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Abstract: A new change-point detector for structure breaks in functional means is developed

in this paper. The detector is based on a novel easy-to-implement approach of dimension

reduction. One major advantage of the proposed method is its efficiency in selecting the basis

functions that capture the change/jump of functional means, leading to a higher detection

power. We thoroughly investigate the asymptotic properties of the proposed detector when

both the sample size and the incorporated dimension increase. The numerical simulation

studies justify the superiority of the proposed approach compared to the existing competitors

and highlight the necessity of aligning the basis functions with the change to be detected.

An application to annual humidity trajectories illustrates the practical superiority of the

developed approach.

Key words and phrases: Change point analysis, Change alignment, Dimension reduction,

Functional Mean, Weakly dependent functional data.
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1. Introduction

This paper provides a new method to tackle a popular problem in functional data

analysis, detecting the change point in functional means of a sequence of functional

time series. The general setting is that a single change point partitions the entire

sequence into two local stationary blocks, where the functions in each block share

the same mean function.

There have been a number of methods developed for functional structural breaks

in mean function. Many of them are developed based on dimension reduction or

projection. A typical step in projection-based approaches is to project the functions

onto a finite number of basis functions, and the projection scores are employed to

detect the change in mean of independent or dependent functional data sequence.

See, for example, Berkes et al. (2009), Aue et al. (2009), Zhang et al. (2011), Aston

and Kirch (2012a) and the references therein. More recently, Fremdt et al. (2014)

consider structural break detection by using functional principal component analy-

sis (fPCA) with an increasing number of projections. Dimension reduction is also

utilized to detect change points of multivariate functions under separability assump-

tions (e.g., spatial temporal data or brain image data), see Aston and Kirch (2012b),

Gromenko, Kokoszka and Reimherr (2017) and Stoehr, Aston and Kirch (2021).

Structural break detection in the coefficient operators of functional linear models is

considered in Aue et al. (2014). Structural break detection in spectrum and trace of
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covariance operator is studied in Jaruskova (2013) and Aue, Rice and Sönmez (2020).

Test for stationarity of functional time series in the spectral domain is developed in

Aue and van Delft (2020). Chiou, Chen and Hsing (2019) and Chen, Chiou and

Huang (2021) study the multiple change-point problem for functional data.

In the change-point analysis of functional data, one major limitation of dimension

reduction is that, when the selected basis functions are not aligned with the jump of

mean function, the projection-based detector fails to detect the change points. To

solve this problem, an alternative fully functional approach is employed in Horváth,

Kokoszka and Rice (2014), Aue, Rice and Sönmez (2018) and Jiao, Frostig and Om-

bao (2022), which does not rely on dimension reduction. In the fully functional

detection procedure, the null distribution involves infinitely many unknown param-

eters and requires additional truncation step, however. To circumvent this difficulty,

Sharipov, Tewes and Wendler (2016) and Bucchia and Wendler (2017) study the

bootstrap procedure. In addition to the fully functional approach, Torgovitski (2015)

considered aligning the leading fPC with the change.

Although the fully functional detector is guaranteed to detect the change as the

sample size increases, one major limitation of the approach is that it incorporates

all basis functions that span the functional space, including potentially infinitely

many irrelevant (unaligned with the change) basis functions. The irrelevant basis

functions do not contribute to change point detection, and can potentially lead to loss
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of detection power due to their nuisance effect. In the literature, sample trajectories

are often pre-smoothed with a few smooth basis functions. In that case, the fully

functional approach also performs decently for the smoothed functions, since the

nuisance effect is significantly attenuated by functional smoothing, and thus is not

very substantial when the number of pre-smoothing basis is kept small. Extended

pre-smoothing can lead to a serious loss of information, however. It will make the

fully functional detector fail when the functions are smoothed with low-frequency

basis but the change functions are driven by high frequencies. Therefore, it is more

advantageous to select basis functions which are informative to the change of mean,

than to incorporate all basis functions or smooth the functions with pre-specified

basis.

In this paper, we develop a new detection method for structural breaks in

functional means. The key idea is to align the selected basis functions with the

change/jump function. To achieve this goal, we introduce a discrepancy enhanced

covariance (DEC) operator, of which the eigenfunctions constitute the basis functions

for dimension reduction. The DEC operator involves two parts. The first part is the

long-run covariance and the second part is the enhancement term, which is calibrated

to magnify the influence of the change-aligned basis functions. These basis functions

have the advantage that they are aligned with the jump function. Unlike the fully

functional approach, the null distribution of the developed detector only involves a
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finite number of parameters, and the nuisance effect of unaligned/irrelevant basis

functions is substantially reduced. Another contribution of this paper is that we

investigate the asymptotic properties under more complicated settings. Specifically,

we allow both the change magnitude and the incorporated dimension to change with

the sample size. We thoroughly investigate the regularity conditions under which the

power of the proposed detector approaches one as the sample size goes to infinity,

including the cases when the change magnitude diminishes.

The rest of the article is organized as follows. In Section 2, we develop the change-

aligned detection procedure and discuss the implementation details. Theoretical

results are discussed in Section 3. In Section 4, we report the simulation results

under different settings. In Section 5, we present the real data analysis on annual

humidity trajectories. The paper is concluded in Section 6. Proofs are given in the

online supplementary materials.

2. Change-aligned Detection Procedure

2.1 Projection-based Detector

For a sequence of random functions {Xn(t) : n = 1, . . . , N}, where Xn ∈ L2[0, 1], a
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2.1 Projection-based Detector

single change-point model can be formulated as

Xn(t) =


µ0(t) + en(t), n ≤ k∗,

µ1(t) + en(t), n > k∗,

(2.1)

where k∗ = bNθ∗c and θ∗ is the fixed scaled location of the change-point in [0,1],

and the zero-mean random functions {en(t) : n ∈ N} take realizations in L2[0, 1]

and satisfy that E
∫
e2n(t)dt < ∞. In the space L2[0, 1], the inner product of two

elements x(t), y(t) are defined as 〈x, y〉 =
∫ 1

0
x(t)y(t)dt and the norm is defined as

‖x‖ = {
∫ 1

0
x2(t)dt}1/2 <∞. It is assumed that {en(t) : n ∈ N} are weakly dependent

as quantified in the following assumption.

Assumption 1. There is a measurable function f : S∞ → L2[0, 1], where S is

a measurable space, and the i.i.d. innovations {εn : n ∈ N} take values in S, so

that en(t) = f(εn, εn−1, . . .)(t). In addition, there exists a m-dependent sequence

{en,m(t) : i ∈ N}, so that en,m(t) = f(εn, . . . , εn−m+1, ε
∗
n−m, ε

∗
n−m−1, . . .)(t), where ε∗n

is an independent copy of εn, such that
∑∞

m=0{E‖en(t)− en,m(t)‖p}1/p <∞ for some

p > 2.

A process is termed Lp-m approximable if it satisfies Assumption 1 (see Hörmann

& Kokoszka (2010)). This is a mild assumption which is satisfied by many processes,

such as auto-regressive processes and moving average processes.

In this paper, a single structural break problem is considered. When there are

multiple change-points, we propose to apply some localization method to segment
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2.1 Projection-based Detector

the whole sequence into multiple blocks, where at most one change-point (AMOC)

assumption is made for each block, and then use the proposed approach to each block

to detect the change-point. More details can be found in the real data analysis of

humidity trajectories. This is beyond the scope of this paper, and we do not pursue

its details here.

Therein, the goal is to detect whether a change point exists and to identify the

location of the change-point. Define the jump function as δ(t) = µ0(t) − µ1(t), and

the following test is implemented to detect the change point,

H0 : ‖δ‖ = 0 vs Ha : ‖δ‖ 6= 0. (2.2)

Remark 1. In Ha, we require that ‖δ‖ 6= 0, say, δ(t) 6= 0 for a set of t with positive

Lebesgue measure.

Given a sequence of basis functions {bd(t) : d ≥ 1}, suppose that Xn(t) =∑
d≥1 ηndbd(t) and let ηn = (ηnd, . . . , ηnD)′ where D > 0, then the cumulative sum

(CUSUM) is defined as

SN,θ =

bNθc∑
n=1

ηn − θ
N∑
n=1

ηn.

The projection-based method is based on the squared (scaled) CUSUM statistic,

TN(θ) = N−1‖SN,θ‖22, (2.3)

where ‖ · ‖2 denotes the `2-norm. The value of TN(θ) should be large at the true

change point θ∗, thus by convention, the following max-type quantity is employed as
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2.1 Projection-based Detector

the detector of change point

TN(θ̂∗N) = max
0<θ<1

TN(θ),

and for uniqueness, the infimum of the maximizers of TN(θ), namely

θ̂∗N = inf{θ : TN(θ) = sup
θ′∈(0,1)

TN(θ′)}

is assumed to be the change point candidate. In principle, it is desirable for the

selected basis functions {bd(t) : d = 1, . . . , D} to capture the jump function, say,

〈bd, δ〉 6= 0 for some d. Otherwise, the method fails even if ‖δ‖ is much bigger than

zero.

The following result quantifies the null distribution of the projection-based de-

tector.

Theorem 1. Under Assumption 1 and H0,

TN(θ̂∗N)
d→ sup

θ∈(0,1)
B′(θ)ΣDB(θ),

where B(θ) = (B1(θ), . . . , BD(θ))′ and {Bd(θ) : d ≥ 1} are i.i.d. Brownian bridges

and ΣD =
∞∑

h=−∞
Cov(ηn,ηn+h).

The theorem follows from Theorem A.1 in Aue et al. (2009). Theorem 1 asymp-

totically validates the test of H0. Specifically, H0 is rejected if the test statistic

TN(θ̂∗N) exceeds the corresponding quantile of the null distribution sup
θ∈(0,1)

B′(θ)ΣDB(θ).
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2.2 Selection of Basis Functions

2.2 Selection of Basis Functions

Define the (auto)covariance function of {Xn : n ∈ N} as CX,h(t, s) = E{en(t)en+h(s)},

and the long-run covariance as LCX(t, s) =
∑∞

h=−∞CX,h(t, s). Assume that, with a

sequence of positive and decreasing eigenvalues {τd : d ≥ 1} and orthonormal eigen-

functions {φd(t) : d ≥ 1}, the spectral decomposition LCX(t, s) =
∑

d≥1 τdφd(t)φd(s)

is allowed.

The selection of {bd(t) : d = 1, . . . , D} highly influences the performance of the

detector. A popular way of selecting the basis functions is to employ the major

eigenfunctions of the (long-run) covariance operator LCX(·), induced by the kernel

LCX(t, s), and the resulting null distribution is supθ∈(0,1)
∑D

d=1 τdB
2
d(θ) (see Berkes et

al. (2009), Hörmann, Kidziński and Hallin (2015) and Torgovitski (2015)). Such basis

functions are not guaranteed to align with δ(t). To solve this problem, our approach

is based on the major eigenfunctions of the discrepancy enhanced covariance (DEC)

operator described as follows.

To separate the jump-aligned component and other irrelevant components, first

transform the functions as follows:

Y (κ)
n (t) = Xn(t)−

〈
Xn,

δ

‖δ‖+ κ

〉
δ(t)

‖δ‖+ κ
, (2.4)

where κ is a small-valued positive tuning parameter shrinking to zero as N → ∞.

Note that δ(t) is typically unknown, and the estimation of δ(t) will be discussed in
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2.2 Selection of Basis Functions

Section 2.3.

The term Y
(κ)
n (t) in (2.4) is well defined under both H0 and Ha. The DEC is

then defined as

K(κ)(t, s) = LCY,κ(t, s) + ρδ(t)δ(s),

where ρ is the enhancement parameter to be specified. The quantity LCY,κ(t, s) is

the long-run covariance of Y
(κ)
n (t), defined as

LCY,κ(t, s) =
∞∑

h=−∞

C
(κ)
Y,h(t, s),

where C
(κ)
Y,h(t, s) = E{Y (κ)

n (t)−E(Y
(κ)
n )(t)}{Y (κ)

n+h(s)−E(Y
(κ)
n+h)(s)}. By Mercer’s the-

orem, suppose that a sequence of decreasing positive eigenvalues {ω(κ)
d : d ≥ 1} and

a sequence of corresponding orthonormal eigenfunctions {ψ(κ)
d : d ≥ 1} can be found

such that

K(κ)(t, s) =
∑
d≥1

ω
(κ)
d ψ

(κ)
d (t)ψ

(κ)
d (s).

It is proposed to make use of {ψ(κ)
d (t) : d = 1, . . . , D} in defining the test statistic

TN(θ).

To understand this selection procedure, first defineK(t, s) = LCY (t, s)+ρδ(t)δ(s)

under Ha, where

LCY (t, s) =
∞∑

h=−∞

CY,h(t, s) =
∞∑

h=−∞

E{Yn(t)− E(Yn)(t)}{Yn+h(s)− E(Yn+h)(s)}
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2.2 Selection of Basis Functions

and {Yn(t) : n ∈ N} are defined as

Yn(t) = Xn(t)−
〈
Xn,

δ

‖δ‖

〉
δ(t)

‖δ‖
. (2.5)

The kernel function K(t, s) is positive definite, thus similar to K(κ)(t, s), the spectral

decomposition can be found as K(t, s) =
∑

d≥1 ωdψd(t)ψd(s).

Evidently, under Ha and as κ → 0, LCY,κ → LCY , thus {(ω(κ)
d , ψ

(κ)
d (t)) : d ≥ 1}

converge to {(ωd, ψd(t)) : d ≥ 1}. Clearly, δ(t) is orthogonal to all the eigenfunctions

of LCY (·) due to the projection (2.5), and thus {ρ‖δ‖2, δ(t)/‖δ‖} is a pair of eigen-

value and eigenfunction of K(t, s). In what follows, it is supposed that ωd∗ = ρ‖δ‖2

and ψd∗(t) = δ(t)/‖δ‖, and denote ω
(κ)
d∗ and ψ

(κ)
d∗ (t) as the counterparts of K(κ)(t, s).

Observe that ψd∗(t) = δ(t)/‖δ‖ is the only eigenfunction of K(t, s) aligned with the

jump function δ(t), and a large value of ρ leads to large eigenvalue ρ‖δ‖2.

In practice, δ(t) is typically unknown and K(t, s) may be not well-defined (when

‖δ‖ = 0 under H0, and this leads to the non-consistency of δ̂/‖δ̂‖). To solve this

problem, we add the tuning parameter κ and obtain {Y (κ)
n (t), n ≥ 1}. It is of

major interest to enhance the influence of the jump-aligned counterpart of K(κ)(t, s),

namely, ψ
(κ)
d∗ (t). In the following, ψ

(κ)
d∗ (t) is termed jump-aligned basis function.

The step (2.4) is important for the selection of dimension D (see Section 2.5).

An alternative approach is to employ the major functional principal components of

LCX(t, s) + ρδ(t)δ(s). While this is also reasonable, we still recommend to do the

projection (2.4) first. The reason is that, without projection, it is hard to find all
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2.3 Estimations

aligned (not orthogonal to δ(t)) eigenfunctions of LCX(t, s) + ρδ(t)δ(s), making the

selection of D much more complicated.

2.3 Estimations

This section illustrates the estimation of basis functions. The selected basis functions

are the first D eigenfunctions of K(κ)(t, s), which incorporates an unknown quantity

δ(t). Thus we need to first get a reasonable estimate of δ(t), and then estimate

K(κ)(t, s), and the basis functions are then obtained from the estimate of K(κ)(t, s).

Denote k̂
(f)
N as the infimum of the maximizer(s) of the squared norm of the

(scaled) fully functional cumulative sum statistic

M(k) =
1

N

∫ ( k∑
n=1

Xn(t)− k

N

N∑
n=1

Xn(t)

)2

dt.

We propose to segment the entire functional sequence at the midpoint into two

separate subsequences, {Xn(t) : n = 1, . . . , k̂
(f)
N } and {Xn(t) : n = k̂

(f)
N + 1, . . . , N},

and estimate δ̂(t) as follows

δ̂(t) =
1

k̂
(f)
N

k̂
(f)
N∑
n=1

Xn(t)− 1

N − k̂(f)N

N∑
n=k̂

(f)
N +1

Xn(t).

We make the following assumption on δ(t).

Assumption 2. Under Ha, N
αδ = O(‖δ‖), where αδ > −1/2.

Then we have the following result.
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2.3 Estimations

Theorem 2. Under Assumption 1, 2 and Ha, ‖δ̂ − δ‖ = Op(N
−1/2 + (N‖δ‖)−1).

We make Assumption 2 so that the change point can be detected asymptotically

almost surely (see Theorem 6). This theorem tells that, under some mild conditions,

δ̂(t) is consistent with δ(t). The proof of this theorem can be found in Aue, Rice and

Sönmez (2018) (Lemma A.5).

Then we construct Y
(κ)
n (t) as

Y (κ)
n (t) = Xn(t)−

〈
Xn,

δ̂

‖δ̂‖+ κ

〉
δ̂(t)

‖δ̂‖+ κ
.

Further this leads to the empirical (auto)covariance of {Y (κ)
n (t) : n ∈ N} displayed

below

Ĉ
(κ)
Y,h(t, s) =

1

N − h

N−h∑
n=1

{Y (κ)
n (t)− Ȳ (κ)

n (t)}{Y (κ)
n+h(s)− Ȳ

(κ)
n+h(s)}, h ≥ 0,

Ĉ
(κ)
Y,h(t, s) =

1

N + h

N∑
n=|h|+1

{Y (κ)
n (t)− Ȳ (κ)

n (t)}{Y (κ)
n+h(s)− Ȳ

(κ)
n+h(s)}, h < 0,

where

Ȳ (κ)
n (t) =



1

k̂
(f)
N

k̂
(f)
N∑
j=1

Y
(κ)
j (t), 1 ≤ n ≤ k̂

(f)
N ,

1

N − k̂(f)N

N∑
j=k̂

(f)
N +1

Y
(κ)
j (t), k̂

(f)
N + 1 ≤ n ≤ N,

The estimation of K(κ)(t, s) is then given as follows,

K̂(κ)(t, s) =
∑̀
h=−`

W

(
h

`

)
Ĉ

(κ)
Y,h(t, s) + ρδ̂(t)δ̂(s),
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2.4 Selection of ρ and κ

where W (·) is the kernel function, and ` is the bandwidth. See, e.g., Rice and Shang

(2017) for the selection of the bandwidth `.

The corresponding empirical eigenfunctions are defined through the eigen-equation∫
K̂(κ)(t, s)ψ̂

(κ)
d (s)ds = ω̂

(κ)
d ψ̂

(κ)
d (t), leading to η̂n = (η̂n1, . . . , η̂nD)′, where η̂nd =

〈Xn, ψ̂
(κ)
d 〉 and ŜN,θ =

∑bNθc
n=1 η̂n − θ

∑N
n=1 η̂n. Similarly, ΣD is estimated with the

kernel estimator

Σ̂D =
∑̀
h=−`

W

(
h

`

)
Ĉη,h,

where Ĉη,h is defined similar to Ĉ
(κ)
Y,h with Y

(κ)
n (t) replaced by η̂n. The empirical

detector is then obtained as T̃N(θ) = N−1‖ŜN,θ‖22.

2.4 Selection of ρ and κ

Note that we only need to do the enhancement when Ha is true, and the enhancement

term only brings more estimation uncertainty under H0.

Therefore, it is ideal that the enhancement term lays asymptotically trivial influ-

ence under H0. To achieve this goal, ρ should be selected so that ρδ̂(t)δ̂(s) converges

to zero faster than L̂CY,κ(t, s)− E{LCY,κ(t, s)}, say,

ρ‖δ̂(t)‖2/‖L̂CY,κ(t, s)− E{L̂CY,κ(t, s)}‖
p→ 0.

Under Assumption 1, it can be deduced thatNE‖L̂CY,κ(t, s)−E{L̂CY,κ(t, s)}‖2 <

∞ for any fixed κ and ` (see Theorem 4.1 in Hörmann & Kokoszka (2010) and Lemma
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2.4 Selection of ρ and κ

4 in Jiao, Frostig and Ombao (2022)), and it can also be deduced that NE‖δ̂(t)‖2 <

∞ under Assumption 1 (see Lemma 2 in Jiao, Frostig and Ombao (2022)). There-

fore, ‖δ̂(t)‖2 = Op(N
−1) and ‖L̂CY,κ(t, s) − E{L̂CY,κ(t, s)}‖ = Op(N

−1/2), and we

propose to choose ρ = Nβ, with some 0 < β < 1/2.

For the identifiability of the jump aligned basis function, we propose to adjust

the selected ρ so that ρ‖δ̂‖2 lies in the middle of the two neighboring eigenvalues of

L̂CY,κ(·). Suppose that

L̂CY,κ(t, s) =
∑
d≥1

λ̂
(κ)
d ν̂

(κ)
d (t)ν̂

(κ)
d (s),

where λ̂
(κ)
1 > λ̂

(κ)
2 > · · · . If ρ‖δ̂‖2 is greater than the maximal eigenvalue of L̂CY,κ(·),

then ρ is selected so that ρ‖δ̂‖ − λ̂(κ)1 is greater than a non-trivial positive value Lρ,

e.g., λ̂
(κ)
1 − λ̂

(κ)
2 . The identifiability of ψ

(κ)
d∗ (t) will be discussed in Section 3.2.

The principle of selecting κ is that the term δ̂/(‖δ̂‖+κ) in Eq. (2.4) converges to

zero in probability as N →∞ under H0 to solve the non-consistency problem (δ̂/‖δ̂‖

is not consistent and not well-defined under H0), or equivalently κ−2E‖δ̂‖2 → 0 under

H0. Therefore, we propose that κ = N−ακ{
∫
L̂CX(t, t) dt}1/2 with some 0 < ακ <

1/2. We require ακ > 0, since otherwise κ would mitigate the enhancement. Here,

the role of
∫
L̂CX(t, t) dt is to attenuate the effect of data variation. In the simulation

section, it is shown that the detection performance is robust to the selection of ρ and

κ.
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2.5 Selection of D

2.5 Selection of D

Cumulative percentage of variance is a widely accepted criterion for the selection of

dimension, and is adjusted for the selection of D in our new method. Here, the goal

is to incorporate the jump-aligned basis function ψ
(κ)
d∗ (t), of which the corresponding

eigenvalue converges to ρ‖δ‖2 under Ha as κ→ 0. In principle, D should be selected

so that 1) the selected basis functions explain sufficient data variation to attenuate

the nuisance effect of the estimation deviation δ̂(t) − Eδ̂(t) and control the type-I

error, and 2) D > d∗ to incorporate the jump-aligned basis function. More details

are now discussed.

Define

Rλ(D) =
D∑
d=1

λ̂
(κ)
d

/∑
d≥1

λ̂
(κ)
d , (2.6)

γ as a positive constant taking the value, e.g., 90%∼95%, Dpre as the minimal value

of D satisfying Rλ(D) ≥ γ, and d̂∗ as the minimal value of d satisfying λ̂
(κ)
d < ρ‖δ̂‖2.

Two scenarios are considered:

(1) if ρ‖δ̂‖2 > λ̂
(κ)
Dpre

, set D > Dpre,

(2) if ρ‖δ̂‖2 ≤ λ̂
(κ)
Dpre

, set D > d̂∗.

Now we give the reasoning of the selection. Condition (1) is important in con-

trolling the size of the test. As an extreme case, if ψ̂
(κ)
d∗ is the only incorporated

basis function, the type-I error can be much higher than the nominal level, since the
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estimation errors falsely favor a change-point under H0. To attenuate such “over-

enhancement” effect, it is necessary to incorporate multiple basis functions that

capture sufficient variation to mitigate the estimation uncertainty of δ̂(t). Condition

(1) and (2) substantially increases the chance that the jump-aligned basis ψ
(κ)
d∗ is se-

lected, and is important in solving the “non-alignment” problem in projection-based

detector.

3. Theoretical Results

3.1 Convergence rate L̂CY,κ(t, s)

In this section, we present the convergence rate of L̂CY,κ(t, s) under both H0 and

Ha. In what follows, the quantity “const.” represents a positive constant and ‖ · ‖S

signifies the Hilbert-Schmidt norm. First we introduce some notations.

Assumption 3. There exist αc, ακ > 0, so that ‖CX,h‖2 ≤ const.h−αc and κ =

O(N−ακ).

Assumption 4. c−11 |u|αw ≤ 1 − W (u) ≤ c1|u|αw for |u| ≤ 1 and some c1 ≥ 0,

W (0) = 1, 0 ≤ W (·) ≤ 1, W (u) = W (−u), W (u) = 0 if |u| > 1, and the bandwidth

` satisfies ` = O(Nα`), where 0 < α` < 1/2.

Assumption 4 is suitable for a general class of kernel functions W (u). When

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



3.1 Convergence rate L̂CY,κ(t, s)

αw = 1, the triangular kernel

W (u) =


1− |u|, |u| ≤ 1,

0, |u| > 1,

satisfies the assumption. When αw = 0, uniform kernel

W (u) =


1, |u| ≤ 1,

0, |u| > 1,

satisfies the assumptions. Other values of αw indicate polynomial decay rates of

W (u).

The following theorem quantifies the convergence rate of the estimated long-run

covariance operator L̂CY,κ(·) induced by L̂CY,κ(t, s).

Theorem 3. Under Assumption 1, 3, and 4, if H0 is true and N−1`κ−2 → 0, then

for an arbitrarily small ε > 0,

‖L̂CY,κ − LCX‖S ≤ Op(1)Nmax{α`−1/2,−(αc−1)/α`,−1+2ακ+α`}

∨


N−(αc−1)α` , if αw − αc > −1.

N−(αc−1)α`+ε, if αw − αc = −1.

N−αwα` , if αw − αc < −1.
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3.1 Convergence rate L̂CY,κ(t, s)

Moreover, if Ha is true and `κ‖δ‖−1 → 0, then for an arbitrary small ε > 0,

‖L̂CY,κ − LCY ‖S ≤ Op(1)Nmax{α`−1/2,−(αc−1)/α`,α`−ακ−αδ}

∨


N−(αc−1)α` , if αw − αc > −1.

N−(αc−1)α`+ε, if αw − αc = −1.

N−αwα` , if αw − αc < −1.

Theorem 3 gives the convergence rate of L̂CY,κ under both H0 and Ha. The

convergence rate is specified through multiple parameters. To simplify notations,

r0 is denoted as the convergence rate of L̂CY,κ under H0, and ra is denoted as the

convergence rate of L̂CY,κ under Ha.

Denote T oN(θ) to be the projection-based test statistics based on the eigenfunc-

tions of LCX(·). We develop the following theorem.

Theorem 4. Under Assumption 1, 3, 4, and H0, if D →∞ and N−r0
∑D

d=1 δ
−1
τ,d → 0,

then uniformly for θ ∈ (0, 1), T̃N(θ)
d→ T oN(θ), where δτ,1 = τ1−τ2, δτ,d = max{τd−1−

τd, τd − τd+1} for d ≥ 2, where {τd : d ≥ 1} is defined in Section 2.2.

The theorem illustrates that, under some regularity conditions, the null distri-

bution of the new change-aligned detector is asymptotically equivalent to that of the

ordinary fPC-based detector.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



3.2 Selection of ψ
(κ)
d∗ and Identifiability

3.2 Selection of ψ
(κ)
d∗ and Identifiability

In this section, we investigate the performance of change-alignment and the identifi-

ability of the basis functions selected by the approach in Section 2.5. Since K(κ)(t, s)

is tuned by ρ, the identifiability of the eigenfunctions of K(κ)(t, s) might be violated

if ρ is not selected judiciously under Ha. Since LCY,κ(t, s) and LCY (t, s) are positive

definite, by Mercer’s theorem, we can find a sequence of decreasing positive values

and orthonormal basis functions for each of them so that,

LCY,κ(t, s) =
∑
d≥1

λ
(κ)
d ν

(κ)
d (t)ν

(κ)
d (s), LCY (t, s) =

∑
d≥1

λdνd(t)νd(s).

Since LCY,κ(t, s)→ LCY (t, s) under Ha as κ→ 0, the identifiability of {ψ(κ)
d (t) : d 6=

d∗} is asymptotically guaranteed given the identifiability of {νd(t) : d ≥ 1}. Thus the

identifiability of ψ
(κ)
d∗ (t) is of major interest here. Recall that the selected ρ is adjusted

so that ρ‖δ̂‖2 lies in the middle of the two neighboring eigenvalues of L̂CY,κ(·), and

if ρ‖δ̂‖2 is greater than the maximal eigenvalue of L̂CY,κ(·), then ρ is selected so that

ρ‖δ̂‖−λ̂(κ)1 is greater than a positive value Lρ. It can be shown that the identifiability

of ψ
(κ)
d∗ (t) is asymptotically guaranteed under some mild conditions. To justify this,

we first introduce the following assumptions.

Assumption 5. Under Ha, the eigenvalues {λd : d ≥ 1} satisfy the conditions

R−1d−αλ ≤ λd ≤ Rd−αλ , whereR is a positive constant, and λd−λd+1 ≥ const.d−αλ−1.

Assumption 5 quantifies the decay rate of eigenvalues {λd : d ≥ 1} and restricts
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the spacing of eigenvalues from being overly small, which enables the identifiability

of {λd : d ≥ 1} (see also Cai and Hall (2006)). We define ∆ρ,D = |λ̂d∗−1 − λ̂
(κ)
D−1|,

which depends on the selection of D and ρ.

Theorem 5. Under Assumption 1–5, and Ha, if Dαλ+1N−ra → 0 and ∆−1ρ,D`κ‖δ‖−1 →

0, then asymptotically almost surely, the following events are true:

1) D > d∗,

2) For an arbitrary ε > 0, max{ω̂(κ)
d∗−1− ω̂

(κ)
d∗ , ω̂

(κ)
d∗ − ω̂

(κ)
d∗+1} ≥ (ωd∗−1− ωd∗+1)/(2 + ε)

or ω̂
(κ)
d∗ − ω̂

(κ)
2 ≥ Lρ/(1 + ε) as d∗ = 1.

Remark 2. See the definition of {ωd : d ≥ 1} and {ω(κ)
d : d ≥ 1} in Section 2.2.

Theorem 5 demonstrates that the identifiability of the jump-aligned basis is

guaranteed and the basis functions selected by the adjusted variance portion criterion

contain the jump-aligned basis as N →∞.

3.3 Power Studies

This section presents the asymptotic properties and the detection power of the new

detector. It is known that, when 1) the number of projections and the jump func-

tion is fixed, and 2) some of the selected basis functions are aligned with the jump

function, the power of CUSUM-type detector approaches one as the sample size goes

to infinity (see Berkes et al. (2009)). However, it has not been studied under what

conditions the asymptotically perfectly performed detector (with power approaching
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one) can be achieved in a more general setting. In contrast, the dimension D, the

magnitude of jump ‖δ‖, and the tuning parameters ρ and κ are all allowed to vary

with the sample size N here. To present the theoretical results under this general

setting, we first introduce the function

V (θ) =


θ(1− θ∗), 0 < θ ≤ θ∗,

θ∗(1− θ), θ∗ < θ < 1.

The following theorem presents the convergence rate of T̃N(θ). Here we suppose

ρ = O(Nβ).

Theorem 6. Under Assumptions 1–2 and Ha, define rδ = max{α` − ακ − αδ −

1/2, αδ + β − 1/2 + ε} where ε > 0 is some arbitrary small value, and

UN = max{D1/2(ρ‖δ‖2)−1, N rδ−ra(ρ‖δ‖2)−(1+1/αλ), N rδ−1/2},

if Dαδ+3/2/N ra → 0 and D(ρ‖δ‖2)1/αλ →∞, then

sup
θ∈(0,1)

∣∣∣N−1T̃N(θ)− ‖δ‖2V 2(θ)
∣∣∣ ≤ Op(N

−rδ)‖δ‖UN .

Since it is assumed that αδ > −1/2, N‖δ‖2 → ∞ as N → ∞. Note that d∗ =

O((ρ‖δ‖2)−1/αλ) under Assumption 5, and the condition D(ρ‖δ‖2)1/αλ →∞ ensures

that the jump-aligned basis function is selected. The theorem demonstrates that the

convergence rate of N−1T̃N(θ) is uniformly bounded by N−rδ‖δ‖UN . Therefore, if

the ratio N−rδ‖δ‖UN/‖δ‖2 converges to zero, then it is sufficient to conclude that

T̃N(θ)
p→ N‖δ‖2V 2(θ) uniformly for θ ∈ (0, 1), which leads to T̃N(θ)

p→∞.
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Remark 3. The first element of UN measures the estimation uncertainty of the first

D eigenfunctions of K(κ)(t, s) excluding the jump aligned basis, and it changes with

rate D1/2. The second element of UN pertains to the enhancement term. The last

element of UN pertains to the effect of {en(t) : n ≥ 1} on the CUSUM statistic. As

a special case, if all tuning parameters and the jump magnitude are assumed to be

fixed, then the convergence rate degenerates to a simple version

sup
θ∈(0,1)

∣∣∣N−1T̃N(θ)− ‖δ‖2V 2(θ)
∣∣∣ ≤ Op(N

−1/2),

which coincides with the result in Berkes et al. (2009).

Based on Theorem 6, the following corollary presents the regularity conditions

that guarantees the detection power approaching one.

Corollary 1. Under Assumptions 1–5 and Ha, if the conditions in Theorem 6 hold,

and N−rδ‖δ‖−1UN → 0, then Pr(H0 is rejected|Ha)→ 1. In addition, θ̂N
p→ θ∗.

The first part of the corollary can be obtained from Theorem 6, say, T̃N(θ)
p→∞

under Ha. The consistency of θ̂N can be obtained by the continuous mapping theorem

of “argmax” function and the fact that θ∗ is the unique maximizer of V (θ).

4. Simulation
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4.1 General Setting

Finite sample properties are investigated in this section. First, N = 120 or N = 200

identically distributed functions are generated over the unit interval [0, 1] with B =

20 Fourier basis functions {F6(t), . . . , F25(t)} specified as follows

Fi(t) =


1, if i = 1.

√
2 cos(2πkt), if i = 2k.

√
2 sin(2πkt), if i = 2k + 1.

The change in functional means is located in the middle of the sequence and is

driven by the 2nd Fourier basis, which is orthogonal to the 20 basis functions

{F6(t), . . . , F25(t)}. The final functions are simulated by the following basis expan-

sion contaminated by random noises {εn(tj) : n = 1, . . . , N, j = 1, . . . , T}

Xn(tj) =



B∑
d=1

ξndFd+5(tj) + εn(tj), 1 ≤ n ≤ bN/2c, j = 1, . . . , T

B∑
d=1

ξndFd+5(tj) + δ(tj) + εn(tj), bN/2c+ 1 ≤ n ≤ N, j = 1, . . . , T,

where εn(tj)
i.i.d.∼ N (0, s2), and tj = j/100, T = 100. We set δ(t) = aF2(t), where

a = 0 under H0 and a > 0 under Ha. To highlight the effect of the magnitude ‖δ‖,

different values of a are considered. The variation of random errors {εn(tj) : tj =

1, . . . , T, n ≥ 1} is tuned through s. The obtained functions are smoothed with the

first 55 Fourier basis functions.
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4.2 Empirical Size and Power

Define σ = diag(1.2−2, 1.2−4, . . . , 1.2−2B). Two distributional setups of ξn =

(ξn1, . . . , ξnB) are considered, namely, {ξn : n ≥ 1} are

1. (Independent case) i.i.d. random vectors following the distribution N (0,σ).

2. (Dependent case) a FMA(3) process ξn =
∑3

j=1 Φjen−j + en, where en ∼

N (0,σ), Φ1 = 0.6IB, Φ2 = 0.4IB, Φ3 = 0.2IB and IB is the B × B identity

matrix.

We use the R package sde to simulate the null distribution, and the simulations are

run with the same seed under different settings. The proposed detector (denoted by

CA) is compared with two other competitors, which are representative in change-

point detection, say, the fPC-based approach (denoted by fPC, see e.g., Berkes et al.

(2009)) and the fully functional approach (denoted by FF, see e.g., Aue, Rice and

Sönmez (2018)). For the fPC-based detector, the dimension is selected so that the

incorporated functional principal components explain 90% of the total data variation.

4.2 Empirical Size and Power

In this section, we compare the empirical size and power of the four methods. In each

setting, the simulation runs are repeated for 3000 times at nominal level 0.05. The

enhancement parameters ρ considered are ρ1 = N0.25, ρ2 = N0.3, ρ3 = N0.35, and ρ4 =

N0.40. The tuning parameter κ considered here is κ = κ1 = N−0.4{
∫
L̂CX(t, t) dt}1/2.
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4.2 Empirical Size and Power

The empirical sizes and powers are reported in Table 1 for setting 1 and Table 2

for setting 2. We also test the performance of the new detector when κ = κ2 =

N−0.35{
∫
L̂CX(t, t) dt}1/2, κ = κ3 = N−0.3{

∫
L̂CX(t, t) dt}1/2 under the i.i.d. setting

to show its robustness to κ, see Table 1 in the supplementary materials.

Table 1: Empirical sizes and powers under different values of a and s (i.i.d., κ = κ1).

a N s
CA

ρ1 ρ2 ρ3 ρ4
FF fPC

0.00

120

0.5 0.056 0.056 0.057 0.056 0.051 0.043
1.5 0.056 0.055 0.056 0.056 0.048 0.043
2.5 0.059 0.059 0.060 0.059 0.037 0.032

200

0.5 0.055 0.056 0.055 0.054 0.046 0.049
1.5 0.059 0.058 0.059 0.058 0.050 0.042
2.5 0.065 0.063 0.064 0.064 0.042 0.040

0.25

120

0.5 0.149 0.149 0.148 0.149 0.127 0.058
1.5 0.146 0.145 0.145 0.146 0.122 0.112
2.5 0.149 0.151 0.149 0.149 0.104 0.097

200

0.5 0.281 0.271 0.272 0.269 0.227 0.062
1.5 0.296 0.291 0.289 0.290 0.245 0.226
2.5 0.299 0.302 0.300 0.299 0.212 0.202

0.30

120

0.5 0.225 0.223 0.223 0.224 0.194 0.070
1.5 0.226 0.226 0.225 0.226 0.190 0.191
2.5 0.231 0.231 0.229 0.229 0.157 0.149

200

0.5 0.539 0.523 0.522 0.522 0.448 0.086
1.5 0.553 0.542 0.540 0.537 0.472 0.463
2.5 0.528 0.530 0.532 0.533 0.402 0.399

0.35

120

0.5 0.372 0.368 0.368 0.368 0.329 0.142
1.5 0.368 0.369 0.369 0.366 0.320 0.321
2.5 0.352 0.353 0.354 0.352 0.263 0.253

200

0.5 0.927 0.927 0.930 0.928 0.856 0.350
1.5 0.883 0.872 0.868 0.868 0.824 0.818
2.5 0.785 0.789 0.789 0.787 0.675 0.675
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Table 2: Empirical sizes and powers under different values of a and s (FMA,

κ = κ1).

a N s
CA

ρ1 ρ2 ρ3 ρ4
FF fPC

0.00

120

2.0 0.050 0.051 0.050 0.049 0.048 0.012
3.0 0.046 0.046 0.047 0.047 0.041 0.009
4.0 0.038 0.038 0.038 0.039 0.032 0.005

200

2.0 0.060 0.057 0.058 0.059 0.052 0.020
3.0 0.057 0.055 0.055 0.055 0.044 0.017
4.0 0.044 0.045 0.046 0.044 0.035 0.015

0.55

120

2.0 0.140 0.142 0.141 0.139 0.133 0.035
3.0 0.127 0.127 0.127 0.125 0.110 0.030
4.0 0.104 0.104 0.104 0.103 0.082 0.017

200

2.0 0.266 0.270 0.267 0.265 0.241 0.144
3.0 0.273 0.259 0.255 0.255 0.222 0.126
4.0 0.232 0.226 0.224 0.223 0.187 0.114

0.65

120

2.0 0.216 0.216 0.216 0.214 0.199 0.063
3.0 0.198 0.194 0.194 0.194 0.170 0.047
4.0 0.163 0.163 0.160 0.161 0.127 0.032

200

2.0 0.486 0.493 0.491 0.494 0.454 0.330
3.0 0.494 0.478 0.465 0.465 0.419 0.285
4.0 0.422 0.413 0.412 0.412 0.358 0.250

0.75

120

2.0 0.350 0.346 0.345 0.346 0.328 0.129
3.0 0.322 0.318 0.316 0.316 0.281 0.096
4.0 0.266 0.264 0.265 0.262 0.216 0.061

200

2.0 0.800 0.803 0.803 0.805 0.773 0.669
3.0 0.786 0.773 0.754 0.752 0.715 0.598
4.0 0.706 0.693 0.693 0.695 0.637 0.523

It is noted that as the variation of random error increases, the detection power

sometimes increases. One interpretation of this phenomenon is that the random

errors are composed of oscillations over all frequencies, including the frequency
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that drives the jump function, and the jump-aligned frequency is not captured by

{F6, (t) . . . , F25(t)}. As the variation of random error increases, the jump-aligned

frequency is more likely to be incorporated into the basis functions. Therefore, the

power does not necessarily decrease as s increases.

4.3 Variation of the Detected Change-points

To study the variation of the detected change-points, we provide the box-plots of

the detected change-points. In each figure, there are six boxes. The first four boxes

pertains to the proposed detector under ρ = N0.25, ρ = N0.3, ρ = N0.35, and ρ = N0.4

respectively. The 5th box pertains to the fully functional detector and the last one

pertains to the fPC-based approach. Overall, the variance of the detected change-

points of the proposed detector and the fully functional detector are similar, and

that of the fPC-based procedure can be sometimes much higher. For the reason of

page limit, the figures are moved to the supplementary materials.

4.4 Necessity of Change Alignment

To thoroughly investigate the necessity of aligning the basis functions with the jump

function, we examine more comparisons between the new approach and the fPC-

based approach. We consider a variety of cases where the alignment between the

major eigenfunction of LCX(t, s) and the jump function δ(t) changes. Specifically, in
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4.4 Necessity of Change Alignment

addition to the 20 basis functions used to generate {Xn(t) : n ≥ 1}, the 2nd Fourier

basis, which drives the jump function, is also incorporated in the simulation here.

Specifically, {Xn(t) : n ≥ 1} can be expressed as

Xn(t) =


ξanF2(t) +

20∑
d=1

ξndFd+5(t), 1 ≤ n ≤ bN/2c,

ξanF2(t) +
20∑
d=1

ξndFd+5(t) + δ(t), bN/2c+ 1 ≤ n ≤ N,

see Section 4.1 for the details of δ(t). Observe that, only F2(t) is aligned with the

potential mean change. Here, ξan
i.i.d.∼ N (0, s2a), sa = 0.9, 0.45, 0.2, 0.05, and ξn are

simulated under the independent case as described in Section 4.1. The role of sa is to

tune the alignment between the eigenfunctions of LCX(t, s) and the jump function,

and a large value of sa leads to a high rank of the jump-aligned function in the set

of eigenfunctions of LCX(t, s), which makes it easier to select the jump-aligned basis

for the fPC-based approach.

Here, we set ρ = N0.4, and N = 200. The sizes/powers of the two approaches

are displayed in Figure 1. From the results, we conclude that

1. Our proposed approach substantially increases the power of the detection when

the employed eigenfunctions of LCX(t, s) cannot explain the change function.

2. When the employed eigenfunctions of LCX(t, s) can explain the change, the

new detector still produces decent detection power. Thus there is no loss to

apply the new detector.
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4.4 Necessity of Change Alignment

In practice, it is tricky to know if the major eigenfunctions of LCX(t, s) can suffi-

ciently explain δ(t), thus the change-aligned procedure is more reliable and likely to

detect a true change-point.

Figure 1: Power Comparison. The dotted black line signifies the significance level.
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4.5 Detection results when θ∗ = 1/4

In this section, we set θ∗ = 1/4 and simulate 120 or 200 independent functions

following the model

Xn(tj) =



B∑
d=1

ξndFd+5(tj) + εn(tj), 1 ≤ n ≤ bN/4c, j = 1, . . . , T,

B∑
d=1

ξndFd+5(tj) + δ(tj) + εn(tj), bN/4c+ 1 ≤ n ≤ N, j = 1, . . . , T,

where δ(t) = aF2(t), and a = 0, 0.3, 0.35, 0.4, 0.45, and s = 0.5, 1.5, 2.5. Here we

consider the standardized detector Tw,N(θ) = TN(θ)/{θ(1 − θ)}, since it is more

powerful to detect change point locating away from the middle. Suppose that there

exists some ε > 0, so that θ∗ ∈ [ε, 1− ε], then under H0,

Tw,N(θ̂∗N)
D→ sup

θ∈[ε,1−ε]

B′(θ)ΣDB(θ)

θ(1− θ)
, N →∞,

where θ̂∗N = inf{θ : Tω,N(θ) = supε≤θ′≤1−ε Tω,N(θ′)}. This result follows from Theorem

A.1 in Aue et al. (2009).

Remark 4. Compared with the non-standardized detector, the standardized detec-

tor gives more accurate detection when the true change point is near the boundary

of the sequence, but when the true change point is near the middle, the detected

change point of the standardized detector typically has higher variation.

Table 3 displays the power and type-I error of the three standardized detectors,

and the enhanced detector is superior to the other competitors with respect to power
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4.5 Detection results when θ∗ = 1/4

while controlling the type-I error well. The box-plots of the detected change points

are shown in Figure 2. It shows that the variation of change points detected by

the fPC-based method is substantially higher comparing to other methods when s is

small. This is because, when s is small, the selected fPCs are not capable of capturing

the jump function and thus the resulting fPC-based detector is not reliable.

Table 3: Empirical sizes and powers under different values of a and s.

s N method
a

0.00 0.30 0.35 0.40 0.45

0.5

120

CA 0.073 0.118 0.153 0.202 0.292
FF 0.066 0.102 0.125 0.167 0.247
fPC 0.056 0.060 0.065 0.081 0.155

200

CA 0.072 0.174 0.273 0.474 0.843
FF 0.063 0.150 0.234 0.429 0.803
fPC 0.051 0.060 0.069 0.163 0.577

1.5

120

CA 0.069 0.114 0.142 0.197 0.286
FF 0.064 0.103 0.124 0.173 0.249
fPC 0.052 0.088 0.112 0.159 0.245

200

CA 0.067 0.164 0.258 0.443 0.756
FF 0.063 0.159 0.251 0.434 0.745
fPC 0.054 0.138 0.240 0.433 0.748

2.5

120

CA 0.070 0.104 0.128 0.181 0.265
FF 0.056 0.092 0.113 0.149 0.215
fPC 0.047 0.075 0.093 0.129 0.192

200

CA 0.068 0.166 0.261 0.417 0.647
FF 0.062 0.136 0.222 0.371 0.602
fPC 0.056 0.125 0.208 0.369 0.601
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4.6 Summary of Simulations

Figure 2: Boxplots of θ̂∗N .

4.6 Summary of Simulations

The comparisons are summarized as follows.

1. The type-I error of the proposed detector is well controlled around the nominal

level under both i.i.d. and dependent case.

2. The performance of the proposed change-aligned detector is robust to the se-

lection of ρ and κ, and thus is not highly influenced by tuning parameters.

3. The power of the proposed detector is obviously higher than that of the fully

functional detector and the fPC-based detector, especially when the noise vari-

ation is high. The fPC-based detector typically gives the worst performance

especially when the leading ordinary fPCs cannot explain the change. The fully
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functional approach, though performs better than the fPC-based approach, still

gives suboptimal performance compared to the new approach especially when

the noises become substantial. One explanation is that the fully functional

approach incorporates the random noises into the detection procedure, and the

nuisance effect of the random noises reduce the detection power. It numerically

demonstrates the necessities of careful selection of basis functions.

5. Application to Annual Humidity Trajectories

In this section, the proposed approach is applied to daily humidity trajectories ob-

tained in Basel-City, Switzerland in 2021. The raw data consist of N = 365 daily

measurements of humidity recordings (one observation per hour, 24 observations for

each day) that are converted into functional objects by using 24 Fourier basis func-

tions. The data can be downloaded at www.meteoblue.com. Figure 3 displays the

trajectories. For comparison, the proposed detector and the other two competitors

(the fPC-based detector and the fully functional detector) are applied to date the

time of the structural breaks.

5.1 Dynamic Segmentation

To attenuate the violation of at most one change-point assumption (AMOC), we first

segment the entire sequence into multiple disjoint blocks. The segmentation approach
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5.1 Dynamic Segmentation

Figure 3: Daily humidity curves in Basel-City, Switzerland.

employed here is motivated by the dynamic segmentation approach (see Chiou, Chen

and Hsing (2019)) and is adapted for our own purpose, which is described below.

First we segment the whole functional sequences into 10 equal-length blocks

{[θ(0)r , θ
(0)
r+1) : r = 1, . . . , 10},

where θ
(0)
1 = 1 and θ

(0)
11 = 365. Then recursively update the segment points as follows.

Given a subinterval [θr, θr+1) of [1, 365] and any θ in the subinterval, the sample

covariance is calculated as follows

S
(θ)
[θr,θr+1)

(t, s) =
1

bNθr+1c − bNθrc

bNθr+1c∑
n=bNθrc

{Xn(t)− X̄(θ)
n (t)}{Xn(s)− X̄(θ)

n (s)} ,
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5.2 Backward Elimination

where

X̄(θ)
n (t) =



1

bNθc − bNθrc

bNθc∑
n=bNθrc

Xn, n ∈ [bNθrc, bNθc] ,

1

bNθr+1c − bNθc

bNθr+1c∑
n=bNθc+1

Xn, n ∈ (bNθc, bNθr+1c] .

Suppose in the i-th interation, the segmentation points are {[θ(i)r , θ(i)r+1) : r = 1, . . . , 10},

where θ
(i)
1 = 1 and θ

(i)
11 = 365 for all iteration i. For each r > 1, find the θ ∈

[θ
(i+1)
r−1 , θ

(i)
r+1) that minimizes ‖S(θ)

[θ
(i+1)
r−1 ,θ

(i)
r+1)
‖S , which is set as θ

(i+1)
r . The iteration stops

when max1≤r≤10 |θ(i+1)
r − θ(i)r | < 1/N . The final segmentation points are denoted by

{θ̃r, r = 2, . . . , 10}, and θ̃1 = 1 and θ̃11 = 365.

Our proposal is that the whole sequence [1, N ] is segmented by {(θ̃r+θ̃r+1)/2: r ≥

2}. Note that, in Chiou, Chen and Hsing (2019), {θ̃r, r = 2, . . . , 10} are considered

as change-point candidates. Each candidate will be tested under the AMOC as-

sumption, and the statistically nonsignificant ones are removed. Here we divide the

sequence [1, N ] disjointly so that each segment contains one such candidate. The

initial segmentation of [1, 365] is displayed in Figure 4.

5.2 Backward Elimination

For each segment, we apply the three detectors considered in the simulation to detect

and date the change-point under the AMOC assumption. If there is no change point

detected in the subinterval [θr, θr+1], then remove θr+1 and test the change-point in

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



5.2 Backward Elimination

Figure 4: Initial segmentation.

the longer subinterval [θr, θr+2]. The elimination procedure stops till no segmentation

point is removed.

Here, ` = 3, and ρ = N0.4. Both our approach and the fully functional approach

detect 4 change-points at significance level 0.05, which are displayed in Figure 5, while

the fPC-based approach detect two change-points only, say, the 43th and 304th day

of the year. The mean functions of the 5 segments are displayed in Figure 6.

In this application, although the proposed detector and the fully functional de-

tector work similarly, there are cases when our approach is superior to the fully

functional approach. There is evidence to believe that the developed procedure of-

fers a more reliable method to detect change points in functional means.
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Figure 5: Detected days of change-points.

6. Conclusions

In this paper, a new change-aligned detector is introduced to detect and date the

structural breaks in mean function of weakly dependent functional data. This de-

tector has several advantages compared to the existing representative approaches

including the fPC-based detector and the fully functional detector. Specifically, the

fPC-based approach does not work while the employed fPCs fail to explain the struc-

tural breaks, and the fully functional approach essentially selects all basis functions

that span the functional space, and thus suffers more from the nuisance effect of the

irrelevant basis functions than the developed change-aligned procedure. The pro-

posed detector relies on the carefully selected basis functions that are informative
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Figure 6: Average Humidity Trajectories of each segment.

to the change in mean, making it more reliable to detect the change while control-

ling the type-I error close to the nominal level. In the simulation study, it is shown

that the proposed detector performs better than the fully functional and fPC-based

detectors, especially when the functions are contaminated by random errors or the

leading fPCs cannot explain the change of mean.

Supplementary Materials

The supplementary materials contain the technical proofs, box-plots, and additional

tables.
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