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A community Hawkes model for continuous-time networks

with interaction heterogeneity

Haosheng Shi and Wenlin Dai*

Center for Applied Statistics, Institute of Statistics and Big Data, Renmin University of China

Abstract: Continuous-time networks have attracted significant attention due to

their widespread applications in various disciplines. A rich literature considers

the community structure of the nodes, while few have accounted for the node

heterogeneity of interaction propensities. To simultaneously account for both

the self-exciting feature and the node heterogeneity, we propose a model based

on the Hawkes process, which allows the interaction intensity to vary flexibly with

incurred nodes and their affiliated communities. We derive the likelihood function

using the immigration–birth representation of the Hawkes process and develop

an innovative expectation–maximization algorithm with membership refinement

to tackle the computational challenge. Further, we establish the consistency of

parameter estimation under mild assumptions. The effectiveness of our model

is validated by extensive simulation studies on synthetic data as well as two

real-world applications.
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Hawkes process; Node heterogeneity.
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1. Introduction

Networks, especially dynamic networks, have attracted enormous research

interest recently. In dynamic networks, nodal linkages are not fixed but may

appear or disappear over time. Dynamic networks can be further divided

into two types: discrete-time and continuous-time networks. The difference

between these two types lies in the fact that the time points of interactions

are either continuous-valued or discrete-valued. A crucial task of network

analysis is understanding its generative mechanism. Specifically, we are

interested in the linking probability of node pairs for static networks and

the interaction frequency for dynamic networks. Statistical models inferred

from these networks can then be used to discover existing generation pat-

terns, to predict future links or to generate synthetic but realistic networks.

There has been significant research on static network generative models.

The simplest model may be the Erdős–Rényi model in which all nodes are

considered homogeneous (Erdős and Rényi (1959) and Erdős and Rényi

(1960)). A natural extension accounting for nodes’ inclination to cluster

is the stochastic block model (SBM) proposed in Holland et al. (1983). It

partitions nodes into blocks and assigns each block pair a specific linking

probability. However, these simple models do not consider the possible

degree heterogeneity, which motivates more relevant works, such as the β
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model (Holland and Leinhardt (1981)), the degree-corrected block model

(DCBM, Karrer and Newman (2011)) and the popularity-adjusted block

model (PABM, Sengupta and Chen (2018)).

An analogy can be drawn between dynamic and static networks. A

prevalent generalization is to combine the static models with stochastic

processes. For example, there have been works discussing how to combine

the SBM with a Markov structure on the node labels of discrete-time net-

works, such as Yang et al. (2011) and Matias and Miele (2017). When it

comes to continuous-time networks, a regular practice assumes that events

occur according to a continuous-time point process, in which the interaction

intensity parallels the static linking probability. For example, Zhang et al.

(2017) supposes that the connection between every pair of nodes obeys a

continuous-time Markov process, the constant transition rate of which is

determined by latent structures such as ER models or SBM. Matias et al.

(2018) models interactions on each node pair by inhomogeneous Poisson

processes based on the corresponding node labels, and thus each process in

a block pair shares a common intensity function.

A common property in continuous-time networks is burstiness (Goh

and Barabási (2008)) that events tend to cluster in time. Recently, several

point processes have been designed to characterize this property, such as
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Wu et al. (2022) and Zhang et al. (2023). The Hawkes process is the most

commonly used one among these models because of its simple form with the

self-excitation property (Zipkin et al. (2016)). Many studies have combined

this process with static generative models to construct continuous-time net-

work models. Some models deal with events related to nodes, such as Fox

et al. (2016) and Delattre et al. (2016) with self excitation and Fang et al.

(2023) and Chen et al. (2017) with mutual excitation. This kind of models

is also appropriate for discovering triggering effects and recovering the la-

tent network structure from time-to-event data, such as Cai et al. (2022),

Nickel and Le (2020) and Bacry et al. (2020). Other models pinpoint both

incurred nodes of the interaction instead, and can be further subdivided

into several types. Models of the first type makes various attempts to in-

corporate mutual excitation between node pairs, such as Miscouridou et al.

(2018), Yang and Koeppl (2020) and Huang et al. (2022) for reciprocal ex-

citation, Passino and Heard (2023) with excitation of adjacent edges and

Blundell et al. (2012), Junuthula et al. (2019), and Soliman et al. (2022)

with excitation at the block level. However, when we focus on the inter-

action prediction of a given node pair, all these methods have to borrow

historical information from other node pairs, thus complicating the analysis.

An alternative type considers individual edges as basic units and attaches
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each of them with a univariate Hawkes process. Therefore, relationships

between different node pairs are embodied in shared intensity parameters

instead of shared historical interactions, which greatly simplifies the proce-

dure. Some of these methods, such as Wu (2019), consider nodal linking

propensity parameters so that the node heterogeneity is highlighted. Oth-

ers, such as Arastuie et al. (2020), emphasize the community structure and

assume shared parameters within the same block pair.

This paper aims to design an elegant and flexible continuous-time model

embodying both community structure and nodal interaction heterogeneity.

Consider a social network such as Twitter or other forums to motivate

our model setting. Users of these networks tend to form some kind of

social circles, such as communities of football, baseball, or basketball fans.

While most users may maintain a relatively low presence, users known as

activists in every community interact with others frequently, causing node

heterogeneity in communities. Additionally, some football fans may interact

more frequently with basketball fans than with baseball fans, while others

behave in an opposite way. Therefore, the heterogeneity should be flexible

enough across nodes and communities, so that the relative frequency of

interaction when linking to a specific fan community, relevant to both the

node itself and the target community, varies even for fans in the same
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community as in PABM.

Our main contributions in this work are as follows. First, we propose the

community heterogeneous Hawkes independent pairs model (CHHIP). This

model is constructed under the framework of independent dyads, so it does

not need to consider the complicated mutual excitation and provides a more

tractable procedure. Compared with existing models in this range, CHHIP

is more flexible in modeling nodal interaction heterogeneity across different

communities, and thus more applicable in practical settings. Second, we

derive the complete likelihood function based on the immigration–birth

representation of the Hawkes process and develop an innovative modified

expectation–maximization (EM) algorithm with membership refinement to

tackle the computational challenge. Besides, we propose an initialization

method for the community structure based on subspace sparse clustering,

and provide a criterion for selecting the number of communities. Finally,

we prove that all estimators, including the community labels, are consistent

as the time goes to infinity. The superiority of the proposed model is

demonstrated through synthetic and real data examples.

The rest of the paper is organized as follows. In Section 2, we re-

view some closely related works as the basis of our model. In Section 3,

we formally present the CHHIP model and derive its likelihood function.
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We also re-express the likelihood using the immigration–birth representa-

tion and provide an EM algorithm to alleviate the difficulty in finding the

maximum likelihood estimators(MLE). In Section 4, we establish the con-

sistency of parameter estimation and discuss the property of the parameter

initialization method. We apply our method in Section 5 to two real-world

applications. We conclude the paper with a discussion of directions for

future work. Technical proofs for our theoretical results and simulation

experiments to evaluate our method are provided in the Supplement. We

provide the computer codes for this paper in a public gitee repository:

https://gitee.com/bluesun2019/chhip.

2. Background

2.1 Notations

A static network is usually represented as G = GN(V , E), where V is the set

of N nodes and E is the set of edges. An adjacency matrix A represents the

linking relationship between nodes, where Aij = 1 indicates the presence of

a link between nodes i and j and Aij = 0 indicates the reverse. Sometimes

a specific weight wij is attached to each edge (i, j) in these networks. In this

case, we use W to denote the weighted adjacency matrix with (W)ij = wij.

In comparison, a temporal or dynamic network often takes the form of a
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2.2 Block models for static networks 8

list of triplets (i, j, t) denoting the interaction timestamp (or duration) t

incurred by nodes i and j. We use N to denote the number of nodes and

M to denote the number of triplets in the dynamic network. For an integer

z > 1, define [z] = {1, 2, · · · , z}. In a network with K communities, we

denote the membership of the node i as ci ∈ [K].

2.2 Block models for static networks

Many statistical models have been designed for static networks. Among

these models, block models have received enormous attention for their func-

tionality in capturing the community structure. The most classical block

model is the SBM firstly proposed by Holland et al. (1983). Each node

lies in one of the K communities under a K-block SBM. Under this sim-

ple model, each node pair (i, j) links independently with the probability

pij = Pcicj , where P is a K ×K blockwise connection probability matrix.

Obviously, nodes in the same community are assumed to be equivalent in

creating links. DCBM (Karrer and Newman (2011)) has been proposed to

account for the individual effect on creating links, where pij = θiWcicjθj,

Wcicj is a group-level connection parameter between communities ci and cj,

and θi adjusts the specific degree for node i.

The DCBM, however, is not flexible enough. In this model, nodes
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in the same community can only link to other communities with a fixed

ratio. This is impractical, especially when we consider the case in which

nodes have different connective inclinations toward different communities.

To see this more clearly, define the node popularity of i in community a as

ηia =
∑

ck=a
E[Aik]. Then, the definition of the DCBM leads to a shared

ratio for i, j in the same community:

ηia
ηib

=
Wcia

Wcib

=
Wcja

Wcjb

=
ηja
ηjb

.

A more generalized model, PABM (Sengupta and Chen (2018)), suc-

cessfully fixes the issue. In aK-block PABM,K linking parameters {λik}Kk=1

are assigned to node i. For any i > j, the connection probability between i

and j is pij = λicjλjci . To ensure identifiability, it is assumed that Λab = Λba

with Λab =
∑

ci=a
λib. In this model, the nodal distinction in linking to dif-

ferent communities is modeled in a more flexible way:

ηia
ηib

=
λia · Λcia

λib · Λcib

6=
λja · Λcja

λjb · Λcjb

=
ηja
ηjb

.

It is worth noting that the SBM and the DCBM are both special cases

of the PABM. However, the PABM introduces more parameters than the

previous ones, thus providing greater flexibility in fitting the network.
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2.3 Hawkes process

Many dynamic networks in our daily lives exhibit a burstiness pattern,

namely the occurrence of one event increases the probability of subsequent

events. The Hawkes process (Hawkes, 1971) is widely used to capture such

a phenomenon due to its self-exciting nature. For a Hawkes process X(t)

defined on [0, T ], we denote a realization as {t1, t2 · · · , tm} where 0 ≤ t1 ≤

· · · ≤ tm ≤ T and define N(t) =
∑m

s=1 1{ts<t} as its corresponding counting

process. Given H(t) = {ts | ts < t, s = 1, · · · ,m}, the arrival history up to

time t, the conditional intensity takes the form of

λ∗(t | H(t)) = µ+

∫ t

0

γ(t− v)dN(v) = µ+
∑
ts<t

γ(t− ts),

where µ > 0 can be regarded as the background intensity or exogenous

arrival rate of events, and γ(τ) is a non-negative self-excitation function to

capture the endogenous triggering mechanism of past events. One typical

choice of γ(·) is the exponential kernel γ(τ) = αe−βτ . α and β denote the

jump size and the decay rate of the intensity, respectively. In this case,

the conditional intensity of interaction increases by α immediately when an

event occurs, and this effect decays in an exponential rate β with time.
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2.4 CHIP model

The CHIP model was proposed by Arastuie et al. (2020) to provide a

tractable tool for temporal network analysis. Under this model, nodes are

partitioned into several communities as in block models. Interactions on

each dyad independently follow a Hawkes process, whose parameters are

related to affiliated communities of incurred nodes. In detail, the CHIP

model classifies a node i to the block ci ∈ [K]. Given the parameters

µab, αab, βab attached to each block pair (a, b), nodes i and j interact with

the conditional intensity as follows:

λ∗ij(t | H(t)) = µcicj +

∫ t

0

αcicje
−βcicj (t−v)dNij(v).

Although this model has a simple form and can be solved quickly using

the method of moments, sharing a parameter at the block level indicates a

deficiency in node heterogeneity. Realistic situations where some nodes are

much more sociable than others motivate us to design a new model.

3. CHHIP model

3.1 Definition

We propose the CHHIP model, which considers both node heterogeneity
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3.1 Definition 12

and the community structure. We focus on undirected dynamic networks

without self-loops to simplify the model. Similar to the CHIP model, con-

tacts between each node pair are assumed to follow the Hawkes process

independently. By applying our model to undirected networks, we do not

make a distinction between opposite interactions on each dyad, which is

natural in some real data cases (see the example in Section 5.2). In this

sense, we assume that the self-exciting and reciprocal effects on subsequent

events exist simultaneously and are equal for simplicity. Given the block

partition {ci}Ni=1, the intensity function of this process is defined as follows:

λ∗ij(t | H(t)) = λicjλjci+

∫ t

0

αcicje
−βcicj (t−v)dNij(v), 1 ≤ j < i ≤ N. (3.1)

For convenience, we let θθθ = (λλλ,ααα,βββ) and represent the corresponding pa-

rameter space as Θ. All of the parameters in θθθ should be non-negative.

Also, we let αab = αba, βab = βba, and Λab = Λba (a, b ∈ {1, 2, · · · , K}) for

model identifiability.

Unlike the CHIP model, CHHIP accounts for the popularity heterogene-

ity of the background intensity with a PABM-like term. This modification

improves the estimation of routine communication frequency between two

specific individuals by endowing each node with one of the K node-specific
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linking parameters. Nodes in the same community are no longer assumed to

be equivalent, and the background intensity incorporates the specific linking

pattern of a given node to the target community, providing a more flexible

way to restore the possible node differences. However, this modification is

not trivial, because the lack of stochastic equivalence within a community

disables the method of moments used in Arastuie et al. (2020). We develop

an EM algorithm to fix this problem. Whenever i interacts with j, a leap

of αcicj with an exponential decay is introduced in the intensity to indicate

self-excitation. This term incorporates historical information and reflects

the burstiness of events. Besides, we assume nodes in the same community

have similar self-exciting mechanisms, which is consistent with many other

works such as Junuthula et al. (2019) and Arastuie et al. (2020).

3.2 Estimation procedure

Given the interaction timestamps {t(s)ij }
nij

s=1 on each node pair (i, j) (i > j)

of the observed network X, we present the log-likelihood function as follows.

Lemma 1. Assume that the model parameters θθθ and the observation X are

defined as above. Then, the log-likelihood function of the model is
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` =
N∑
i=1

∑
j<i

{
nij∑
s=1

log
(
λicjλjci + αcicjAij(s)

)
− λicjλjciT

+
αcicj
βcicj

(
nij∑
s=1

e−βcicj (T−t
(s)
ij ) − nij

)} (3.2)

where N is the number of nodes in the network, T is the end time, nij is the

number of interactions between i and j up to T and Aij(s) =
∑s

u=1 e
−βcicj (t

(s)
ij −t

(u)
ij ).

However, the closed form of the MLE is unavailable because of the term

log
(
λicjλjci + αcicjAcicj(s)

)
. Therefore, we propose an EM algorithm based

on the immigration–birth representation to tackle the challenge; see Fig-

ure 1 for an intuitive illustration of this representation. Consider a stream

of immigrants following the homogeneous Poisson process with intensity

λ. The immigrants will continue to generate descendants, and the descen-

dants can reproduce just like their triggering antecedents. All events but

immigrants are named natives. More specifically, every point emerging at

ts, whether immigrant or native, independently gives birth to a new point

with the conditional intensity function αe−β(t−ts) at time t. By combining

all these timestamps, we obtain a realization of the Hawkes process with

the intensity function λ∗(t | H(t)) = λ+
∑

ts<t
αe−β(t−ts).

With the immigration–birth representation explained above, we now
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introduce some latent variables. For each (i, j), the immigrants should ap-

pear with intensity λicjλjci . Denote by dij the total number of immigrants.

In many real networks, the number of self-interactions nii cannot be directly

observed so we have not defined them yet. For convenience of subsequent

calculations, we pretend there existed unobserved point processes following

our model on self-loops and treat dii, the number of immigrants on the

self-loop of i, as a latent variable here. Then conditional on λici , dii follows

a Poisson distribution with a mean of λ2iciT . As described above, every

event, whether immigrants or natives, can reproduce descendants, and all

natives have their own triggering events. We define e
(s)
ij as the number of

descendants and trig
(s)
ij as the triggering event for the sth interaction be-

tween nodes i and j (i > j). If the sth interaction is an immigrant to the

process, we define its triggering event as itself, namely trig
(s)
ij = s.

Now the complete likelihood of all interaction timestamps {t(s)ij }
nij

s=1 and

these latent variables {dij, trig(s)
ij , e

(s)
ij }

nij

s=1 on the node pair (i, j) (i > j) can

be divided into three parts:

1. The likelihood of the number of background events (immigrants):

L1(λicj , λjci) = e−λicjλjciT
(λicjλjciT )dij

dij!
,
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2. Given the number of background events, the likelihood of the number

of descendants for each event:

L2(αcicj , βcicj) =

nij∏
s=1

e−G(αcicj ,βcicj )

(
G(αcicj , βcicj)

)e(s)ij

e
(s)
ij !

 ,

where the triggering ratioG(αcicj , βcicj) =
∫∞
0
αcicje

−βcicj tdt = αcicj/βcicj

is a commonly used approximation of the term
∫ T−t(s)ij

0 αcicj exp{−βcicj t}dt

when T is large. This triggering ratio informs the average number of

first-generation offspring and is often used as a measure of burstiness.

More details are discussed in Lewis and Mohler (2011).

3. Given the number of background events dij and the number of de-

scendants for each event {e(s)ij }
nij

s=1, the likelihood of the timestamps:

As events with trig
(s)
ij = s contribute 1/T and those with trig

(s)
ij =

hs < s contribute αcicje
−βcicj

(
t
(s)
ij −t

(hs)
ij

)
/
∫ T
t
(hs)
ij

αcicje
−βcicj

(
z−t(hs)ij

)
dz,

we can still substitute the denominator for G(αcicj , βcicj) and obtain

L3(αcicj , βcicj) =

nij∏
s=1

αcicje
−βcicj

(
t
(s)
ij −t

(hs)
ij

)
G(αcicj , βcicj)

1{trig(s)ij =hs<s}

 ·
(

1

T
1{trig(s)ij =s}

) .

With
∑s

u=1 e
(u)
ij = nij, we offset terms and formulate the complete log-
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likelihood as

`c(λλλ,ααα,βββ;ccc) =
N∑
i=1

∑
j<i

[
−λicjλjciT + dij log λicj + dij log λjci +

{
nij∑
s=1

(
−
αcicj
βcicj

)

+

nij∑
s=1

{
logαcicj − βcicj(t

(s)
ij − t

(trig
(s)
ij )

ij )

}
1{trig(s)ij <s}

}
1{nij 6=0}

]

+
1

2

N∑
i=1

[
− λ2iciT + 2dii log λici

]
.

(3.3)

With the complete likelihood (3.3), we develop a modified EM algo-

rithm (summarized as Algorithm ?? in the Supplement) to obtain the MLE.

Details of parameter updates are elaborated in S1 of the Supplement. A

prominent problem here is how to determine the community membership

vector ccc. Arastuie et al. (2020) detects the community by applying a simple

spectral clustering to an accumulated matrix W containing the number of

interactions nij on each node pair, which is, however, not suitable for our

model due to the degree variation within communities. Here, we regard the

membership labels as parameters to be estimated instead of random vari-

ables, and update them by coordinate in each EM loop. In this way, the

likelihood function remains increasing and the convergence is not disrupted.

This technique, similar to which is used in Fang et al. (2023) and Soliman

et al. (2022), can be seen as a community membership refinement step.
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To select the number of communities, we use Hannan and Quinn in-

formation criterion (HQ, Hannan and Quinn (1979)), which is defined as

HQ(K) = −2` + 2 (NK +N(N + 1)) log logM in our case, where ` is de-

fined in Lemma 1. Chen et al. (2018) studies the performance of this cri-

terion under Hawkes process models. Generally this criterion imposes a

penalty lying between AIC and BIC, and has the slowest growing rate with

the network size among strongly consistent information criterion taking the

form of IC(K) = −2` + c(K,M). An information criterion is consistent if

there is a j ∈ [N ] such that limM→∞ P {mink 6=j (IC (k))− IC (j)) > 0} = 1,

and c(K,M) is a penalty term imposed on the community number K and

the event number M . HQ performs well in our simulation studies and real

data analysis, so we find it a suitable choice for model selection.

As the complete likelihood is non-convex, reasonable initial values for

parameters should be selected. For node membership, we follow Arastuie

et al. (2020) to obtain an accumulated matrix and perform a subspace sparse

clustering (Noroozi et al. (2021)). Proof has been established that this

estimator obtained by SSC is consistent under the weighted PABM model

in the Section S2 of the Supplement, so we believe it is a suitable and valid

initializer. The process of community detection is presented in Algorithm

?? (in the Supplement). For other intensity parameters, we pretend all
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Realization

Layer 3

Layer 2

Layer 1

Layer 0 (Background)

Time
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ye
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Figure 1: An illustration of the immigration–birth process. Events in layers
indexed larger than 0 are triggered by their antecedents in the previous
layer, and all of them constitute the realization process.

nodes were equivalent and take the moment estimators as initial values,

which turns out to be effective in simulation studies. The procedure of

initialization is the same as that in Arastuie et al. (2020): We calculate the

mean and variance of interaction counts in each block pair, and use them to

obtain the moment estimators. The only difference is that our initial block

labels are obtained from SSC instead of spectral clustering.

4. Theoretical analysis

We now consider the asymptotic property of the MLE when the observation

duration is long enough. The reasonableness of initializing communities by
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4.1 Consistency of parameter estimation 20

sparse subspace clustering is included in S2 of the supplement because of

the space limit. In this section, we show that the community membership

and the parameter estimation are both consistent with time. By combining

these arguments, we establish the validity of this estimation procedure.

4.1 Consistency of parameter estimation

Suppose the dynamic network X is generated from CHHIP(ccc0, θθθ0), where

ccc0 ∈ C = {1, 2, · · · , K0}N and θθθ0 = (λλλ0,ααα0,βββ0) with its parametric space Θ.

Define the complete intensity for each entry as λ∗∗i,j(ccc
0, θθθ0, t, w) = λ0icjλ

0
jci

+

α0
cicj

∫ t
−∞ e

−β0
cicj

(t−v)
dNij(v), where w belongs to the sample space Ω includ-

ing possible outcomes of the Hawkes process that is defined on the entire

real line and Nij(t) is the corresponding counting process, and use this in-

tensity to approximate the exact intensity (Ogata et al. (1978)). To derive

the consistency of the MLE, we require assumptions below.

Assumption 1. λ0ia > 0, 0 < α0
ab/β

0
ab < 1 for any i ∈ {1, · · · , N}; a, b ∈

{1, · · · , K0}.

Assumption 2. The parameter space Θ for θθθ is a compact space, i.e., there

exists 0 < m ≤ M so that m ≤ λia ≤ M,m ≤ αab ≤ M,m ≤ βab ≤ M for

any i ∈ {1, · · · , N} and a, b ∈ {1, · · · , K}.

Assumption 3. For any θθθ ∈ Θ, there exists a neighborhood U(θθθ) such
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that for all θθθ′ ∈ U(θθθ) and ccc ∈ {1, 2, · · · , K}N :

∣∣λ∗∗i,j(θθθ′, ccc, 0, ω)
∣∣ ≤M0(θθθ, ccc, 0, ω),

where M0 is an L1 integrable random variable.

Assumption 1 stems from a sufficient condition for the existence of a sta-

tionary and ergodic Hawkes process on each entry, established in Brémaud

and Massoulié (1996). Our theoretical proof is built on these two properties

of the point process as in Ogata et al. (1978). Assumptions 2 and 3 can

be regarded as restrictions on the scale of parameters. As we focus on the

case of a finite number of nodes, Assumption 2 can be easily satisfied when-

ever Assumption 1 holds. Many works such as Ogata et al. (1978) have

used assumptions similar to Assumption 3 as an initial condition for sta-

tionary Hawkes process. It indicates that events from the infinite past will

not affect the intensity at present, which is practically true. Specifically,

for any finite S, we can always find a sufficiently small U(θθθ, δ(θθθ)) so that

|λ∗∗i,j(θθθ′, ccc, [−S, 0), w)|, defined as
∣∣λicjλjci +αcicj

∫ 0

−S e
−βcicj (t−v)dNij(v)

∣∣, can

be bounded by maxccc∈C λ
∗∗
i,j(θθθ, ccc, [−S, 0), w) + ε, and the former is L1 inte-

grable as E(λ∗∗i,j(θθθ, ccc, [−S, 0))) ≤ M2 + M/mE(Nij([0, 1))) (Puri and Tuan

(1986)). Therefore, if there are no effects of the infinite past (−∞,−S) on
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the current intensity, Assumption 3 naturally holds.

To obtain the consistency of the community membership, an additional

assumption is required to ensure identifiability of the community labels.

For a block pair (a, b), We define VVV (a,b) ∈ RNa as V
(a,b)
r = λira,b , where ira

is the rth node in block a. This vector can be regarded as the intensity

heterogeneity parameter of nodes in block a towards block b.

Assumption 4. For any k = 1, · · · , K0, vectors VVV (k,1), · · · ,VVV (k,K0) ∈ Rnk

are linearly independent.

This condition is also used by Noroozi et al. (2021), which guarantees

that communities are identifiable with the noiseless matrix µ0 = [λ0
ic0j
λ0
jc0i

]i,j.

Intuitively, it ensures that the column (row) space of µ0 can be uniquely

represented as the union of K0 linearly independent subspaces, each of

which has rank K0. Therefore, the node partition where nodes lying in the

same subspace belong to the same cluster is unique based on the PABM

structure.

Theorem 1. Under Assumptions 1–4, given the true number of communi-

ties K = K0, the MLE θ̂θθ and ĉcc is consistent up to a permutation σ(·) on

{1, · · · , K0}:

θ̂θθ
P→ σ(θθθ0) and ĉcc

P→ σ(ccc0), as T →∞,
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where σ(θθθ0) represents the label permuted version of θθθ0.

The proof is provided in S3.1 of the Supplement. Theorem 1 guarantees that

given the community number, we can always obtain consistent estimators

with respect to time duration T .

5. Real data analysis

5.1 Analysis of EU e-mail network

We analyze the EU e-mail network data from the Stanford Large Social Net-

work Dataset (http://snap.stanford.edu/data/email-Eu-core-temporal.html).

The network covers e-mail communication within a large European research

institution. Nodes in this network represent the core institution members.

Two nodes interact with each other once an e-mail is sent between the corre-

sponding members. The affiliated department information for each member

is also available, and can be regarded as the ground community structure.

Members within the same department interact more frequently. In addi-

tion, each department has highly and poorly sociable members, leading to

node heterogeneity. Although there might be more than one community

in a department, we will show that simply viewing them as a whole com-

munity also works well for inference of CHHIP, thanks to the flexibility of

endowing each node with K different baseline intensities.
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In this study, we choose the most densely connected part consisting of

4 departments and omit the last 30% of the time duration when there are

few interactions. We therefore obtain a sampled temporal network with

116 nodes and 55170 events over 563 days. As our method is designed for

undirected networks, we make all interactions undirected. Figure 2 visual-

izes the network from two perspectives: plot (a) illustrates the community

structure and the node heterogeneity of this network, while plots (b) and

(c) exhibit the network burstiness pattern. Specifically, we use the signed

total variation distance ∆ proposed by Goh and Barabási (2008) from a

baseline distribution, the Poisson distribution, to measure the burstiness

level for each node pair. ∆ is bound in [−1, 1], and its magnitude indi-

cates the level of burstiness: ∆ = 1 corresponds to the most bursty signals,

∆ = 0 implies a pattern similar to the Poisson, and ∆ = −1 represents a

completely regular signal. From (b), we observe that although interactions

are bursty on most dyads (see the first three dyads in (c)), there is still a

sizeable proportion on which interactions are anti-bursty (see the last dyad

in (c)).

First, we compare the communities detected by our proposed method

with results from spectral clustering and ppSBM (Matias et al. (2018)), an-

other popular community detection method for continuous-time networks.
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Figure 2: Visualization of the network. (a) shows the accumulated network,
(b) shows the distribution of burstiness parameters on edges with at least
two interactions and (c) shows the timestamps of events on four selected
dyads. Dark and light colors in (c) correspond to different directions on
this edge.

For spectral clustering, we simply accumulate the dynamic network as a

weighted static network and perform this method on it. The number of

communities is chosen by maximizing the famous average silhoutte width

(Rousseeuw (1987)). The ppSBM method combines the stochastic block

model and semi-parametric Poisson intensity functions. This work assumes

that node pairs in the same community pair share the same intensity func-

tion, and proposes a semi-parametric variational EM method to estimate

these functions. The number of communities is selected with the integrated

classification likelihood criterion.

We select the community number from 2 to 5 using the three methods

and present the results in Figure 3. Different colors in the plot correspond
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to members from different departments of the institution. The spectral

clustering method focuses on finding statistically equivalent nodes in inter-

action counts and overlooks the dynamic information, so it falsely selects

K̂ = 2 to mix all departments up, which is apparently not reasonable. The

ppSBM method considers the dynamic information instead, and attempts

to cluster statistically equivalent nodes in linking capability into the same

cluster. However, this idea imposes an overly strong assumption for nodes in

the same community, indicating that the method tends to cluster nodes into

many small communities. When we restrict the community number within

5, it leads to a super unbalanced community membership. In comparison,

our method is the only one to choose the correct K = 4. Accounting for the

possible linking heterogeneity helps prevent communities containing only a

few extreme nodes and produce a relatively balanced community structure.

We further evaluate our proposed CHHIP model as well as the CHIP

and ADCHP models on this dataset by making predictions based on the en-

tire history. The ADCHP model, short for additive degree corrected Hawkes

process, is designed to characterize networks with node heterogeneity but

without community structure. It can be deemed as a dynamic version of

the static beta model. In this model, triggering parameters are identical on

all node pairs and the background intensity is of an additive form γi + γj.
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Figure 3: Community detected on the EU e-mail network by CHHIP, spec-
tral clustering and ppSBM.

For CHIP and CHHIP, we use both the department information (methods

beginning with “department”) and the aforementioned data-driven results

(methods beginning with “spectral” or “SSC”) as their community struc-

tures. The number of communities is still selected from 2 to 5 for the

data-driven clustering methods. We first set a split point of time Tsplit,

and use all timestamps before Tsplit to train the models. Then, we use

these models to predict whether there exist interactions in the time interval

[Tsplit, Tsplit + πduration) for each edge. We choose πduration = 50 days as in

Yang and Koeppl (2020). Let the length of the training period vary from

40% to 90% of the whole interval. The probability that there is at least one
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interaction on (i, j) in our target time interval can be calculated as

1− exp

{
−
∫ Tsplit+πduration

Tsplit

λ̂∗ij(t | H(Tsplit))dt

}

where λ̂∗ij(t | H(t)) is the intensity function estimated for node pair (i, j).

With this probability, we can obtain the rolling prediction precision

in Figure 4, including the average area under the curve (AUC) of both

the precision–recall (PR) curve and the receiver operating characteristic

(ROC) curve. For convenience, we denote them as AUC-PR and AUC-ROC

here. Both measurements are considered because although a classifier with

a high AUC-ROC may perform well in predicting positive (or zero) links,

it is insensitive to the classification results on negative (or non-zero) links.

In comparison, AUC-PR considers non-zero links and is more accurate in

unbalanced classification settings, which is more relevant to our case.

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9
train_proportion

A
U

C
_P

R

type
department_CHHIP
SSC_CHHIP
department_CHIP
spectral_CHIP
ADCHP

0.84

0.88

0.92

0.96

0.4 0.5 0.6 0.7 0.8 0.9
train_proportion

A
U

C
_R

O
C

type
department_CHHIP
SSC_CHHIP
department_CHIP
spectral_CHIP
ADCHP

Figure 4: Prediction performance of different methods.
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As shown in Figure 4, CHHIP outperforms the other methods on both

AUC-ROC and AUC-PR scores, indicating that our model predicts both

the presence and absence of the events well. An interesting phenomenon

here is that the CHIP model with communities obtained by spectral cluster-

ing performs much better than that with departments. In fact, the spectral

method tends to cluster nodes that are statistically equivalent to the same

block, resulting in a clustering result catering for the use of CHIP model.

However, the prediction result of this model is still inferior to ADCHP or

CHHIP, due to the ignorance of node heterogeneity obviously present in this

dataset. The prediction performance of CHHIP, in contrast to CHIP, re-

mains stable under different community partitions owing to its node-specific

parameters with different communities. Actually there might be different

community assignments with reasonable interpretations. Our model can be

flexibly adaptable by adjusting the value for parameters related to “mis-

classified” nodes and clusters and thus stabilize the prediction performance.

To compare the interpretability of the three models, we demonstrate

the estimated background intensities in Figure 5. Our estimation, under

either community structure, is more similar to the accumulated network

demonstrated in Figure 2. However, ADCHP and CHIP tend to estimate a

small baseline and, thus, require a larger triggering ratio as shown in Table
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(a) SSC_CHHIP. (b) spectral_CHIP. (c) ADCHP.
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0
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Figure 5: Background intensity estimated for each entry using ADCHP,
CHHIP and CHIP. Nodes have been permuted for ease of comparison ac-
cording to their department membership in all cases.

Table 1: Triggering ratio α/β estimated for each block pair under CHIP
and CHHIP models with given departments as blocks. For ADCHP, the
estimated α/β is a constant 0.974 on all dyads.

CHHIP
CHIP

Dept 1 Dept 2 Dept 3 Dept 4

Dept 1
0.683

0.945
0.916 0.932 0.829

Dept 2 0.734
0.603

0.921
0.873 0.752

Dept 3 0.872 0.623
0.752

0.951
0.814

Dept 4 0.623 0.647 0.514
0.689

0.907
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1. When an event occurs, the large triggering parameter dominates these

small background intensities; therefore, ADCHP and CHIP can predict the

occurrence of subsequent events well through historical events. However,

they cannot properly characterize the studied dynamic network, and con-

sequently are not that suitable to serve as generative models.

We perform another practical predictive analysis to explain the facts

above. In practice, it is sometimes hard to obtain historical data imme-

diately. Historical events used for prediction may have occurred one day,

one week or even one year previously. Hence, we investigate how CHHIP

and ADCHP perform when there are missing events. Specifically, we fix

the prediction interval at [506, 556) and shift the end time of training data,

Tsplit, from 169 to 506. Figure 6 reveals that our model can perform signif-

icantly better than other models when the missing interval is long because

we estimate the background intensity more accurately.
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Figure 6: Prediction performance of different methods with missing history.
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5.2 Analysis of primary school interaction network

We provide another example to show the performance of our method when

the heterogeneity between nodes is not that significant. The dataset was

firstly collected by Stehlé et al. (2011) and further analyzed in Matias et al.

(2018). It consists of face-to-face contacts of 232 students from 10 classes

and 10 teachers in a French primary school for 2 weekdays. Specifically,

all participants were given a Radio-Frequency identification badge, which

exchange radio packets when they are close to each other. The resolution of

this experiment is 20s, which means that only radio packets lasting longer

than 20s are considered as interactions in the network.

We focus on the second weekday of the data, combine consecutive con-
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Figure 7: Visualization of the network. (a) shows the accumulated network,
(b) shows the distribution of burstiness parameters on edges with at least
two interactions and (c) shows the distribution of timestamps.
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tacts which are probably identical communication, and obtain an undirected

dynamic network with 242 nodes and 48388 events. Figure 7 summarizes

the network with the accumulated matrix in plot (a), the distribution of

burstiness parameters in plot (b) and and the distribution of timestamps

in plot (c). Nodes in the red box and the pink boxes correspond to the

teachers and the students in 10 classes, respectively. Note that students

in the same class interact much more than students from different classes,

leading to a strong community structure. As a result, the node heterogene-

ity for this network is not as strong as the previous example. The network

is strongly bursty as illustrated in plot (b) and suitable for modelling with

Hawkes process with similar analysis as discussed in Section 5.1.

First, the clustering results of the three methods discussed in Section

5.1 are presented in Figure 8. As the school has 10 classes, the number of

communities are selected from 8 to 12. From Figure 8, the ppSBM method

clusters nodes into 11 communities, where some of them are extremely large

(for example, cluster 1) while others are small (for example, clusters 6 and

7). This phenomenon is still related to the property of ppSBM to split

a community into many small blocks according to their intensity. Matias

et al. (2018) shows that a larger community size such as 17 performs better;

however, the computational cost of expanding the scope of parameter tuning
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for this method is rather high. The spectral clustering method also provides

reasonable results except that it still mixes two classes up in the cluster 1

and cluster 8. In contrast, our method chooses K = 10 correctly, and each

community detected mainly corresponds to one natural class of the school.

In addition, our method assigns one teacher for each class except the two

classes in Grade 3 (classes 5 and 6, the fifth and sixth blocks from top left in

Figure 7(a)). Misclassified students (or teachers) are mainly from the other

class of the grade that the natural cluster belongs to, and can be regarded

as an “outlier” of this class when interacting with others. For example, the

68th node, belonging to the 1st class but misclassified into the 4th class,
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Figure 8: Clustering performance of different methods. Different colors
represent students from different classes (departments 1-10) and teachers
(department 11).
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Figure 9: Prediction performance of different methods.
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Figure 10: Prediction performance of different methods with missing his-
tory.

interacts with the latter class for 123 times which is far more than 23, the

average level of the 1st class.

Link prediction of this network is also important for subsequent analy-

sis of, for example, disease transmission in the school. We still perform the

preceding two prediction procedures and plot results in Figure 9 and Fig-

ure 10. We vary the end time of the training period Tsplit from 50% to 95%.

We select the optimal community number from 8 to 12 for SSC CHHIP

and spectral CHIP methods, and predict the occurrence of interactions in
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[Tsplit, Tsplit + πduration) for Figure 9 and in [0.95T, 0.95T + πduration) for Fig-

ure 10 where πduration = 1800 seconds. We find that on average our method

is slightly better than CHIP in both settings, while the ADCHP method

has a very bad performance. In this example the community structure

dominates node heterogeneity, so the method that only considers node het-

erogeneity is no longer suitable. The result also indicates that out method

maintains its superiority even when the heterogeneity is not that significant.

6. Discussion

We proposed the CHHIP model as a dynamic network generative model

designed for systems with community structure and nodal interaction het-

erogeneity. Compared with the existing literature, our model allows more

flexible pair-wise intensities, which better characterizes the node hetero-

geneity. We derived the complete likelihood based on the immigration–

birth representation and designed a modified EM algorithm to tackle the

challenge in finding the MLEs. Further, we established the consistency

of parameter estimation under mild assumptions. The effectiveness of our

model was validated by extensive simulation studies on synthetic data and

two real-world datasets.

While the independence assumption in the CHHIP model works well in
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many cases, it may be too simple to model networks with strong correla-

tions among edges. Works to construct block models of Hawkes processes

with reciprocal excitation (Yang and Koeppl, 2020; Huang et al., 2022) pro-

vide inspiration for extending the CHHIP model. Additionally, while we

focused on undirected dynamic networks to simplify the model and cap-

ture reciprocity from opposite directions to some extent, this assumption

regards opposite interactions as equivalent and enforces identical triggering

effects for both kinds, which is not always the case. One possible solution

is to consider a mutually-exciting bivariate Hawkes process on each dyad.

Finally, the current EM algorithm for estimating the maximum likelihood

estimator is not scalable enough for networks of large sizes. Recent efforts

to reduce the burden of inference, such as online learning methods (Fang

et al. (2023)), provide a potential solution. It remains to develop more

efficient algorithms to reduce computational burdens.
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