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Abstract: In addition to microstructure noise, the presence of multiple transac-

tions at each recording time is another common feature for high-frequency data.

In this paper, we consider the estimation of integrated covariance (ICV) ma-

trix for multiple high-frequency data in a high-dimensional situation where the

number of stocks and the “effective” sample size go to infinity proportionally.

First, we study the limiting spectral behavior of a pre-averaged version of av-

eraged time-variation adjusted realized covariance (PA-ATVA) matrix based on

multiple noisy observations. We show that the PA-ATVA matrix has several de-

sirable properties: it eliminates the effects of microstructure noise and multiple

transactions; it allows for rather general dependence structure in the noise pro-

cess, both cross-sectional and temporal; its LSD depends solely on that of ICV

matrix through the Marčenko-Pastur equation. Furthermore, we show that all

the aforementioned properties still hold in the presence of asynchronicity. Sec-

ond, we further propose a nonlinear shrinkage estimator of the ICV matrix based

on the PA-ATVA matrix. We show that the proposed estimator is not only

asymptotically positive-definite, but also enjoys a desirable estimation efficiency.
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At last, simulation and empirical studies demonstrate impressive performance of

our proposed estimator.

Key words and phrases: High-dimension, high-frequency, microstructure noise,

multiple transactions, random matrix theory.

1. Introduction

1.1 Motivation

The covariance structure of stock market is of great interest to investors and

researchers, as it has a critical role in financial problems such as pricing and

investment. Suppose that we have p stocks whose log prices at time t are

denoted by Xt = (X
(1)
t , . . . , X

(p)
t )T, where T denotes the transpose. The

following diffusion processes are commonly used to model financial asset

price processes:

dXt = µtdt+ ΘtdWt, t ∈ [0, 1], (1.1)

where (µt) = (µ
(1)
t , . . . , µ

(p)
t )T is a p-dimensional drift process, (Θt) is a

p × p matrix, the so-called covolatility process at time t, and (Wt) is a

p-dimensional standard Brownian motion. The interval [0, 1] represents the

time period of interest, such as one trading day. The integrated covariance
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1.1 Motivation

(ICV) matrix given by

Σ :=

∫ 1

0

ΘtΘ
T
t dt (1.2)

is of fundamental importance in risk management and portfolio allocation

for high-frequency financial data. Due to the unobservable covolatility pro-

cess (Θt), the estimation of the ICV matrix is an important problem in

financial applications, such as portfolio allocation and risk management.

However, there are three major issues in estimating the ICV matrix.

This first issue is high dimensionality. Suppose that we can observe

the latent log-price processes (X
(j)
ti }

p
j=1 synchronously at recording time

ti = i/n, i = 0, 1, . . . , n, during one trading day. The classical estimator of

the ICV matrix is the so-called realized covariance (RCV) matrix, which is

defined as

RCV :=
n∑
i=1

∆Xi(∆Xi)
T, ∆Xi = Xti −Xti−1

. (1.3)

In the case where the dimension p is fixed and the number of observations n

goes to infinity, the consistency and the asymptotic normality for the RCV

matrix have been well studied, for example, by Andersen and Bollerslev

(1998), Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002), and

Jacod and Protter (1998). However, in the high-dimensional setting where

the dimension p and the observation frequency n go to infinity proportion-

ally, the RCV matrix is no longer consistent. As a result, a large number
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1.1 Motivation

of studies have worked on the problem of estimating high-dimensional ICV

matrix (see Wang and Zou (2010), Fan et al. (2012), Tao et al. (2011), and

Zheng and Li (2011), etc). Kim et al. (2018) studied the adaptive thresh-

olding method based on sparse integrated covariance matrix, and Fan et al.

(2016), Fan and Kim (2018), Kim et al. (2018) and Kong (2018) studied

the covariance matrix estimation based on the approximate factor model.

The second issue is microstructure noise. It is commonly believed that

latent asset prices are always contaminated by market microstructure ef-

fects, also known as microstructure noise, which is induced by various fric-

tions in the trading process such as asymmetric information among traders

and bid-ask spread. The high-frequency accumulation of microstructure

noise seriously affects the estimation of the ICV matrix. Consequently,

several methods have been developed to deal with microstructure noise,

including the two/multi-scale approaches introduced by Aı̈t-Sahalia et al.

(2005), Mykland and Zhang (2009), Aı̈t-Sahalia et al. (2010), Aı̈t-Sahalia

et al. (2011), Zhang et al. (2005), and Zhang (2006); the realized kernel

suggested by Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen et al.

(2011); the quasi-maximum likelihood method studied by Xiu (2010); and

the pre-averaging approach proposed by Jacod et al. (2009) and Li (2013).

The third issue is multiple transactions. Theoretically, all the above-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



1.2 Contribution

mentioned approaches are only applied to those datasets that contain ex-

actly one transaction during one time interval. The order information is

very important since the calculation of RCV matrix is based on the in-

crements ∆Xi. However, this is not necessarily the case in practice. In

high-frequency financial markets, owing to heavy market trading and the

limitations of the recording mechanism, multiple transactions often occur

at each recording time. Due to the presence of multiple transactions, there

may be more than one transactions during one time interval, and the or-

der of consecutive ticks may not be available or even incorrectly recorded.

Given the occurrence of multiple transactions, the existing results about

ICV matrix should be re-examined. This research is motivated by the fact

that few studies have been done on this issue in a high-dimensional noisy

environment.

1.2 Contribution

In this paper, we study the estimation of high-dimensional ICV matrix

based on high-frequency noisy observations with multiple transactions. As

our first contribution, we adopt the pre-averaging approach proposed in

Jacod et al. (2009) to deal with the microstructure noise and show that,

based on group-averaged observations, the pre-averaged version of averaged
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time-variation adjusted realized covariance (PA-ATVA) matrix (see (2.8))

has several desirable properties (see Theorem 1): it eliminates the effects

of microstructure noise and multiple transactions; it allows for rather gen-

eral dependence structure in the noise process (both cross-sectional and

temporal dependence and even the dependence between the noise and price

process); its limiting spectral distribution depends solely on that of the ICV

matrix. As our second contribution, in Theorem 2, we show that all the

aforementioned desirable properties still hold in the presence of asynchronic-

ity. This is the most exciting result in comparison to previous literatures.

As our third contribution, we further propose a nonlinear shrinkage estima-

tor of the ICV matrix based on PA-ATVA matrix. We show that, almost

surely, our proposed estimator is positive-definite and enjoys a desirable

asymptotic efficiency comparing with the “oracle” one, which relies on the

true ICV matrix. All these proofs are under the high-dimensional setting,

where the number of stocks and the “effective” sample size grow in the same

rate.

The rest of the paper is organized as follows. Section 2 presents the lim-

iting spectral properties of two types of PA-ATVA matrices, one based on

noisy observations with multiple transactions and the other based on asyn-

chronicity. In Section 3, a nonlinear shrinkage estimator of the ICV matrix
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is proposed. Section 4 and 5 demonstrate simulation studies and an anal-

ysis of stock market data, respectively. Section 6 contains the conclusions.

Some simulations and detailed proofs are provided in the supplementary

material.

Notation. We give some notations that will be used throughout this

article. Let C, R, Z, and N denote the sets of complex, real, integer,

and natural numbers, respectively; C+, a subset of C, contains positive

imaginary parts. All vectors are column vectors, and we use | · | to denote

the Euclidean norm for vectors. The transpose of any matrix A is denoted

by AT. From random matrix theory, the empirical spectral distribution

(ESD) is defined as

FA(x) =
1

p

p∑
j=1

I(λj(A) ≤ x), for x ∈ R, (1.4)

where I(·) is an indicator function and λj(A) denotes the jth largest eigen-

value of a Hermitian matrix A. The limit of ESD is referred to as the

limiting spectral distribution (LSD), if it exists. For any distribution func-

tion F , let mF (·) denote its Stieltjes transform defined as

mF (z) =

∫
1

λ− z
dF (λ), for z ∈ C+ := {z ∈ C : =(z) > 0},

where =(z) is the imaginary part of z. We use notation b·c to indicate

rounding down to the nearest integer.
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2. The limiting spectral distributions of PA-ATVA matrices

2.1 The setup

The following model settings are assumed in the case of high-frequency data

with multiple transactions. Suppose that the latent log price process (Xt)

follows model (1.1) and the observed contaminated process (Yt) is assumed

to follow the additive model

Yt = Xt + εt, for t ∈ [0, 1], (2.5)

where εt = (ε
(1)
t , . . . , ε

(p)
t )T denotes the noise process. For the sake of con-

venience, we will refer to any process in this work as (Vt), regardless of

whether it is the latent process (Xt), the contaminated process (Yt), or

the noise process (εt). In a given time interval [0, 1], one trading day,

for any process (Vt), suppose that (Vt) can be observed at time points

ti = i/n and there are Li(Li ≥ 1) transactions during each time in-

terval (ti−1, ti], for i = 1, . . . , n. Let VTi−1+j be the jth observation at

transaction time sTi−1+j during time interval (ti−1, ti] with T0 ≡ 0 and

Ti =
∑i

k=1 Lk, for j = 1, 2, . . . , Li and i = 1, 2, . . . , n. That is, Li trans-

actions at time points {sTi−1+j, j = 1, 2, . . . , Li} occurred during (ti−1, ti],

where ti−1 < sTi−1+1 < sTi−1+2 < · · · < sTi−1+Li
= sTi ≤ ti. The observa-

tions at each recording time point {ti} are as follows:
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2.1 The setup

at time t0: Vt0 = V0;

at time t1: V1,V2, . . . ,VT1 ;

...

at time tn: VTn−1+1,VTn−1+2, . . . ,VTn .

Theoretically, these observations occur consecutively during time interval

(ti−1, ti]. However, in practice, the observations at each recording time

ti lose their order of arrival owing to the recording mechanism. The Li

observations occurring during time interval (ti−1, ti] are only recorded at

time ti. Specifically,

V0, V1, . . . ,VT1︸ ︷︷ ︸
L1 observations at t1

, . . . ,VTi−1+1, . . . ,VTi︸ ︷︷ ︸
Li observations at ti

, . . . ,VTn−1+1, . . . ,VTn︸ ︷︷ ︸
Ln observations at tn

.

One commonly used method to deal with multiple transactions involves

taking averages of the multiple transaction prices at each time point ti, that

is,

Vi :=
1

Li

Li∑
j=1

VTi−1+j, i = 1, . . . , n, (2.6)

and using Vi to approximate the observation at time point ti. Moreover,

to deal with the microstructure noise, we adopt the pre-averaging approach

with a window length h and further introduce the following notations,

Ṽi :=
1

h

h∑
j=1

V(i−1)h+j and ∆Ṽ2i := Ṽ2i − Ṽ2i−1.
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2.2 The LSD of PA-ATVA matrix

In this way, the observed return based on the pre-averaged price becomes

∆Ỹ2i = ∆X̃2i + ∆ε̃2i.

2.2 The LSD of PA-ATVA matrix

Definition 1. Suppose that (Xt) is a p-dimensional process satisfying (1.1)

and Θt is càdlàg. Then (Xt) belongs to class C if, almost surely, there exist

γt ∈ D([0, 1];R) and Λ a p× p matrix satisfying tr(ΛΛT) = p such that

Θt = γtΛ, (2.7)

where D([0, 1];R) is the space of càdlàg functions from [0, 1] to R.

For class C processes, Zheng and Li (2011) proposes the time-variation

adjusted realized covariance (TVA) matrix, which is given by

TVA :=
tr(RCV)

n

n∑
i=1

∆Xi(∆Xi)
T

|∆Xi|2
.

The advantage of considering TVA matrix instead of RCV matrix is that

the LSD of TVA depends solely on that of ICV through Marčenko-Pastur

equation. Hence, the ESD of ICV can be recovered by using existing meth-

ods (such as Karoui (2008) etc).

In this paper, to investigate the effect of multiple transactions based on

noisy high-frequency data, we start by studying the pre-averaged version
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2.2 The LSD of PA-ATVA matrix

of TVA matrix based on the group-averaged observations (Yi)
n
i=1, which

is defined as follows. Let window length h = bξnβc with ξ ∈ (0,∞) and

β ∈ (1/2, 1). Take the “effective” sample size M = bn/(2h)c. The pre-

averaged version of averaged TVA (PA-ATVA) matrix is then defined as

BM := 3

∑M
i=1 |∆Ỹ2i|2

M
·
M∑
i=1

∆Ỹ2i(∆Ỹ2i)
T

|∆Ỹ2i|2
= 3

∑M
i=1 |∆Ỹ2i|2

p
· Ξ̃, (2.8)

where

Ξ̃ :=
p

M

M∑
i=1

∆Ỹ2i(∆Ỹ2i)
T

|∆Ỹ2i|2
. (2.9)

One key observation is that the window length h has a higher order than
√
n,

which enables us to asymptotically eliminate the effect of microstructure

noise. To study the behavior of BM based on noisy and multiple observa-

tions, we require some assumptions regarding the noise process. Recall that

the definition of ρ-mixing coefficients is as follows.

Definition 2. For a stationary time series (Uk), k ∈ Z, let F `j be the σ-

field generated by the random variables (Uk : −∞ ≤ j ≤ k ≤ ` ≤ ∞). The

ρ-mixing coefficients are defined as

ρ(r) = sup
f∈L2(F0

−∞), g∈L2(F∞r )

|Corr(f, g)|, for r ∈ N,

where, for any probability space Ω, L2(Ω) refers to the space of square-

integrable, Ω-measurable random variables.
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2.2 The LSD of PA-ATVA matrix

We now state our assumptions.

(A.i) For all p, (Xt) is a p-dimensional process in class C for some drift

process µt = (µ
(1)
t , . . . , µ

(p)
t )T and covolatility process (Θt) =

(γtΛ);

(A.ii) there exists a C0 < ∞ such that for all p and all q = 1, . . . , p,

|µ(q)
t | ≤ C0 for all t ∈ [0, 1) almost surely;

(A.iii) there exists a 0 ≤ δ1 < 1/2 and a sequence of index sets Ip

satisfying Ip ⊂ {1, . . . , p} and #Ip = O(pδ1) such that (γt) may

depend on Wt but only on (W
(q)
t : q ∈ Ip); moreover, there exists

a C1 < ∞ such that for all p, |γt| ∈ (1/C1, C1) for all t ∈ [0, 1),

almost surely;

(A.iv) there exists C2 <∞ such that for all p and all l, the individual

volatilities σ
(l)
t =

√
(γt)2

∑p
k=1(Λlk)2 ∈ (1/C2, C2) for all t ∈

[0, 1] almost surely; in addition, (γt) converges uniformly to a

nonzero process (γ∗t ) that is piecewise continuous with finitely

many jumps almost surely;

(A.v) there exists C3 < ∞ and 0 ≤ δ2 < 1/2 such that for all p,

‖ICV‖ ≤ C3p
δ2 almost surely;

(A.vi) the δ1 in (A.iii) and δ2 in (A.v) satisfy that δ1 + δ2 < 1/2;

(A.vii) almost surely, as p→∞, the ESD of Σ̆ = ΛΛT converges in
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2.2 The LSD of PA-ATVA matrix

distribution to a probability distribution H̆;

(A.viii) For all q = 1, . . . , p, the noise (ε
(q)
t ) is a stationary time series

with mean 0 and has bounded 4νth moments and ρ-mixing co-

efficients ρ(q)(r) satisfying maxq=1,...,p ρ
(q)(r) = O(r−ν) for some

integer ν > 2;

(A.ix) h = bξnβc for some ξ ∈ (0,∞) and β ∈ ((3 + ν)/(2ν + 2), 1),

and M = bn/(2h)c satisfy that limp→∞ p/M = c > 0, where ν is

the integer in Assumption (A.viii);

(A.x) max
1≤i≤n

n(sTi − ti)→ 0 almost surely as p→∞;

(A.xi) there exists a constant L∗ <∞ such that 1 ≤ inf Li ≤ supLi ≤

L∗, almost surely;

Assumptions (A.i)–(A.vi) are reasonable for the underlying log-price

process proposed in Zheng and Li (2011). In such a case, no sparsity as-

sumption on the ICV matrix is needed, the dependence between the co-

volatility process and the Brownian motion in Assumption (A.iii) allows the

leverage effect to be captured, and the jumps are considered in Assump-

tion (A.iv). Assumptions (A.vii) is a standard for use in high-dimensional

settings in random matrix theory. Assumption (A.viii) is a quite “mild”

assumption as pointed out by Xia and Zheng (2018). It allows for not only

dependence within the noise process, both cross-sectional and temporal, but
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also dependence between the noise and price processes. Assumption (A.ix)

follows from assumption (D.vii) in Xia and Zheng (2018), which is a stan-

dard condition in random matrix theory. Assumption (A.x) assumes that

the latest multiple-transaction time in each time interval is close enough

to the recording time, which is a reasonable condition for high-frequency

data, especially facing with ultra-high-frequency data. Assumption (A.xi)

considers the number of multiple transactions, which are assumed to be

finite. Then, we have the following convergence result for the PA-ATVA

matrix BM .

Theorem 1. Suppose that Assumptions (A.i)–(A.xi) hold. Then, as p →

∞, the ESDs of ICV and BM converge almost surely to probability distri-

butions H and FB, respectively, where

H(x) = H̆(x/θ), for all x ≥ 0 with θ =

∫ 1

0

(γ∗t )
2dt, (2.10)

and FB is determined by H in that its Stieltjes transform, mB(z), satisfies

the Marčenko-Pastur equation,

mB(z) =

∫
τ∈R

1

τ(1− c(1 + zmB(z)))− z
dH(τ), for z ∈ C+. (2.11)

Compared with Theorem 2 in Zheng and Li (2011) and Theorem 2.3 in

Xia and Zheng (2018), our Theorem 1 shows that the PA-ATVA matrix BM
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eliminates not only the effect of microstrucute noise but also the effect of

multiple transactions. The LSDs of ICV and BM are solely related through

Marčenko-Pastur equation.

2.3 Asynchronous trading

In this subsection, we consider a setting where the observations are asyn-

chronous. In addition to microstructure noise and multiple transactions,

asynchronous trading is another challenge for high-dimensional and high-

frequency data analysis. In practice, different stocks usually have different

numbers of transactions during one time interval. Take an example of Ap-

ple, Cisco Systems, and Microsoft; on November 4, 2016, there were 491,

166, and 217 transactions in the first trading seconds, respectively. Denote

L
(q)
i the number of multiple transactions for stock q, 1 ≤ q ≤ p, during

recording interval (ti−1, ti]. For any process (Vt), let V
(q)
i,j be the observa-

tion of the jth transaction for stock q during time interval (ti−1, ti] with

ti = i/n. A figure in the supplementary material shows a simplified version

of true transactions and recording mechanism under asynchronous trading.

Let T
(q)
i =

∑i
k=1 L

(q)
k for q = 1, . . . , p and i = 1, . . . , n. The true

transaction time of V
(q)
i,j is denoted as s

(q)

T
(q)
i−1+j

, for j = 1, . . . , L
(q)
i , satisfying

ti−1 < s
(q)

T
(q)
i−1+1

< · · · < s
(q)

T
(q)
i−1+L

(q)
i

= s
(q)

T
(q)
i

≤ ti. With asynchronous trading,
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the average of multiple observations at each recording time ti is denoted as

V
∗
i =

L
(1)
i∑
j=1

1

L
(1)
i

V
(1)
i,j , . . . ,

L
(p)
i∑
j=1

1

L
(p)
i

V
(p)
i,j

T

,

and the pre-averaging observation becomes

Ṽ
∗

i =
1

h

h∑
j=1

V
∗
(i−1)h+j,

for i = 1, . . . , n. Define the increments ∆Ṽ
∗

2i = Ṽ
∗

2i − Ṽ
∗

2i−1. Using the

above notation, the PA-ATVA matrix is then rewritten as

B∗M = 3

∑M
i=1 |∆Ỹ

∗

2i|2

M
·
M∑
i=1

∆Ỹ
∗

2i(∆Ỹ
∗

2i)
T

|∆Ỹ
∗

2i|2
. (2.12)

We further assume Assumptions (B.i) and (B.ii) as follows:

(B.i) there exists a constant L∗ < ∞ such that 1 ≤ inf
i,q
L

(q)
i ≤

sup
i,q

L
(q)
i ≤ L∗, almost surely;

(B.ii) max
1≤i≤n,1≤q≤p

nh(s
(q)

T
(q)
i

− ti)→ 0, almost surely, as p→∞.

Assumption (B.i) is parallel to Assumption (A.xi). Assumption (B.ii) re-

quires a faster convergence rate than Assumption (A.x), yet Assumption

(B.ii) is still feasible when dealing with ultra-high-frequency dataset. With

tick-by-tick transaction data, one recording time interval can be as little

as one millisecond. Because the distances between them are too small to

capture, we can infer that s
(q)

T
(q)
i

≈ ti in practice.
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Theorem 2. Suppose that Assumptions (A.i)–(A.ix) and (B.i)–(B.ii) hold.

Then, as p → ∞, the ESDs of ICV and B∗M converge almost surely to

probability distributions H and FB
∗
, respectively, where H satisfies (2.10)

and FB
∗

is determined by H in that its Stieltjes transform mB∗(z) satisfies

the Marčenko-Pastur equation,

mB∗(z) =

∫
τ∈R

1

τ(1− c(1 + zmB∗(z)))− z
dH(τ), for z ∈ C+.

Based on Theorem 1, Theorem 2 further states that the (rescaled) PA-

ATVA matrix B∗M is not influenced by the effect of asynchronous trading,

which is an important property comparing with existing literatures. Hence,

the matrix B∗M provides a robust basis for making further inference of the

ICV matrix.

3. The proposed estimator

We can see from Theorem 2 that the LSD of the ICV matrix is not the same

as the LSD of matrix B∗M in general. Furthermore, Theorem 2 indicates that

the extreme eigenvalues of matrix B∗M are more extreme than their ICV

counterparts, following a similar discussion as in Bai and Yin (1993); Yin

et al. (1998). That is, the smallest eigenvalue of matrix B∗M is smaller than

the smallest eigenvalue of the ICV matrix, while the maximum eigenvalue is

larger than the largest eigenvalue of the ICV matrix. As evidenced by these
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findings, matrix B∗M is still not a good estimator of the target ICV matrix.

This leads to our next goal, which is to develop a suitable ICV estimator

based on noisy high-frequency data in the presence of multiple-transactions.

Ledoit and Wolf (2012) offers a class of rotation-equivariant estima-

tors that keep the sample covariance matrix’s eigenvectors but nonlinearly

shrink its eigenvalues without making any assumptions about the popula-

tion covariance matrix’s structure. Furthermore, the authors published a

series of publications based on i.i.d. samples to build an estimator of the

ideal nonlinear shrinkage function. Realizing the difficulties of estimating

the unknown parameters in the optimal nonlinear shrinkage estimator in

the high-frequency framework, in this section, we adopt the approach of

Abadir et al. (2014); Lam (2016) to examine the nonparametric eigenvalue-

regularized covariance estimator by partitioning the dataset into two parts.

3.1 The estimator

Suppose that we have tick-by-tick high-frequency observations ({Y(q)
i,j }

p
q=1)

as assumed in Section 2.3. Denote the matrix of pre-averaging returns

∆Υ = {∆Ỹ
∗

2, . . . ,∆Ỹ
∗

2M}.We split the data ∆Υ into two parts {∆Υ1,∆Υ2}

with ∆Υj having size p×Mj for j = 1, 2, such that M1 +M2 = M . Define

Ξ̃∗j :=
p

Mj

∑
i∈Jj

∆Ỹ
∗

2i(∆Ỹ
∗

2i)
T

|∆Ỹ
∗

2i|2
,
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3.2 Estimation efficiency

where Jj = {i : ∆Ỹ
∗

2i ∈ ∆Υj} for j = 1, 2 and write the spectral decompo-

sition of Ξ̃∗1 as Ξ̃∗1 = U1Λ̃1U
T
1 , where Λ̃1 is a diagonal matrix of eigenvalues

of Ξ̃1 and U1 = (u11,u12, . . . ,u1p) is the eigenmatrix with each column u1i

being the corresponding eigenvector. Then we define our estimator as

Σ̂ := 3

∑M
i=1 |∆Ỹ

∗

2i|2

p
Ξ̂∗, Ξ̂∗ = U1diag

(
UT

1 Ξ̃∗2U1

)
UT

1 , (3.13)

where diag(A) sets all non-diagonal elements of matrix A to zero. Because

there is no previous information on the orientation of the targeting ICV

matrix, the eigenvectors of Ξ̃∗1 are kept, and the eigenvalues are shrunk by

splitting the dataset into two parts.

3.2 Estimation efficiency

We introduce the following “oracle” estimator to develop the estimation

efficiency of our estimator

Σoracle := Udiag(UTΣU)UT,

where Σ is the ICV matrix given in (1.2) and U is the eigenmatrix of

Ξ̃∗ =
p

M
·
M∑
i=1

∆Ỹ
∗

2i(∆Ỹ
∗

2i)
T

|∆Ỹ
∗

2i|2
(3.14)

such that the spectral decomposition of Ξ̃∗ is UΛ̃UT. The matrix Σoracle

is called “oracle” because on one hand it depends on the unknown ICV
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3.2 Estimation efficiency

matrix, on the other hand it uses the full set of data for obtaining the

eigenmatrix U and solves the following optimization problem

min
D̃ is diagonal

‖UD̃UT −Σ‖F , (3.15)

where D̃ is a diagonal matrix and ‖A‖2
F = tr(AAT) is the Frobenius norm

of a matrix A. With this “oracle” estimator, we consider the efficiency loss

of our estimator Σ̂ as

EL(Σ, Σ̂) = 1− ‖Σ−Σoracle‖2
F/‖Σ− Σ̂‖2

F .

When compared to the “oracle” estimator Σoracle, EL(Σ, Σ̂) ≤ 0 indicates

that the estimator Σ̂ causes a smaller Frobenius loss or is doing as well as

Σoracle, and vice versa.

Next, to investigate the limiting properties of the proposed estimator

Σ̂, we assume the following assumptions.

(C.i) All the eigenvalues of Σ̆ = ΛΛT are bounded uniformly from 0

and infinity for t ∈ [0, 1].

(C.ii) The drift process satisfy that p−1/2|µt| → 0 for all t ∈ [0, 1]

almost surely.

(C.iii) The covolatility process (γt) is independent of (Wt).

(C.iv) The number M2 satisfy that
∑

p≥1 pM
−5
2 <∞.

(C.v) Denote h = bξnβc for some ξ ∈ (0,∞) and β ∈ (2ν+2
3ν+2

, 1), and
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3.2 Estimation efficiency

M = bn(2h)−1c satisfying that limp→∞ p/M = % > 0 where the

integer ν is the integer given in Assumption (A.viii).

To establish second-order consistency, we need stronger conditions in

Assumptions (C.i)–(C.iii) than in Assumptions (A.ii)–(A.v), but they are

still far weaker than the assumptions in Lam et al. (2017). All of the

assumptions are merely necessary for the theoretical findings to be obtained.

We will demonstrate via simulation studies that the proposed estimator’s

finite sample performance is outstanding even when the assumptions are

violated. Assumption (C.iv) assumes the split location number, in which we

suppose that M2, the size of second dataset, goes to infinity with diverging

rate at least faster than O(p(2+α)/5) for some α > 0. The Assumption (C.v)

is a standard requirement in random matrix theory.

Theorem 3. Under Assumptions in Theorem 2, further we suppose that

Assumptions (C.i)–(C.v) hold. Then, we have almost surely, the proposed

estimator Σ̂ is asymptotically positive-definite.

Corollary 1. Suppose that the assumptions in Theorem 3 hold. Then

max
1≤`≤p

∣∣∣diag(UT
1 Ξ̃∗2U1)diag−1(UT

1 Σ̆U1)− 1
∣∣∣ → 0, almost surely.

Remark 1. Theorem 3 shows that the proposed estimator is always asymp-

totically positive-definite even when the dimension p is larger than the effec-
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3.2 Estimation efficiency

tive sample size M . It is critical in portfolio allocation since some portfolio

strategy (see the GMP strategy in empirical study) may require an invert-

ible estimator for ICV matrix which is not always satisfied for example the

RCV or PA-ATVA matrix.

Remark 2. The factor model is a common approach in modeling high-

frequency data. See Fan and Kim (2018) for example. To account for the

effect of common factors, we consider the following factor model

dXt = µtdt+ ξtΛfdW
∗
t + γtΛBdWt,

where (µt) is a p × 1 drift process, (ξt) and (γt) are processes defined on

D([0, 1];R), Λf is a p× r factor loading matrix, ΛB is a p× p matrix satis-

fying tr(ΛBΛT
B) = p, and W∗

t and Wt are r-dimensional and p-dimensional

independent Brownian motions, respectively. The ICV matrix is then given

by Σ =
∫ 1

0
ξ2
t dt ·ΛfΛ

T
f +

∫ 1

0
γ2
t dt ·ΛBΛT

B. The matrix Σf =
∫ 1

0
ξ2
t dt ·ΛfΛ

T
f

(with small rank r < ∞) accounts for the influence of common factors on

the ICV matrix. (1) For a specific setting, when the processes (ξt) and

(γt) are identical, that is the matrix Λ in (2.7) admits the decomposition

Λ = (Λf ,ΛB), under the condition of p−1tr(ΛfΛ
T
f ) → β∗ ∈ [0,∞), one

can show that Theorem 3 still holds following a similar discussion as in

Lemma 1 of Lam (2016) (see the supplementary material). (2) For a gen-

eral setting, the desirable properties of our proposed estimator may not be
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3.3 Improvement with averaging

satisfied. Hence, the estimation of ICV matrix for high-frequency factor

models needs to be further investigated.

Theorem 4. Suppose that all assumptions in Theorem 3 hold. Additionally,

if M1/M → 1 and M2 → ∞, then we have EL(Σ, Σ̂) ≤ 0 almost surely,

provided that p−1‖Σ−Σoracle‖2
F 6→ 0 almost surely.

The condition p−1‖Σ − Σoracle‖2
F 6→ 0 implies that the case Σ̆ = Ip is

excluded, which is a plausible assumption. In the financial markets, the

correlation of stocks is a well-known fact. The matrix Σoracle is an opti-

mal estimator by solving the optimization problem (3.15) in the class S =

{UD̃UT, where D̃ is diagonal and U is the eigenmatrix of Ξ̃∗ in (3.14)}.

There may be an estimator Σ̂ with smaller efficiency loss when Σ̂ /∈ S.

Theorem 4 indicates that our proposed estimator Σ̂ works better or at

least performs as well as Σoracle in terms of Frobenius loss. That is why our

estimator works well in a variety of situations, including spiked and factor

models. Simulation studies support our approach.

3.3 Improvement with averaging

To improve the performance of Σ̂ in (3.13), we can permute the return

data during the time of interest B times. At the kth permutation, we split

the increments of ∆Υ into two parts {∆Υ
(k)
1 ,∆Υ

(k)
2 )}(k = 1, . . . , B) with
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3.3 Improvement with averaging

∆Υ
(k)
j having size p×Mj for j = 1, 2, such that M1 +M2 = M . Let (Ξ̃∗j)

(k)

denotes Ξ̃∗j at kth permutation with spectral decomposition U
(k)
j Λ̃

(k)
j (U

(k)
j )T

for k = 1, . . . , B, j = 1, 2. Then the averaged estimator of ICV matrix is

defined as

Σ̂B := 3

∑M
i=1 |∆Ỹ

∗

2i|2

p
· 1

B

B∑
k=1

(Ξ̂∗)(k), (3.16)

where (Ξ̂∗)(k) = U
(k)
1 diag

(
(U

(k)
1 )T(Ξ̃∗2)(k)U

(k)
1

)
(U

(k)
1 )T. In practice, follow-

ing the criterion of split location proposed by Lam (2016), we simply set

B = 50 and M1 is given by minimizaing the following problem

arg min
M1∈G

∣∣∣∣∣∣∣∣ 1

B

B∑
k=1

{(Ξ̂∗)(k) − (Ξ̃∗2)(k)}
∣∣∣∣∣∣∣∣2
F

, (3.17)

where

G =

[
2M1/2, 0.2M, 0.4M, 0.6M, 0.8M,M − 2.5M1/2,M − 1.5M1/2

]
is the candidate set for finite sample performance.

Theorem 5. Suppose that all assumptions in Theorem 4 hold. For any

finite number B, we have that the averaged estimator of ICV matrix defined

in (3.16) is asymptotically positive-definite almost surely. Moreover, we

have EL(Σ, Σ̂B) ≤ 0 almost surely.

Theorem 5 states that the permutation has no effect on the proposed

estimator’s desirable features. In general, averaging is a good way to get
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a more reliable estimator. As a result, in empirical studies, we employ the

averaged version of estimation.

4. Simulation Studies

In this section, we conduct some simulation studies to assess the perfor-

mance of the proposed estimator (3.16) in a variety of scenarios, including

spiked models (the largest few eigenvalues of ICV matrix differing from

the remainder) and factor models. Firstly, we assume that the latent

log-price process (Xt) follows dXt = µtdt + γtΛdWt, where µt are i.i.d.

N(0.02, (0.002)2Ip). We introduce two kinds of (γt). The first one is a

piecewise constant function with

γt =


0.01× 71/2, 0 ≤ t < 1/4 or 3/4 ≤ t ≤ 1

0.01, 1/4 ≤ t ≤ 3/4.

(4.18)

The second one is the U-shaped stochastic process (γt) defined as follows:

dγt = −ρ(γt − µt)dt+ σdW̃t, for t ∈ [0, 1], (4.19)

where ρ = 10, σ = 0.05, µt =
√

0.0009 + 0.0008 cos(2πt), and the process

W̃t =
∑p

i=1W
(i)
t /
√
p with W

(i)
t being the ith component of the Brownian

motion (Wt) that drives the price process. Note that (γt) dependents on all

components of the Brownian motion and Assumption (A.iii) and Assump-
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tion (C.iii) are violated, but the proposed estimator Σ̂B still works quite

well.

• Case I: assume that γt is a process of form (4.19), Λ = (0.5|i−j|)i,j=1,...,p;

• Case II: assume that γt is a U -shaped process of form (4.19) and set

Λ = (0.5|i−j|)i,j=1,...,p but change the first three eigenvalues of Λ to be

15, 10, 5.

There is leverage effect in Case I. Additionally, γt depends on all elements

of Wt and thus Assumption (A.iii) and Assumption (C.iii) are not satisfied.

Compared with the first cases, we add spikes for the population eigenvalues

in Case II. For more complex situations, we assume that the latent price

process are from the factor model for model misspecifications. Assume that

dXt = γ
(1)
t ΛdWt + γ

(2)
t β

TE1/2dFt, t ∈ [0, 1], (4.20)

where β is a r × p matrix, E is a r × r diagonal covariance matrix, (Ft) is

a r-dimensional standard Brownian motion which is independent of (Wt)

and γ
(1)
t , γ

(2)
t are two processes.

• Case III: let the eigenvalues for E are (15, 10, 5) and the first row of

β is drown randomly from U [0.25, 1.75] while the remaining two rows
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are i.i.d N(0, 0.52); let Λ = (0.5|i−j|)i,j=1,...,p, γ
(1)
t follows (4.19) , γ

(2)
t

follows (4.18) and (Xt) satisfy (4.20).

Case III follows a factor model and thus Assumption (C.i) is not satisfied.

As the following simulation studies show that the proposed estimator even

works well under these situations. In all settings, we rescale the spectral

of Λ to satisfy tr(ΛΛT) = p. We set n = 23400 which corresponds one

recording every second during 6.5 trading hours and p = 30 or 100. (εt) are

drawn from independently N(0, 0.0002Ip). We also compare our method

with the data-splitting (DS) in Lam et al. (2017), principal orthogonal

complement thresholding (POET) (Aı̈t-Sahalia and Xiu, 2017; Fan et al.,

2012). The subsampling interval for Lam et al. (2017) is 15-minute. We use

K = 3 factors for the principal orthogonal complement thresholding with

0.5 as soft thresholding parameter. To show the advantage of averaging

multiple observations, a competitor PATVA-Nonlin is considered based on

our proposed estimation procedure without the averaging step described in

(2.6). The subsampling interval and pre-averaging window length are both

15-minute. We repeat the simulations 500 times and compare the means of

relative spectral loss and relative Frobenius loss for the estimators. For any

matrix A, we define the relative spectral and Frobenius loss with respect to

ICV matrix as L1 = ‖A−Σ‖/‖Σ‖ and L2 = ‖A−Σ‖F/‖Σ‖F , where ‖A‖
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is the largest singular value of A. Both pre-averaging window length and

the subsampling interval are 15-minute. The simulation results are shown

in Table 1.

As the results show that the relative losses for the proposed estimator

are less than 1 in all cases and the proposed estimator achieves a lot of

improvement with respect to the PA-ATVA matrix, which indicate that

the nonlinear shrinkage is helpful to the estimation of ICV matrix. From

the result for Case II , we can see that the proposed estimator works well

even with spikes. More importantly, the proposed estimator is robust with

respect to the model misspecification in Case III. Specifically, the proposed

estimator endures the leverage effect and factor model. Compared with

PATVA-Nonlin, our proposed estimator works better under all circum-

stances except L1 loss in Case I. This shows that handling the multiple

observations indeed helps account for the market dynamics.

5. Empirical Applications

Now, we study the out-of-sample performance of the proposed method for

portfolio allocation. We collected tick-by-tick 30 DJIA stock prices from

January 1, 2021 to December 31, 2021, comprising 252 trading days, from

the Trade and Quote database. These stocks had excellent liquidity over the
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Table 1: Mean estimation-efficiency loss with respect to relative spectral loss and

relative Frobenius loss for 6 estimators (RCV, DS, POET, PA-ATVA, PATVA-

Nonlin, proposed) for Case I–III. Standard deviation is in bracket. L1 is the

relative spectral loss and L2 is the relative Frobenius loss. The recording fre-

quency n = 23400 and dimension p is set to p = 30 or p = 100 based on 500

replications.

Methods
Case I Case II Case III

L1 L2 L1 L2 L1 L2

p = 30

RCV 5.18(1.5) 4.94(1.35) 1.57(0.43) 2.44(0.63) 2.53(0.44) 3.29(0.53)

DS 1.90(0.63) 2.98(0.85) 0.67(0.15) 1.66(0.37) 0.94(0.2) 1.98(0.33)

POET 5.72(1.66) 4.79(1.33) 1.68(0.48) 2.37(0.63) 2.81(0.46) 3.21(0.53)

PA-ATVA 1.10(0.37) 0.92(0.19) 0.46(0.21) 0.51(0.19) 0.68(0.2) 0.81(0.15)

PATVA-Nonlin 0.66(0.1) 0.74(0.05) 0.54(0.17) 0.61(0.13) 0.66(0.12) 0.72(0.06)

Proposed 0.65(0.15) 0.64(0.08) 0.47(0.17) 0.5(0.14) 0.62(0.13) 0.65(0.07)

p = 100

RCV 12.20(3.15) 7.83(1.92) 1.55(0.43) 2.79(0.75) 5.81(0.74) 6.52(1.16)

DS 2.93(0.89) 3.35(0.95) 0.66(0.09) 1.48(0.33) 1.38(0.25) 2.77(0.59)

POET 12.88(3.31) 6.21(1.56) 1.57(0.45) 2.28(0.62) 6.14(0.76) 5.19(0.94)

PA-ATVA 3.14(0.55) 1.66(0.16) 0.50(0.19) 0.63(0.16) 1.45(0.31) 1.46(0.16)

PATVA-Nonlin 0.77(0.11) 0.81(0.02) 0.59(0.14) 0.66(0.1) 0.79(0.06) 0.80(0.02)

Proposed 0.88(0.25) 0.76(0.05) 0.52(0.14) 0.57(0.11) 0.74(0.08) 0.75(0.02)
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sampling period. We consider the restricted minimum variance portfolio:

min
w

wTΣw, subject to wT1 = 1 and ‖w‖1 ≤ λ, (5.21)

where 1 is a vector of p ones and ‖w‖1 = w+ + w− is the gross exposure of

portfolio with w+ being the proportion of long positions and w− being the

proportion of short positions. When λ = 1, we consider long only strategies.

The global minimum variance portfolio (GMP) achieves when λ = ∞ and

the weight for GMP is wgmp = (1TΣ−11)−1Σ−11 which needs a invertible

estimator for ICV matrix. In this section, we plug in different estimators

in the construction of minimum variance portfolio problem (5.21). Log

prices are averaged within 5 seconds. We consider 15-minute intervals on

every trading day from 9:30 to 16:00 for those methods based on “latent” log

prices. The pre-averaging window length is also 15-minute. For the PATVA-

Nonlin estimator, we apply a 20-minute pre-averaging window length based

on every 10-second subsampling observations. Overnight returns and the

first 5-minute observations are excluded in the calculation.

We consider 10-day (2-week) training windows and re-evaluate portfolio

weights every 5-day (1-week). We compare the out-of-sample performance

of the portfolio allocation problem (5.21) with a range of exposure con-

straints. The global minimum variance portfolio with λ = ∞ are labeled

by GMP. We consider three types of buy and sell strategies.
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Figure 1: Out-of-Sample risk and average maximum exposures of the portfolio for DJIA index.

The x-axis is the exposure constraint λ in the optimization problem (5.21) and the global minimum

variance portfolios (GMP) are given at the end of the figures. All abbreviations for different estimators

are as in Table 1.
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Figure 2: The Sharpe ratio of the portfolio for DJIA index.
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• close-open: we assume that investors always buy stocks at the opening

of the trading day and sale stocks at the close of the trading day.

• close-close: we assume that investors always buy and sale stocks at

the close of the trading day.

• open-open: we assume that investors always buy and sale stocks at

the opening of the trading day.

We report the annualized risk and the Sharpe ratio for each strategy and

also display the average maximum exposure (AME) which is the the average

of the maximum absolute value of w. For risk management, investors may

set limitation for the upper bound of the weight for each individual assets.

The results are shown in Figures 1 and 2. For comparison, we build up the

equal-weight portfolio, which only depends on the size of assets pool and is

irrelevant to the exposure constraints. The annualized risks for open-open,

close-close, close-open are 10.49 %, 11.26% and 10.54%, respectively.

As the results show that the proposed estimator achieves the smallest

GMP and has the smallest maximum exposures. The RCV matrix is mostly

sensitive to the tuning parameter λ. The risk for the proposed estimator

tends to decrease as λ increasing. It motivates us to use the proposed

estimator as an input when predicting the future volatility matrix.
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6. Conclusion

This article considers the estimation of ICV matrices based on high-frequency

multiple observations. We first look into the limiting spectral property of

the averaged version of TVA matrix and find that it works well, i.e., the

PA-ATVA matrix effectively eliminates the effects of microstructure noise,

multiple transactions, and asynchronous trading. Further, we propose a

nonlinear shrinkage estimator and show that it is asymptotically positive-

definite and has a good estimation efficiency. As demonstrated by simulated

experiments and empirical applications, our proposed estimator has good

out-of-sample performance in various contexts. This research is a first step

in understanding the impact of multiple transactions in a high-dimensional

environment. We leave the study of high-frequency factor models to our

future works.

Supplementary Materials

The supplementary material contains some simulation studies and all the

proofs of the paper.
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