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Abstract: Contents of the Abstract.

Interval-censored failure time data occur in many areas and many methods for

their analyses have been proposed. In particular, some methods have been de-

veloped for the situation with the existence of a cured subgroup or informative

censoring. In this paper, we discuss the case where both a cured subgroup and

informative censoring exist and a frailty-based semiparametric non-mixture cure

model approach is proposed. For inference, a two-step estimation procedure is

developed and the resulting estimators of regression parameters are shown to

be consistent and asymptotically normal. An extensive simulation study is con-

ducted and indicates that the proposed procedure works well in practice. In addi-

tion, the methodology is applied to a set of real data arising from an Alzheimer’s

disease study.
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cure model; Bernstein polynomials

1. Introduction

Interval-censored failure time data occur when the failure time of interest is

observed only to belong to some intervals instead of being observed exactly

(Sun, 2006). It is easy to see that such data can happen naturally in many

studies such as clinical trials or periodic follow-up studies and many meth-

ods have been developed for their analyses. Interval-censored data can have

different forms and one general one is the so-called case K interval-censored

data, the focus of this paper, meaning that there exists a sequence of ob-

servation times for each study subject. It is apparent that right-censored

data can be seen as a special case of interval-censored data (Kalbfleisch and

Prentice, 2002).

A typical underlying assumption in standard survival analysis is that

if the follow-up is long enough, all subjects will experience the event of

interest. However, this assumption may not apply in all cases. With rapid

developments in medical and health sciences, it becomes increasingly com-

mon that a non-negligible proportion of subjects or patients are expected

to be cured or have prolonged disease-free survival. In other words, there

exists a cured subgroup. To address this, two types of models are com-
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monly used. One is the two-component mixture cure model and the other

is the non-mixture cure model. The former models the non-cured and cured

subpopulations separately and treats the cured subjects to have the failure

time being infinity (Sy and Taylor, 2000; Mao and Wang, 2010). The latter

employs a single model for both subpopulations and has the advantage of

giving a uniform model and a relatively easy interpretation (Chen et al.,

1999). On the other hand, the inference for the latter may be more com-

plicated and difficult.

In addition to a cured subgroup, dependent or informative interval cen-

soring is another issue that one often has to deal with in the analysis of

interval-censored failure time data. It means that the failure time of inter-

est and the censoring mechanism or the observation process are correlated

Huang and Wolfe (2002); Wang et al. (2016), and one such example is

the periodic follow-up study of certain diseases where study patients do

not follow the predetermined visit schedules but instead go to the clinic

according to their disease status or how they are feeling. For this, two

types of approaches are commonly used, the copula model-based approach

and the latent or frailty model-based approach. Among others, Ma et al.

(2016), Zhao et al. (2015) and Xu et al. (2019) gave some copula model-

based methods under the Cox model, the additive hazards model, and the
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linear transformation model, respectively. Wang et al. (2016) and Zhang

et al. (2007) discussed the use of the frailty model-based approach for the

analysis of interval-censored data under the Cox model.

A great deal of literature has been established for the analysis of interval-

censored data and in particular, some methods have been proposed for the

situation where there exists a cured subgroup. For example, Lam and

Xue (2005) and Ma (2009, 2010) developed some estimation procedures

under the semiparametric mixture cure model for regression analysis of

interval-censored data, while Hu and Xiang (2013) and Liu and Shen (2009)

gave some methods for estimation of the non-mixture cure model based on

interval-censored data. However, all of the methods above apply only to the

case of independent interval censoring. Some authors have also considered

the situation where there exists informative interval censoring but not a

cured subgroup and they include Wang et al. (2016), Zhang et al. (2007),

and Zhao et al. (2015).

There exists little literature for the analysis of interval-censored failure

time data in the presence of both a cured subgroup and informative cen-

soring except Wang et al. (2021), who discussed the situation under the

mixture cure models. In the following, for the problem, we will present a

class of semiparametric non-mixture cure models and propose a two-step
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spline-based sieve maximum likelihood estimation procedure. The proposed

model is quite general and flexible and in the proposed method, the latent

variable approach is employed to describe the relationship between the fail-

ure time of interest and the observation processes. Compared to some of

the existing methods, the proposed approach is more general in that it does

not need to impose any distribution assumptions on the latent variable and

observation process.

The remainder of the paper is organized as follows. In Section 2, we will

first introduce some notation and assumptions that will be used through-

out the paper and then describe the structure of the observed data and the

resulting likelihood function. The proposed two-step sieve maximum likeli-

hood estimation procedure is presented in Section 3 and the estimators of

the resulting regression parameters are shown to be consistent and asymp-

totically follow a normal distribution. In Section 4, a simulation study is

conducted to examine the empirical performance of the proposed method,

and the results suggest that it works well in practice. Section 5 applies the

proposed approach to a set of real data arising from a study on Alzheimer’s

disease, and Section 6 contains some concluding remarks.
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2. Notation and Assumptions

Consider a failure time study that consists of n independent subjects and let

Ti denote the failure time of interest associated with subject i. For subject i,

suppose that there exist a vector of covariates denoted by Zi and a sequence

of observation times points denoted by Ui0 = 0 < Ui1 < Ui2 < · · · < UiKi
,

where Ki is a random integer, i = 1, . . . , n. Define Ñi(t) =
∑Ki

j=1 I(Uij ≤ t)

and δij = I(Uij−1 < Ti ≤ Uij), i = 1, . . . , n, j = 1, . . . , Ki. Then Ñi(t)

is a point process characterizing the ith subject’s observation process and

jumps only at the observation times. Also for subject i, suppose that there

exists a follow-up time denoted by τi that is assumed to be independent of

Ti and the observed data are given by

{
Oi = (τi, Uij, δij,Zi, j = 1, . . . , Ki), i = 1, . . . , n

}
.

That is, we only have case K interval-censored data.

To describe the covariate effect on Ti, suppose that there exists a latent

variable ui and given Zi and ui, the survival function of Ti has the form

Si(t|Zi, ui) = P (Ti ≥ t|Zi, ui) = exp
{
− exp(β′1Z̃i + β2ui)F (t)

}
. (2.1)

In the above, Z̃i = (1,Z ′i)
′, F (t) is an unspecified cumulative distribution

function, and β1 and β2 are unknown regression parameters. That is, Ti

follows a non-mixture cure model. In general, covariate may have some
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effects on the observation process Ñi(t) too. To address this, we assume

that given Zi and ui, Ñi(t) satisfies the proportional rate model

E{dÑi(t)|Zi, ui} = λ0h(t) exp(α′Zi + ui)dt . (2.2)

Here λ0h(t) denotes a completely unknown continuous baseline rate func-

tion and α a vector of regression parameters as β1 and β2. Also it will

be assumed that given Zi and ui, the failure time of interest Ti and the

observation process Ñi(t) are independent.

It is well-known that the latent variable approach is a commonly used

tool in many areas such as longitudinal data analysis and failure time data

analysis to characterize the underlying correlation or relationship among

variables. In models (2.1) and (2.2), we use ui to describe the possible

correlation between Ti, the failure time of interest, and the observation

times Uij’s or process Ñi(t). Correspondingly, the parameter β2 represents

the degree of the correlation and more comments on this are given below.

It is easy to see that as t → ∞, we have that S(∞|Z) = exp
{
−

exp(β′1Z̃i + β2ui)
}
> 0, the cure rate of the study population. Note that

in general, a mixture cure model consists of a mixture of two separate re-

gression models, one for the probability of the subject being cured and the

other for the survival function for the noncured population (Wang et al.,

2021). One advantage of model (2.1) over it is that model (2.1) inherits the
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proportional hazards model structure for the whole population and avoids

the indistinguishable influence of covariates in the mixture model. In con-

sequence, the regression parameters have more appealing interpretations.

It is apparent that under models (2.1) and (2.2), the parameter β2

represents the extent of the association between Ti and Ñi(t). The two

will be independent if β2 = 0. It is worth to emphasize that the main

interest here is inference about model (2.1) for which we observe interval-

censored data, not model (2.2) for which one observes recurrent event data

(Huang and Wang, 2004). We need to consider model (2.2) because of the

possible association between Ti and Ñi(t) and otherwise, one may carry out

a conditional estimation that treats the Uij’s as constants.

Under the assumptions above and given the Uij’s and ui’s, it is easy to

see that the likelihood function has the form

L(β, F |u) =
n∏
i=1

{ Ki∏
j=1

{
exp

{
− exp(β′1Z̃i + β2ui)F (Uij−1)

}
− exp

{
− exp(β′1Z̃i + β2ui)F (Uij)

}}δij
×
{

exp
{
− exp(β′1Z̃i + β2ui)F (UiKi

)
}}1−

∑Ki
j=1 δij

}
,

where β = (β′1, β2)′. Note that for each i, only one of the δij’s is equal to

one with the others being zero. It follows that the likelihood function above
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can be rewritten as

L(β, F |u) =
n∏
i=1

{
exp

{
− exp(β′1Z̃i + β2ui)F (Li)

}
− exp

{
− exp(β′1Z̃i + β2ui)F (Ri)

}}δi
×
{

exp
{
− exp(β′1Z̃i + β2ui)F (Ri)

}}1−δi
.

Here δi =
∑Ki

j=1 δij and (Li, Ri] denotes the smallest interval that brackets

Ti such that Li = max{Uij, Uij < Ti} and Ri = min{Uij, Uij ≥ Ti}. It

is apparent that Li = 0 corresponds to a left-censored observation and

Ri =∞ indicates that the observation is right-censored.

To develop the estimation procedure below, let H(t) = G[F (t)] =

− log{1−F (t)}, which removes the range restriction on F and is a continu-

ous nondecreasing, nonnegative function. The resulting likelihood function

of β and H(·) has the form

L(β, H|u) =
n∏
i=1

{
exp

{
− exp(β′1Z̃i + β2ui)G

−1[H(Li)]
}

− exp
{
− exp(β′1Z̃i + β2ui)G

−1[H(Ri)]
}}δi

×
{

exp
{
− exp(β′1Z̃i + β2ui)G

−1[H(Ri)]
}}1−δi

.

(2.3)

In the next section, we will discuss the estimation of regression parameters

as well as other parameters.
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3. Estimation and Inference Procedure

Now we will discuss the estimation and inference procedure for models (2.1)

and (2.2) with the focus on estimation of regression parameters β. For this,

following Wang et al. (2016) and others, we develop a two-step estimation

procedure that first estimates model (2.2) or predicts the unknown latent

variables ui’s and then estimate model (2.1). In the first step, we employ

the approach given in Huang and Wang (2004), which discussed regression

analysis of recurrent event data, and in the second step, the likelihood

principle will be used.

3.1 Estimation of Model (2.2)

Define Λ0h(t) =
∫ t

0
λ0h(u)du and assume that Λ0h(τ0) = 1, where τ0 de-

notes the longest follow-up time. For estimation of model (2.2), follow-

ing Wang et al. (2016), Huang and Wang (2004) and others, we sug-

gest to employ a borrow-strength estimation procedure as follows. Define

Ni(t) = Ñi{min(t, τi)}, i = 1, . . . , n. Then we have that

Ni(t) =

∫ min(t,τi)

0

dÑi(s) =

∫ t

0

I(τi ≥ s)dÑi(s) ,

and

E{Ni(t)I(τi ≥ t)|Zi, ui} = Λ0h(t) exp(α′Zi + ui)E{I(τi ≥ t)|Zi, ui} .
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3.1 Estimation of Model (2.2)

Thus

Λ0h(t) =
E{Ni(t)I(τi ≥ t)}

E{exp(α′Zi + ui)I(τi ≥ t)}
.

After some simple operations, this suggests that Λ0h(t) can be estimated

by

Λ̂0h(t) =
∏
s(l)>t

(
1−

d(l)

D(l)

)
,

where the s(l)’s denote the ordered and distinct values of the observation

times {Uij}, d(l) is the number of the observation times equal to s(l), and

D(l) is the number of observation times satisfying Uij ≤ s(l) ≤ τi among all

subjects.

For estimation of regression parameter α, note that

E[Ki|Zi, ui, τi] = Λ0h(τi) exp(α′Zi + ui) ,

which gives

E[KiΛ
−1
0h (τi)|Zi, τi] = Eui{E[KiΛ

−1
0h (τi)|Zi, τi, ui]} = E[exp(ui)] exp(α′Zi).

This suggests a class of estimating equations

n∑
i=1

wiZ̃i

[
KiΛ

−1
0h (τi)− E{exp(ui)} exp(α′Zi)

]
= 0

for estimation of α, where the wi’s are some weights that could depend

on Zi’s, τi’s and Λ0h. Let α̂n denote the estimation of α given by the
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3.2 Estimation of Model (2.1)

estimating equation above. Thus, it is natural to estimate ui by

ûi = log
{ Ki

Λ̂0h(τi) exp(α̂′nZi)

}
.

3.2 Estimation of Model (2.1)

For estimation of β, it is natural to replace the ui by the ûi and to max-

imum the resulting likelihood function L(β, H|û). However, this may not

be easy due to the involvement of the unknown function H(t). To overcome

this, by following Zhou et al. (2017), we propose to approximate H(t) using

Bernstein polynomials before the maximization of the likelihood function.

Specifically, define the parameter space Θ = {θ = (β, H) ∈ B⊗M}, where

β = (β′1, β2)′, B = {β ∈ Rp+2 : ||β|| ≤ M} with M being a positive con-

stant andM is the collection of all bounded and continuous nondecreasing,

nonnegative functions over interval [a, b] with 0 ≤ a < b <∞. Also, define

Bk(t,m, tl, tu) =

(
m

k

)(
t− a
b− a

)k (
1− t− a

b− a

)m−k
,

Bernstein basis polynomials of degree m = o(nv) with v ∈ (0, 1), and the

sieve space Θn = {θn = (β, Hn) ∈ B ⊗Mn}, where

Mn = {Hn(t) =
m∑
k=0

φkBk(t,m, tl, tu) : 0 ≤ φ0 ≤ · · · ≤ φm,
∑

0≤k≤m

|φk| ≤Mn} .

In practice, v is usually taken to be 1/4.
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3.2 Estimation of Model (2.1)

Note that the positivity and monotonicity constraints imposed on the

φk’s can be easily removed by the reparametrization such as reparametrizing

the coefficients {φ0, . . . , φm} as the cumulative sums of {exp(φ∗0), . . . , exp(φ∗m)}.

It is clear that the new parameters {φ∗0, . . . , φ∗m} do not have any constraints,

and the range [a, b] is usually taken as the range of the Uij’s. Also note that

instead of Bernstein polynomials, one may employ step functions. However,

the use of Bernstein polynomial has the optimal shape-preserving property

among all approximation polynomials (Carnicer and Pena, 1993). Further-

more, they are easier to work with since they do not require the specification

of interior knots.

Over the sieve space Θn, the log of the likelihood function given in (2.3)

can be written as

`(β, Hn|u) =
n∑
i=1

δi log
{

exp
{
− exp(β′1Z̃i + β2ui)G

−1[Hn(Li)]
}

− exp
{
− exp(β′1Z̃i + β2ui)G

−1[Hn(Ri)]
}}

+(1− δi) log
{

exp
{
− exp(β′1Z̃i + β2ui)G

−1[Hn(Ri)]
}}

.

For estimation of θ, we propose to use the sieve maximum likelihood esti-

mator θ̂n = (β̂n, Ĥn) defined as the value that maximizes the log-likelihood
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3.2 Estimation of Model (2.1)

function above with the ui’s replaced by the ûi’s, which has the form

`(β, Hn|û) =
n∑
i=1

δi log
{

exp
{
− exp(β′1Z̃i + β2ûi)G

−1[Hn(Li)]
}

− exp
{
− exp(β′1Z̃i + β2ûi)G

−1[Hn(Ri)]
}}

+(1− δi) log
{

exp
{
− exp(β′1Z̃i + β2ûi)G

−1[Hn(Ri)]
}}

.

(3.4)

Given Ĥn, one can estimate F by F̂n(t) = G−1[Hn(t)] for t < b and F̂n(t) = 1

for t ≥ b.

To see the validity of the estimation procedure above and establish the

asymptotic properties of the proposed estimators β̂n, first note that Huang

and Wang (2004) has shown that Λ̂0h(t) and α̂n are consistent and possess

the asymptotical normality. Hence, one can treat the working procedure

above as the one as if the ui’s were observed. However, it should be noted

that the method and results given in Huang and Wang (2004) only apply to

recurrent event data or the data on the Ñi(t)’s, not the observed interval-

censored data on the Ti’s. Nevertheless, in the Appendix, we will show

that under some regularity conditions, β̂n is consistent and
√
n(β̂n − β0)

converges to the multivariate normal distribution with mean zero, where

β0 denotes the true value of β.

For making inference about the parameter β̂n, it is obvious that we

need to estimate the covariance matrix of β̂n. For this, it will be difficult to

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



derive a consistent estimator as it will be seen from the Appendix that the

asymptotic covariance does not have an explicit expression. Thus instead

we suggest to employ the weighted bootstrap method of Ma and Kosorok

(2005). More specifically, let {q1, . . . , qn} denote n independent realizations

of a bounded positive random variable q satisfying E(q) = 1 and Var(q) = 1.

Given the qi’s, define the weighted sieve maximum log-likelihood estimators

θ̂∗n = {β̂∗n, Ĥ∗n} as follows:

(β̂∗n, Ĥ
∗
n) = arg min

(β,Hn)∈Θn

n∑
i=1

qi`(β, Hn|û) .

Then if we generate the above process B samples and obtain the corre-

sponding estimators β̂∗n’s, we can estimate the covariance matrix of β̂n by

the sample covariance matrix of the β̂∗n’s. The numerical study below indi-

cates that it works well and for the determination of θ̂n, the Quasi-Newton

algorithm built in the function fminunc in Matlab will be used.

4. A Simulation Study

In this section, we present some results obtained from an extensive simula-

tion study conducted to assess the empirical performance of the estimation

procedure proposed in the previous sections under different practical situ-

ations. In the study, we considered a two-dimensional vector of covariates

Zi = (Z1i, Z2i)
′ with the Z1i’s following the Bernoulli distribution with
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the success probability of 0.5 and the Z2i’s generated from the standard

normal distribution. To generate the simulated data, we first generated

u∗i = exp(ui) from the gamma distribution with mean 4 and variance 8

and assumed that the τi’s follow the uniform distribution over the interval

[9, 10]. For the observation process, given Zi and ui, we generated Ki, the

number of real observation times for subject i, from the Poisson distribution

with the mean

Λih(τi|Zi, ui) =
τi exp(α′Zi + ui)

10
,

which corresponds to model (2.2) with λ0h = 1/10. Then the observation

times (Ui1, . . . , UiKi
) were set to be the order statistics of a random sample

of size Ki from the uniform distribution over (0, τi), i = 1, . . . , n.

To generate the true failure times Ti’s, note that as pointed out by Liu

and Shen (2009), under model (2.1), the overall survival function S(t|Z, u)

can be written as

S(t|Z, u) = π(Z, u) + {1− π(Z, u)}S∗(t|Z, u)

in the form of the mixture cure model. In the above, π(Z, u) = exp{− exp(β′1Z̃+

β2u)}, which can be regarded as the covariate-specific cure probability, and

S∗(t|Z, u) =
exp

{
− exp(β′1Z̃ + β2u)F (t)

}
− exp

{
− exp(β′1Z̃ + β2u)

}
1− exp

{
− exp(β′1Z̃ + β2u)

} .
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Also note that the conditional survival function S∗(t|Z, u) is a proper sur-

vival function. Thus to generate the failure time T under (2.1), one can

first generate a random variable from the Bernoulli distribution with the

probability of success π(Z, u) for given Z and u. Then if it is 1, set T =∞

and otherwise, generate T = T ∗ from S∗(t|Z, u). The results given below

are based on n = 200 or 400, m = 4, and B = 100 with 1000 replications.

Table 1 presents the results on the estimation of the regression param-

eters β1 and β2 given by the proposed method with F (t) = 1 − exp(−t)

and the true values β1 = (β1,0, β1,1, β1,2)′ = (0.5, 1,−0.5)′, β2 = −0.2, 0 or

0.2, and α0 = (0.2, 0.2)′, (0, 0)′ or (−0.2, 0.2)′. They include the estimated

bias (Bias) given by the average of the estimates minus the true value,

the sample standard error (SSE) of the estimates, the average of the esti-

mated standard errors (ESE), and the 95% empirical coverage probability

(CP). One can see from the table that the proposed estimator seems to be

unbiased and the variance estimation procedure appears to work well. In

addition, the results on the empirical coverage probabilities suggest that

the normal approximation to the distribution of the estimator appears to

be appropriate, and as expected, the results became better when the sample

size increased.

To see the possible effect of the function F (t) on the proposed estima-
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(a) α = (0.2, 0.2)′. (b) α = (−0.2,−0.2)′.

Figure 1: Estimated baseline survival curves along with the true curve

regarding Table 1: the true function (solid), the estimated function (dash-

dot), and the 95% confidence bands (dashed).

tion procedure, Table 2 gives the results obtained with F (t) = 2 arctan(t)/π,

n = 400, the true values α0 = (0.2, 0.2)′ or (−0.2, 0.2)′, and the other set-

ups being the same as in Table 1. It is apparent that they gave similar

conclusions as above. To assess the performance of the proposed estima-

tion procedure with respect to the estimation of the baseline survival func-

tion, Figures 1 and 2 display the averages of the estimated baseline sur-

vival functions corresponding to the cases in Tables 1 and 2 with n = 400,

β1 = (β1,0, β1,1, β1,2)′ = (0.5, 1,−0.5)′, β2 = 0.2, and α = (0.2, 0.2)′ or

(−0.2,−0.2)′, respectively. For comparison, the true curve is also included

along with the 95% empirical confidence bands and they again suggest that

the proposed approach appears to work well.
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(a) α = (0.2, 0.2)′. (b) α = (−0.2,−0.2)′.

Figure 2: Estimated baseline survival curves along with the true curve

regarding Table 2: the true function (solid), the estimated function (dash-

dot), and the 95% confidence bands (dashed).

Furthermore, we compared the proposed estimator to the sieve maxi-

mum likelihood estimator given by

`IND(β, Hn) =
n∑
i=1

log
{
SIND(Li|Zi)−SIND(Ri|Zi)

}
+(1−δi) log

{
SIND(Ri|Zi)

}
obtained under the independent interval censoring assumption. In the

above, SIND(t|Zi) = exp
{
− exp(β′1Z̃i)G

−1[Hn(t)]
}

. Table 3 presents the

results on the estimation of regression parameter β given by both the pro-

posed method and the above independent censoring approach based on the

simulated data with the true value β1 = (β1,0, β1,1, β1,2)′ = (0.5, 1, 0.5)′,

β2 = 0, 0.2, 0.5, 0.7, or 1, and α0 = (α0,1, 0.5)′ where α0,1 = β2. The other

settings are being the same as for n = 400 in Table 1. Note that the depen-
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dence between the failure time and the observed process becomes stronger

as the values of α0,1 and β2 increase. Here for the independent censoring

approach, we still use the weighted bootstrap procedure to estimate the

covariance matrix of β. Based on the results in Table 3, ignoring the infor-

mative censoring may lead to the wrong estimate when there is a correlation

between the failure time and the observation process, and the bias increases

as the dependence increases. Moreover, it shows that the proposed method

can be applied to the independent censoring assumption if β2 = 0.

To assess the possible effect of the observation process on the proposed

estimation procedure, we repeated the study above by generating the obser-

vation times from two different renewal processes that assume that the gap

time between two observation times follows either the gamma distribution

or the uniform distribution. More specifically, for subject i and given Zi

and ui, we repeatedly generated the gap times 10 exp(−α′Zi − ui)Vi with

Vi from either the gamma distribution with mean 1 and variance 0.5 or

the uniform distribution over [0, 2] until the summation of the generated

gap times being larger than τi. Table 4 presents the results on estimat-

ing regression parameters obtained by the proposed method with n = 400

and the other set-ups being the same as in Table 1. It can be seen that

they are similar to those given Table 1 and thus suggest that the proposed
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method seems to be robust with respect to the observation process. We also

considered other set-ups and obtained similar results and conclusions. In

particular, we investigated the first estimation step on model (2.2) and the

results indicated that both the first step and overall estimation performed

well.

5. An Application

In this section, we apply the methodology proposed in the previous sections

to the data arising from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) described above. It is a longitudinal study designed to develop

clinical, imaging, genetic, and biochemical biomarkers for the early detec-

tion and tracking of Alzheimer’s disease (AD). The study subjects in ADNI

can have three stages, cognitively normal (CN), mild cognitive impairment

(MCI) and AD. Due to the nature of the study, the occurrence time of ei-

ther conversion is only known to be between the last observation time when

the conversion had not occurred and the first observation time when it had

already occurred. In other words, only interval-censored data are available

for the conversion times.

In the analysis below, we will consider all participants in the MCI group

with complete covariate information with the focus on the relationship be-
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tween the time from the baseline visit date to the AD conversion and the

seven covariates by following the existing literature (Li et al., 2020; Du et al.,

2021; Wu et al., 2023). This gives a set of data consisting of 795 subjects

with 303 who converted to AD during the study. The seven covariates are

the two AD assessment scale test results (ADAS11, ADAS13), middle tem-

poral gyrus volume (Midtemp), and rey auditory verbal learning test score

of immediate recall (RAVLT.i) along with three baseline covariates Age,

Gender and a gene that has been found to have a significant effect on AD,

the ApoE4. Note that the literature has suggested that ADAS13, Midtemp

and RAVLT.i are the most important clinical and demographic factors as-

sociated with AD conversion based on the individual variable analysis, and

there is medical evidence that the people with ApoE4 had a higher rate of

AD conversion (Association, 2019; Safieh et al., 2019; Li et al., 2020; Du

et al., 2021; Wu et al., 2023).

To apply the proposed method, we first check if there exists a cured

subgroup. For this, we obtained the nonparametric maximum likelihood

estimator of the survival function given by Turnbull’s self-consistency algo-

rithm and present it in Figure 3. One can see that there appears to exist a

plateau around 12.5 years, suggesting that a fraction of the population may

never experience the event or there is a cured subgroup. Thus the proposed
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Figure 3: Turnbull survival curve, taking interval-censoring into account.

methodology should be used. For its application, we will let τi represent

the last recorded visit time for subject i.

Table 5 presents the estimated covariate effects given by the proposed

estimation procedure with m = 5. For comparison, we also obtained and

include in the table the results given by the method ignored the informative

censoring as in the simulation study. The table includes the proposed esti-

mates (Est), the estimated standard errors (SE), and the p-values (p-value)

for testing each covariate regression parameter being zero. We also tried

different values for m and give the results in Table 6.

One can see from the tables that it seems that there existed a signif-

icantly negative association between the failure time and the observation

process and both methods yielded similar results on the covariates except
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Age. They indicate that ADAS13, Midtemp, and RAVLT.i were significant

predictors of AD conversion. More specifically, the results suggest that AD

conversion was negatively correlated with Midtemp and RAVLT.i but pos-

itively related to ADAS13. For the covariate Age, the proposed method

found no significant effect on AD conversion, while ignoring informative

censoring suggests a different result. One possible reason for this is that

the latter overestimated the covariate effect by ignoring the informative

censoring.

6. Discussion and Concluding Remarks

In this paper, we discussed regression analysis of case K interval-censored

failure time data in the presence of both a cured subgroup and informa-

tive censoring or observation process. For the problem, a non-mixture cure

model was presented and in the model, the latent variable approach was

employed to characterize the correlation between the failure time of interest

and the observation process. Unlike many existing methods, the proposed

approach does not impose any distribution assumptions on the latent vari-

able. For inference, a two-step estimation procedure was proposed and the

asymptotic properties of the resulting estimators were established. Further-

more, a simulation study was performed and suggested that the proposed
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method works well for practical situations.

There exist several directions for future research related to the method

proposed above. One is that in the proposed estimation procedure, we have

assumed that the model has the proportional hazards model structure. It is

apparent that in some situations, some other model structures may be more

appropriate and thus it would be useful to generalize the proposed approach

to these situations. Note that although the proposed method is flexible and

can be easily implemented, it may be less efficient if the distribution of the

latent variable is known or known up to some parameters. For the situation,

one may want to directly maximize the observed likelihood function to

derive a more efficient estimation procedure although it may not be easy

or straightforward. A third direction is that in the previous sections, we

have focused on univariate interval-censored data and it is well-known that

sometimes one may face multivariate interval-censored data. Thus it would

be helpful to generalize the proposed estimation procedure to the latter

situation.
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A. Proof of the asymptotic properties

In this appendix, we will sketch the proof of the asymptotic normality of

β̂n. The letter C represents a constant, and it does not necessarily represent

the same value each time here and in the proofs. We denote by ||a|| the

Euclidean norm of a vector a, ||f ||∞ = supt |f(t)| the supremum norm of

a function f , and ||g(X)||2 = (
∫
g2dP )1/2 the L2(P ) norm of a function g

for X being distributed according to the probability measure P . For any

θi ∈ Θ = B ×H, i = 1, 2, we define a distance

d(θ1,θ2) =
(
||β1 − β2||2 + ||H1 −H2||22

)1/2
,

where ||H1 − H2||22 = ||H1(L) − H2(L)||22 + ||H1(R) − H2(R)||22. Before

proving the theorems, we first describe the regularity conditions needed as

follows:

Condition 1. (i) β0 is an interior point of B and B is compact subset of

Rp+2. (ii) The distribution of Z has bounded support. (iii) The latent
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variable u are bounded and satisfy E{exp(u)|Z} = E{exp(u)}. Moreover,

if γ̃1Z+ γ̃2u+h(t) = 0 with probability 1, then γ̃1 = 0, γ̃2 = 0 and h(t) = 0

for t ∈ [a, b].

Condition 2. The non-decreasing functionH0 = G(F0) belongs toH where

H = {H : H ∈ Ck[a, b], |H(k)(t1)−H(k)(t2)| ≤ C|t1 − t2|γ, for any t1, t2 ∈

[a, b]}, where k is a non-negative integer, γ ∈ (0, 1], r = k + γ > 0.5.

Condition 3. For the following-up time τ and latent variable u, we have:

(i) P (τ ≥ τ0, exp(u) > 0) > 0 ; (ii) P (τ > τε) = 1, where τε = inf{t :

Λ0h(t) > ε} for some ε > 0, and E{Ñ(τ)2} < ∞; (iii) P (τ = ∞, T =

∞|Z) > 0.

Condition 4. For the latent variable u, the variance of exp(u) is bounded,

and there exists a positive small constant ε > 0 such that exp(u) > ε almost

surely.

Condition 5. The function Q(s) = E[exp(u)I(τ ≥ s)] is a continuous

function for s ∈ [0, τ0].

Now, we are ready to prove the consistency and the asymptotic nor-

mality of β̂n. The consistency can be established by using Theorem 5.7 of

Van der Vaart (2000). To this end, we need to check the following three

conditions:
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(i) supθ∈Θn
|Mn(θ)−M(θ)| → 0;

(ii) supθ:d(θ,θ0)>εM(θ) < M(θ0);

(iii) Mn(θ̂n) ≥Mn(θ0)− op(1);

where M(θ) = P`(θ|u) and Mn(θ) = Pn`(θ|û).

For condition (i), first note that |Mn(θ)−M(θ)| ≤ |Pn`((θ|û)−P`(θ|û)|+

|P`(θ|û)−P`(θ|u)|. Denote η = (α,Λ0h) and η̂ = (α̂, Λ̂0h), For the second

part of the right side, based on the consistency of η̂ established by Wang

et al. (2001) and Condition 1, by using the delta method, we can show that

|P`(θ|u)− P`(θ|û)| = P |`
{
θ|u(η)} − `

{
θ|u(η̂)

}
|

≤ P | ˙̀
{
θ|u(η̂)

}
|
[
u̇(γ̂)||η − η̂||

]
+ op(1) ,

and thus supθ∈Θn
|P`(θ|û)− P`(θ|u)| → 0. The first part of the right side

simplifies to a fundamental interval-censored problem with u replaced by

û, and similar arguments can be found in Zhou et al. (2017). Specifically,

consider the class of functions Fn = {`(θ|û) : θ ∈ Θn}. Then, by Corollary

3.2 in Arcones and Giné (1993) and Lemma 2.5 of Van de Geer (2000), one

can show that the covering number of Fn satisfies logN(ε,Fn, L1(Pn))/n→

0, and thus, supθ∈Θn
|Pn`((θ|û) − P`(θ|û)| → 0. Hence, combining the

above conclusion, we have (i) holds.

For condition (ii), first note that the Gibbs inequality implies that

supθ:d(θ,θ0)>εM(θ) ≤ M(θ0). Assume that supθ:d(θ,θ0)>εM(θ) = M(θ0).
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Then there exists a sequence θm such that M(θm) → supθ:d(θ,θ0)>εM(θ)

and d(θm,θ0) > ε. By Condition 1, B is compact, and the sieve coefficients

are bounded, there exists a subsequence θm̃ converging to θm0. Since M(θ)

is a continuous function of θ, M(θm0) = M(θ0) and consequently θm0 = θ0

according to the identifiability of the proposed model. However, θm̃ does

not converge to θ0 due to the fact d(θm̃,θ0) > ε. This conflicts with the

aforementioned results that θm̃ converges to θm0. Therefore, (ii) holds.

For condition (iii), define θ0,n = (β0, Hn). We have Mn(θ̂n)−Mn(θ0) ≥

(Pn−P ){`(θ0,n|û)−`(θ0|û)}−P{`(θ0|û)−`(θ0,n|û)}. By Theorem 1.6.2 of

Lorentz (1986), one can easily show that P{`(θ0|û)−`(θ0,n|û)} ≤ Cd2(θ0,n−

θ0), and thus P{`(θ0|û) − `(θ0,n|û)} = op(1). Secondly, we show that

(Pn−P ){`(θ0,n|û)− `(θ0|û)} = op(n
−1/2). Define Fñ = {`(θ|û)− `(θ0,ñ|û) :

θ ∈ Θn, ||θ0−θ0,ñ|| ≤ Cn−kv/2}. Clearly, `(θ0|û)−`(θ0,n|û) ∈ Fñ. Similarly,

we can prove that the ε bracketing number is also bounded by C(1/ε)m+1

and the bracketing integral (p.270 of Van de Geer (2000))

J[](δ,Fñ, L2(P )) ≤
∫ δ

0

√
C(m+ 1) log 1/ε <∞ .

leading Fñ as a P-Donsker by Theorem 19.5 in Van de Geer (2000). Ac-

cording to Corollary 2.3.12 in Van Der Vaart and Wellner (1996), we have

(Pn − P ){`(θ0,n|û) − `(θ0|û)} = op(n
−1/2). Hence (iii) holds, and it thus

follows from Theorem 5.7 of Van der Vaart (2000) that β̂n is consistent.
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To prove the asymptotic normality of β̂n, it is apparent that it is suf-

ficient to prove that the working score function ˙̀(β, Hn|û) can be written

as the summation of n independent and identically distributed mean zero

random variables plus some negligible errors. For this, note that we can

rewrite ˙̀(β, Hn|û) as

˙̀(β, Hn|û) = I + II,

where I = ˙̀(β, Hn|u) and II = ˙̀(β, Hn|û) − ˙̀(β, Hn|u). By following the

proof of Theorem 4 of Hu and Xiang (2013), the efficient score vector for β

is ˙̀
β(θ)− ˙̀

H(θ)[h∗], where ˙̀
β(θ) is the score for β and h∗ ∈ Rp+2 such that

it is orthogonal to ˙̀(θ)[h] in L0
2(P ). In this way, we can see that the first

term I can be written as the summation of n independent and identically

distributed mean zero random variables plus some negligible errors.

To show that the second term II can also be written as the summation

of n independent and identically distributed mean zero random variables

plus some negligible errors, first note that ˙̀(β, Hn|û) is a continuous func-

tion of û and û is the function of Λ̂0h(τ) and α̂n. Define

῭
α{β, Hn|ui(Λ0h(τi),α)} =

∂

∂α
˙̀{β, Hn|ui(Λ0h(τi),α)} ,

and

῭
Λ0h
{β, Hn|ui(Λ0h(τi),α)} =

∂

∂s
˙̀{β, Hn|ui(s,α)}|s=Λ0h(τi) ,
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then by using the multivariate Taylor expansion, we can obtain that

II =
n∑
i=1

[
˙̀{β, Hn|u(Λ̂0h(τi), α̂n)} − ˙̀{β, Hn|u(Λ0h(τi),α)}

]
=

n∑
i=1

[
῭
Λ0h
{β, Hn|ui(Λ0h(τi),α)}{Λ̂0h(τi)− Λ0h(τi)}

+ ῭
α{β, Hn|ui(Λ0h(τi),α)}(α̂n −α)

]
+ op(1) .

To further investigate the equality above, note that by Huang and Wang

(2004), we have

Λ̂0h(t)− Λ0h(t) =
1

n
Λ0h(t)

n∑
i=1

bih(t) + op(n
−1/2)

for inf{t : Λ0h(t) > 0} < t < τ0, where

bih(t) =

Ki∑
j=1

∫ τ0

t

I(Uij ≤ s ≤ τi)dQ̃(s)

R2(s)
− I(t ≤ Uij ≤ τ0)

R(Uij)
,

Q̃(t) =

∫ t

0

Q(s)dΛ0h(s) , and R(t) = Q(t)Λ0h(t) .

Also, we have

α̂n −α =
1

n

n∑
i=1

fih + op(n
−1/2) ,

where fih is the vector function
(
E[−∂fi/∂α]

)−1
fi , and

fi = −
∫
wZ̃bih(τ)dP(w, Z̃, K, τ)

Λ0h(τ)
+wiZ̃i{KiΛ

−1
0h (τi)−E[exp(ui)] exp(α′Zi)}

with P(·) denoting the joint distribution of the underlying variables. These
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REFERENCES

yields that

II =
n∑
i=1

Ej
[
῭
Λ0h
{β, Hn|ui(Λ0h(τi),α)}Λ0h(τi)bjh(τi)

+ ῭
α{β, Hn|ui(Λ0h(τi),α)}fjh

]
+ op(n

−1/2)

=
n∑
i=1

di(β, Hn) + op(n
−1/2) .

This shows that the working score function ˙̀(β, Hn|û) can be written as the

summation of n independent and identically distributed mean zero random

variables plus some negligible errors. It thus follows from the Taylor series

expansion that as n→∞,
√
n(β̂n−β) converges in distribution to a mean

zero normal random variable.
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Table 1: Simulation results on estimation of β with F (t) = 1− exp(−t).

n = 200 n = 400

α Parameter Bias SSE ESE CP Bias SSE ESE CP

(0.2, 0.2) β1,0 = 0.5 0.0619 0.2203 0.2111 0.933 0.0487 0.1416 0.1428 0.944

β1,1 = 1 0.0601 0.2547 0.2387 0.939 0.0286 0.1668 0.1612 0.945

β1,2 = −0.5 -0.0156 0.1321 0.1224 0.939 -0.0061 0.0864 0.0833 0.949

β2 = 0.2 -0.0334 0.1524 0.1351 0.915 -0.0378 0.0965 0.0933 0.918

β1,0 = 0.5 0.0226 0.2058 0.2043 0.946 0.0081 0.1453 0.1400 0.939

β1,1 = 1 0.0553 0.2275 0.2185 0.943 0.0262 0.1528 0.1495 0.948

β1,2 = −0.5 -0.0258 0.1245 0.1164 0.940 -0.0138 0.8336 0.0799 0.941

β2 = 0 0.0002 0.1377 0.1291 0.930 0.0001 0.0933 0.0898 0.942

β1,0 = 0.5 -0.0431 0.2005 0.1990 0.945 -0.0505 0.1352 0.1382 0.936

β1,1 = 1 0.0331 0.2215 0.2064 0.945 0.0059 0.1486 0.1436 0.948

β1,2 = −0.5 -0.0219 0.1232 0.1101 0.914 -0.0081 0.0784 0.0771 0.944

β2 = −0.2 0.0505 0.1328 0.1277 0.917 0.0410 0.0915 0.0892 0.917

(0, 0) β1,0 = 0.5 0.0749 0.2282 0.2140 0.918 0.0513 0.1466 0.1440 0.925

β1,1 = 1 0.0594 0.2699 0.2440 0.935 0.0169 0.1666 0.1626 0.951

β1,2 = −0.5 -0.0346 0.1373 0.1249 0.933 -0.0048 0.0855 0.0840 0.954

β2 = 0.2 -0.0387 0.1489 0.1394 0.927 -0.0365 0.0996 0.0959 0.929

β1,0 = 0.5 0.0223 0.2303 0.2055 0.933 0.0062 0.1447 0.1414 0.944

β1,1 = 1 0.0620 0.2425 0.2235 0.932 0.0268 0.1573 0.1522 0.957

β1,2 = −0.5 -0.0311 0.1262 0.1161 0.928 -0.0122 0.0841 0.0798 0.940

β2 = 0 0.0007 0.1443 0.1335 0.942 -0.0007 0.0923 0.0920 0.942

β1,0 = 0.5 -0.0463 0.2129 0.2007 0.931 -0.0436 0.1398 0.1412 0.935

β1,1 = 1 0.0284 0.2340 0.2068 0.909 -0.0007 0.1457 0.1435 0.948

β1,2 = −0.5 -0.0210 0.1217 0.1112 0.934 -0.0050 0.0814 0.0767 0.934

β2 = −0.2 0.0478 0.1397 0.1302 0.920 0.0478 0.0925 0.0911 0.909

(−0.2,−0.2) β1,0 = 0.5 0.0652 0.2292 0.2314 0.925 0.0496 0.1506 0.1477 0.933

β1,1 = 1 0.0697 0.3102 0.2497 0.936 0.0205 0.1752 0.1665 0.944

β1,2 = −0.5 -0.0432 0.1354 0.1241 0.930 -0.0147 0.0880 0.0845 0.939

β2 = 0.2 -0.0302 0.1591 0.1445 0.918 -0.0363 0.1001 0.0991 0.927

β1,0 = 0.5 0.0303 0.2184 0.2116 0.936 0.0058 0.1490 0.1446 0.944

β1,1 = 1 0.0619 0.2386 0.2270 0.934 0.0278 0.1614 0.1531 0.943

β1,2 = −0.5 -0.0309 0.1292 0.1167 0.927 -0.0115 0.0825 0.0797 0.941

β2 = 0 -0.0067 0.1467 0.1366 0.930 0.0027 0.1004 0.0953 0.934

β1,0 = 0.5 -0.0461 0.2101 0.2048 0.930 -0.0454 0.1481 0.1435 0.930

β1,1 = 1 0.0371 0.2221 0.2079 0.936 0.0133 0.1520 0.1444 0.938

β1,2 = −0.5 -0.0131 0.1183 0.1102 0.939 -0.0052 0.0817 0.0765 0.940

β2 = −0.2 0.0514 0.1419 0.1341 0.910 0.0463 0.0973 0.0937 0.919
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Table 2: Simulation results on estimation of β with F (t) = 2 arctan(t)/π

and n = 400.

α = (−0.2,−0.2) α = (0.2, 0.2)

Parameter Bias SSE ESE CP Bias SSE ESE CP

β1,0 = 0.5 0.0332 0.1846 0.2134 0.964 0.0509 0.2028 0.1983 0.947

β1,1 = 1 0.0078 0.1582 0.1523 0.946 0.0066 0.1562 0.1482 0.939

β1,2 = −0.5 -0.0042 0.0822 0.0784 0.942 -0.0061 0.0854 0.0786 0.926

β2 = 0.2 -0.0384 0.0997 0.0939 0.915 -0.0353 0.0906 0.0887 0.924

β1,0 = 0.5 -0.0036 0.1786 0.1883 0.959 0.0048 0.1703 0.1781 0.957

β1,1 = 1 0.0074 0.1414 0.1433 0.964 0.0161 0.1458 0.1413 0.944

β1,2 = −0.5 -0.0106 0.0752 0.0756 0.952 -0.0117 0.0773 0.0760 0.951

β2 = 0 0.0035 0.0933 0.0914 0.939 -0.0014 0.0896 0.0867 0.947

β1,0 = 0.5 -0.0573 0.1790 0.1786 0.939 -0.0518 0.1678 0.1705 0.936

β1,1 = 1 0.0108 0.1369 0.1392 0.949 0.0008 0.1399 0.1385 0.949

β1,2 = −0.5 0.0012 0.0757 0.0737 0.945 -0.0043 0.0793 0.0741 0.934

β2 = −0.2 0.0447 0.0901 0.0912 0.906 0.0446 0.0900 0.0869 0.910
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Table 3: Simulation results on comparison with ignoring informative cen-

soring.

Proposed Method Igonring informative censoring

β2 α Parameter Bias SSE ESE CP Bias SSE ESE CP

0.0 (0.0,0.5) β1,0 = 0.5 0.0127 0.1446 0.1422 0.947 0.0105 0.0913 0.0921 0.949

β1,1 = 1 0.0258 0.1583 0.1469 0.938 0.0212 0.1575 0.1467 0.937

β1,2 = 0.5 0.0149 0.0790 0.0750 0.937 0.0124 0.0787 0.0748 0.941

0.2 (0.2,0.5) β1,0 = 0.5 0.0506 0.1419 0.1433 0.946 0.2290 0.0983 0.0961 0.345

β1,1 = 1 0.0231 0.1618 0.1563 0.938 0.0130 0.1621 0.1574 0.942

β1,2 = 0.5 0.0176 0.0837 0.0781 0.931 0.0024 0.0816 0.0776 0.937

0.5 (0.5,0.5) β1,0 = 0.5 0.0562 0.1515 0.1495 0.938 0.4492 0.1105 0.1057 0.008

β1,1 = 1 0.0128 0.1840 0.1778 0.927 -0.0904 0.1914 0.1741 0.878

β1,2 = 0.5 0.0258 0.0962 0.0868 0.931 -0.0441 0.0901 0.0822 0.876

0.7 (0.7,0.5) β1,0 = 0.5 0.0487 0.1602 0.1639 0.937 0.5176 0.1141 0.1074 0.001

β1,1 = 1 0.0083 0.2125 0.1933 0.924 -0.1949 0.1903 0.1799 0.760

β1,2 = 0.5 0.0213 0.1040 0.0932 0.939 0.0971 0.0901 0.0834 0.724

1.0 (1.0,0.5) β1,0 = 0.5 0.0191 0.1812 0.1837 0.950 0.5558 0.1087 0.1062 0.000

β1,1 = 1 0.0073 0.2256 0.2104 0.923 -0.3455 0.1962 0.1784 0.476

β1,2 = 0.5 0.0033 0.1177 0.1009 0.906 -0.1759 0.0922 0.0822 0.412
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Table 4: Simulation results on β with the renewal observation processes.

Gamma Gap Uniform Gap

α Parameter Bias SSE ESE CP Bias SSE ESE CP

(0.2, 0.2) β1,0 = 0.5 0.0497 0.1524 0.1428 0.921 0.0498 0.1477 0.1418 0.921

β1,1 = 1 0.0328 0.1814 0.1697 0.935 0.0247 0.1808 0.1718 0.942

β1,2 = −0.5 -0.0125 0.0945 0.0876 0.930 -0.0062 0.0902 0.0875 0.941

β2 = 0.2 -0.0244 0.1048 0.0986 0.922 -0.0143 0.1044 0.0983 0.930

β1,0 = 0.5 0.0206 0.1403 0.1374 0.942 0.0068 0.1414 0.1353 0.939

β1,1 = 1 0.0242 0.1620 0.1554 0.930 0.0347 0.1620 0.1568 0.945

β1,2 = −0.5 -0.0124 0.0872 0.0829 0.934 -0.0098 0.0838 0.0823 0.950

β2 = 0 -0.0064 0.0984 0.0936 0.934 0.0025 0.0984 0.0936 0.938

β1,0 = 0.5 -0.0444 0.1386 0.1348 0.924 -0.0448 0.1381 0.1331 0.920

β1,1 = 1 0.0103 0.1571 0.1474 0.934 0.0134 0.1516 0.1473 0.948

β1,2 = −0.5 -0.0051 0.0843 0.0789 0.930 -0.0113 0.0798 0.0793 0.958

β2 = −0.2 0.0336 0.0957 0.0921 0.917 0.0260 0.0967 0.0925 0.927

(0, 0) β1,0 = 0.5 0.0483 0.1517 0.1464 0.924 0.0523 0.1456 0.1415 0.930

β1,1 = 1 0.0306 0.1919 0.1742 0.932 0.0360 0.1823 0.1759 0.950

β1,2 = −0.5 -0.0159 0.0936 0.0886 0.938 -0.0155 0.1005 0.0888 0.920

β2 = 0.2 -0.0193 0.1087 0.1019 0.942 -0.0112 0.1081 0.1026 0.934

β1,0 = 0.5 0.0161 0.1458 0.1398 0.932 0.0108 0.1421 0.1372 0.937

β1,1 = 1 0.0280 0.1669 0.1576 0.939 0.0232 0.1595 0.1582 0.943

β1,2 = −0.5 -0.0138 0.0830 0.0825 0.947 -0.0154 0.0855 0.0832 0.940

β2 = 0 -0.0027 0.1003 0.0963 0.937 0.0022 0.1007 0.0959 0.935

β1,0 = 0.5 -0.0503 0.1409 0.1370 0.916 -0.0408 0.1358 0.1345 0.933

β1,1 = 1 0.0171 0.1526 0.1477 0.942 0.0155 0.1553 0.1481 0.937

β1,2 = −0.5 -0.0103 0.0783 0.0788 0.953 -0.0083 0.0812 0.0796 0.947

β2 = −0.2 0.0339 0.0962 0.0939 0.913 0.0238 0.0983 0.0942 0.926

(−0.2,−0.2) β1,0 = 0.5 0.0544 0.1583 0.1487 0.923 0.0476 0.1538 0.1460 0.933

β1,1 = 1 0.0252 0.1957 0.1799 0.940 0.0308 0.1949 0.1804 0.947

β1,2 = −0.5 -0.0213 0.0905 0.0896 0.946 -0.0215 0.0934 0.0896 0.941

β2 = 0.2 -0.0195 0.1153 0.1071 0.934 -0.0080 0.1141 0.1064 0.931

β1,0 = 0.5 0.0111 0.1463 0.1442 0.935 0.0128 0.1488 0.1408 0.929

β1,1 = 1 0.0237 0.1698 0.1596 0.936 0.0274 0.1659 0.1598 0.942

β1,2 = −0.5 -0.0069 0.0855 0.0825 0.936 -0.0138 0.0882 0.0828 0.937

β2 = 0 0.0019 0.1000 0.1000 0.952 -0.0020 0.1049 0.1001 0.938

β1,0 = 0.5 -0.0351 0.1410 0.1384 0.941 -0.0393 0.1446 0.1376 0.924

β1,1 = 1 0.0235 0.1616 0.1480 0.935 0.0206 0.1524 0.1496 0.941

β1,2 = −0.5 -0.0037 0.0803 0.0787 0.947 -0.0067 0.0839 0.0790 0.937

β2 = −0.2 0.0244 0.1012 0.0977 0.933 0.0260 0.1019 0.0973 0.926
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Table 5: The estimated covariate effects on the AD conversion.

Proposed method Igonring informative censoring

Factors Est SE p-value Est SE p-value

β1,0 4.7996 1.1245 0.0000 3.7530 1.0094 0.0002

Age -0.0140 0.0085 0.0995 -0.0163 0.0082 0.0463

Gender -0.1097 0.1416 0.4387 -0.0973 0.1379 0.4803

ADAS11 -0.0702 0.0385 0.0678 -0.0667 0.0409 0.1033

ADAS13 0.1583 0.0294 0.0000 0.1538 0.0312 0.0000

RAVLT.i -0.0388 0.0096 0.0001 -0.0400 0.0095 0.0000

MidTemp -0.0163 0.0025 0.0000 -0.0160 0.0024 0.0000

ApoE4 0.4431 0.0815 0.0000 0.4202 0.0768 0.0000

β2 -0.5028 0.1437 0.0005 — — —

Table 6: The estimated covariate effects with different m.

m = 3 m = 7

Factors Est SE p-value Est SE p-value

β1,0 4.9745 1.0990 0.0001 4.9645 1.0165 0.0000

Age -0.0140 0.0083 0.0902 -0.0149 0.0079 0.0588

Gender -0.1051 0.1346 0.4349 -0.1162 0.1275 0.3621

ADAS11 -0.0704 0.0393 0.0732 -0.0684 0.0400 0.0875

ADAS13 0.1591 0.0308 0.0000 0.1570 0.0296 0.0000

RAVLT.i -0.0389 0.0099 0.0001 -0.0394 0.0090 0.0000

MidTemp -0.0164 0.0024 0.0000 -0.0165 0.0025 0.0000

ApoE4 0.4472 0.0845 0.0000 0.4410 0.0801 0.0000

β2 -0.5213 0.1588 0.0010 -0.5101 0.1370 0.0002
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