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Abstract: To model categorical responses, multinomial logistic regressions with different

links and parameter restrictions have widely been adopted based on the relationships

among different categories. In this paper, a unified Poisson subsampling method is pro-

posed to approximate efficiently the maximum likelihood estimator for regression parame-

ters when big data are encountered. The asymptotic normality of the estimator generated

from the Poisson subsample is established. Based on the derived asymptotic variance,

optimal subsampling probabilities are given according to the A-optimality criterion. To

mitigate the burden on the calculation of optimal subsampling probabilities, a random

projection based procedure is applied. For practical implementation, some robustness

issues including model misspecification and full data with possible outliers are further dis-

cussed with theoretical backups. The advantages of the proposed methods are illustrated

through numerical studies on both simulated and real datasets.

Key words and phrases: Categorical data; Johnson-Lindenstrauss transform; Poisson sub-

sampling; Randomized Hadamard transform.
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1. Introduction

Extremely large datasets are ubiquitous due to the rapid development of science

and technologies. Volume is one of the key concepts associated with big data.

Specifically, the quantity of generated and stored data in a big data era is usu-

ally larger than terabytes and petabytes. Therefore, it is a common challenge

on extracting useful information from massive datasets with limited computing

resources.

Many statistical methods, which focus on drawing an inference based on a big

data set with a fixed computational budget, have been developed up to now. Sub-

sampling is one of the most popular techniques of achieving a good balance between

computational complexity and statistical efficiency. Extensive researches show the

great success of subsampling in dealing with massive data in various fields. For

example, uniform subsampling was used in Drineas et al. (2011) to approximate

ordinary least square estimators in linear regressions. To further improve statis-

tical accuracy, some non-uniform subsampling strategies such as leverage score

subsampling (Ma et al., 2015, 2020), volume subsampling (Dereziński et al., 2018),

and information-based optimal subdata selection (Wang et al., 2019) are proposed

to address this issue without increasing too much computational costs compared

with uniform subsampling. To accommodate the variety types of responses, the

local case-control subsampling (Fithian et al., 2014) and D-optimal based subdata

selection (Cheng et al., 2020) are proposed for binary classifications. The subsam-
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pling method motivated by A-optimality criterion and its variants are developed

for generalized linear models, quantile regressions, and additive hazards models.

Important works include but not limited to Wang et al. (2018), Yu et al. (2022),

Ai et al. (2021), Wang and Ma (2021), Zuo et al. (2021). A literature review can

be found in Yu et al. (2023).

Subsample based classifiers gain a lot of attention from data scientists since

classification is one of the most important tasks for big data analysis. Learning a

classifier based on subsample is usually regarded as an effective way when dealing

with massive data. To the best of our knowledge, most of the existing works

focus on binary classification problems. Typical examples include but not limited

to local case control subsampling (Fithian et al., 2014) and optimal subsampling

motivated by A-optimality criterion (Wang et al., 2018; Wang, 2019) for logistic

regressions.

Contrarily, systematic approaches for modeling multi-class categorical responses

based on subsampling techniques are still elusive due to the complexity brought by

the different kinds of order relations. To address the order relation, a multinomial

distribution with specific link functions is widely adopted in practice. Exam-

ples include baseline-category logit models for nominal responses, cumulative logit

models and adjacent-categories logit models for ordinal responses, continuation-

ratio logit models for hierarchical responses. See Chapter 6 of Agresti (2019) for

a comprehensive discussion. Moreover, different parameter restrictions are added
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to capture the relationships between the responses and the explanatory variables.

For example, McCullagh (1980) proposed a model in which all the parameters are

the same across different categories, except for the intercept. The underlying logic

is that all responses can be regarded as a partition of an underlying continuous

variable. For the case where there is no reference to an underlying continuous

variable, it is reasonable to allow parameters to change across categories. Peterson

and Harrell (1990) suggested applying the partial proportional odds in which a

subset of explanatory variables are assumed common in all categories, and some

special explanatory variables are used in certain categories only. This is quite dif-

ferent from the logistic regression for binary responses and the softmax regression

for multi-class responses.

To the best of our knowledge, few works systematically studied the multino-

mial logistic models in the presence of different links and complex restrictions on

the parameters. The most relevant work is given by Yao and Wang (2019), which

only considered the baseline-category link with no common parameters among dif-

ferent categories. The optimal subsampling approaches for multinomial logistic

models with different links and the partial proportional odds are studied here to

fill this gap. Our main contributions to the subsampling technique are three folds.

Firstly, we establish a unified optimal subsampling procedure for all four afore-

mentioned links under the partial proportional odds assumption, which clearly

covers the method in Yao and Wang (2019) as a special case. Secondly, to fur-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Optimal Subsampling for Multinomial Logistic Models 5

ther accelerate the subsampling algorithm, the Johnson-Lindenstrauss transform

and the subsampled randomized Hadamard transform (Drineas et al., 2012) are

successively adopted to approximate the optimal subsampling probabilities. The

proposed algorithm runs in O(Nd logN) time, as opposed to the O(Nd2) time

required by the direct calculation, where N is the size of the data, and d is the

number of parameters. An error bound of such an approximation is given ac-

cordingly. Thirdly, we also carefully evaluate the performance under the scenario

where the specified model is incorrect and there are some outliers in the full data.

Both analytical and numerical studies show that the subsample based estimator

still converges to the maximum likelihood estimator of the full data under the

postulated model. A stratification subsampling procedure is proposed to mitigate

the influence brought by the outliers.

The rest of the paper is organized as follows. In Section 2, we briefly introduce

multinomial logistic models and a general Poisson subsampling framework. The

asymptotic normality of the estimator based on the subsample is derived. Sec-

tion 3 presents optimal subsampling probabilities according to the A-optimality

criterion. Randomized approximation algorithms are applied to further reduce the

time in calculating subsampling probabilities. In Section 4, some practical issues

to implement the optimal subsampling procedures and theoretical justifications

are considered. Section 5 further discusses some robustness issues including model

misspecification and possible outliers in massive data sets. Simulation studies and
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real data analyses are provided in Section 6. Section 7 concludes this paper. All

the proofs and additional simulation results are delegated to the Supplementary

Material.

2. Preliminaries

2.1 Multinomial Logistic Models

Let FN = {(xi, yi)}Ni=1 be a sequence of independent and identically distributed

random variables with response yi ∈ {1, . . . , J}(J ≥ 2). The response yi can be

regarded as a random variable coming from a multinomial distribution with

f(yi|xi) =
J∏

j=1

π
I(yi=j)
ij (β),

where πij(β) is the probability that the response is j(j = 1, . . . , J) under the

covariate xi, β is the unknown parameter vector, and I(·) is an indicator function.

In order to characterize the relationships among the response probabilities, the

multinomial logistic models with baseline-category, cumulative, adjacent-categories,

and continuation-ratio link under the partial proportional odds assumption are

briefly introduced as follows:

log

(
πi1(β)

πiJ(β)

)
= xT

i(0)β0 + xT
i(j)βj , baseline-category, (2.1)

log

(
πi1(β) + · · ·+ πij(β)

πi,j+1(β) + · · ·+ πiJ(β)

)
= xT

i(0)β0 + xT
i(j)βj , cumulative, (2.2)

log

(
πij(β)

πi,j+1(β)

)
= xT

i(0)β0 + xT
i(j)βj , adjacent-categories, (2.3)

log

(
πij(β)

πi,j+1(β) + · · ·+ πiJ(β)

)
= xT

i(0)β0 + xT
i(j)βj , continuation-ratio, (2.4)
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for i = 1, . . . , N, j = 1, . . . , J−1, where xi(0) ∈ Rd0 stands for the common predic-

tors among all categories, and xi(j) ∈ Rdj(j = 1, . . . , J−1) stands for the individual

predictors belonging to the j-th category only. The corresponding βj ∈ Rdj are

parameters of interest. For notation simplicity, denote β = (βT
0 , . . . ,β

T
J−1)

T ∈ Rd

with d = d0 + · · ·+ dJ−1. It is worth mentioning that both xi(0) and xi(j) are con-

tained in the explanatory variable xi, and xi(j) may contain none or some variables

in xi(0).

Clearly, models with proportional odds and non-proportional odds assump-

tions are two special cases with xi(j) = 1, j = 1, . . . , J − 1, and xi(0) = 0, respec-

tively. When xi(0) = 0 and xi(1) = · · · = xi(J−1) = xi, Model (2.1) turns to be the

softmax regression whose subsampling strategies are considered in Yao and Wang

(2019) and Han et al. (2020). More specifically, for the case J = 2, Models (2.1)-

(2.4) become the well-known logistic regression, and the subsampling methods are

studied in Wang et al. (2018).

The unknown parameter vector β can be estimated via the maximum likeli-

hood method. The resultant estimator based on the full data, denoted by β̂full, is

the maximizer of the following log-likelihood function

`(β) =
N∑
i=1

J∑
j=1

I(yi = j) log πij(β). (2.5)
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2.2 General Poisson Subsampling Algorithm

Clearly, finding the maximizer of (2.5) usually meets the computational bottleneck

when N is big. Subsampling is commonly adopted as a feasible solution, which

will be introduced in the following.

Let pi be the inclusion probability of the i-th data point for i = 1, . . . , N.

Note that n = p1 + · · · + pN is the expected subsample size. Denote S to be a

set consisting of subsample points and their corresponding inclusion probabilities.

The general Poisson subsampling algorithm is presented in Algorithm 1.

Algorithm 1: General Poisson subsampling algorithm

Initialization S = ∅;

for i = 1, . . . , N do

Generate a Bernoulli variable Ri ∼ Bernoulli(pi);

if Ri = 1 then

Update S = S ∪ {(xi, yi, pi)};

Estimation: Obtain β̂sub by maximizing the following weighted

likelihood function based on the subsample S,

`∗(β) =
∑
S

1

pi

(
J∑

j=1

I(yi = j) log πij(β)

)
. (2.6)

The weighted scheme in (2.6) is typically essential to avoid the potential bias

when estimating the log likelihood function on the full data. The reason for us-
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ing the Poisson subsampling is to relax the memory constraint for massive data.

Compared with the subsampling with replacement which requires storing all the

subsampling probabilities in the memory, the Poisson subsampling can extract the

subsample points by scanning the full data one by one. Although the selected sub-

sample size n∗ fluctuates in Algorithm 1, one can show that n∗ keeps concentrating

near its expectation n with high probability (Ai et al., 2021). Therefore, the com-

putational cost is still under control. When dealing with big data, it is common

that n � N . In such a situation, the computational cost on the subsample is far

less than on the full data.

In order to establish the asymptotic results of subsampling estimators, the

following regularity assumptions are required.

Assumption 1. The parameter vector β lies in a compact parameter space.

Assumption 2. The categorical probabilities πij(β) > 0, for i = 1, . . . , N, j =

1, . . . , J . In addition, if Model (2.2) is adopted, we further assume that xT
i(j)βj −

xT
i(j−1)βj−1 > c0 holds for i = 1, . . . , N, j = 2, . . . , J − 1, where c0 > 0 is some

constant.

Assumption 3. As N → ∞, −N−1∂2`(β̂full)/∂β∂β
T goes to a positive definite

matrix in probability.

Assumption 4. The covariate has the finite fourth-order moments, i.e., E‖x1‖4 <

∞.

Assumption 5. max1≤i≤N(Npi)
−1 = OP (n−1).
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Assumption 1 is used to ensure the consistency of the full sample based esti-

mator. Similar assumptions can be found in Newey and McFadden (1994). As-

sumption 2 is required to guarantee the logarithm is well defined. Note that the

left-hand side of Model (2.2) is monotonous with respect to j. The condition

xT
i(j)βj − xT

i(j−1)βj−1 > c0 simply ensures to keep such monotone, and c0 > 0 is

to ensure that any two categories can be separated. Assumption 3 essentially re-

quires that the observed information matrix is asymptotically non-singular, which

indicates the maximum likelihood estimator is unique. Assumption 4 is a moment

requirement. Similar assumptions are used in Wang et al. (2018), and Yao and

Wang (2019). Assumption 5 restricts the weights in the subsample log-likelihood

function, which can protect the estimation equation (2.6) from being dominated

by data points with extremely small subsampling probabilities.

To establish the asymptotic normality of β̂sub, we start with introducing some

necessary notations. Let

MN(β) =
1

N

∂2`(β)

∂β∂βT
, VNc(β) =

1

N2

N∑
i=1

1− pi
pi

ui(β)uT
i (β), (2.7)

where ui(β) =
(
∂ logπi(β)/∂βT

)T
δi with πi(β) = (πi1(β), . . . , πiJ(β))T , δi =

(I(yi = 1), . . . , I(yi = J))T .

Theorem 1. Suppose Assumptions 1-5 hold. As N →∞ and n→∞, conditional

on FN in probability,

V
−1/2
N

(
β̂sub − β̂full

)
→ N(0, Id),
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in distribution, where VN = M−1
N (β̂full)VNc(β̂full)M

−1
N (β̂full).

Remark 1. Note that VNc(β̂full) can be decomposed into the following two parts,

VNc(β̂full) =
1

N2

N∑
i=1

1

pi
ui(β̂full)u

T
i (β̂full)−

1

N2

N∑
i=1

ui(β̂full)u
T
i (β̂full).

When n/N > 0, it is easy to see that Poisson sampling leads to a smaller variance

compared with the sampling with replacement for the softmax regression in Yao

and Wang (2019). This is because Poisson sampling is a kind of sampling without

replacement. It will be more efficient for the case with n/N > 0. When n � N ,

which is common in big data settings, the second part is a small order term com-

pared with the first part. Thus the variance is mainly determined by subsampling

strategies. Therefore, in this work, we focus on finding the optimal subsampling

probabilities to mitigate the impact of the subsampling.

3. Optimal Poisson Subsampling and its Approximation

This section is devoted to minimizing the asymptotic mean squared error (AMSE)

of β̂sub in approximating β̂full, which corresponds to the A-optimality in the lan-

guage of optimal designs (Pukelsheim, 2003).

From Theorem 1, the subsample based estimator is asymptotically unbiased.

As a result, minimizing AMSE is equivalent to minimizing its asymptotic vari-

ance. For clarity, we use “MV” to denote the subsampling strategy such that the

asymptotic variance is minimized.
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Theorem 2. Define ~MV
i = ‖M−1

N (β̂full)ui(β̂full)‖, i = 1, . . . , N, and let ~MV
(1) ≤

~MV
(2) ≤ · · · ≤ ~MV

(N) denote the order statistics of {~MV
i }Ni=1. Assume that ~MV

(N−n) >

0. The AMSE of β̂sub, tr(V ), attains its minimum, if pi’s are chosen to be

pMV
i = n

~MV
i ∧M∑N

j=1

(
~MV
j ∧M

) , (3.8)

where a ∧ b = min(a, b), M = (n− k)−1
∑N−k

i=1 ~MV
(i) , with

k = min

{
s

∣∣∣∣∣0 ≤ s ≤ n, (n− s)~MV
(N−s) <

N−s∑
i=1

~MV
(i)

}
.

Remark 2. One can decompose ~MV
i into two parts according to the expression of

ui(β̂full). More precisely, ~MV
i = ‖M−1

N
∂πi(β)
∂βT D‖ with D being a diagonal matrix

whose diagonal entries are I(yi = 1)/πi,1(β̂full), . . . , I(yi = J)/πi,J(β̂full). Clearly,

the I(yi = j)/πi,j(β̂full) describes the concordance between observation and predic-

tion. If a point is easy to be correctly predicted, it has less chance to be included

in the subdata set. Note that the M−1
N ∂πi(β)/∂βT only depends on the informa-

tion of covariates and it is used to construct optimal designs for the multinomial

logistic regressions. See Bu et al. (2020); Ai et al. (2023) as examples. From the

explicit forms provided in the Supplementary Material, one can expect that a point

close to the origin is unlikely to be sampled since it contains little information on

the slope parameters (Wang et al., 2019; Yu et al., 2023). To further take a close

look at the proposed subsampling probabilities, we simplify the sampling proba-

bility under a logistic regression when n/N → 0. Simple calculation yields that

pMV
i ∝ |yi − πi,1(β̂full)|‖M−1

N xi‖. The first term |yi − πi,1(β̂full)| is the same as
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the local case-control subsampling (Fithian et al., 2014), which is useful in dealing

with imbalanced data.

Remark 3. The M is the minimum number such that nN−1(~MV
i ∧M) ≤ N−1

∑N
i=1

(~MV
i ∧M). The exact calculation of M requires additional O(n+r log r) times (Yu

et al., 2022). Fortunately, when n/N → 0, one can expect 0 < N−1
∑N

i=1(~MV
i )

almost surely, so M can be dropped, i.e., M = ∞. In such cases, it is equivalent

to selecting pMV
i = n~MV

i /
∑N

j=1 ~MV
j .

Calculating MN(β̂full) and ~MV
i is not easy. More precisely, O(Nd2) time is

required to obtain MN(β̂full). Additional O(Nd2) time is needed in deriving ~MV
i ,

for i = 1, . . . , N , based on MN(β̂full), which is calculated in the previous step.

To further accelerate the algorithm, ~MV
i is usually replaced by ‖ui(β̂full)‖ (Wang

et al., 2018). Consequently, O(Nd) time is enough to obtain the subsampling

probabilities. However, such subsampling probabilities usually do not lead to the

smallest AMSE. In fact, it minimizes the AMSE of MN(β̂full)β̂sub, which is not of

interest compared with minimizing the AMSE of β̂sub in practice.

To inherit the optimality of pMV
i , an efficient algorithm for approximating ~MV

i

is developed to reduce the computing time in the rest of this section.

Firstly, we focus on the fast approximation of the matrix MN(β̂full). Recall

that MN(β̂full) = N−1
∑N

i=1

∑J
j=1 I(yi = j)∂2 log πij(β̂full)/∂β∂β

T . We begin

with dealing with the d×d matrix N−1∂2 log πij(β̂full)/∂β∂β
T . Simple calculation
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yields

1

N

∂2 log πij(β̂full)

∂β∂βT
=



c
(i,j)
00 xi(0)x

T
i(0) · · · c

(i,j)
0,J−1xi(0)x

T
i(J−1)

c
(i,j)
10 xi(1)x

T
i(0) · · · c

(i,j)
1,J−1xi(1)x

T
i(J−1)

...
...

c
(i,j)
J−1,0xi(J−1)x

T
i(0) · · · c

(i,j)
J−1,J−1xi(J−1)x

T
i(J−1)


, (3.9)

for i = 1, . . . , N, j = 1, . . . , J . The derivation of Equation (3.9) and the details

of calculating {c(i,j)kl }0≤k,l≤J−1 are deferred to the Supplementary Material for the

sake of brevity. Since c
(i,j)
kl xi(k)x

T
i(l)’s have a similar structure for all k, l, without

loss of generality, we choose the upper left corner block of MN(β̂full) as an example

to illustrate the approximation method. Let X0 = (x1(0), . . . ,xN(0))
T and C00 =

diag
(
c
(1,y1)
00 , . . . , c

(N,yN )
00

)
. Then

∑N
i=1 c

(i,yi)
00 xi(0)x

T
i(0) can be written as XT

0 C00X0 in

the matrix form. Consequently, it is natural to use a Fast Johnson-Lindenstrauss

Transform (FJLT) (Ailon and Chazelle, 2006) to approximate XT
0 C00X0.

One can use a subsampled randomized Hadamard transform (Drineas et al.,

2012) to construct an FJLT with high probability. For simplicity, we assume that

N is a power of two, then the approximation of XT
0 C00X0 can be obtained through

the following steps.

(i) Construct an N × N matrix of the Hadamard transform recursively. Let

H1 = (1) be a 1× 1 matrix, and

Hk+1 =

 Hk Hk

Hk −Hk

 , k = 1, . . . , log2(N/2),
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then Hlog2 N is the N ×N matrix of the Hadamard transform.

(ii) Let D ∈ RN×N be a random diagonal matrix with independent diagonal

entries Dii = 1 with probability 1/2 and Dii = −1 with probability 1/2,

i = 1, . . . , N .

(iii) Let S = (ej1 , . . . , ejr1 ), where ej ∈ RN is a standard unit vector with j-th

element being one, and j1, . . . , jr1 are randomly sampled from {1, . . . , N}.

(iv) ThenXT
0 C00X0 is approximated by (T1X0)

TT1(C00X0) with T1 = STHD/
√
N .

Remark 4. For the FJLT T1 ∈ Rr1×N and an N dimensional vector z, the time

complexity for performing T1z is O(N log r1) (Drineas et al., 2012). Note that

C00 is a diagonal matrix. It is clear to see that only O(Nd0 log r1) time is needed

to calculate T1X0 and T1(C00X0). As suggested in Lemma 6 of Drineas et al.

(2012), r1 = O(d0 logN log(d0 logN)). Clearly, N is much larger than r1 and d0.

Thus calculating (T1X0)
TT1(C00X0) only takes O(Nd0 log r1) time, which is much

less than the time required to calculate XT
0 C00X0. For the rest of MN(β̂full), the

same method can be used. Thus we only need O(NdJ log r1) time to approximate

MN(β̂full). The approximation is denoted as M̃N(β̂full) for notation simplicity.

Remark 5. Since the Hadamard transform only exists for the case that N is a

power of two, the aforementioned algorithm only works for some specific sample

size N . To relax the constraint, a naive method is to randomly drop out some data

points until the data size is a power of two. After this operation, the difference
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between β̂full and the MLE based on the drop out data β̂drop is OP (N−1/2) since

both two estimator are
√
N consistent estimators of the true parameters. The

difference is much smaller than the difference between β̂sub and β̂full. Thus we can

ignore the impact of this operation.

Another possible solution is to use a two-stage sampling procedure. To be

precise, one can apply a simple random sampling to downsize the full sample size

at first and then use the optimal subsampling procedure on the subsample points

obtained at the first stage. Mathematically, let T2 be a r2 × N random matrix

whose rows are chosen randomly with replacement from the rows of
√
N/r2IN ,

where IN is an N×N identity matrix. Then MN(β̂full) can be approximated by the

same technique of M̃N(β̂full) except T1 is replaced by T2. For notation simplicity,

the resultant approximation is denoted as M̂N(β̂full). Clearly, the computational

cost is O(r2d
2).

Note that we still need O(Nd2) time to calculate {‖M−1
N (β̂full)ui(β̂full)‖}Ni=1

even M−1
N (β̂full) is replaced by M̃−1

N (β̂full) or M̂−1
N (β̂full). Now, we focus on ac-

celerating the calculation on {‖M̂N

−1
(β̂full)ui(β̂full)‖}Ni=1. We omit the case for

M̃N(β̂full) due to its similarity.

To fast approximate {‖M̂N

−1
(β̂full)ui(β̂full)‖}Ni=1 without losing too much ac-

curacy, we employ Johnson-Lindenstrauss Transform (JLT) (Achlioptas, 2003). To

be precise, ‖M̂N

−1
(β̂full)ui(β̂full)‖ is approximated by ‖T3M̂N

−1
(β̂full)ui(β̂full)‖,

where T3 ∈ Rr3×d is a JLT, whose (i, j)-th entry, T3,ij, is chosen independently
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from the following distribution:

T3,ij =



√
3/r3 with probability 1/6,

0 with probability 2/3,

−
√

3/r3 with probability 1/6,

with r3 < d. One can see that only O(Nr3d) time is required in calculating

{‖T3M̂N

−1
(β̂full)ui(β̂full)‖}Ni=1. In practice, r3 has the same order as logN (Achliop-

tas, 2003, Theorem 1.1). When d is not too small, the approximation will faster

than calculating {‖M̂N

−1
(β̂full)ui(β̂full)‖}Ni=1 directly.

The following theorem states the approximation accuracy of the subsampling

probability.

Theorem 3. Assume ν1, ν2 ∈ (0, 1/3), r3 ≥ 48 logN − 24 log ν1, then with proba-

bility at least (1− ν1)(1− ν2), conditional on FN , we have

∣∣∣‖M−1
N (β̂full)ui(β̂full)‖ − ‖T3M̂N

−1
(β̂full)ui(β̂full)‖

∣∣∣
≤ ‖ui(β̂full)‖
γλ2min(MN(β̂full))

√
c1
r2ν2

+
‖ui(β̂full)‖

γλmin(MN(β̂full))

√
c2
r3
I(r3 < d),

for some constants γ, c1, c2, which depend on d, ν1, and N−1
∑N

i=1 ‖xi‖4 only, where

λmin(·) denotes the minimal eigenvalue of the corresponding matrix.

Theorem 3 gives us a guide for the trade-off between the computational time

and the approximation accuracy. Clearly, the approximation accuracy will improve

as r2 and r3 increase. Note that the computational cost will be increased linearly
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as r2 and r3 grow up, while the approximation error decreasing is much slower

than 1/r2 and 1/r3. The property of diminishing marginal utility for increasing

r2, r3 can be seen in Theorem 3. Therefore, the careful choice of r2, r3 can achieve

the balance between computational complexity and statistical accuracy. As shown

in Section 6, with proper choice of r2, r3, such an approximation can save about

60% of the time without sacrificing too much accuracy.

4. Practical Implementation

The optimal subsampling probabilities pMV
i ’s derived in Theorem 2 and their ap-

proximations cannot be applied directly since the probabilities depend on β̂full

which is unknown in practice. As suggested in Wang et al. (2018), β̂full is usually

approximated by a pilot estimator, say β̂pilot. To obtain β̂pilot, we can draw a

small pilot sample via uniform subsampling or other subsampling approaches sat-

isfying Assumption 5. Therefore, the proposed method is computationally feasible

to implement.

When some subsampling probability pMV
i is small, the weighted likelihood

function may be sensitive to the data point (xi, yi) if it is included in the subsample.

Ma et al. (2015) proposed a shrinkage-based subsampling method to make the

estimators more stable and robust. To be specific, we use the following subsampling
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probabilities,

p̆i = (1− ρ)
n
∥∥∥M−1

N (β̂pilot)ui(β̂pilot)
∥∥∥∑N

i=1

∥∥∥M−1
N (β̂pilot)ui(β̂pilot)

∥∥∥ + ρ
n

N
, (4.10)

where ρ ∈ (0, 1). Clearly, the p̆i is a linear combination of the optimal probability

and the uniform subsampling, thereby it is natural to obtain the benefits of each.

Precisely, involving uniform subsampling can detect the departure of model mis-

specification in the design region with low subsampling probabilities. Moreover,

with a fraction of data points with low probabilities, the resultant estimator will

be much more stable and not particularly susceptible to outliers.

Clearly, the approximation techniques introduced in Section 3 are still valid

with replacing the β̂full with a pilot estimator. Therefore, we can use T3M̃N

−1
(β̂pilot)

or T3M̂N

−1
(β̂pilot) to instead M−1

N (β̂pilot). From Theorem 3, one can expect that

such approximations speed up the computation remarkably without scarifies too

much accuracy. As stated in Remark 3, we simply fetch M = +∞ to accommodate

big data environments. To prevent the case that some p̆i’s are larger than one, we

use p̆i ∧ 1’s in practice, where a∧ b stands for the minimal number between a and

b. For clear transparency, we summarize the two-step algorithm in Algorithm 2.

The asymptotic normality of β̂ts obtained by Algorithm 2 is derived as follows.

Theorem 4. Suppose Assumptions 1-4 hold and n0n
−1/2 → 0. As N → ∞,

n→∞, and n0 →∞, conditional on FN in probability,

V̀ −1/2
(
β̂ts − β̂full

)
→ N(0, Id),
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Algorithm 2: Practical Two-Step Algorithm

Pilot Subsampling: Run Algorithm 1 with pi = n0/N, i = 1, . . . , N , or

other subsampling approaches satisfying Assumption 5 to obtain the pilot

subsample set S1 and the pilot estimator β̂pilot, where n0 is the expected

size of the pilot subsample.

Initialization: S2 = ∅;

for i = 1, . . . , N do

Generate Ri ∼ Bernoulli(1, pi) with pi = p̆i ∧ 1, where p̆i is defined in

(4.10);

if Ri = 1 then

Update S2 = S2 ∪ {(xi, yi, pi)}
Estimation: Find β̂ts to maximize the following weighted likelihood

function based on the subsample S1 and S2, n0`
∗
1(β) + n`∗2(β), where

`∗1(β), `∗2(β) are defined in (2.6) with pi = n0/N , pi = p̆i ∧ 1, respectively.

in distribution, where V̀ = M−1
N (β̂full)V̀Nc(β̂full)M

−1
N (β̂full), and

V̀Nc(β̂full) =
1

N2

N∑
i=1

1− (p̀i ∧ 1)

p̀i ∧ 1
ui(β̂full)u

T
i (β̂full),

with

p̀i = (1− ρ)
n
∥∥∥M−1

N (β̂full)ui(β̂full)
∥∥∥∑N

i=1

∥∥∥M−1
N (β̂full)ui(β̂full)

∥∥∥ + ρ
n

N
.

Note that when n0n
−1/2 → 0, the contribution of the subsample at the first

step can be ignored, the moment estimators of MN(β̂full) and V̀Nc(β̂full) can be
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simply estimated by

1

N

∑
S2

1

p̆i

∂ui(β̂ts)

∂βT
, and

1

N2

∑
S2

1

p̆i

(
1− p̆i
p̆i

ui(β̂ts)u
T
i (β̂ts)

)
,

respectively. Thus one can estimate V̀ by “plug-in” the above moment estimators.

Consequently, one can obtain the standard error and construct the confidence

ellipsoid for the model parameters by applying Theorem 4.

5. Discussions on Robustness

In practical big data settings, robustness is important due to the following two

reasons. Firstly, the postulated parametric model may sometimes be misspecified.

Secondly, the full data set may contain some outliers. In this section, we will

provide some discussions on robustness.

5.1 Model Robustness

Clearly, when the model is perfectly specified, Theorem 4 concludes that the sub-

sample based estimator β̂ts is also a consistent estimator of the true parameter

βtrue, since β̂full is a consistent estimator. The asymptotic result is still valid

when r/n → 0. In the following, we will derive the asymptotic behavior of β̂ts

when the postulated model is misspecified.

Two kinds of model misspecifications oftentimes arise in subsampling pro-

cedures. The first is that the postulated model is incorrect when we plan the

subsampling, while the model is correctly specified in the final estimation step.
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This phenomenon is common when the dependence between input and output is

misspecified initially and is corrected as the subdata points began to accumulate.

The second is that the postulated model is incorrect from the subsampling step to

the estimation step. It is also possible when some important features are missing

in the full data.

For the first scenario, the following theorem states that β̂ts is still a
√
n-

consistent estimator of βtrue.

Theorem 5. Suppose Assumptions 1-4 hold and the model in the estimation step

is correctly specified. As N → ∞ and n → ∞, β̂ts obtained by Algorithm 2 is

√
n-consistent to βtrue in probability, no matter the postulated model in designing

the pilot subsampling probabilities is correct or not. That is, for any ε > 0, there

exists a finite ∆ε and nε such that

P
(∥∥∥β̂ts − βtrue

∥∥∥ ≥ n−1/2∆ε

)
< ε,

for all n > nε.

It is worth mentioning that Thoerem 2 no longer holds for this case. It is

natural to see that the asymptotic variance is inflated compared with the optimal

subsampling probabilities when the model is perfectly specified. This is the price

we pay for the model misspecification.

For the second scenario, one cannot expect β̂ts to be a consistent estimator

of βtrue. The following remark states that β̂ts is still a
√
n-consistent estimator of

β̂full conditional on FN with minimum asymptotic MSE.
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Remark 6. Suppose Assumptions 1-4 hold. As N →∞ and n→∞, β̂ts obtained

by Algorithm 2 is
√
n-consistent to β̂full conditional on FN in probability.

As Chapter 5 of Van der Vaart (1998) pointed out that the β̂full will lead

to the a unique distribution Fn(·, β̂full) in the family of misspecified multinomial

distribution with the postulated link functions that has the smallest Kullback-

Leibler divergence from the true underlying model. Thus, the fitted model with

β̂ts can also be regarded as a useful model for prediction even if the postulated

model is wrong.

5.2 Subsampling with Possible Outliers

In this subsection, we consider the subsampling when some outliers lie in the full

data.

Along the same idea of “cook distance”, the outliers in this section refer to the

strong influence points that negatively affect the regression coefficients estimation.

First of all, we begin with analyzing how much the parameter estimator changes

when the i-th observation is removed.

Lemma 1. Let β̂−i denote the jackknife estimator of β with the i-th observation

in the full data deleted. Assume that the number of outliers is finite. Under

Assumptions 1–4, as N →∞, it follows that

β̂−i − β̂full = −N−1M−1
N (β̂full)ui(β̂full) + oP (N−1). (5.11)

Lemma 1 gives another view of the MV subsampling strategy. The selected
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subsample points are more likely to be the data points containing more information

about the model and should be used for parameter estimation if all the data follow

the same underlying model. However, if the full data contains some outliers, they

may unfortunately be drawn into the subsample set.

It is worth mentioning that shrinkage probabilities in (4.10) not only down

weight the inclusion probabilities of the outliers but also encourage the subsample

to include some data points that have less influence on the estimation. Therefore, it

is naturally more robust than we adopt the optimal subsampling probabilities only.

When the number of outliers is relatively small, we can still adopt Algorithm 2 to

achieve a barely satisfactory result.

When the number of outliers cannot be ignored compared with the sampling

budget n, we propose to adopt the stratification subsampling according to {‖β̂−i−

β̂full‖}Ni=1 to make the balance between the information points and outliers. To be

precise, define S(r) be the slab that S(r) = {(yi,xi) : ‖M−1
N (β̂full)ui(β̂full)‖ ≤ r}.

The sample space can be divided into K layer H1, . . . , HK with pre-specified r1 <

. . . < rK−1, i.e.,

H1 = S(r1), . . . HK−1 = S(rK−1)\S(rK−2), HK = Rd\S(rK−1).

Then we can conduct the subsampling on each layer.

Note that pMV
i ∝ ‖β̂−i−β̂full‖ = ‖M−1

N (β̂full)ui(β̂full)‖ when M in Theorem 2

is selected as ∞. As a result, the additional computational cost in dividing each

data point into the different layers is only O(N). Thus the computational cost
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is still affordable and the approximation methods introduced in Section 3 can

also be applied to accelerate the sampling step. It is worth mentioning the pilot

subsample contains no outliers with probability (1 − o/N)n0 ≈ 1 − n0o/N , where

o is the number of outliers. Since o is finite and n0 � N , thus we can still use the

pilot estimator to approximate the β̂full.

Therefore, for each layer, the subsampling step is the same as Algorithm 2

except the pi’s are the inclusion probabilities in each strata, and the estimation

step is to find β̂ts which maximizes the following weighted likelihood function based

on the sampled subdata set, i.e., n0`
∗
1(β)+n1`

∗
2(β)+ . . .+nK`

∗
K+1(β), where `∗1(β),

`∗2(β), . . . , `∗K+1(β) are the subsample based log-likelihood for the pilot subdata and

subdata in layers H1, . . . , HK , respectively, and n1, . . . , nK are the subsample size

of the corresponding layers. Here, the subsample size of each stratum is suggested

to be proportional to the size of each layer. The rK is recommended to satisfy

the condition that the cardinal number of HK is a little bit more than the number

of outliers. In practice, we may use six sigma rule to decide rK or simply use

the quantile or the m-th largest values of {‖β̂−i − β̂full‖}Ni=1 instead. Such tuning

parameters can be regarded as a bet on outliers. Note that the objective function

can be rewritten as n0/(n0+n1+. . .+nK)`∗1(β)+n1/(n0+n1+. . .+nK)`∗2(β)+. . .+

nK/(n0 + n1 + . . .+ nK)`∗K+1(β). Thus the contribution of outliers in the selected

subsample to the subdata based likelihood is around nK/(n0 + n1 + . . . + nK),

which will go to zero since the outliers are sufficiently small in the full data. The
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effect of outliers in the estimation step will naturally be mitigated. Clearly, the

subdata in HK can be ignored when nK/(n0 + n1 + . . .+ nK) is sufficiently small.

6. Numerical Studies

In this section, we use some numerical examples to evaluate the performance of

the methods proposed in Section 4. To evaluate the accuracy of the algorithms

in approximating the full data maximum likelihood estimator, for each case, we

repeat the implementation for K times and calculate the empirical mean squared

error (MSE) of the resultant estimator: K−1
∑K

k=1 ‖β̂
(k)
p − β̂full‖2, where β̂

(k)
p is

the estimator with subsampling probability p from the k-th subsample. All the

computations are performed using R. Throughout this section, we set K = 1000.

6.1 Simulations

In the following, we take Model (2.4) with J = 3 to illustrate our methods. The

performance for the softmax regression is quite similar and we relegate it to the

Supplementary Material. For reference, we list the model used in this subsection

as follows:

log

(
πi1(β)

πi2(β) + πi3(β)

)
= xT

i(0)β0 + xT
i(1)β1,

log

(
πi2(β)

πi3(β)

)
= xT

i(0)β0 + xT
i(2)β2.

(6.12)

Here we set β0 = −0.5 × 110, β1 = 0.5 × 110, β2 = 110, where 110 is a 10

dimensional all-ones vector. The corresponding covariate xi = (xT
i(0),x

T
i(1),x

T
i(2))

T
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with N = 216 is generated in the following scenarios.

Case 1. The x follows a multivariate normal distribution with mean 0, N(030,Σ),

where Σ is a matrix with all diagonal elements equal to one and off-

diagonal elements equal to 0.5.

Case 2. The x follows a mixture of two multivariate normal distributions with

different means, 0.5N(130,Σ) + 0.5N(−130,Σ), where Σ is the same as in

Case 1.

Case 3. The x follows a multivariate t distribution with degrees of freedom 3 and

mean 0, t3(030,Σ)/10, where Σ is the same as in Case 1.

Case 4. The x follows a multivariate log-normal distribution LN(030,Σ)/10, where

Σ is the same as in Case 1.

The first three cases are symmetric with different distributions, whereas Case

4 is asymmetric. It is worth mentioning that in Cases 1, 2, and 4, Assumptions

2-4 are satisfied. However, in Case 3, Assumption 4 is not satisfied.

Now we evaluate the performance of the proposed methods, i.e., the optimal

subsampling and its approximation, together with the uniform subsampling and

the MVc subsampling. The MVc is L-optimal subsampling method which aims to

minimize tr(VNc(β̂full)). Thus the resultant sampling probability is proportional

to ‖ui(β̂full)‖. For fair comparisons, we assign all the subsampling probabilities

to (n0 + n)/N for the uniform subsampling. The detailed subsampling methods
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considered in this section are listed in Table 1.

Table 1: Summary of different subsampling methods used in the numerical studies.

Name Subsampling probabilities (pi)

MV (1− ρ)
n‖M−1

N (β̂pilot)ui(β̂pilot)‖∑N
i=1‖M−1

N (β̂pilot)ui(β̂pilot)‖ + ρ n
N

FMV-RP (1− ρ)
n
∥∥∥T3M̃N

−1
(β̂pilot)ui(β̂pilot)

∥∥∥∑N
i=1

∥∥∥T3M̃N
−1

(β̂pilot)ui(β̂pilot)
∥∥∥ + ρ n

N

FMV-RS (1− ρ)
n
∥∥∥T3M̂N

−1
(β̂pilot)ui(β̂pilot)

∥∥∥∑N
i=1

∥∥∥T3M̂N
−1

(β̂pilot)ui(β̂pilot)
∥∥∥ + ρ n

N

MVc (1− ρ)
n‖ui(β̂pilot)‖∑N
i=1‖ui(β̂pilot)‖ + ρ n

N

Uniform n0+n
N

MV means the optimal subsampling such that the asymptotic variance is minimized. FMV

means “Fast MV-optimal subsampling probability approximation”, RP stands for “Random

Projection”, and RS stands for “Random Subsampling”. The T3, M̃N

−1
(β̂pilot), M̂N

−1
(β̂pilot)

are defined in Section 3. MVc means the optimal subsampling such that the trace of the

VNc(β̂full) is minimized. Since β̂full is unknown, it is replaced by β̂pilot in practice.

Here we set n0 = 400, ρ = 0.2, r1 = r2 = 5000, r3 = 10. To verify the

consistency of the subsample based estimator, we choose the expected subsample

size n to be 600, 800, 1000, 1200, 1400, and 1600. The simulation results are

reported in Figure 1.

From Figure 1, one can see that subsampling methods based on MV, FMV-

RP, FMV-RS, MVc always result in smaller empirical MSEs compared with the

uniform subsampling. In addition, the MV method has the smallest empirical
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(c) Case 3.
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(d) Case 4.

Figure 1: The log of MSE for Model (6.12) with different n based on MV, FMV-RP,

FMV-RS, MVc, and Uniform methods, where n0 = 400, ρ = 0.2, r1 = r2 = 5000,

r3 = 10.

MSEs and the MSEs for FMV-RP, FMV-RS are close to that for the MV method.

Compared with the MVc, the approximation methods (FMV-RP, FMV-RS) have

smaller empirical MSEs. This is because the MVc does not focus on minimizing

the asymptotic MSE of β̂sub which echoes the discussions in Section 3. It is worth

mentioning that the MSEs for all subsampling methods decrease as n increases,

which confirms the theoretical result in Theorem 1.

We also consider the cases in which the postulated model is misspecified. Two
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scenarios are taken into account as we discussed in Section 5. In the first scenario,

we focus on the case that only the postulated model used in designing the sampling

probabilities is incorrect. Here we use Model (6.12) to generate the simulated data

while a softmax regression is adopted in planning the sampling probabilities.

Secondly, we further consider the case that the data is generated by Model (6.12)

while the softmax regression is adopted to draw an inference on the full data. Since

all the cases have similar performance, we only demonstrate the performances when

the covariates are generated in Case 1. The results are reported in Figures 2 (a)

and (b), respectively.
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(a) Model misspecification in sampling step

only.
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(b) Model misspecification in both sam-

pling and estimation step.

Figure 2: The log of MSE for the model misspecification scenarios with different n

based on MV, FMV-RP, FMV-RS, MVc, and Uniform methods, where n0 = 400,

ρ = 0.2, r1 = r2 = 5000, r3 = 10.

Now we consider the cases in which the full data is corrupted by various

forms of outliers. The basic set of the full data that obey the underlying model is
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generated from Case 1, and two types of outliers are considered as follows.

O1: The x follows a uniform distribution from −11 to −10 for each dimension

independently. The corresponding response is set to be two.

O2: The x follows a uniform distribution from 10 to 11 for each dimension inde-

pendently. The corresponding response is set to be three.

The outliers in the full dataset is {(xi, yi)}i∈O with O = O1 ∪ O2, such that

|O| = o. Clearly, when the underlying model is correctly specified, the probability

of the response being one, two, and three is around 0.6, 0, 0.4, respectively when

x is generated as O1. For the case that x is generated as O2 and the underlying

model is correctly specified, the probability for the response being one, two, and

three is around 0.6, 0.4, 0, respectively. Thus, both O1 and O2 are outliers when

the data is generated by Model (6.12).

Now we compare the stratification subsampling method proposed in Section 5

with MV, MVc, and Uniform subsampling methods. Here, the hyper-parameters

of the MV, MVc is the same as Cases 1–4. The MV-S denotes the stratification

subsampling method proposed in Section 5 with K = 2 and r1 be the 99%-quantile

of {‖M−1
N (β̂pilot)ui(β̂pilot)‖}Ni=1. To further remove the influence of the outliers on

the full data MLE, we redefine the empirical mean squared error (MSE) of the

resultant estimator as K−1
∑K

k=1 ‖β̂
(k)
p −βtrue‖2. The results are shown in Table 2.

From Table 2, it is clear that when the subsample size is small, the impact of

the outliers are also relatively small since only a little part of the outliers will be
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Table 2: Empirical MSE for different subsampling methods and subsample size

under various number of the outliers in the full data set.

|O| method 600 800 1000 1200 1400 1600

65

MV 0.504 0.499 0.528 0.607 0.662 0.718

MVc 0.540 0.545 0.570 0.622 0.690 0.780

MV-S 0.372 0.399 0.458 0.535 0.658 0.681

Uniform 0.590 0.631 0.652 0.719 0.801 0.925

327

MV 2.163 2.151 2.175 2.192 2.229 2.212

MVc 2.162 2.237 2.209 2.289 2.336 2.303

MV-S 0.618 0.606 0.712 0.776 0.837 1.099

Uniform 2.134 2.138 2.140 2.150 2.271 2.215

655

MV 3.348 3.331 3.345 3.358 3.366 3.410

MVc 3.436 3.450 3.415 3.459 3.434 3.488

MV-S 2.117 2.010 2.091 2.200 2.341 2.378

Uniform 3.269 3.351 3.282 3.306 3.426 3.413
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included in the subsample set. The stratification method effectively reduces the

impact of the outliers which makes the subsample based estimator more robust. As

the number of outliers increases, the outliers are naturally more likely to influence

both the pilot estimator and the final estimator. As a result, the MSE becomes

worse compared with the cases of fewer outliers.

6.2 Real Data Analysis

We examined our methods on a real dataset about the on-time performance of

flights operated by large air carriers. This data contains 5,819,079 unique flight

information in 2015, which is available at https://www.kaggle.com/usdot/flight-

delays.

We use multinomial logistic regression to model the probability of late arrival

(categorical; 1 for early arrival, 2 for a delay of less than five minutes, 3 for a delay

between five and fifteen minutes, and 4 for a delay of more than fifteen minutes)

as a function of the weekday/weekend status (x1, binary; 1 if departure occurred

during the weekday, 0 otherwise); day/night status (x2, binary; 1 if departure

occurred between 7 a.m. and 6 p.m., 0 otherwise); departure delay status (x3,

binary; 1 if the delay is five minutes or more, 0 otherwise); the planned time of

flight (x4, continuous); the distance between airports (x5, continuous). The x4

and x5 are on a scale between 0 and 1. We drop the NA values in the dataset.

In addition, to use the FMV-RP method, we consider the subsampling on the
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training dataset of size N = 222(= 4, 194, 304), which is chosen randomly from

the full data. The rest data are used for testing the prediction performance. The

proportions of the four types are 67.11%, 9.42%, 10.85%, 12.62%, respectively.

In this work, we are interested in estimating the probability of further delay

when the lower level delay in flight happens. Therefore, the continuation-ratio

logit model is employed. Note that the delay levels are a partition of the arrival

delay time which is a continuous variable. Thus we adopt the proportional odds

assumption and build the following model:

logit (πi1) = −0.502− 0.102xi1 + 0.039xi2 + 1.915xi3 + 1.831xi4 − 1.396xi5,

logit

(
πi2

πi2 + πi3 + πi4

)
= −1.753− 0.102xi1 + 0.039xi2 + 1.915xi3 + 1.831xi4 − 1.396xi5,

logit

(
πi3

πi3 + πi4

)
= −0.651− 0.102xi1 + 0.039xi2 + 1.915xi3 + 1.831xi4 − 1.396xi5,

where logit(·) is the logistic function and all the coefficients are estimated from

the full sample. To measure the prediction performance, we adopt the expected

log-likelihood gain, which is widely used in the statistical literature and many

other scientific disciplines. See Ando and chau Li (2017); McCoy et al. (2017)

for details. To be precise, the expected log-likelihood gain is calculated by EL =∑ntest

i=1

∑J
j=1 I(yi = j) log πij(β̂

(k)
p ), where ntest is the size of the test data. Since it

is the likelihood of the test data, a larger EL corresponds to a better method.

We also compared our methods with the MVc and uniform subsampling meth-

ods with various expected subsampling sizes from 2000 to 4000. We set n0 =

1000, ρ = 0.2, r1 = r2 = 20000, r3 = 4. Figure 3 presents the results. Clearly,

MV, FMV-RP, and FMV-RS perform similarly and they all dominate the MVc
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and the uniform subsampling methods in both estimation and prediction. Figure 4

shows that our methods are more stable compared with the MVc and the uniform

subsampling methods.

(a) log(MSE) (b) EL

Figure 3: The log of MSE and EL based on MV, MVc, FMV-RP, FMV-RS, and

Uniform methods, where n0 = 1000, ρ = 0.2, r1 = r2 = 20000, r3 = 4.

MV FMV−RP FMV−RS MVc Uniform

0
5

10
15

20

M
S

E

(a) n = 2000.

MV FMV−RP FMV−RS MVc Uniform

0
2

4
6

8
10

12

M
S

E

(b) n = 4000.

Figure 4: The MSE based on MV, MVc, FMV-RP, FMV-RS, and Uniform meth-

ods, where n0 = 1000, ρ = 0.2, r1 = r2 = 20000, r3 = 4.
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7. Conclusion

In this paper, optimal Poisson subsampling algorithms for multinomial logistic

models are derived, and the methods for fast approximation of the subsampling

probabilities are also developed. The asymptotic normality of the subsample based

estimator and the consistency of the approximations are shown in this work. A

two-step algorithm is suggested for practical implementation. Some numerical

experiments on simulated and real datasets are carried out to evaluate their prac-

tical performance. Both theoretical and numerical results demonstrate the great

potential of the proposed methods in extracting useful information from massive

datasets.

Before winding up this work it should be mentioned that we here only focus

on the behavior of the subsample based estimator when the full dataset is given.

As we know, the full data size may increase in the big data era. A typical example

is high-speed data stream analysis. More precisely, the study of the asymptotic

behavior when full data increases is also important and need to be investigated in

the future research.

Supplementary Material

All technical proofs and additional simulation results are provided in the online

Supplementary Material. The code of this work is available at https://github.

com/Quicy-PKU/OSMLM.
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