn(t) are independent centered random variables

and var{
√
nπ̄n(t)} = 1 for every t ∈ T . Hence, under appropriate regularity

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.2 Variance function

conditions, the point-wise central limit theorem
√
nπ̄n(t) ⇒ N(0, 1) holds

for all types of functional data. This motivates us to consider the normalized

quantity

Zb(t) =
f̃b(t){µ̂b(t)− µ(t)} − b2r(t)

σ(t)/
√
n

, (2.9)

where r(t) = µ′′(t)f(t)
∫
u2K(u)du/2 and b2r(t) is the asymptotic bias term

of the local linear estimator µ̂b(t) of the mean function µ(t). Consequently,

it can be shown via standard arguments (Kim and Zhao, 2013; Zhang and

Wang, 2016) that

Zb(t) =
√
nπ̄n(t) + oP(1) ⇒ N(0, 1). (2.10)

With the point-wise central limit theorem (2.10) and the Bonferroni cor-

rection; see, for instance, Knafl et al. (1985), Hall and Titterington (1988),

Härdle and Marron (1991), Wu et al. (1998), Chiang et al. (2001) and Huang

et al. (2004) among others, one can construct conservative confidence bands

for µ which, however, can be quite wide and consequently is not informative

about the overall pattern of the mean curve. In Section 2.3, we shall provide

an asymptotic distributional approximation of supt |Zb(t)| so that the SCBs

can be constructed with asymptotically correct coverage probabilities.
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2.3 Asymptotic distributions

2.3 Asymptotic distributions

In this section, we derive the asymptotic distributional approximation of the

supremum of the studentized process {Zb(t)}t∈T . To this end, we develop a

Gaussian approximation result for supt |Zb(t)| under quite mild conditions.

In view of (2.10), we shall first investigate the asymptotic distribution of

supt |π̄n(t)|. Let {G(t)}t∈T be a centered Gaussian process with the same

covariance function as that of {
√
nπ̄n(t)}t∈T , namely,

cov{G(t),G(s)} = cov{
√
nπ̄n(t),

√
nπ̄n(s)} =: C(t, s). (2.11)

Then the Gaussian analogue of supt

√
n|π̄n(t)| is defined by supt |G(t)|. It is

worth noting that the covariance function C(t, s) depends on the numbers

m1, . . . ,mn, the bandwidth b and the variance of the random errors σ2
ε . An

asymptotic expression of C(t, s) for any fixed interior points t, s ∈ T is given

in (2.18) below.

The following theorem establishes a bound for the Kolmogorov distance

between the distribution functions of supt∈T
√
n|π̄n(t)| and its Gaussian

analogue.

Theorem 1. Let m⋄ = min1≤i≤n mi. Define

W =
{Vq−1(log n/b)

q + 1} ∧ b−q

ϑq
and σ̄2 =

m−1
⋄ + b

bϑ2
,
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2.3 Asymptotic distributions

Assume that

σ̄2 log4 n

n
+

(V2/b
2 + 1)2 log7 n

nϑ6
+

(log n)3q/2−1W

nq/2−1
→ 0. (2.12)

Then, under Assumptions 1–5, we have

ρT := sup
y≥0

∣∣∣∣P{sup
t∈T

√
n|π̄n(t)| ≤ y

}
− P

{
sup
t∈T

|G(t)| ≤ y

}∣∣∣∣→ 0. (2.13)

Remark 3. It is worth mentioning that the magnitude of {m1, . . . ,mn} can

be completely flexible relative to the sample size n and condition (2.12) is

fairly mild. To illustrate this point, suppose nowmi = m for all i = 1, . . . , n.

Then a simple sufficient condition for (2.12) is

(log n)5−2/q

(nm)1−2/q(mb ∨ 1)b
→ 0. (2.14)

Moreover, for any m ≥ 1, (2.14) holds as long as (log n)5−2/q = o(n1−2/qb),

a fairly mild condition on the bandwidth b.

Remark 4. Our asymptotic theory sheds new light on the classical SCBs

construction based on nonparametric regression with n = 1 (Johnston,

1982; Neumann and Polzehl, 1998; Cummins et al., 2001). In this case for

the sake of estimability we assume ν1(·) ≡ 0 and denote m = m1. Then

η1(t) in (2.5) becomes η1(t) = m−1
∑m

j=1Kb(tj − t)ε1j. Let ζ1, . . . , ζm be

i.i.d. N(0, 1) random variables, tj = j/m and G(t) = m−1
∑m

j=1Kb(tj−t)ζj.
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2.3 Asymptotic distributions

Assume ∥ε11∥q < ∞ for some constant q > 3 and

ϱ := (mb)−1/6(logm)7/6 + (m(mb)−q/2)1/(1+q)(logm)(3q−2)/(2+2q) → 0,

or equivalently, m2/q−1(logm)3−2/q = o(b). Then following the arguments

in the proof of Theorem 1 and applying the high-dimensional central limit

theorem in Chernozhukov et al. (2017), we obtain

sup
y≥0

∣∣∣∣P(sup
t∈T

|η1(t)| ≤ y

)
− P

(
sup
t∈T

|G(t)| ≤ y

)∣∣∣∣ ≤ Cϱ → 0,

for some positive constant C < ∞. Our asymptotic approach allows a

unified treatment of SCBs constructions for nonparametric regression and

functional data analysis. Degras (2017) commented that SCBs methods of

those two scenarios are quite different in general.

Remark 5. In a related work, Cao et al. (2018) derived the asymptotic

distribution of the weighted average π̃n(t) =
∑n

i=1 wiηi(t)/σ0(t), where

wi = mi

(
n

V1

n∑
i=1

mi

)−1/2

and σ2
0(t) =

f(t)V1λK{γ(t, t) + σ2
ε}

b
.

Specifically, assuming that max1≤i≤n mi ≲ min{(nb)δ/2, b−δ} for some con-

stant 0 < δ < 1, Theorem 1 in Cao et al. (2018) implies that the distri-

bution of supt∈T
√
n|π̃n(t)|, after appropriate centering and normalization,

is asymptotically Gumbel. In comparison, Lemma 1 is substantially more

general and supt∈T |G(t)| may or may not be asymptotically Gumbel. In
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2.3 Asymptotic distributions

particular, the convergence rate of ρT in (2.13) can be much faster than

the Gumbel approximation. Specifically, a careful inspection of the proof

of Lemma 1 implies that when mi = m for all i = 1, . . . , n, and mb → 0,

we have

ρT ≤ C0

{(
(log n)7

nmb

)q/(6q+6)

+
1

(nb)3
+

(
(log n)5−2/q

(nm)1−2/qb

)q/2(q+1)
}
,

where C0 < ∞ is a positive constant independent of n, m and b.

Theorem 2. Suppose the conditions of Lemma 1 and Assumption 6 are

satisfied. Assume that

sup
n

nb4 log n

ϑ2
< ∞ and

(log n)3

nb
→ 0. (2.15)

Then we have

ρ := sup
y≥0

∣∣∣∣P{sup
t∈Tb

|Zb(t)| ≤ y

}
− P

{
sup
t∈Tb

|G(t)| ≤ y

}∣∣∣∣→ 0. (2.16)

Remark 6. For any significance level α ∈ (0, 1), let Q1−α denote the (1−

α)th quantile of supt∈Tb |G(t)|, namely,

Q1−α = inf

{
y ≥ 0 : P

(
sup
t∈Tb

|G(t)| ≤ y

)
≥ 1− α

}
.

Motivated by Theorem 2, an asymptotic (1 − α) × 100% SCBs for µ(t),

t ∈ Tb, can be constructed as[
µ̂b(t)−

b2r̂(t)

f̃b(t)
− Q1−ασ̂(t)√

nf̃b(t)
, µ̂b(t)−

b2r̂(t)

f̃b(t)
+

Q1−ασ̂(t)√
nf̃b(t)

]
, (2.17)
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2.3 Asymptotic distributions

where r̂(t) and σ̂(t) are consistent estimators for r(t) and σ(t), respectively.

In view of (2.16), this confidence band asymptotically achieves the correct

coverage probability 1 − α if r̂(t) and σ̂(t) have reasonable convergence

rates such that supt∈Tb |r̂(t)−r(t)| = oP{ϑ(nb4 log n)−1/2} and supt∈Tb |σ̂(t)−

σ(t)| = oP{ϑ(log n)−1} (cf. Corollary 2). However, estimation of r(t) is quite

nontrivial as it involves the unknown derivative function µ′′. In Section 3.4,

we propose a jackknife bias-corrected procedure which can avoid estimating

r(t).

For any fixed interior points t, s ∈ T , it follows that

C(t, s) ≈ K∗(t− s)V1f(t){γ(t, t) + σ2
ε}

σ(t)σ(s)b
+

f(t)f(s)γ(t, s)(1− V1)

σ(t)σ(s)
, (2.18)

where K∗(u) =
∫
K(y)K(y + u/b)dy. Note that for different orders of the

quantity V1/b, the leading term in the covariance function C(t, s) can be

quite different, which consequently leads to different approximating distri-

butions of supt∈Tb |G(t)|. In the following corollary, we derive the asymptotic

distributions of supt∈Tb |Zb(t)| for different orders of V1/b explicitly.

Corollary 1. Suppose the conditions of Theorem 2 are satisfied. Let G⋄(t)

and Gγ(t), t ∈ T , be two independent zero-mean Gaussian processes with

covariance functions K∗(t− s)/λK and γ(t, s), respectively.
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2.3 Asymptotic distributions

(i) Suppose b(log n)2/V1 → 0, then

sup
y≥0

∣∣∣∣P(sup
t∈Tb

|Zb(t)| ≤ y

)
− P

(
sup
t∈Tb

|G⋄(t)| ≤ y

)∣∣∣∣→ 0.

(ii) Suppose (V1/b − κ0)(log n)
2 → 0 for some positive constant κ0 < ∞,

then

sup
y≥0

∣∣∣∣P(sup
t∈Tb

|Zb(t)| ≤ y

)
− P

(
sup
t∈Tb

|G̃(t)| ≤ y

)∣∣∣∣→ 0,

where G̃ is a linear combination of the processes G⋄ and Gγ given by

G̃(t) = [λKκ0f(t){γ(t, t) + σ2
ε}]1/2G⋄(t) + f(t)Gγ(t)

[λKκ0f(t){γ(t, t) + σ2
ε}+ f 2(t)γ(t, t)]1/2

.

(iii) Suppose V1(log n)/b → 0 and nb4 → 0, then

sup
y≥0

∣∣∣∣∣P
(
sup
t∈Tb

∣∣∣∣∣
√
n{µ̂b(t)− µ(t)}√

γ(t, t)

∣∣∣∣∣ ≤ y

)
− P

(
sup
t∈Tb

∣∣∣∣∣ Gγ(t)√
γ(t, t)

∣∣∣∣∣ ≤ y

)∣∣∣∣∣→ 0.

(2.19)

Corollary 1 depicts the dichotomous phenomenon and provides a de-

tailed characterization of the asymptotic distributional approximations for

local linear estimates in that three different approximating distributions can

arise depending on the quantities V1, b and n. It reveals the intrinsic differ-

ence between the point-wise inference based on (2.10) and the simultaneous

inference in the context of functional data analysis.

For small b/V1 with b(log n)2/V1 → 0, the variance function σ2(t) ≈

f(t)V1λK{γ(t, t) + σ2
ε}/b ≍ V1/b asymptotically. Hence the rate of con-

vergence of µ̂b(t) is (nb/V1)
1/2, which is slower than the parametric rate
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2.3 Asymptotic distributions

n1/2. Let K2 =
∫
{K ′(u)}2du/(2λK). Applying Theorem A1 in Bickel and

Rosenblatt (1973) yields the Gumbel approximation

sup
y

∣∣∣∣P{(−2 log b)1/2
(
sup
t∈Tb

|Zb(t)| − gn

)
≤ y

}
− exp{−2 exp(−y)}

∣∣∣∣→ 0,

(2.20)

where the centering sequence

gn = (−2 log b)1/2 +
1

(−2 log b)1/2
log

K
1/2
2√
2π

.

It is worth pointing out that the Gumbel approximation (2.20) above is

of theoretical interest only. It is not recommended to use (2.20) for prac-

tical applications as the rate of convergence of Gumbel distribution can

be extremely slow (Hall, 1991). In the special case where m1, . . . ,mn are

i.i.d. random variables with finite moment, Ma et al. (2012) and Zheng et al.

(2014) derived similar Gumbel approximation as (2.20) for the spline and

the local linear estimators of µ, respectively. Both of them require Xi(·) to

be Gaussian process. In comparison, (2.20) is much more general in two as-

pects: first, we allow the mi’s to increase with n as long as b(log n)2/V1 → 0

is satisfied; second, instead of the Gaussian assumption of the process Xi(·),

we only need the moment condition in Assumption 2, which is much weaker.

When V1(log n)/b → 0, the variance function σ2(t) ≈ f 2(t)γ(t, t) ≍ 1.

Hence the convergence rate is
√
n and the effect of noise σε is asymptotically
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2.3 Asymptotic distributions

negligible. In this case, the bias term b2r(t) is asymptotically negligible as

long as nb4 → 0. This is an appealing feature for practical applications. A

simple sufficient condition for V1 log n/b → 0 is

n1/4V1 log n → 0 and nb4 → 0. (2.21)

Under (2.21), Degras (2011) derived that

sup
t∈T

√
n|µ̂b(t)− µ(t)| ⇒ sup

t∈T
|Gγ(t)|

for regularly observed and dense functional data with mi = m and tij = tj,

where
∫ tj
0
f(t)dt = (j − 0.5)/m. Compared to (2.19), he assumed that the

process Xi(·) satisfies a stochastic Hölder continuity condition, which is

stronger than Assumption 5 used in Theorem 2; see the discussion in Re-

mark 1. Moreover, his approach does not apply for the irregularly observed

or sparse functional data.

Degras (2017) commented that constructions of SCBs can be quite dif-

ferent for sparse and dense functional data. Our Corollary 1 provides a

more precise characterization through the magnitude of V1/b; see Table 1

for a summary. Intuitively, V1 is big (resp. small) when mi are small (resp.

big). However, to view the design of the data as sparse or dense in the

context of SCBs construction, we also need to take into the consideration

of the bandwidth b.
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2.3 Asymptotic distributions

Design Details Asymptotic Distribution

Sparse (i) b/V1 small G⋄

Dense (iii) b/V1 big Gγ

Borderline (ii) b/V1 → a constant G̃: a convolution of G⋄ and Gγ

Table 1: Types of designs for SCBs and the associated asymptotic distri-

butions for the longitudinal and functional data in Corollary 1

The particularly interesting case is the intermediate case in which (V1/b−

κ0)(log n)
2 → 0. The parametric convergence rate is attained and the ap-

proximating distribution is the supremum of a linear combination of the

other two cases which consists of two independent Gaussian processes G⋄

and Gγ.

On the other hand, while Corollary 1 presents an interesting theoreti-

cal characterization, it can cause unpleasant difficulties in application. It

is nontrivial to determine which asymptotic approximation to use in prac-

tice. Section 3.2 proposes a unified Gaussian multiplier bootstrap approach

which can automatically circumvent this issue.
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3. Implementation

This section deals with various implementation issues in constructing the

SCBs (2.17).

3.1 Estimation of variance function

Recall that σ2(t) = n−1
∑n

i=1 E{η2i (t)}. Hence a natural moment estimator

for σ2(t) is n−1
∑n

i=1 η
2
i (t). Since the ηi’s are unobserved in practice, we

shall substitute ηi with the consistent estimate η̂i, which is

η̂i(t) =
1

mi

mi∑
j=1

Kb(tij − t){Yij − µ̂b(tij)}. (3.22)

Consequently, we obtain the practically feasible estimator

σ̂2(t) =
1

n

n∑
i=1

η̂i(t)
2. (3.23)

In the following theorem, we show that σ̂(t) is uniformly consistent for σ(t)

for all types of functional data, with a uniform convergence rate.

Theorem 3. Let Assumptions 1–6 hold with q > 4. Define

∆0 = b2 +

(
ϑ2 log n

n

)1/2

+
W 1/qϑ log n

n1−1/q
,

∆1 = 1 +
V1 log n

b
+

{V2q−1(log n/b)
q + Vq}1/q ∧ (V

1/q
q /b)

bn1−1/q/(log n)2
,

∆2 =

(
V3 log n

nb3
+

log n

n

)1/2

+
W 2/qϑ2 log n

n1−2/q
.
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3.1 Estimation of variance function

Assume that ∆0 = o(1) and ∆0∆1 +∆2 = o(ϑ2). Then we have

sup
t∈T

∣∣∣∣ σ̂(t)σ(t)
− 1

∣∣∣∣ = OP

(
∆0∆1 +∆2

ϑ2

)
= oP(1).

Remark 7. Relation (2.7) suggests an alternative estimator

f̂(t)V1λK{γ̂(t, t) + σ̂2
ε}

b
+ f̂(t)f̂(t)γ̂(t, t)(1− V1),

where f̂(t), γ̂(t, t) are σ̂2
ε are uniformly consistent estimators of f(t), γ(t, t)

and σ2
ε , respectively. For example, we can take f̂(t) = S0(t) and the unified

estimators γ̂(t, t) and σ̂2
ε in Li and Hsing (2010). Although the uniform

consistency of this estimator can be similarly established, it is not rec-

ommended for practical use as the nonparametric estimator γ̂(t, t) above

involves additional bandwidth selection, which is highly nontrivial in prac-

tice. Moreover, Kim and Zhao (2013) found that γ̂(t, t) might be negative

for some t ∈ T , especially when the noise level σε is high.

Remark 8. The conditions of Theorem 3 are quite mild and are easy to

verify. For ease of illustration, suppose now mi = m for all i = 1, . . . , n.

Then a simple sufficient condition for ∆0 = o(1) and ∆0∆1 +∆2 = o(ϑ2) is

b2 log n

mb ∨ 1
+

(log n)3

(nm)1−2/q(mb ∨ 1)b
→ 0,

which is satisfied as long as b2 log n = o(1) and (log n)3 = o(n1−2/qb).
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3.2 Gaussian multiplier bootstrap

Remark 9. By (2.10) and Theorem 3, we have the central limit theorem

Ẑb(t) =
f̃b(t){µ̂b(t)− µ(t)} − b2r(t)

σ̂(t)/
√
n

⇒ N(0, 1).

Consequently, for any fixed interior point t ∈ T , we can construct the

(1− α)× 100% point-wise confidence interval for µ(t) as[
µ̂b(t)−

b2r̂(t)

f̃b(t)
− Φ−1(1− α/2)σ̂(t)

√
nf̃b(t)

, µ̂b(t)−
b2r̂(t)

f̃b(t)
+

Φ−1(1− α/2)σ̂(t)
√
nf̃b(t)

]
,

where Φ(·) is the cumulative distribution function of the standard normal

distribution.

Combining Theorem 2 and Theorem 3 yields the following Gaussian

approximation for supt∈Tb |Ẑb(t)|.

Corollary 2. Suppose the conditions of Theorem 2 are satisfied and

∆0∆1 +∆2 = o

(
ϑ2

log n

)
. (3.24)

Then we have

ρ̂ := sup
y≥0

∣∣∣∣P{sup
t∈Tb

|Ẑb(t)| ≤ y

}
− P

{
sup
t∈Tb

|G(t)| ≤ y

}∣∣∣∣→ 0.

3.2 Gaussian multiplier bootstrap

As discussed in Corollary 1, the asymptotic distributions of supt∈Tb |Zb(t)|

take different forms under different sampling schemes and they depend on
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3.2 Gaussian multiplier bootstrap

the magnitudes of the unknown quantities γ(t, s), f(t), σ(t) and σ2
ε . This

phenomenon causes challenges for practical implementation as subjective

choice between different scenarios may result in erroneous conclusions. It is

therefore of both practical and theoretical importance to develop a unified

approach that works for all types of functional data. To this end, we adopt

the Gaussian multiplier bootstrap (Chernozhukov et al., 2013, 2014) to

approximate the critical value Q1−α and justify its validity. It is worth

mentioning that the proposed bootstrap procedure is fully data-driven and

easy to implement in practice.

Our procedure is summarized as follows.

1. Select the bandwidth b by the cross-validation procedure in Section 3.3.

Obtain the nonparametric estimate µ̂b(t) for µ(t) via (2.2). Compute

η̂i(t) based on (3.22) and then calculate the estimate σ̂(t) via (3.23).

2. Generate i.i.d. N(0, 1) random variables z1, . . . , zn and calculate

Ĝ(t) =
1√
nσ̂(t)

n∑
i=1

ziη̂i(t). (3.25)

3. Repeat step 2 for B times to obtain Ĝ1(t), . . . , ĜB(t), and then cal-

culate the (1− α)th quantile Q̂1−α = inf{y : F̂B(y) ≥ 1− α}, where

F̂B(y) =
1

B

B∑
h=1

1

{
sup
t∈Tb

|Ĝh(t)| ≤ y

}
.
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3.2 Gaussian multiplier bootstrap

The following theorem justifies the asymptotic validity of the bootstrap

procedure.

Theorem 4. Assume the conditions of Theorem 2 hold with q > 4 and

∆0∆1 +∆2 = o

(
ϑ2

(log n)2

)
. (3.26)

Then we have

sup
y≥0

∣∣∣∣P{sup
t∈Tb

|Ẑb(t)| ≤ y

}
− Pz

{
sup
t∈Tb

|Ĝ(t)| ≤ y

}∣∣∣∣ = oP(1),

where Pz(·) = P(·|D) stands for the conditional probability.

Remark 10. Li and Hsing (2010) and Zhang and Wang (2016) considered

an alternative simulation-based approach to estimate Q1−α. Let γ̂(t, s) be

a uniformly consistent estimator for γ(t, s). In view of (2.18), a natural

plug-in estimator for C(t, s) is

Ĉ(t, s) = K∗(t− s)V1f̂(t){γ̂(t, t) + σ̂2
ε}

σ̂(t)σ̂(s)b
+

f̂(t)f̂(s)γ̂(t, s)(1− V1)

σ̂(t)σ̂(s)
.

Then one can estimateQ1−α by the (1−α)th quantile of supt∈Tb |Ĝ(t)|, where

G(t) is a centered Gaussian process with covariance function Ĉ(t, s). The

drawback of this approach is that the nonparametric covariance function

estimator γ̂(t, s) is typically not guaranteed to be non-negative semidefinite

and involves additional tuning parameter selection. In comparison, our

estimate is always non-negative semidefinite and does not require additional

tuning parameter selection.
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3.3 Bandwidth selection

3.3 Bandwidth selection

The performance of both the local linear estimates and the proposed SCBs

of the mean function depends on the bandwidth b. In this section, we discuss

how to choose the bandwidth b in practice. Since the measurements from

the same subject are correlated, the conventional leave-one-observation-

out cross-validation is not suitable in the current context. Instead, we

shall adopt the leave-one-subject-out cross-validation procedure (Rice and

Silverman, 1991). Specifically, for any bandwidth b > 0, the cross-validation

score is defined by

cv(b) =
n∑

i=1

1

mi

mi∑
j=1

{
Yij − µ̂−i

b (tij)
}2

, (3.27)

where µ̂−i
b (t) is the local linear estimator for µ(t) computed following (2.2)

using all the observations except those of ith subject. Consequently the

cross-validation bandwidth bcv is obtained by minimizing cv(b) with respect

to b, that is,

bcv = argmin
b>0

cv(b).

The main advantage of this approach is that it can preserve the dependence

structure of the process νi(·) for each i = 1, . . . , n. Similar ideas have been

widely used in the context of functional and longitudinal data analysis; see,

for instance, Hoover et al. (1998), Chiang et al. (2001), Wu and Zhang
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3.3 Bandwidth selection

(2002), Huang et al. (2004), Kim and Zhao (2013) and Cao et al. (2018)

among others.

Following the arguments in Hoover et al. (1998), we now provide an

intuitive justification of the above cross-validation procedure. Define the

weighted average square error for the estimator µ̂b(t) as

ASE(b) =
n∑

i=1

1

mi

mi∑
j=1

{µ(tij)− µ̂b(tij)}2.

Intuitively, the bandwidth bcv should minimize ASE(b) asymptotically. In-

deed, observe that

cv(b) =
n∑

i=1

1

mi

mi∑
j=1

{
µ(tij)− µ̂−i

b (tij)
}2

+
n∑

i=1

1

mi

mi∑
j=1

e2ij

+
n∑

i=1

2

mi

mi∑
j=1

{
µ(tij)− µ̂−i

b (tij)
}
eij, (3.28)

where eij = νi(tij)+εij. The second term on the right-hand side of (3.28) is

independent of the bandwidth b. And the third term is stochastically dom-

inated by the first term when n is sufficiently large as µ(tij)− µ̂−i
b (tij) and

eij are independent. Therefore the bandwidth bcv asymptotically minimizes

the first term on the right hand side of (3.28), which is an approximation

of ASE(b).
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3.4 Bias correction

3.4 Bias correction

To apply Theorem 2 in practice, we need to deal with the bias term b2r(t)

in (2.9), which is the asymptotic mean of f̃b(t){µ̂b(t)−µ(t)} in view of (2.10).

The estimation for r(t), in particular for µ′′(t), can be highly nontrivial.

Here we shall use the idea of jackknife and avoid estimating r(t). Noting

that (
√
2b)2r(t) = 2b2r(t) is the asymptotic mean of f̃√2b(t){µ̂√

2b(t)−µ(t)},

we can propose the jackknife estimate

r̃(t) =
f̃b(t)f̃√2b(t){µ̂√

2b(t)− µ̂b(t)}
{2f̃b(t)− f̃√2b(t)}b2

.

Then our bias-corrected estimator for µ(t) is defined as

µ̃b(t) = µ̂b(t)−
b2r̃(t)

f̃b(t)
=

2f̃b(t)µ̂b(t)− f̃√2b(t)µ̂
√
2b(t)

2f̃b(t)− f̃√2b(t)
.

Under conditions of Theorem 2, it can be shown that the bias of µ̃b(t) is

of order o(b2) and it is asymptotically negligible. Note that implementing

estimator µ̃b(t) is asymptotically equivalent to using the higher order kernel

K̃(u) = 2K(u) − K(u/
√
2)/

√
2. Denote K̃b(u) = K̃(u/b)/b. Performing

the bootstrap procedure in Section 3.2, with η̂i(t) and σ̂2(t) replaced by

η̃i(t) =
1

mi

mi∑
j=1

K̃b(tij − t){Yij − µ̂b(tij)} and σ̃2(t) =
1

n

n∑
i=1

η̃i(t)
2,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



respectively, we obtain the estimated critical value Q̃1−α. Consequently, we

construct the SCBs for µ(t) as[
µ̃b(t)−

Q̃1−ασ̃(t)√
n{2f̃b(t)− f̃√2b(t)}

, µ̃b(t) +
Q̃1−ασ̃(t)√

n{2f̃b(t)− f̃√2b(t)}

]
. (3.29)

4. Simulation Study

In this section, we conduct a Monte Carlo simulation study to assess the

finite sample performance of the proposed SCBs in (3.29). For comparison,

we also implement the point-wise confidence intervals (with Q̃1−α replaced

by Φ−1(1−α/2) in (3.29)), the Bonferroni corrected confidence bands based

on N = 199 equispaced points of the interval [0, 1] (with Q̃1−α replaced

by Φ−1(1 − α/(2N )) in (3.29)) and the SCBs constructed based on the

Gumbel approximation in (2.20). The explicit expression of the SCBs is

given in (S7.1) in which we plug in the true bias function b2r(t) for ease of

illustration. For convenience, we denote these four different methods in the

tables below as Gmb, Point, Bonf and Gumbel respectively. Throughout

this section, we use the Epanechnikov kernelK(u) = 0.75(1−u2)1{|u| ≤ 1}.

We generate data from the model

Yij = µ(tij) +
4∑

l=1

ωlζilϕl(tij) + εij,

where {ζil}i,l∈N and {εij}i,j∈N are independent copies of ζ in (4.30) and are
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scaled such that var(ζ11) = 1 and var(ε11) = 0.1,

ϕ1(t) =
√
2 sin(2πt), ϕ2(t) =

√
2 cos(2πt),

ϕ3(t) =
√
2 sin(4πt), ϕ4(t) =

√
2 cos(4πt),

ωl = 0.4/(l+1) for l ≥ 1, {tij}i,j∈N are i.i.d. Uniform[0, 1] random variables

and

µ(t) = sin(πt) + t+
cos(2πt) + sin(2πt)

4
.

We consider three different distributions of ζ as follows,

(1) ζ ∼ N(0, 1); (2) ζ ∼ t5; (3) ζ ∼ (χ2
5 − 5). (4.30)

To investigate the impact of different sampling schemes on the performance

of the proposed method, we consider three different setups of the mi’s as

follows, ranging from sparse cases to dense cases,

case 1 :mi ∼ Uniform{4, 5, 6};

case 2 :mi ∼ Uniform{⌊n1/4⌋ × 4, ⌊n1/4⌋ × 6};

case 3 :mi = ⌊n/4⌋,

where ⌊u⌋ represents the integer part of u. For each case, we take the

sample size n = 200 and the bootstrap size B = 1000. The bandwidth

bcv is taken as the median of 100 cross-validation bandwidths selected via
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Gmb Bonf Point Gumbel

ζ 1− α 90% 95% 90% 95% 90% 95% 90% 95%

case 1 87.45 93.50 98.05 98.75 19.15 43.45 91.20 96.35

N(0, 1) case 2 88.80 94.20 98.70 99.25 19.90 42.10 93.40 97.55

case 3 89.40 94.80 98.55 99.20 27.45 50.00 95.55 98.55

case 1 88.55 93.80 98.40 99.20 21.90 45.95 91.15 96.75

t5 case 2 89.50 94.65 98.35 99.15 19.45 43.05 93.65 97.70

case 3 89.25 94.60 98.75 99.15 27.65 50.15 94.70 98.20

case 1 87.40 93.35 98.45 99.00 21.40 43.10 91.35 97.05

(χ2
5 − 5) case 2 87.75 93.50 98.50 99.20 21.65 43.10 93.50 97.60

case 3 90.05 95.15 98.60 99.25 26.05 51.60 95.95 98.35

Table 2: Empirical coverage probabilities for the four different confidence

bands of the mean curve

the cross-validation procedure (cf. Section 3.3) based on 100 independent

replications. To demonstrate the robustness of our method against the

bandwidth selection, we consider three different bandwidths c0 × bcv with

c0 ∈ {0.9, 1.0, 1.1}.

To evaluate the four different confidence bands, we compute the empir-

ical coverage probabilities based on 2000 independent replications for each

case. The complete results are summarized in Tables 3–5 for the three differ-

ent distributions of ζ respectively in online Supplementary Material. Here
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we only present the case with c0 = 1 in Table 2. It is demonstrated that our

proposed method performs well for both Gaussian and non-Gaussian func-

tional data. In particular, our method is robust to bandwidth selection in

that the empirical coverage probabilities of our SCBs are close to the nomi-

nal level 1−α. In comparison, the SCBs constructed based on the Gumbel

approximation works relatively well in the sparse case which matches the

theoretical result for sparse scenario (i) in Corollary 1. However, when the

observations become denser, as we can see from Tables 2, the Gumbel SCBs

no longer works well and becomes quite conservative even with the true bias

function plugged in. In contrast, our method works quite well for all the

three different sampling schemes, ranging from sparse to dense cases.

5. Conclusions

This paper studies the simultaneous inference of the mean functions for lon-

gitudinal and functional data. Unlike most of the existing methods which

focused on only one type (sparse or dense) of functional data, we propose a

unified approach to constructing the simultaneous confidence bands for the

mean curves and develop a unified distribution theory for the local linear

estimates. In particular, our result depicts the dichotomous phenomenon

and provides a detailed characterization of the asymptotic distributional
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approximations, ranging from sparse to dense cases. For practical imple-

mentation, we propose a Gaussian multiplier bootstrap procedure to esti-

mate the critical value which is easy to implement and works well for all

types of functional data. Our framework of simultaneous inference is quite

general and can be easily extended to study more complicated scenarios

in which the longitudinal/functional data are adaptively collected or are

temporal dependent over time.
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