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Abstract: Linear mixed-effects models are widely used in analyzing repeated mea-

sures data, including clustered and longitudinal data, where inferences of both

fixed effects and variance components are of interest. Unlike inference on fixed

effect, which has been well studied, inference on the variance components is more

challenging due to null value on the boundary and the unknown fixed effects as

nuisance parameters. Existing methods require strong distributional assumptions
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on the random effects and random errors. In this paper, we develop empirical

likelihood-based methods for the inference of the variance components in the pres-

ence of fixed effects. We derive a nonparametric version of the Wilks’ theorem for

the proposed empirical likelihood ratio statistics for variance components. We

also develop an empirical likelihood test for multiple variance components related

to a sequence of correlated outcomes. Simulation studies demonstrate that the

proposed methods exhibit better type 1 error control than the likelihood-based

or score test when the Gaussian distributional assumptions of the random effects

are violated. We apply the methods to investigate the heritability of physical

activity measured by actigraph device in the Australian Twin study and observe

that such activity is heritable only in the quantile range from 0.375 to 0.514.

Key words and phrases: Boundary value; Global test; Heritability; Nonparamet-

ric test; Wearable device data.

1. Introduction

Longitudinal and clustered data commonly arise from observational stud-

ies or clinical trials, where subjects are measured repeatedly over time or

within a cluster. The repeated measures within a subject or a cluster are

often correlated. To analyze such data, linear mixed-effects (LME) models

that incorporate both fixed and random effects are widely used. Many sta-

tistical methods have been developed for such linear mixed-effects models,

especially methods for inference of the fixed effects. However, inference on
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the variance components is less studied and often requires strong distribu-

tional assumptions on the random effects and the error terms. When the

underlying distributions are assumed to be multivariate normal, classical

inference methods, such as the likelihood ratio test, the restricted likeli-

hood ratio test, and the score test (Self and Liang, 1987; Zhang and Lin,

2003; Koh et al., 2019; Zhai et al., 2019), can be applied. However, these

parametric methods are often restrictive and not robust if the model as-

sumptions are violated. For example, we are interested in analyzing daily

physical activity distributions as quantified by wearable device data such

as actigraphy. Such data are typically measured at a high time resolution

(e.g. minute-level) over several days for a given subject (Burton et al., 2013;

Krane-Gartiser et al., 2014). The repeated measures enable us to account

for day-to-day variability of the activity. Instead of focusing on the activity

intensity levels at any given timestamp of the day, there is an increasing

interest in summarizing daily activity time series into quantile functions

and examining the activity distributions as a biologically meaningful mea-

sure of the activity traits (Ghosal et al., 2021; Zhang et al., 2022; Chang

and McKeague, 2022). In analysis of such data, we will need to fit a linear

mixed-effects model for each of the activity quantile yi(t) at t. Yet the typ-

ical distributional assumptions for random effects and errors terms in LME
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might not hold.

Lin (1997) developed a global variance component test of all variance

components equal to zero using an integrative quasi-likelihood and Lapla-

cian expansion. This score test for the global variance component effectively

uses the fact that under the global null, the observations are independent,

and is robust in the special sense that the test does not require specifying

the joint distribution of the random effects. However, the test cannot be ap-

plied for testing more general null hypothesis on the variance components.

Lin (1997) also developed a score test for individual variance component.

However, such a score test requires additional normality assumptions on

the random effects, which allows one to use the existing maximum likeli-

hood method or its approximations (Breslow and Lin, 1995) to estimate the

unknown parameters under the null.

In this paper, we develop several tests of variance components based

on empirical likelihood (el) framework to avoid distributional assumptions

on either the random effects or the error terms in LME. el method, as

an alternative to parametric likelihood-based methods, was first proposed

by Owen (1988) and has been applied to many statistical inference prob-

lems (Owen, 2001). Without a prespecified distributional assumption on

the data, el methods incorporate side information through constraints or
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prior distributions and have favorable statistical properties, including but

not limited to Bartlett correctability, transformation invariance, better cov-

erage accuracy of the corresponding confidence internals and greater power.

Notable applications of the el methods include mixture models (Zou et al.,

2002) and censored survival data (Chang and McKeague, 2016).

Although the el-based inference have been applied to longitudinal data

modeling, majority of the methods only focus on the inference of the fixed

effects term in LME. For example, You et al. (2006) proposed a block el

method for inference of the regression parameters assuming a working in-

dependence covariance, and Xue and Zhu (2007) considered a semipara-

metric regression model, where the repeated within-subject measures are

summarized as a function over time in order to address the dependence

issue. Wang et al. (2010) proposed a generalized el method that takes

into account the within-subject correlations. Li and Pan (2013) defined an

empirical likelihood ratio (elr) test by utilizing the extended score from

quadratic inference functions for longitudinal data, which does not involve

direct estimation of the correlation parameters.

In contrast, we consider a general setting of linear mixed-effects mod-

els and develop el methods for the inference of the variance components.

Specifically, suppose there are n subjects and denote by ni the number of
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repeated measures for the ith subject. For the ith subject, we observe a

response vector yi ∈ Rni , an ni × p design matrix Xi for the fixed effects

β∗ ∈ Rp, and d ni × ni semi-positive design matrices Φiq (q = 1, · · · , d) for

the variance components θ∗ ∈ (R+∪{0})d. The general linear mixed-effects

model can be written as

yi = Xiβ
∗ + ri, i = 1, · · · , n, (1.1)

where ri ∈ Rni is a zero-mean random variable with variance-covariance

Hi(θ
∗). We assume that Hi(θ

∗) has a linear structure,

Hi(θ
∗) =

d∑
q=1

θ∗qΦiq, θ∗ = (θ∗1, · · · , θ∗d)T = (θ∗1, θ
∗T
(1))

T ,

where θ∗ = (θ∗1, · · · , θ∗d)T is the vector of the variance components. The

linear structure of the variance components can be derived from Cov(ri) =

Cov(Zibi), where Zi is the fixed design matrix, and bi is the random effects

that are generated from some distribution F with mean zero and covariance

matrix D(θ∗). The linear structure holds when each components of D(θ∗) is

a linear function of θ∗ (Lin, 1997). This encompasses both nested, crossed

and clustered designs (Michalski and Zmyślony, 1996; Zhai et al., 2019;

Chen et al., 2019; Li et al., 2021). See Section 5.1 for a specific example

of such a random-effect model for modeling the family data that includes

additive genetic effect, common environment and unique subject-specific
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environment effects. We emphasize that this general setting does not require

any assumptions on the distributions of the data or the distributions of the

random effects.

In many real applications, we are interested in making statistical infer-

ence on the variance components θ∗ in model (1.1). For example, in the

study of heritability based on twin data, each monozygotic twin or dizygotic

twin is treated as one cluster, and the linear variance structure can be con-

structed based on the twin type (see details in Section 6). In the heritability

analysis, a key question is whether there exists an genetic effect, which mo-

tivates us to study the inference of one of the variance components, say,

θ∗1. We propose to develop an el based inference method for θ∗1 without

any assumptions on the random components. The method can effectively

account for the nuisance parameters, including the unknown fixed effects β∗

and the variance components θ∗T(1). The key difficulty when compared to the

el inference of the fixed effects is to deal with the boundary value problem

when θ∗1 = 0 in local testing problem H0 : θ∗1 = θ01. To solve the issues,

we propose a new empirical likelihood ratio test by utilizing an unbiased

estimator of β∗ under very mild conditions, and prove that the asymptotic

distribution of the test statistic is a mixture of χ2 distributions.

In particular, we will apply the proposed methods to estimate and test
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for the heritability of daily physical activity distribution summarized as

quantiles in a twin study. This is a setting when LME models are fitted to a

sequence of dependent outcomes. Denote by θ∗(t) the variance components

for activity quantile t. We are interested in testing the global null H0 :

θ∗1(t) ≡ θ01, t ∈ [t1, t2]. We develop a max-type statistic for this global

testing problem. Since the numerator of the proposed empirical likelihood

ratio (elr) tests can be rewritten as the sum of approximately independent

random variables over different subjects, a random perturbation method is

developed to approximate the p-value of the proposed global test.

We first introduce some notation. Denote by (A)−1 the submatrix of

A without the first column of A. For two vectors or matrices A and B

of compatible dimension, define the inner product ⟨A,B⟩ = tr(ATB). For

a matrix Dm×n = (D1, · · · , Dn), where Di is the ith column of D, the

vectorized D is defined by (DT
1 , · · · , DT

n )
T . Let E(x) and var(x) be the

expectation and variance of a random vector x, and let cov(x, y) be the co-

variance of random vectors x and y. When x is a random matrix, E(x) and

var(x) represent the expectation and variance of the vectorized x. When x

and y are random matrices, cov(x, y) denotes the covariance of the vector-

ized x and vectorized y. We use a = O(b) to denote that a and b are of the

same order, and a = o(b) to denote that a is of a smaller order than b. We
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use x = Op(y) to denote that x and y are of the same order in probability,

and x = op(y) to denote that x is of a smaller order than y in probability.

2. ELR test for the fixed effects β∗

Statistical tests for the fixed effects in the linear mixed-effects model (1.1),

H0 : β
∗ = β0, has been well studied. We first briefly review the subject-wise

el method proposed in Wang et al. (2010), where the covariance structure

for each subject is considered.

Let Ĥin be an estimator of Hi, and assume that Ĥin converges to some

H∗
i in probability uniformly over all i = 1, · · · , n. One such a nonparametric

sample covariance matrix Ĥin can be obtained using a simple two-step pro-

cedure, including estimating the residuals r̂i = yi−Xiβ̂, where β̂ is the least-

squares estimator using working independence correlation matrices, and

solving the constrained optimization problem minθ≥0

∑n
i=1 ∥Hi(θ)− r̂ir̂

T
i ∥2F .

Let

ϕi(β) = XT
i Ĥ

−1
in (yi −Xiβ),

which satisfies E{ϕi(β)} = 0 when β is the true value. Denote by pi the

point mass at the ith subject. The nonparametric empirical likelihood is
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defined as

L0(β) = sup
pi

{ n∏
i=1

pi : pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piϕi(β) = 0
}
.

Since it can be proved that maxβ L0(β) = 1/nn (Owen, 2001), Wang et al.

(2010) proposed the elr statistic

elr0(β0) =
L0(β0)

maxβ L0(β)
= nnL0(β0).

To obtain the asymptotic distribution of the elr statistic, the following

regularity conditions are needed.

Condition 1. As n → ∞, P (0 ∈ ch{ϕ1(β0), · · · , ϕn(β0)}) → 1, where ch{}

is the convex hull.

Condition 2. The limit limn→∞ n−1
∑n

i=1X
T
i H

∗−1
i HiH

∗−1
i Xi exists and is

positive definite.

Condition 3. The expectation E∥ϕi(β0)∥2+γ1
2 are upper bounded uniformly

for some γ1 > 0.

Let Ĝin = Ĥ−1
in with element ĝijk, x

T
ij be the jth row of Xi, and rik be

the kth element of ri.

Condition 4. For i, i′ = 1, · · · , n (i ̸= i′), ĝijk − ĝ−(i,i′)jk = Op(n
−1), and

sufficient moment conditions are satisfied so that E(B̂ii′) = O(n−1) and
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E(B̂ii′B̂
T
ii′) = O(n−2), where ĝ−(i,i′)jk is ĝijk but computed with all the data

except for subjects i and i′ and B̂ii′ =
∑ni

j=1

∑ni

k=1(ĝijk − ĝ−(i,i′)jk)xijrik.

Conditions 1–3 are common conditions for the empirical likelihood meth-

ods (Owen, 1991). Condition 4 assumes mild constraints on Ĥ−1
in to ensure

that the difference between the statistic elr0(β0) defined with Ĥin and the

one using H∗
i vanishes as n → ∞. If Ĥin−H∗

i = Op(n
−1) and E∥ri∥22 has an

upper bound, then Condition 4 could be satisfied. Under these regularity

conditions, the following theorem provides the asymptotic distribution of

the elr test elr0(β0) (Wang et al., 2010) under the null.

Theorem 1. Under the regularity Conditions 1–4, as n → ∞,

−2 log elr0(β0) → χ2
p,

in distribution under the null hypothesis H0 : β
∗ = β0.

The asymptotic result only requires that the Ĥin converge uniformly

to some H∗
i , which may not be the true Hi (Wang et al., 2010). When

the correlation structure is correctly specified, the estimator Ĥin is a con-

sistent estimator of H∗
i = Hi. The statistic defined with the true Hi is

asymptotically locally most powerful among all the choices of the weight

matrices.
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3. ELR test for the variance component θ∗1

We consider the local test H0 : θ∗1 = θ01 in the framework of the empirical

likelihood, including the null H0 : θ
∗
1 = 0, which is of the most interest. We

define ri = yi −Xiβ
∗ and Ri = rir

T
i . Since E(ri) = 0 and var(ri) = Hi(θ

∗),

we have

Ri = Hi(θ
∗) + δi =

d∑
q=1

θ∗qΦiq + δi,

where E(δi) = 0 and var(δi) exists. Since β∗ is unknown, we first need an

estimator of β∗, denoted by β̂. One simple choice is the least-squares esti-

mator using the all data. Specifically, we stack the data from all subjects by

denoting X = (XT
1 , · · · , XT

n )
T , y = (yT1 , · · · , yTn )T , and r = (rT1 , · · · , rTn )T .

Model (1.1) can be rewritten as

y = Xβ∗ + r.

Then the least-squares estimator is β̂ = (XTX)−1XTy. For i = 1, · · · , n,

let r̂i = yi −Xiβ̂ = ri +Xi(β
∗ − β̂). We have

R̂i = r̂ir̂
T
i

= rir
T
i + ri(β

∗ − β̂)TXT
i +Xi(β

∗ − β̂)rTi +Xi(β
∗ − β̂)(β∗ − β̂)TXT

i

= Ri + ϵ̂i = Hi(θ
∗) + δi + ϵ̂i,

where ϵ̂i = ri(β
∗ − β̂)TXT

i +Xi(β
∗ − β̂)rTi +Xi(β

∗ − β̂)(β∗ − β̂)TXT
i .
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To control the rates of E(ϵ̂i), cov(rir
T
i , ϵ̂j), and cov(ϵ̂i, ϵ̂j), we need the

following condition, which is also commonly used for empirical likelihood

methods.

Condition 5. The expectation E∥ri∥4+γ1
2 are upper bounded uniformly for

some γ1 > 0.

Under Condition 5, we see that the least-squares estimator β̂ is good

enough.

Proposition 1. Assume that n−1XTX → Σ and n−1/2XT r
d−→ η as n → ∞,

where 0 < ∥Σ∥2, ∥Σ−1∥2 < ∞, Eη = 0 and E∥η∥42 = O(1). When Condition

5 holds and β̂ = (XTX)−1XTy, we have E(ϵ̂i) = O(n−1), i = 1, · · · , n, and

cov(rir
T
i , ϵ̂j), cov(ϵ̂i, ϵ̂j) = O(n−2), i, j = 1, · · · , n, i ̸= j.

Let Ξ = (Ξkl)d×d with Ξkl =
∑n

i=1 tr(ΦikΦil), and Υ̂ = (Υ̂1, · · · , Υ̂d)
T

with Υ̂k =
∑n

i=1 tr(ΦikR̂i). We define

Ẑi(θ1) = tr
{
Φi1

(
R̂i − Φi1θ1 −

d∑
q=2

θ̂qΦiq

)}
, i = 1, · · · , n,

where

θ̂(1) = (θ̂2, · · · , θ̂q)T = (Ξ−1)T−1Υ̂. (3.2)

Since Proposition 1 implies EẐi(θ1) = O(n−1) if θ1 is the true value (see

(??) in the supplementary material), we define the nonparametric likelihood
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as

L(θ1) = max
pi

{
n∏

i=1

pi|pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piẐi(θ1) = 0

}
and the corresponding elr statistic as

elr(θ01) =
L(θ01)

maxθ1≥0 L(θ1)
. (3.3)

If the true value θ∗1 = 0 (i.e., the null hypothesis under the case θ01 =

0), the denominator in (3.3) would not be 1/nn as usual owing to the

boundary value issue, and thus the existing results are inapplicable. To

derive the asymptotic distribution of the proposed test elr(θ01), we assume

the following condition similar to Condition 1.

Condition 6. As n → ∞, P (0 ∈ ch{Z1(θ
0
1), · · · , Zn(θ

0
1)}) → 1, where

Zi(θ
0
1) is defined as Ẑi(θ

0
1) with R̂i replaced by Ri.

Under Conditions 5 and 6, we have the following theorem on the asymp-

totic distribution of the elr test under the null.

Theorem 2. Let ĉn(θ
0
1) = ν̂2

2n(θ
0
1)/ν̂

2
1n(θ

0
1), where ν̂2

1n(θ
0
1) is a consistent

estimator of the asymptotic variance of n−1/2
∑n

i=1 Ẑi(θ
0
1) and ν̂2

2n(θ
0
1) =

n−1
∑n

i=1 Ẑ
2
i (θ

0
1). If θ

∗
(1) ∈ Rd−1

+ , and Conditions 5 and 6 hold, as n → ∞,

ĉn(θ
0
1)
{
−2 log elr(θ01)

}
→ χ2

1
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in distribution when θ01 > 0, and

ĉn(0) {−2 log elr(0)} → U2
+

in distribution, where U ∼ N(0, 1) and U+ = max(U, 0).

Although the elr statistic ĉn(θ
0
1) (−2 log elr(θ01)) in Theorem 2 in-

volves optimizations in the numerator and denominator, the following lemma

shows that the statistic has an asymptotically equivalent expression that

can be used to calculate the statistic efficiently.

Lemma 1. If θ∗(1) ∈ Rd−1
+ , then under Conditions 5 and 6,

ĉn(θ
0
1)
{
−2 log elr(θ01)

}

=


{n−1/2

∑n
i=1 Ẑi(θ

0
1)}2

ν̂21n(θ
0
1)

+ op(1), if θ01 > 0,

{n−1/2
∑n

i=1 Ẑi(θ
0
1)}2

ν̂21n(θ
0
1)

I(
∑n

i=1 Ẑi(θ
0
1) ≥ 0) + op(1), if θ01 = 0.

We next provide an estimator of the asymptotic variance of n−1/2
∑n

i=1 Ẑi(θ
0
1).

We rewrite Ξ as

Ξ =
(
E11 E12
E21 E22

)
with E11 being a scalar. Let F = E−1

22 E21 = (F1, · · · , Fd−1)
T and α =

1− E12F/E11 ∈ (0, 1]. It can be verified that

n∑
i=1

Ẑi(θ
0
1) =

n∑
i=1

D̂i(θ
0
1) =

n∑
i=1

M̂i(θ
0
1), (3.4)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



Empirical Likelihood Inference for Variance Components 16

where

D̂i(θ
0
1) = α−1⟨Φi1 −

d−1∑
q=1

FqΦiq+1, R̂i − θ01Φi1⟩,

M̂i(θ
0
1) = α−1⟨Φi1 −

d−1∑
q=1

FqΦiq+1, R̂i −Hi((θ
0
1, θ̂

T
(1))

T )⟩.

In addition, for i ̸= j,

cov(R̂i, R̂j) = cov(δi + ϵ̂i, δj + ϵ̂j) = cov(δi, ϵ̂j) + cov(ϵ̂i, δj) + cov(ϵ̂i, ϵ̂j) = O(n−2)

based on Proposition 1. Therefore, D̂i(θ
0
1) (i = 1, · · · , n) are asymptotically

independent with expectation

E(D̂i(θ
0
1)) = α−1⟨Φi1 −

d−1∑
q=1

FqΦiq+1,
d∑

q=2

θ∗qΦiq⟩+O(n−1),

while the expectations of Ẑi(θ
0
1) and M̂i(θ

0
1) are O(n−1) (see (??) in the

supplementary material). We have

D̂i(θ
0
1)− E(D̂i(θ

0
1)) = α−1⟨Φi1 −

d−1∑
q=1

FqΦiq+1, R̂i −Hi((θ
0
1, (θ

∗
(1))

T )T )⟩+O(n−1)

= M̂i(θ
0
1) + op(1).

Therefore,

var
{
n−1/2

n∑
i=1

Ẑi(θ
0
1)
}
=

1

n

n∑
i=1

{D̂i(θ
0
1)− E(D̂i(θ

0
1))}2 + op(1)

=
1

n

n∑
i=1

M̂i(θ
0
1)

2 + op(1), (3.5)
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which leads a consistent estimator of the variance of n−1/2
∑n

i=1 Ẑi(θ
0
1) as

ν̂2
1n(θ

0
1) = n−1

n∑
i=1

M̂i(θ
0
1)

2.

4. Variance component analysis over a sequence of responses

In some applications, we are interested in testing whether the variance com-

ponents are all zero over a set of possibly correlated outcomes. One example

of such applications is to test the variance components for the activity dis-

tribution based on wearable device data where we are interested in testing

the variance component at each of the quantiles t of the activity distribu-

tion. Extending model (1.1), we assume the following outcome model at

level t,

yi(t) = Xiβ
∗(t) + ri(t), i = 1, · · · , n, (4.6)

where ri(t) ∈ Rni is a zero-mean random variable with variance Hi(θ
∗(t)).

We assume that Hi(θ
∗(t)) has the same linear structure for each t,

Hi(θ
∗(t)) =

d∑
q=1

θ∗q(t)Φiq, θ∗(t) = (θ∗1(t), · · · , θ∗d(t))T = (θ∗1(t), θ
∗T
(1)(t))

T .

We are interested in testing the null H0 : θ
∗
1(t) ≡ θ01, t ∈ [t1, t2], where

[t1, t2] is a pre-defined interval. We propose the following maximally selected

empirical likelihood ratio statistic (gelr),

Γ = sup
t∈[t1,t2]

ĉn(θ
0
1, t)

{
−2 log elr(θ01, t)

}
, (4.7)
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where ĉn(θ
0
1, t) {−2 log elr(θ01, t)} is the elr statistic for the outcome at t.

It can be shown that Γ = supt∈[t1,t2] S(t) + op(1), with

S(t) =


{n−1/2

∑n
i=1 Ẑi(θ

0
1 ,t)}2

ν̂21n(θ
0
1 ,t)

, if θ01 > 0,

{n−1/2
∑n

i=1 Ẑi(θ
0
1 ,t)}2

ν̂21n(θ
0
1 ,t)

I{
∑n

i=1 Ẑi(θ
0
1, t) ≥ 0}, if θ01 = 0,

where

Ẑi(θ
0
1, t) = tr

{
Φi1

(
R̂i(t)− Φi1θ

0
1 −

d∑
q=2

θ̂q(t)Φiq

)}
,

ν̂2
1n(θ

0
1, t) = n−1α−2

n∑
i=1

〈
R̂i(t)−Hi((θ

0
1, θ̂(1)(t)

T )T ),Φi1 −
d−1∑
q=1

FqΦiq+1

〉2

.

Assessment of the statistical significance of the statistic Γ defined in

(4.7) is challenging because of the dependence of Ẑi(θ
0
1, t). We propose

a simple way of evaluating its significance by perturbing the el statistic.

Specifically, we apply (3.4) to rewrite
∑n

i=1 Ẑi(θ
0
1, t) as

∑n
i=1 M̂i(θ

0
1, t), where

M̂i(θ
0
1, t) = α−1

〈
Φi1 −

∑d−1
q=1 FqΦiq+1, R̂i(t)−Hi((θ

0
1, θ̂

T
(1)(t))

T )
〉
. We can

generate the null distribution of Γ by perturbing the test statistic Γ(g).

Specifically, for each g (g = 1, · · · , G), we generate ξ
(g)
i from i.i.d. standard

normal distribution and define

S(g)(t) =


{n−1/2

∑n
i=1 M̂i(θ

0
1 ,t)ξ

(g)
i }2

ν̂21n(θ
0
1 ,t)

, if θ01 > 0,

{n−1/2
∑n

i=1 M̂i(θ
0
1 ,t)ξ

(g)
i }2

ν̂21n(θ
0
1 ,t)

I{
∑n

i=1 M̂i(θ
0
1, t)ξ

(g)
i ≥ 0}, if θ01 = 0.

Define the corresponding perturbed test statistic as Γ(g) = supt∈[t1,t2] S
(g)(t).

The following Proportion 2 shows that the perturbed test statistics have the
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same asymptotic distribution as the original test statistic under the null.

Therefore, the p-value of Γ can be approximated by
∑G

g=1 I(Γ
(g) > Γ)/G.

Proposition 2. M̂i(θ
0
1, t) satisfies

(i) E{n−1/2

n∑
i=1

M̂i(θ
0
1, t)ξ

(g)
i } − E{n−1/2

n∑
i=1

Ẑi(θ
0
1, t)} = o(1);

(ii) var{n−1/2

n∑
i=1

M̂i(θ
0
1, t)ξ

(g)
i } − var{n−1/2

n∑
i=1

Ẑi(θ
0
1, t)} = o(1);

(iii) cov{n−1/2

n∑
i=1

M̂i(θ
0
1, s)ξ

(g)
i , n−1/2

n∑
j=1

M̂j(θ
0
1, t)ξ

(g)
j }

− cov{n−1/2

n∑
i=1

Ẑi(θ
0
1, s), n

−1/2

n∑
j=1

Ẑj(θ
0
1, t)} = o(1).

5. Simulation studies

5.1 Data generation

We examine the performance of the proposed empirical likelihood ratio tests

for variance components and compare the results with the standard like-

lihood ratio (lr) test (Self and Liang, 1987) and the standard score test

(Zhang and Lin, 2003) assuming Gaussian random effects and Gaussian er-

rors. To mimic the twin design in the heritability analysis of wearable device

data that we analyze next, we simulate data on a monozygotic or dizygotic

twin pair. For the ith twin, let ni = ni1 + ni2, where ni1 and ni2 are the

numbers of repeated measures for the twin. In wearable device data, yi(t)
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represents the tth quantile of the activity distributions over ni days. The

data are generated from the commonly-used model for heritability analysis

(Ge et al., 2017):

yi(t) = Xiβ(t) + Tiai(t) + τi(t), i = 1, · · · , n, t = s1, s2, · · · , sm, (5.8)

where Ti = blkdiag{1ni1
,1ni2

}, ai(t) is a random intercept, and τi(t) denotes

zero-mean noise with variance σ2
M(t)Ini

. Here, ai(t) is assumed as the sum of

additive genetic effect gi(t), common environment ci(t), and unique subject-

specific environment ei(t), i.e.,

ai(t) = gi(t) + ci(t) + ei(t),

where gi(t), ci(t), ei(t) are independent zero-mean random variables with

variance-covariance σ2
A(t)Ki, σ

2
C(t)Λi, and σ2

E(t)I2, respectively. The vari-

ance components σ2
A(t), σ

2
C(t), and σ2

E(t) represent the additive genetic

variance, common environmental variance, and unique environmental vari-

ance, respectively. For the ith twin, Ki is a genetic similarity matrix with

Ki = ( 1 1
1 1 ) for monozygotic twin, Ki = ( 1 0.5

0.5 1 ) for dizygotic twin, and

Λi quantifies shared environment between the twin pair with Λi = ( 1 1
1 1 ).

Under this model, we have

Hi(θ
∗(t)) = σ2

A(t)TiKiT
T
i + σ2

C(t)TiΛiT
T
i + σ2

E(t)TiT
T
i + σ2

M(t)Ini
,

θ∗(t) = (σ2
A(t), σ

2
C(t), σ

2
E(t), σ

2
M(t))T .
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We sample nik (i = 1, · · · , n; k = 1, 2) from {2, 3, 4} with equal proba-

bility 1/3. We set n = 300, among which there are 150 monozygotic twin

families and 150 dizygotic twin families, and t = 0.01, 0.06, 0.11, · · · , 0.96.

Let Xi = (xi1, · · · , xini
)T , where xij ∼ N(0, 1), and β(t) = 3.5. To evaluate

the proposed tests for variance components in the case of correlated out-

comes over an interval of t, we generate random effects and noises as follows.

Let gi(t) = σA(t)ζai, ci(t) = σC(t)ζci, ei(t) = σE(t)ζei, and τi(t) = σM(t)ζτi,

where σ2
l (t) (l = A,C,E,M) are set in a similar way as in Zhu et al. (2012)

σ2
l (t) = Cl1(t)sin

2(2πt) + Cl2(t)cos
2(2πt), l = A,C,E,M,

(CA1(t), CA2(t)) = (1, 1.6)CaI(t ∈ {0.41, 0.46, 0.51, 0.56}), (CC1(t), CC2(t)) =

(0.2, 1)Cc, (CE1(t), CE2(t)) = (1, 0.2)Ce, and (CM1(t), CM2(t)) = (1.6, 1)Cm,

I(·) is an indicator function. We consider three types of distributions for

ζai, ζci, ζei, ζτi.

(i) normal random effects and noises: ζai
iid∼ N (0, Ki), ζci

iid∼ N (0,Λi),

ζei
iid∼ N (0, I2), ζτi

iid∼ N (0, Ini
).

(ii) t-distributed random effects and normal noises: ζai
iid∼ t3(0, Ki/3),

ζci
iid∼ t3(0,Λi/3), ζei

iid∼ t3(0, I2/3), ζτi
iid∼ N (0, Ini

).

(iii) t-distributed random effects and noises: ζai
iid∼ t3(0, Ki/3), ζci

iid∼

t3(0,Λi/3), ζei
iid∼ t3(0, I2/3), ζτi

iid∼ t3(0, Ini
/3).
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5.2 ELR test for fixed effects

Since the focus of this paper is on ELR test for the various components,

we focus our evaluation of the ELR test for the fixed effect (Wang et al.,

2010) on its robustness to the distributional assumptions of the random

effects and the errors. Let Ca = 0.1, Cc = 0.05, Ce = 0.05, and Cm =

0.03. For each t ∈ T ≡ {0.01, 0.06, 0.11, · · · , 0.96}, we examine coverage

probability for the elr test reviewed in Section 2. Based on Theorem 1, the

coverage probability for the elr test is constructed using the asymptotic

χ2
1 distribution.

0.0 0.2 0.4 0.6 0.8 1.0

0.
90

0.
94

0.
98

ELR test for fixed effects

t

co
ve
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ge

normal random effects and noises
t random effects and normal noises
t random effects and noises

Figure 1: Coverage probability for the elr test for fixed effects. The black

dashed horizontal line is the 95% coverage probability.
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Figure 1 shows the results of the simulation study. We observe that

the elr test produces coverage probabilities roughly at the nominal level

under all types of distributions.

5.3 ELR test for single variance component

We consider the model parameters Ca = 0.3, Cc = 0.05, Ce = 0.05, and

Cm = 0.03. For each t ∈ T , we evaluate the performance of the tests for

the null hypothesis H0 : σ2
A(t) = 0. We use elr to denote the proposed

empirical likelihood ratio test with unknown β∗(t). Since σ2
A(t) > 0 when

t ∈ T1 ≡ {0.41, 0.46, 0.51, 0.56} and 0 otherwise, we use the simulations for

t ∈ T \ T1 to examine the type 1 errors, and use the simulations for t ∈ T1

to evaluate the power of the proposed test. We compare the results with

two other commonly used tests of variance components, lr test and score

test. We repeat the simulations 500 times.

Figure 2 presents the results of empirical power and the type 1 errors for

different values of t. For the type 1 errors, when t ∈ T \T1, we observe that

all the methods perform well under the normal random effects and noises.

However, lr and score tests show inflated type 1 errors when random effects

follow a long-tailed t distribution.

For the comparisons, where t ∈ T1, we observe that the proposed
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Figure 2: Empirical power for a given value of t ∈ T1 ≡

{0.41, 0.46, 0.51, 0.56}, and type 1 errors for a given t ∈ T \ T1. The black

dashed horizontal line is the nominal threshold 0.05. Left: normal random

effects and noises; middle: t-distributed random effects and normal noises;

right: t-distributed random effects and noises. elr: empirical likelihood

ratio test with the least-square estimate of β∗; lr : likelihood ratio test

under the normal assumption; Score : score test under the normal assump-

tion. For the middle and right plots, dashed line segments for LR and Score

tests indicate the t values where both tests have inflated type 1 errors.

method exhibits a similar power as the lr test, and the score test has

the highest power under the normal distribution. However, when the ran-

dom effects follow a t distribution, the elr test does not lose much power.

As a comparison, the empirical power of lr and score tests are also shown

as the dashed lines in Figure 2. However, the power does not reflect the

true power because of their inflated type 1 errors under the non-Gaussian
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assumptions.

5.4 ELR test for variance components over an interval
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gELR for variance components over an interval
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t random effects and normal noises
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Figure 3: Empirical power for the global test H0 : σ2
A(t) ≡ 0, t ∈ [0, 1]

at different values of Ca. The black dashed horizontal line is the nominal

threshold 0.05.

We use gelr to denote the proposed global empirical likelihood ratio

test with unknown β∗(t). We consider the global test H0 : σ2
A(t) ≡ 0, t ∈

[0, 1], with different choices of the signal size Ca = 0, 0.02, · · · , 0.3. Let

Cc = 0.05, Ce = 0.05, and Cm = 0.03. We generate 500 datasets for each

setting. Figure 3 presents the empirical power of gelr at 0.05 significance
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level under different distributions of random errors and different Ca. As

expected, the empirical power of rejecting the null hypothesis increases

with the signal size. Compared to the results under the multivariate t

distributed random effects, the proposed test gelr has higher power when

data are normally distributed.

To further evaluate the type 1 error and the power, we consider models

with Ca = 0.3, Cc = 0.05, Ce = 0.05, and Cm = 0.03. We consider to

test each of the candidate intervals of lengths {3, 4, 5} and denote them

by scan3, scan4, and scan5, respectively. Let Jk be the set of candidate

intervals under the scanning length k (k = 3, 4, 5) and let J = ∪5
k=3Jk be

the set of all candidate intervals. For each candidate interval L ∈ J , we

test the null hypothesis H0 : σ
2
A(t) ≡ 0, t ∈ L. The signal in the interval L

is significant if

h(ΓL) =
ΓL − Γ̄L√∑G

g=1(Γ
(g)
L − Γ̄L)2/(G− 1)

>
√

2 log |J |,

where Γ̄L = (
∑G

g=1 Γ
(g)
L )/G with G = 1000. The threshold

√
2 log |J | is

selected based on the extreme value distribution of |J | normal random

variables.

Under each type of error distributions, 500 datasets are generated. For

the global test under the candidate interval L = [t1, t2], we mark its em-
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Figure 4: Empirical power of testing zero variance component in a given

interval of length of 3, 4, and 5, where the true nonzero variance components

are at {0.41, 0.46, 0.51, 0.56}. The black dashed horizontal line is the

nominal threshold 0.05. Left: normal random effects and noises; middle:

t-distributed random effects and normal noises; right: t-distributed random

effects and noises. Fo the middle and left plots, dashed line segments for

LR and Score indicate the

pirical power at (t1 + t2)/2. The results are shown in Figure 4. The pro-

posed global test gelr exhibits high power if the interval involves at least

one nonzero time points. When a candidate interval does not involve any

nonzero time points, the empirical power is less than 0.05, and therefore

the proposed gelr test controls type 1 error very well.
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6. Application to genetic heritability analysis of physical activity

distribution

6.1 Description of the data

We apply the methods to actigraphy data from the Australian twin study,

which includes 189 healthy twin families (79 of them are monozygotic twin

families and 110 are dizygotic twin families) and 6,103 observations (days)

in total. The participants wore GENEActiv devices to track their physical

activities for about 14 days. The minute-to-minute activity intensities de-

rived from the device were collected in a 1440-dimensional vector per day.

Since we are interested in the inference of heritability of the activity dis-

tributions, we obtain the empirical quantiles of activity counts at different

quantiles, t = 1/144, 2/144, · · · , 144/144. Specifically, for the kth person

in the ith twin family, the raw data from the wearable device for the jth

day is a minute-level vector, ξikj = (ξikj1, · · · , ξikj1440)T , where ξikjt repre-

sents the activity (average Euclidean norm minus 1) measurement for the

tth minute. Following the standard data processing step as implemented in

the R package mMARCH.AC (Guo et al., 2022), we transform the data as

ξ̃ikj = log(9250ξikj + 1), i = 1, · · · , n; k = 1, 2; j = 1, · · · , nik,
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For the kth person in the ith twin family, the jth repeated measure of

t-quantile of activity counts is obtained as

yikj(t) = ξ̃
[1440·t]
ikj , t = 1/144, 2/144, · · · , 144/144,

where ξ̃
[s]
ikj denotes the sth order statistic of ξ̃ikj.

In our analysis, the covariate xikj includes gender, age, body mass index

(BMI), and indicator of weekend, i.e., xikj = (1,Gender,Age, BMI,Weekend)T .

Let yi(t) = (yi11(t), · · · , yi1ni1
(t), yi21(t), · · · , yi2ni2

(t))T andXi = (xi11, · · · , xi1ni1
,

xi21, · · · , xi2ni2
)T . We consider the same model as (5.8):

yi(t) = Xiβ(t) + Ti(gi(t) + ci(t) + ei(t)) + τi(t), i = 1, · · · , n,

where Ti = blkdiag{1ni1
,1ni2

}, and gi(t), ci(t), and ei(t) represent the ge-

netic effect gi(t), common environment ci(t), and unique subject-specific

environment ei(t), respectively. The variance-covariance structure of these

random effects are the same as those in Section 5.1.

Let y(t) = (yT1 (t), · · · , yTn (t))T . The original data set includes 189

healthy twin families, among those 79 are monozygotic (MZ) twin fami-

lies, and 110 dizygotic (DZ) twin families. The total number of days with

activity data is 6,103. After removing the observations with missing covari-

ate X or missing activity quantile Y , we have 172 healthy twin families,

including 73 MZ twin families and 99 DZ twin families, with a total num-
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ber of days with activity data being 4,698. We further remove the outliers

under 1.5 IQR rule, which reduces to total number of observations to 3,741.

Among them, we select the families with a twin pair, including 63 MZ twin

families and 86 DZ twin families, and the total number of observations is

3,489. This is the final data set in our analysis.

6.2 Effects of gender, age, BMI, weekend on activity profiles

We first examine the associations between the covariates including gender,

age, BMI, and weekend vs weekday and the overall activity distribution.

For each of the four covariates and each of the t values, we obtain the el

estimator by solving the estimating equations
∑n

i=1 ϕi(β) = 0, and apply

Theorem 1 to construct the confidence interval {β0 : −2 log elr0(β0) ≤

χ2
1(1− α)}, where χ2

1(1− α) is the (1− α) quantile of the χ2
1 distribution.

The first column of Figure 5 shows the estimated regression coefficient for

each of the t values and its point-wise 95% confidence intervals using the

el method.

We then test whether there is any difference in activity profiles between

individuals of different gender, age, BMI, and whether the activity profiles

are different between weekdays and weekends. Specifically, we consider

testing such differences at each of the quantile t. To test H0 : βl(t) = 0, l ∈
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Figure 5: Estimate of β∗(t), its 95% confidence interval (left panel) and

the − log10(p-value) (right panel) for gender, age, BMI, and weekend for

each of quantile t values. The black dashed horizontal line is the nominal

threshold − log10(0.05), and the black dotted horizontal line is the Bonfer-

roni corrected threshold − log10(0.05/144).
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{Gender, Age, BMI, Weekend}, we apply the elr test in Section 2 and the

standard likelihood ratio (lr) test assuming normal random effects, and we

obtain the p-value for each quantile t. The second column of Figure 5 shows

the p-values for each t and for each of these four covariates. At the nominal

p-value of 0.05, the elr test shows that there is effect of gender when the

activity counts are small (i.e., small t). In contrast, the standard lr test

only shows such significance in a smaller interval from 0.23 to 0.42. For

age, the elr shows a significant effect for the large activity counts region

(i.e., large t). Both the elr and lr tests do not reject the null hypothesis

that there is no effect of BMI, while the effects of weekend are statistically

significant under almost the whole region of t.

6.3 Analysis of heritability of the activity distribution

We then address the question whether the activity distribution is heritable,

where the distribution is summarized as the quantiles. This is equivalent to

test the null hypothesis H0 : σ2
A(t) = 0, t ∈ [0, 1]. For each quantile t, we

first estimate the fixed effects using the least-square estimate and then apply

the proposed elr to test the null hypothesis and to compare the results with

the lr and score tests. Figure 6 (a) gives the p-values at different quantiles

t. It shows that the testH0 : σ
2
A(t) = 0 is rejected for t ∈ [0.375, 0.958] based
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on the elr test and t ∈ [0.472, 0.931] using lr, while the score test cannot

reject the null hypothesis at the nominal 0.05 significance level. However,

if we use the Bonferroni correction for multiple testing, only the proposed

elr test identifies significant heritability for the quantiles between 0.375

and 0.514. The p-value of global test H0 : σ2
A(t) ≡ 0, t ∈ [0, 1] is 0 when

applying the proposed gelr with 1000 permutations. Overall, our analysis

shows that the activity distribution is heritable, especially in the quantile

range from 0.375 to 0.514.
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(a) Outlier removal #1 (b) Outlier removal #2

Figure 6: The − log10(p-value) of testing heritability H0 : σ2
A(t) = 0 for

different quantile values t. The black dashed horizontal line is the nominal

threshold − log10(0.05), and the black dotted horizontal line is the Bonfer-

roni corrected threshold − log10(0.05/144).

To assess the sensitivity of heritability analysis of the activity distri-
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bution, we also consider an alternative method of removing outliers under

3+/-SD rule, which result in a total of 172 healthy twin families, including

73 MZ twin families and 99 DZ twin families, and the total number of ob-

servations of 4,477. Among them, we select the twin families with a twin

pair and obtain 152 twin families, including 64 MZ twin families and 88 DZ

twin families, and the total number of observations of 4,190. The results

are very similar (see Figure 6 (b)).

7. Discussion

In this paper, we have developed empirical likelihood methods for making

inference of the variance components in general linear mixed-effects models.

The proposed elr test can be applied to a large set of related outcomes such

as different quantiles of the activity distribution when we analyze the wear-

able device data sets. Simulation studies show that the proposed methods

control type 1 error much better than likelihood-based or score test when

the normality assumptions do not hold. Since the proposed elr statistic

has a closed form expression asymptotically (see Lemma 1), the elr test

can be implemented much more efficiently compared to the likelihood-based

methods that require numerical optimizations.

We applied the proposed tests to investigate the heritability of physical
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activity measured by actigraph device using the Australian twin study. We

observed that such a physical activity is heritable in the quantile range from

37.5% to 51.4%, while the standard likelihood ratio test and the score test

under the Gaussian assumption failed to show such a heritability. Our anal-

ysis showed that the physical activity is heritable, which warrants further

genetic studies.
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