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Abstract: In many longitudinal studies, irregularly repeated measures are often correlated

with observation times. Also, there may exist a dependent terminal event such as death

that stops the follow-up and is subject to right censoring. To deal with such complex

data, we propose a class of flexible semiparametric marginal conditional mean models

for longitudinal response processes. The new models include the interaction between

the observation history and some covariates, and an unknown functional form of the

length from the observation time to the terminal event time, while leaving the within-

subject dependence structure of the response process and patterns of the observation

process to be arbitrary. For estimation of both scalar and functional parameters in the

proposed models, we develop a two-stage spline-based least squares estimation approach

and establish the asymptotic properties of the proposed estimators. The performance of

the proposed estimation procedure is examined by simulation studies, and a longitudinal

data example is provided for illustration.

Key words and phrases: Conditional modeling; Empirical process; Informative observation

times; Longitudinal data; Terminal event time.
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1. Introduction

Longitudinal data occur frequently in a wide variety of settings, including epi-

demiological studies, clinical trials, economic applications and others. The re-

sponse variables and covariates are observed repeatedly at irregular time points

for different subjects under study, and the observations are independent among

different subjects and may be correlated within each subject. For the analysis

of such longitudinal data, various parametric and semiparametric methods have

been studied by Laird and Ware (1982), Liang and Zeger (1986), Zeger and Diggle

(1994) among others, and excellent reviews have been provided by Lin and Ying

(2001) and Diggle et al. (2002).

A basic assumption behind the above methods is that the observation times

are independent of response variable, completely or given covariates. However,

such an assumption can be violated in many applications, that is, the observation

times are informative to the longitudinal responses. An example can be found

in the longitudinal CD4 lymphocyte counts of didanosine/zalcitabine study con-

ducted by the Terry Beirn Community Programs for Clinical Research on AIDS

(CPCRA) (Abrams, et al., 1994; Goldman, et al. 1996). One phenomenon from

some preliminary analysis is that some patients who were too ill for testing gave

less visiting times, and thus, they tended to have less CD4 lymphocyte baseline

counts on average, that is, the response of CD4 counts may be associated with the
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observation times. Thus it is desirable to take into account these informative ob-

servation times when we perform the analysis of longitudinal data. To investigate

this problem, two methods have been developed. One is the conditional modeling

approach (e.g., Sun et al., 2005; Zhao et al., 2014), which directly characterized

the dependence between the response and the observation times. Another one is

the frailty-based approach (e.g., Sun et al., 2007; Liang et al., 2009; Zhao et al.,

2012; Deng and Zhao, 2019), which used the frailties to represent the correlations

between the response and the observation times.

In many longitudinal studies, especially the studies for populations with fatal

diseases, there may exist a dependent terminal event such as death that stops the

follow-up. Two types of approaches are widely used for longitudinal data analysis

with dependent terminal events and non-informative observation times. One is the

joint modeling approach (Wang and Taylor, 2001; Roy and Lin 2002; Lin and Ying

2003, among others), which used the shared random effects to indirectly model the

correlations between the longitudinal response and terminal event. Another is the

conditional modeling approach proposed by Kong et al. (2018), which treated

the terminal event time as a covariate in a conditional model for the longitudinal

response.

Furthermore, both observation times and terminal events may affect longitu-

dinal processes. For example, in the aforementioned ddI/ddC study, the patients
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in poorer health with less CD4 testing had slightly lower baseline CD4 counts

on average. 40% patients died during the follow-up period, whose baseline CD4

counts were lower, on average, than those who survived (Abrams, et al., 1994;

Goldman, et al. 1996). Joint modeling methods have been developed by Liu et

al. (2008), Sun et al. (2012), Han et al. (2014), and others to analyze longitudinal

data of this nature. These methods incorporate latent variables in models for the

longitudinal response, observation times, and terminal events, thereby capturing

the relationships among these variables. However, it is worth noting that these

existing methods may not explicitly capture the relationship between the longi-

tudinal response and observation times, as well as the relationship between the

longitudinal response and the terminal event.

To explore a direct evaluation of the impact of observation times and a terminal

event on the longitudinal response process, we propose a class of flexible semipara-

metric marginal conditional mean model for the longitudinal response that treat

both the terminal event time and observation history as covariates, while leaving

the within-subject dependence structure of the response process and patterns of

the observation process to be arbitrary. Specifically, an unknown functional form

for the length from the observation times to the terminal event time is assumed

in the proposed model since the influence of the terminal event time on the lon-

gitudinal response would have different forms when the observation times have
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different distances to the terminal event time. For example, in the ddI/ddC study,

the average CD4 counts rose during the first 2 months in the ddI group but fell

in the ddC group, and the counts tended to fall in the ddI group but appeared

to rise in the ddC group after 2 months until the terminal event time (Abrams,

et al., 1994; Goldman, et al. 1996). In addition, the interaction between the ob-

servation history and some covariates is considered in the model since the relation

between the observation and response processes may vary with some covariates.

For example, in the ddI/ddC study, the average CD4 counts changes from base-

line are different between the ddI group and ddC group with different observation

testing times. This indicates that the patients’ CD4 counts and observation times

are related with the treatment (Abrams, et al., 1994; Goldman, et al. 1996). This

conditional modeling provides a more intuitive and meaningful interpretation while

displaying the functional dependence of the response variable on the terminal event

time for the observation times that have different distances to the terminal event

time. For the estimation of regression parameters and nonparametric function in

the proposed models, we develop a two-stage spline-based least squares estimation

approach, where the nuisance conditional distribution function for the terminal

event time is estimated in the first stage, and the least square loss function based

on spline approximation given the nuisance parameters is minimized in the second

stage.
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The remainder of this paper is organized as follows. We begin in Section 2

by introducing notation and describing the semiparametric marginal conditional

mean model for the longitudinal response with informative observation times and

dependent terminal event. In Section 3, a two-stage spline-based least squares esti-

mation approach is developed to estimate regression parameters and nonparametric

function in the proposed models. The asymptotic properties including consistency

and rate of convergence for regression parameters and nonparametric function es-

timators, and the asymptotic normality for regression parameter estimator are

established in Section 4. The simulation results are presented in Section 5 to as-

sess the finite-sample performance of the proposed inference procedure. Also,

comparisons between the proposed method and the two-stage approach proposed

by Kong et al. (2018) are conducted to illustrate the robustness of the proposed

method. A real example of longitudinal data is provided to illustrate an applica-

tion of the proposed method in Section 6. Some concluding remarks are made in

Section 7. All technical proofs are given in the Supplemental Materials.

2. Statistical Model

Consider a longitudinal study that consists of a random sample of n subjects.

For subject i, let Yi(t) denote the response variable, X i denote a p-dimensional

vector of covariates. In additional, let Ui be the terminal event time and Ci be the
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censoring time i = 1, . . . , n. It is assumed that the terminal event time Ui is subject

to right-censored. If Ui ≤ Ci, then Ui is observed; otherwise Ui is right-censored

by Ci. The observed event time is denoted by Ũi = min(Ui, Ci) and the censoring

indicator is denoted by ∆i = I(Ui ≤ Ci), where I(·) is the indicator function.

Suppose that Yi(t) is observed at distinct time points TKi,1 < TKi,2 < . . . < TKi,Ki
,

where Ki is the total number of observations on subject i. In the following, we

regard these observation times arising from an underlying counting process N∗(t)

characterized by Ni(t) =
∑Ki

j=1 I (TKi,j ≤ t) = N∗
i (min(t, Ũi)), with Ki = N∗

i (Ũi)

for subject i, i = 1, . . . , n. Then, the process Yi(t) is observed only at the time

points where Ni(t) jumps.

Define Fit = {Ni(s), 0 ≤ s < t}. For the analysis, given Ui = u, X i, Fit and

the covariate W i, which is allowed to be a component of the vector X i, we assume

that Yi(t) follows the marginal model

E{Yi(t)|Ui = u,X i,W i,Fit} = µ0(u− t) + β′
0X i +α′

0H(Fit,W i), τ0 ≤ t ≤ u,

(2.1)

where µ0(·) is an unspecified smooth function, β0 is a p-dimensional vector of

unknown regression parameters, α0 is a q-dimensional vector of regression coef-

ficients, H(·) is a vector of known functions of the counting process Ni(t) up to

t− and the covariate W i, representing the interaction between the observation
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history and some covariates, and τ0 is a positive constant which can be considered

as the lower bound of observation times in practice. In particular, in longitudinal

follow-up clinical studies with different treatments, W i ’s can be defined as the

treatment indicators, and thus α represents the effect of interaction between the

frequency of observation times and treatment group on the longitudinal response

variable.

Our proposed model (2.1) follows the framework of the marginal mean model

for longitudinal data, as described in Lin and Ying (2001). This model character-

izes the marginal mean of the response process while leaving the within-subject

dependence structure and distribution form of the response process unspecified. In

contrast to conventional approaches, our modeling approach is distinct. We aim to

consider both informative observation times and terminal events simultaneously.

To achieve this, we extend Zhao et al. (2014)’s semiparametric marginal mean

model for the longitudinal response by incorporating both the terminal event time

and the potential effect of the observation process as covariates into the marginal

mean model for the response process. Importantly, our model (2.1) encompasses

the proposed mixed effects model by Kong et al. (2018) as a special case, demon-

strating the flexibility and versatility of our approach. Furthermore, no additional

model assumption is needed for the observation process, and the fitted conditional

model can be useful for prediction in longitudinal data studies.
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In model (2.1), the function H(·) specifies the dependence of the process Yi(t)

on the observation process Ni(t). The choice of H can vary depending on the

specific situation and context. Following the discussion in Sun et al. (2005), a

natural and simple choice for H could be H(Fit,W i) = Ni(t−)W i, where Yi(t)

and Fit are related through the total number of observations made before time

t, and this relationship can vary with the covariate W i. An alternative choice is

to consider that Yi(t) depends on Fit only through a recent number of observa-

tions, for example, within a time window of length l. In this case, we can define

H(Fit,W i) = (Ni(t−)−Ni(t− l))W i. It is also possible to define H as a vector

that combines both of the aforementioned choices. This can be useful when both

the total number of observations and recent observations contain valuable infor-

mation about Yi(t). In practice, we typically do not treat H(·) as a nonparametric

parameter to avoid the complexity of the estimation method. Instead, we con-

sider specific functional forms for H that capture the relevant information from

the observation process Ni(t). These choices strike a balance between flexibility

and simplicity, allowing us to effectively model the relationship between Yi(t) and

Fit.

In addition, for inference on models (2.1), we need some basic assumptions:

(A1) conditional on (X,W ), the censoring time C is independent of N∗(·) and

Y (·) (C is noninformative);
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(A2) U and C are conditionally independent given (X,W );

(A3) E{Yi(t)|X i,W i, Ni(s), 0 ≤ s ≤ t, Ui, Ci} = E{Yi(t)|X i,W i,Fit, Ui, Ci},

which means that conditional on the covariate, the terminal event time and

the censoring time, the mean of response variable at time point t is only

related to the observation history before t.

The observation for each individual consists of O = (K, T̃K , ỸK , ÑK ,X,W , Ũ ,∆),

with T̃K = (TK,1, · · · , TK,K), ỸK = (Y (TK,1), · · · , Y (TK,K)), and

ÑK = (N(TK,1), · · · , N(TK,K)). Throughout this paper, we will assume that we

observe n i.i.d. copies, O1, · · · ,On of O. The main purpose here is to estimate

the regression coefficients θ0 = (β′
0,α

′
0)

′ and the smooth baseline mean function

µ0(·) with the nuisance parameter F0.

3. Estimation Procedure

To estimate θ0 and µ0 in model (2.1), a natural idea is to use the least squares

loss function

ℓn(θ, µ) =
1

n

n∑
i=1

I(Ui ≥ TKi,j) {Yi(TKi,j)− θ′Zi(X i, TKi,j)− µ(Ui − TKi,j)}
2
,

where Z(X, t) = (X ′, H(Ft,W )′)′. In practice, Ui cannot be observed for some

subject i due to censoring. To solve the problem, we propose to utilize the condi-

10

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



tional expectation of ℓn(θ, µ) given the observed data as a new loss function. To

this end, we let F0(u|x) be the conditional cumulative distribution function of U

given covariate X = x, and compute

E

{
K∑
j=1

ξ(TK,j) [Y (TK,j)− θ′Z(X, TK,j)− µ(U − TK,j)]
2

∣∣∣∣O
}

=
K∑
j=1

ξ(TK,j)

[
∆
{
Y (TK,j)− θ′Z(X, TK,j)− µ(Ũ − TK,j)

}2

+ (1−∆)

∫ τ

Ũ
{Y (TK,j)− θ′Z(X, TK,j)− µ(u− TK,j)}

2
dF0(u|X)

1− F0(Ũ |X)

]
=:L(θ, µ;F0),

where ξ(u) = I(Ũ ≥ u) and τ is a prespecified constant such that P (Ũ ≥ τ) > 0

(see Kong et al. 2018, P16). Therefore, we define a new least square loss function

as

PnL(θ, µ;F )

=
1

n

n∑
i=1

Ki∑
j=1

ξi(TKi,j)

[
∆i

{
Yi(TKi,j)− θ′Zi(X i, TKi,j)− µ(Ũi − TKi,j)

}2

+ (1−∆i)

∫ τ

Ũi
{Yi(TKi,j)− θ′Zi(X i, TKi,j)− µ(u− TKi,j)}

2
dF (u|X i)

1− F (Ũi|X i)

]
,

(3.2)

where Pn denotes the empirical measure. Since the loss function (3.2) involves the

unknown nuisance parameter F , we propose a two-stage estimation procedure. In
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stage one, we obtain an estimator F̂n of F0 based on the data {Ũi,∆i,X i}. In

stage two, θ̂n and µ̂n are obtained by minimizing the loss function PnL(θ, µ; F̂n).

In stage one, to estimate F0(u|x), we can assume a survival model such as the

Cox proportional hazards model (Cox, 1972), that is, the hazard function of U has

the following form

λ(u|X) = λ(u) exp{γ ′X}, (3.3)

where γ is a p-dimensional unknown regression parameter, and λ(u) is the unknown

underlying hazard function. Denote the true values of γ and λ in model (3.3) as

γ0 and λ0, respectively. The regression coefficient γ0 can be estimated by the

partial likelihood and the cumulative baseline hazard function Λ0(t) =
∫ t

0
λ0(u)du

by the Breslow estimator (Breslow, 1972), denoted by γ̂n and Λ̂n, respectively. As

a consequence, F0(u|x) is estimated by

F̂n(u|X) = 1− exp{−Λ̂n(u) exp(γ̂
′
nX)}. (3.4)

In stage two, we propose to use B-splines to approximate µ0(·). For a finite

closed interval [0, τ ], let I = {ti}mn+2l
1 , with 0 = t1 = . . . = tl < tl+1 < . . . <

tmn+l < tmn+l+1 = . . . = tmn+2l = τ , be a sequence of knots that partition [0, τ ]

into mn + 1 subintervals and mn = O(nν), for 0 < ν < 1/2. Let Ψn = Ψl,I

(with order l and knots I) be the space of polynomial splines of order l defined
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in Schumaker (2007, P108, Definition 4.1). According to Schumaker (2007, P117,

Corollary 4.10), there exists a local basis {Bil, 1 ≤ i ≤ qn} with qn = mn + l such

that for any ϕ ∈ Ψl,I , we can write ϕ(t) =
∑qn

i=1 ηiBil(t).

Under suitable smoothness assumptions, µ0(·) can be well approximated by

a function µn(t) in Ψl,I . Denote µn(t) = η′Bl(t), where η = (η1, . . . , ηqn)
′ and

Bl(t) = (B1l(t), . . . , Bqnl(t))
′. Then the loss function PnL(θ, µ; F̂n) is approximate

to PnL
∗(θ,η; F̂n) with µ substituted by µn. Denote the minimizer of PnL

∗(θ,η; F̂n)

as θ̂n and η̂n, which has a closed form as follows:

θ̂n

η̂n

 =

[
1

n

n∑
i=1

Ki∑
j=1

ξi(TKi,j)

{
∆i

 Zi(X i, TKi,j)

Bl(Ũi − TKi,j)


⊗2

+
(1−∆i)

1− F̂n(Ũi|X i)

∫ τ

Ũi

Zi(X i, TKi,j)

Bl(u− TKi,j)


⊗2

dF̂n(u|X i)

}]−1

×

[
1

n

n∑
i=1

Ki∑
j=1

ξi(TKi,j)Yi(TKi,j)

{
∆i

 Zi(X i, TKi,j)

Bl(Ũi − TKi,j)



+
(1−∆i)

1− F̂n(Ũi|X i)

∫ τ

Ũi

Zi(X i, TKi,j)

Bl(u− TKi,j)

dF̂n(u|X i)

}]
.

Then the resulting estimator for µ0(t) is µ̂n(t) ≡
∑qn

k=1 η̂nkBk,l(t).
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4. Asymptotic Results

To establish the asymptotic properties of the proposed estimators, we need the

following regularity conditions.

(C1) The maximum spacing of the knots satisfies △ = maxl+1<i<mn+l+1 | ti −

ti−1 |= O(n−v).Moreover, there exists a constantM > 0 such that △/δ ≤M

uniformly in n, where δ = minl+1<i<mn+l+1 | ti − ti−1 |.

(C2) The parameter spaces of θ = (β′,α′)′, Θ is bounded and convex on Rp+q,

and the true parameter (θ0, µ0) ∈ Θ◦×Fr, where Θ
◦ is the interior of Θ, and

Fr is the collection of bounded functions f on [0, τ ] with bounded derivatives

f (j), j = 1, · · · , k, and the kth derivative f (k) satisfies the following Lipschitz

continuity condition:

|f (k)(s)− f (k)(t)| ≤M |s− t|ζ , s, t ∈ [0, τ ],

where k is a positive integer, ζ ∈ (0, 1] such that r = k + ζ ≥ 2, M is a

positive constant and f (k) is the kth derivative of function f .

(C3) H(·) has bounded total variations, P (∥X∥ ≤M1) = 1 for a positive constant

M1, and the number of observation times K is bounded almost surely.

(C4) The study stops at a finite time τ > 0, s.t. infx P (U ⩾ τ |X = x) = ω1 > 0
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for constant ω1.

(C5) If with probability 1, h′
1Z(X, t) − h2(U − t) = 0 for some deterministic

function h2 and h1 ∈ Rp+q, then h1 = 0 and h2(·) = 0.

(C6) J = E
{∑K

j=1 ξ(TK,j) [Z(X, TK,j)− E{Z(X, TK,j)|K,TK,j, U, C}]⊗2
}
is pos-

itive definite.

(C7) F0(u|X) is absolutely continuous with respect to Lebesgue measure, and the

density function f0(u|X) > f0, u ∈ [0, τ ] for some constant f0 > 0.

These are all mild conditions that could be satisfied in usual situations. Con-

dition (C1) is similar to those required by Stone (1986) and Zhou et al. (1998);

Condition (C2) is a common assumption in nonparametric smoothing estimation

problems. Usually, r = 2 (i.e., k = 1 and ζ = 1) should be satisfied in many situ-

ations and the requirement that r ≥ 2 is to guarantee the desirable control of the

spline approximation error rates of the first derivatives of µ0. The boundedness

conditions (C3) is easily justified in most applications. Condition (C5) is needed to

establish the identifiability of the model. Condition (C6) can be interpreted that

the sample covariance is asymptotically nonsingular. Condition (C7) implies that

the terminal event time U given the covariates X has a strictly positive density.
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For any function µ ∈ Fr, define

∥µ∥22 = E

[
K∑
j=1

ξ(TK,j)µ
2(U − TK,j)

]
.

Then for (θ1, µ1), (θ2, µ2) ∈ Θ×Fr, we define the distance as

d((θ1, µ1), (θ2, µ2)) = {∥θ1 − θ2∥2 + ∥µ1 − µ2∥22}1/2,

where ∥ · ∥ is the Euclidean norm.

Let ∥F∥∞ = supu,x |F (u|x)|. The asymptotic properties for the estimator

(θ̂n, µ̂n) are summarized as follows.

Theorem 1 (Consistency). Suppose that ∥F̂n − F0∥∞ = op(1). Under the condi-

tions (C1)-(C5), d((θ̂n, µ̂n), (θ0, µ0))
P−→ 0 as n→ +∞.

Theorem 2 (Rate of convergence). Suppose that ∥F̂n−F0∥∞ = Op(n
− r

1+2r ). Under

the conditions (C1)-(C7),

d((θ̂n, µ̂n), (θ0, µ0)) = Op(n
−min{νr, 1−ν

2
}).

Remark 1. When ν = 1
1+2r

, n−min{νr, 1−ν
2

} = n− r
1+2r , we conclude from Stone
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(1980, 1982) that the rate of convergence for the estimator (θ̂n, µ̂n) is the optimal

rate in nonparametric regression.

For ease of exposition, we use {Õi, i = 1, · · · , n} to represent the i.i.d. sample

for estimation F0 in stage 1.

Theorem 3 (Asymptotic normality). Suppose that ∥F̂n−F0∥∞ = Op(n
− r

1+2r ). And

assume that there exists a uniformly bounded process O and a Lipschitz function

g̃ such that

√
n

∫ τ

0

ψ(u;O)d{F̂n(u|X)− F0(u|X)} =
1√
n

n∑
i=1

∫ τ

0

ψ̃(u;O)dO(u;O; Õi)

is distributed asymptotically as a normal distribution with mean zero for the in-

tegrable function ψ, where ψ̃ = g̃ ◦ ψ with g̃ ◦ ψ denoting the composite of func-

tions g̃ and ψ. Under the conditions (C1)-(C7) and 1
4r

≤ ν < 1
2
,
√
n(θ̂n − θ0)

converges in distribution to a mean zero normal random variable with variance

matrix J−1QJ−1 as n tends to infinity, where J is defined in condition (C7), and

Q = E[{ψ∗(θ0, µ0, F0;O) +m∗∗(θ0, µ0, F0; Õ)}⊗2] with ψ∗ and m∗∗ being given in

the Supplementary Materials for proving this theorem.

From the theorem, θ̂n achieves the standard convergence rate although the

overall convergence rate of the proposed estimator is slower than n−1/2. To make

inference, we estimate the asymptotic variance of θ̂n by the bootstrap method since
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an unknown conditional expectation term E{Z(X, TK,j)|K,TK,j, U, C} is involved.

C8. The information matrix of the partial likelihood for the Cox regression model

at the true parameter values is positive definite.

Corollary 1. Suppose Conditions (C1)-(C8) hold. If there exists some positive

constant ω2 such that infx P (C ⩾ τ |X = x) = ω2 > 0, then Theorem 3 holds for

θ̂n when F0 is estimated by F̂n(u|X) in (3.4).

5. Simulation Study

In this section, simulation studies were conducted to assess the finite-sample prop-

erties of the proposed estimators. To illustrate the robustness of the proposed

method, we compared the estimation performance of the proposed method and

the two-stage semiparametric likelihood-based approach proposed by Kong et al.

(2018). As both models are conditional models, this comparison provides valuable

insights into the strengths of our proposed method. We generated the response

process from the following two models (the proposed model (I) and Kong’s model

(II)):

(I) Yi(t) = µ0(Ui − t) + β1X1i + β2X2i + αH(Fit,Wi) + ϵi(t), where µ0(U − t) =

1/ exp(U − t), X1i and X2i were generated from Bernoulli distribution with

success probability 0.5 and the uniform distribution over interval [0, 1], re-
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spectively, H(Fit,Wi) = Ni(t−)Wi with Wi = X1i, and ϵi(t) are independent

standard normal variables.

(II) Yi(t) = µ0(Ui−t, ξ)+β1X1i+β2X2i+Zibi+Gi(t)+ϵi(t), where µ0(U−t, ξ) =

ξ1e
−(U−t−ξ2)2ξ3 + β0 with ξ = (ξ1, ξ2, ξ3) = (1,−1, 0.4) and β0 = 1, X1i and

X2i were generated as in (I), Zi follows a standard normal distribution,

bi follows a normal distribution N(0, exp(φ)) with φ = −0.1, Gi(t) is a

mean zero Gaussian process with var(Gi(t)) = ν(t) = exp(ν0 + ν1t) and

corr(Gi(t1), Gi(t2)) = ρ|t1−t2| for (ρ, ν0, ν1) = (1/(1 + exp(1)), 1,−1), and

ϵi are independent measurement errors which follow a normal distirbution

N(0, σ2) with σ2 = exp(−0.5).

In the above setups, the hazard function of Ui is

λ(u|X1i, X2i) = λ0(u) exp (κ(0.5X1i +X2i)),

where λ0(u) = u and κ was adjusted to achieve a desired censoring rate. The

censoring time Ci was generated from the uniform distribution over interval (τ/2, τ)

with τ = 6. Specifically, the censoring rates were 20% and 40% when κ = −2.1

and −3, respectively. Denote Ũi = min(Ci, Ui).

For the generation of the observation process Ni(t) given the covariate X i =

(Xi1, Xi2)
′, we considered two cases:
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(a) The number of observation times Ki equals one plus a Poisson random vari-

able with mean Ũi exp(−X1i+X2i) and the observation times (TKi1, . . . , TKiKi
)

were taken to be the order statistics of a random sample of size Ki from the

uniform distribution over (0, Ũi).

(b) Ki follows the uniform distribution over {1, 2, 3} when X1i = 0 and the uni-

form distribution over {4, 5, 6} otherwise, and the observation times (TKi1, . . . , TKiKi
)

were generated in the same way as in set-up (a).

The true parameter values used in our simulation studies were β0 = (β10, β20)
′ =

(−1, 1)′, α0 = 1. Our results were obtained from 1000 independent runs. To es-

timate µ0(t), cubic B-splines were used in computing the spline estimators, where

we took the number of interior knots as n1/v with v being chosen by BIC crite-

rion. The equally spaced knots are given by U∗
min + k(U∗

max − U∗
min)/(mn + 1), k =

0, 1, · · · ,mn+1, with U∗
min and U∗

max being the respective minimum and maximum

values of distinct times {U∗
ij}’s (U∗

ij = Ũi − TKi,j, j = 1, · · · , Ki, i = 1, · · · , n).

Table 1 presents the simulation results on estimation of (β10, β20, α0) using the

proposed method with the sample sizes n = 100 or 200, censoring rates 20% or

40% under models (I) and (II) with the Poisson (a) or non-Poisson (b) observation

times. The simulation results include the estimated bias (BIAS) given by the

average of the estimates minus the true value, the bootstrap standard errors of

the estimates (BSE), the sample standard deviation of the estimates (SSE), and
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the bootstrap 95% coverage probabilities (CP) obtained from 1000 independent

runs. Here, we used 200 replications in bootstrap to estimate the standard errors.

In Table 2, BIAS and SSE results for the estimation of (β10, β20) are given for

comparison between the proposed method and Kong’s method (Kong et al., 2018).

Table 3 gives the integrated square error (ISE) results for the estimation accuracy

of µ̂n in (I) and µ̂∗
n = µ0(·, ξ̂) in (II), where ISE(µ̂n) =

∫ τ/2

0
{µ0(t) − µ̂n(t)}2dt

(P53, Härdle et al., 2004). Figure 1 shows the estimation results of µ0(t) under

setups I with µ0(t) = 1/ exp(t) and II with µ0(t) = e−0.4(t+1)2 + 1 for the sample

size n = 100 or 200 and cases “A” (CR=20%, Observation process (a)), “B”

(CR=40%, Observation process (a)), “C” (CR=20%, Observation process (b)),

and “D” (CR=40%, Observation process (b)). In Figure 1, the red solid line

represents the true curve for µ0(t), the black dashed line represents the estimated

curve by our proposed method, and the blue dotted line represents the pointwise

average of the estimated normal kernel function by Kong’s method.

Based on our simulation results, we have the following findings: (i) Under both

the proposed model setup (I) and Kong’s model setup (II) for the response vari-

able, the proposed two stage spline-based least square estimators perform well for

both the non-Poisson and Poisson observation processes with different censoring

rates and sample sizes. Specifically, the estimates are approximately unbiased; the

sample standard errors of the estimates and the bootstrap standard errors of the
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Table 1: Simulation results on estimation of (β1, β2, α) using the proposed method.

Observation(a) Observation(b)
CR = 20% CR = 40% CR = 20% CR = 40%

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

I

β1

BIAS -0.0016 -0.0009 0.0158 0.0157 0.0059 0.0011 0.0119 0.0013
SSE 0.1570 0.1068 0.1752 0.1213 0.1710 0.1232 0.1950 0.1394
BSE 0.1550 0.1059 0.1780 0.1206 0.1754 0.1224 0.2005 0.1379
CP 0.9480 0.9430 0.9480 0.9430 0.9420 0.9520 0.9450 0.9340

β2

BIAS 0.0146 0.0217 0.0415 0.0369 0.0201 0.0166 0.0340 0.0278
SSE 0.2125 0.1477 0.2233 0.1513 0.2110 0.1470 0.2517 0.1743
BSE 0.2102 0.1457 0.2295 0.1553 0.2141 0.1486 0.2544 0.1739
CP 0.9430 0.9350 0.9470 0.9420 0.9470 0.9470 0.9460 0.9430

α

BIAS 0.0079 0.0088 0.0092 0.0056 0.0014 0.0023 0.0029 0.0058
SSE 0.0675 0.0461 0.0787 0.0509 0.0515 0.0355 0.0599 0.0410
BSE 0.0711 0.0456 0.0840 0.0525 0.0519 0.0361 0.0606 0.0414
CP 0.9510 0.9440 0.9410 0.9500 0.9450 0.9510 0.9320 0.9460

II

β1

BIAS -0.0043 -0.0014 0.0023 -0.0044 -0.0075 -0.0016 -0.0088 -0.0030
SSE 0.1463 0.1086 0.1804 0.1195 0.1795 0.1251 0.2009 0.1402
BSE 0.1546 0.1058 0.1777 0.1206 0.1769 0.1229 0.2019 0.1386
CP 0.9540 0.9510 0.9320 0.9530 0.9410 0.9400 0.9480 0.9450

β2

BIAS 0.0167 0.0125 0.0126 0.0151 0.0025 -0.0012 0.0032 0.0033
SSE 0.2118 0.1430 0.2224 0.154 0.2050 0.1505 0.2485 0.1744
BSE 0.2105 0.1455 0.2260 0.1558 0.2149 0.1486 0.2570 0.1742
CP 0.9410 0.9420 0.9370 0.9480 0.9570 0.9520 0.9490 0.9530

α

BIAS 0.0038 0.0051 0.0047 0.0086 0.0029 0.0022 0.0049 0.0045
SSE 0.0655 0.0455 0.0805 0.0527 0.0530 0.0347 0.0604 0.0398
BSE 0.0700 0.0449 0.0836 0.0525 0.0525 0.0359 0.0611 0.0413
CP 0.9470 0.9420 0.9560 0.9360 0.9290 0.9550 0.9340 0.9520
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Table 2: Comparison for the estimation of (β1, β2) between the proposed method
and Kong’s method (KNKSH).

Observation(a)
CR = 20% CR = 40%

Method n = 100 n = 200 n = 100 n = 200

I

β1

Proposed
BIAS -0.0016 -0.0009 0.0158 0.0157
SSE 0.1570 0.1068 0.1752 0.1213

KNKSH
BIAS 0.0349 0.0346 0.0684 0.0658
SSE 0.1139 0.0816 0.1138 0.0788

β2

Proposed
BIAS 0.0146 0.0217 0.0415 0.0369
SSE 0.2125 0.1477 0.2233 0.1513

KNKSH
BIAS 0.0460 0.0560 0.1342 0.1270
SSE 0.2005 0.1421 0.2057 0.1381

II

β1

Proposed
BIAS -0.0043 -0.0014 0.0023 -0.0044
SSE 0.1463 0.1086 0.1804 0.1195

KNKSH
BIAS 0.0218 0.0214 0.0353 0.0346
SSE 0.1126 0.0814 0.1135 0.0767

β2

Proposed
BIAS 0.0167 0.0125 0.0126 0.0151
SSE 0.2118 0.1430 0.2224 0.1540

KNKSH
BIAS 0.0288 0.0379 0.0740 0.0740
SSE 0.1998 0.1456 0.2015 0.1403

Observation(b)
CR = 20% CR = 40%

Method n = 100 n = 200 n = 100 n = 200

I

β1

Proposed
BIAS 0.0059 0.0011 0.0119 0.0013
SSE 0.1710 0.1232 0.1950 0.1394

KNKSH
BIAS 0.0277 0.0260 0.0636 0.0611
SSE 0.1224 0.0883 0.1320 0.0927

β2

Proposed
BIAS 0.0201 0.0166 0.0340 0.0278
SSE 0.2110 0.1470 0.2517 0.1743

KNKSH
BIAS 0.0582 0.0640 0.1300 0.1330
SSE 0.2040 0.1461 0.2127 0.1506

II

β1

Proposed
BIAS -0.0075 -0.0016 -0.0088 -0.0030
SSE 0.1795 0.1251 0.2009 0.1402

KNKSH
BIAS 0.0178 0.0154 0.0359 0.0335
SSE 0.1224 0.0885 0.1304 0.0909

β2

Proposed
BIAS 0.0025 -0.0012 0.0032 0.0033
SSE 0.2050 0.1505 0.2485 0.1744

KNKSH
BIAS 0.0310 0.0346 0.0657 0.0698
SSE 0.2013 0.1417 0.2121 0.1467
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Figure 1: The estimation results of µ0(t) under setups I with µ0(t) = 1/ exp(t)
and II with µ0(t) = e−0.4(t+1)2 + 1. “A” (CR=20%, Observation process (a)), “B”
(CR=40%, Observation process (a)), “C” (CR=20%, Observation process (b)),
and “D” (CR=40%, Observation process (b)). Red solid (true), black dashed
(proposed), blue dotted (Kong’s).
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Table 3: ISE comparison between the proposed method and Kong’s method
(KNKSH).

Observation(a)
CR = 20% CR = 40%

Setup Method n = 100 n = 200 n = 100 n = 200

I
Proposed 0.0811 0.0391 0.0825 0.0369
KNKSH 0.0878 0.0448 0.1036 0.0487

II
Proposed 0.0819 0.0384 0.0818 0.0394
KNKSH 0.0946 0.0512 0.0994 0.0477

Observation(b)

I
Proposed 0.0934 0.0430 0.1060 0.0480
KNKSH 0.1005 0.0540 0.1231 0.0632

II
Proposed 0.0964 0.0441 0.1101 0.0497
KNKSH 0.1008 0.0518 0.1149 0.0572

proposed estimators are close to each other; the bootstrap 95% coverage rates are

close to the nominal level, that is, the proposed procedure provides reasonable es-

timates and the normal approximation seems to be appropriate. (ii) Our estimates

have biases closer to zero and smaller ISE values than Kong’s method (KNKSH),

and SSEs by two methods are comparable. (iii) The estimated curves of µ0(t) are

very close to their real curves with the moderate sample size, indicating that the

B-splines estimator for µ0(t) works well under all situations. While the estimated

normal kernel function µ̂∗
n based on Kong’s 2-stage method has some deviations

from the real curve, especially when the censoring rate increases.

In conclusion, simulations demonstrate that the proposed estimation procedure

is robust in terms of model structures for longitudinal response and observation
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processes.

6. Application

This section presents an analysis of AIDS (the acquired immunodeficiency syn-

drome) clinical trial by applying our proposed method. The study was initiated in

December 1990 by the Terry Beirn Community Programs for Clinical Research on

AIDS (CPCRA) (Abrams, et al., 1994; Goldman, et al. 1996). This AIDS clinical

trial was a multi-center, randomized, open-label, community-based clinical trial

comparing the clinical efficacy and safety of two alternative antiretroviral drugs,

namely didanosine (ddI) and zalcitabine (ddC). In the trial, 467 HIV-infected pa-

tients who met entry conditions (either an AIDS diagnosis or two CD4 lymphocyte

counts of ≤ 300 cells/mm3, and leading to the intolerance of zidovudine (AZT)

or the progression of disease during the therapy) were enrolled and randomly as-

signed to receive either ddI (500 mg per day) or ddC (2.25 mg per day), stratified

by clinical unit and by AZT intolerance versus failure. 230 patients received ddI

and 237 received ddC. By the end of the study, 100 patients had died in the ddI

group and 88 in the ddC group, resulting in 59.7% censoring rate. Absolute CD4

lymphocyte counts were measured at baseline and at the 2-,6-, and 12-month visits

(and a few at 18 months), but less frequently if the patient refused or was too ill

for testing. The median length of follow-ups from the time of randomization was

26

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



16 months ( ranging from 12 to 21). Data for each patient consist of survival time

(months from admission to death or censoring), patients status at the follow-up

time (dead = 1, alive = 0), drug (ddI =1, ddC = 0), gender (female =1, male =

0), previous opportunistic infection at the study entry PrevOI (AIDS diagnosis =

1, no AIDS diagnosis = 0), AZT stratum (AZT failure =1, AZT intolerance =0),

and CD4 counts at the beginning of the study and the following visiting times.

This dataset can be found in the “JM” R package.

To analyze the data, for patient i, define x1i as drug, x2i as gender, x3i as

AIDS diagnosis indicator PrevOI and x4i as the AZT stratum indicator; denote Ũi

as the observed event time with the indicator ∆i = 1 when death happens, 0 when

censoring happens. Define the response Yi(t) to be the natural logarithm of the

CD4 counts of patient i up to time t plus 1. Let Ni(·) represent the accumulated

observation numbers of patient i over the study period. Assume that Yi(t) can

be described by model (2.1) with H(Fit,W i) = Ni(t−)(X1i, X3i)
′, meaning that

the relation between CD4 counts and observation times may vary with different

treatments and previous AIDS diagnosis status. Also we assume that the death

time Ui follows the Cox model as in (3.3) withX i = (X1i, X3i, X4i)
′. For estimation

of µ0, we use the cubic B-spline approximation.

Applying the estimation procedure proposed in the previous sections, we ob-

tained the estimation results for the regression coefficients in Table 4. Gender and
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Table 4: The estimation results for the ddI/ddC study by using our proposed
method.

Longitudinal model Survival model
Covariate Coeff Estimate (95%CI) Coeff Estimate (95%CI)
Drug β1 -0.0117(-0.1295,0.1066) γ1 0.2086(-0.0781,0.4953)
Gender β2 0.0076 (-0.2563,0.2900)
PrevOI β3 -0.4803(-0.6779,-0.3111) γ2 1.2932(0.8483,1.7382)
AZT β4 -0.0503(-0.1752,0.0821) γ3 0.1278(-0.1889,0.4447)
Drug×N(t−) α1 0.0724(0.0058,0.1355)
PrevOI×N(t−) α2 0.0024(-0.0529,0.0519)

AZT stratum seem to have no significant impact on CD4 counts. The estimated

PrevOI coefficient and its 95% confidence interval indicate that patients diagnosed

with AIDS at baseline had significant lower CD4 counts compared with those

without AIDS. The interaction between drug and the observation times would

positively influence on the CD4 counts, that is, with more observation times, pa-

tients in the ddI group would have significantly more CD4 counts than those in

the ddC group. And the interaction between PrevOI and the observation times

has no significant influence on the CD4 counts. The estimated curve for µ0 with

95% pointwise confidence interval is given in Figure 2. From this figure, it can be

seen that the baseline curve for the CD4 counts has a increasing pattern when the

testing time is far away from the terminal event time, while the pattern becomes

to decrease when the testing time is close to the terminal event time.

In the Cox model, the estimates for coefficients indicate that zalcitabine was
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Figure 2: The estimated curve (red solid line) of µ0 with 95% pointwise confidence
interval (blue) for the ddI/ddC study.

as efficacious as didanosine in delaying death of patients, while zalcitabine may

have a survival advantage than didanosine. Patients diagnosed with AIDS at

baseline had significant lower survival probability compared with those without

AIDS, and AZT stratum seem to have no significant impact on patients’ survival

time. The goodness-of-fit for the Cox model was checked for this ddI/ddC data and

the corresponding goodness-of-fit empirical p-values are 0.5486, 0.8056 and 0.3656,

based on 20, 000 simulated martingale residual score process (Lin et al., 1993).

These results indicate that the proportional hazards model for drug, previous AIDS

diagnosis indicator and AZT stratum indicator fits the data reasonably well.
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7. Concluding remarks

Taking into account that both informative observation times and informative ter-

minal event time may exist at the same time for longitudinal data, a class of new

flexible semiparametric marginal conditional mean model for the longitudinal re-

sponse process has been proposed. First of all, considering that the influence of

the terminal event time on the longitudinal response may have different patterns,

we treat the length from the observation times to the occurrence of the terminal

event time as a covariate in the conditional model with an unknown functional

form. Kong et al. (2018) considered a specified functional form. Second, the new

model allows for the interaction between the observation history and some covari-

ates. This is different from the joint modeling approach that uses latent variables

to characterize the correlation between the response process and the observation

times. Third, we leave the within-subject dependence structure of the response

process and patterns of the observation process to be arbitrary, while Kong et al.

(2018) specified the distributional form of a longitudinal response process with a

pre-specified visit scheme.

For inference about the unknown function and regression parameters in the

proposed models, a two-stage spline-based least squares estimation approach has

been developed, where the nuisance conditional distribution function for the ter-

minal event time is estimated in the first stage, and the approximate least square
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loss function is used to estimate the parameters for the longitudinal model in the

second stage. As demonstrated in our simulation studies, the proposed approaches

are more flexible and robust with respect to the model structures for the response

and observation processes.

The specific model for the terminal event time is left unspecified in our ap-

proach. However, when the estimator for the conditional distribution of the ter-

minal event time given covariates satisfies certain asymptotic properties, we can

establish the corresponding asymptotic properties of our proposed two-stage es-

timator. For the terminal event time, various alternative survival models can be

utilized, such as the Cox model, additive hazards model, or accelerated failure time

model.

Note that in our proposed model, the covariate X can indeed be time-varying.

The proposed estimation procedure allows for time-varying covariates and the

asymptotic properties of the estimator remain valid under this scenario.

Further research is to extend the proposed methods to other useful models such

as marginal conditional varying-coefficient or nonparametric regression models for

longitudinal response processes.

Supplementary Materials

The supplementary materials include the proofs of lemmas and theorems.
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