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Abstract

Hidden structures indicative of additional patterns relevant to the scientific inquiry

are generally ignored and thus, the classical spatial regression analysis could miss im-

portant information carried by the latent variables. We develop novel methodology for

uncovering some of such possible structures and patterns in spatial regression analysis.

Our approach is to simultaneously model regression terms and hidden jump sets that

occur abruptly across space in the presence of spatial dependence. An inequality for

the homogeneity measure is derived by which we establish the consistency of jump-set

selection. We devise a three-step computational algorithm based on a quasi-likelihood

function and homogeneity measure to uncover patterns related to jump coefficients.

Under suitable regularity conditions, we prove that the identification procedure is con-

sistent when the hidden jump sets, covariates, and spatial correlation are incorporated
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into the model from the outset. The simulation study also shows sound finite-sample

properties. In a case study, we examine closely county-based poverty rates in relation

to industrial and racial compositions prior to the decline of manufacturing in the Up-

per Midwest of the U.S. Our case study reveals important socio-economic factors on

poverty and additionally interesting structures and patterns not detected in classical

spatial regression.

Keywords: Homogeneity measure, quasi-likelihood ratio, spatial statistics.
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1 Introduction

Spatial regression analysis is widely used in many scientific disciplines such as the social

sciences and public health fields, for relating a response variable to explanatory variables

across space while assuming spatially correlated errors (see, e.g., Cressie, 1993). In practice,

the relation between the response and the explanatory variables is viewed as of primary

interest, while accounting for spatial correlation in the error is understood to be important

for a proper inference about the relation. Although sensible and popular, we believe this way

of conducting regression analysis for spatial data can miss structures in the data indicative

of additional patterns relevant to a scientific study. The objective of this paper is to develop

and apply novel methodology that helps to uncover some of such possible structures and

patterns in spatial regression analysis.

The motivating case study is from a sociological research project that studies poverty in

relation to socio-economic factors. The response variable of interest is a poverty rate and the

explanatory variables are the industrial structures and racial-ethnical compositions, observed

at the county level in six Upper Midwestern states (Figure 2). The traditional regression

analysis, which assumes independent errors, may not be valid due to the presence of spatial

dependence among counties. Spatial regression analysis assumes a regression mean as in the

traditional regression analysis and models spatial correlation in the error by, for example,

simultaneous autoregressive (SAR) models or conditional autoregressive (CAR) models (see,
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e.g., Cressie, 1993). Although in the traditional spatial regression, the parameters in the

spatial correlation models can be estimated and inferred by likelihood-based methods, their

utility in practical interpretation is generally limited. Moreover, as in any complex social

and public health system, it is highly plausible that the selected explanatory variables do not

fully explain the variation in the response variables and that the patterns after accounting for

the explanatory variables may provide additional insight into the scientific inquiry. On the

other hand, the jump sets, if identified, may reflect unknown factors and thus, are potentially

valuable for eliciting additional insight, for which we will develop new models and methods.

For example, in the data analysis for the Midwest data, we find additional patterns besides

the explanatory variables that suggest more localized forces could also shape the poverty

processes.

We propose to simultaneously model regression of the response on the explanatory vari-

ables and possible structural changes in space while accounting for spatial correlation. In

particular, we consider both Gaussian and non-Gaussian responses in the exponential family

of distributions. The link function features not only a regression term but also a comple-

mentary model such that the coefficient marking the change has the same absolute value

but opposite signs for the true jump set and its complement set. The resulting models are

no longer in the exponential family and pose a number of statistical challenges. One, the

parameters in the complementary models may not be identifiable. Two, the true jump set is
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unknown and there are many possibilities to consider as candidate jump sets. Three, even

with a correctly specified likelihood function, the computational burden can be substantial

and it may be infeasible to carry out the analysis. Four, the presence of spatial correlation

further complicates the estimation of parameters.

To address these challenges, the quasi-likelihood (QL) concept is adapted to estimate the

model parameters and a homogeneity measure is developed from a log-quasi-likelihood (log-

QL) ratio to compare candidate jump sets. Suitable QL estimating equations are derived

for the regression coefficients, the jump-set coefficients, and the parameters in the spatial

covariance function. For computation, a three-step computational algorithm associated with

the log-QL ratio is devised to iteratively update the parameter estimates and the jump set.

In classification trees, an analogous likelihood ratio test is often used to determine a split

(see, e.g., Zhang, 1998). In the current literature, an approximation of the log-QL ratio

associated with an optimal estimating equation can be obtained by projecting the log-QL

function onto a subspace spanned by estimating functions in linear forms (see, e.g., Li, 1993).

Our innovation here is to derive new formula for choosing a suitable reference point in the

QL function so that the homogeneity measure has a quadratic form, which will be shown

to have considerable advantage over the linear form for finite samples such that positive

deviance values are guaranteed and the computation is relatively fast. A theoretically useful

inequality for the homogeneity measure is derived, by which we further establish the selection
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consistency in the sense that the probability of selecting the true jump set tends to one.

The proposed method can also be applied for disease mapping models in public health.

To explore spatial trends for response changes over geographic regions, finding jump sets

(or clusters) that attribute to localized forces besides of risk factors is important to predict

disease propagation. Lin and Zhu (2020) proposed a heterogeneity measure quas-likelihood

(HM-QL) method to simultaneously analyze spatial regression and clusters, built for only

Gaussian and Poisson responses. The homogeneity method we develop here applies to the

broader exponential family of distributions and beyond. In addition, our homogeneity mea-

sure is based on the difference between mean responses in contrast to the heterogeneity mea-

sure based on the difference between two simple links. As a result, our approach provides a

more robust metric for identifying jump sets in more flexible settings than the heterogeneity

method, as can be seen in our simulation and case study.

2 Modeling and Testing

2.1 Generalized Complementary Models

Let D ⊂ R2 denote a continuous domain of interest. Suppose there are n observations at

sampling sites s1, . . . , sn ∈ D. At site si, let Yi ≡ Y (si) denote the response variable, let

xi ≡ (xi,1, . . . , xi,q)
′ denote a vector of q non-constant explanatory variables. As has been
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mentioned in the introduction, for data with a complex underlying structure, it is plausible

that besides known covariates, some unknown factors exist in certain regions that elevate

the intensity rates of an event. In this paper, we refer to a collection of regions whose

event intensity rates jump to a level significantly higher than expected from a deterministic

trend associated with xi as a hidden jump set. Let ∆ ⊂ D denote a hidden jump set and

let ∆c = D − ∆ denote the complement set of ∆. Also, at site xi, let ςi denote a spatial

noise from a multivariate zero-mean Gaussian distribution with variance σ2
ς and a correlation

model with parameters τς . (The specific assumptions for the correlation model can be found

in the Appendix.)

Next, we develop an integrated model associated with xi, ∆, and a spatial noise for Yi as

follows. Let δi = I[si ∈ ∆] denote a “status variable” indicating whether site si belongs to

the jump set ∆, where I[·] denotes the indicator function. Given ςi, let θ∗i = E(Yi|ςi) denote

a conditional mean function of Yi. Let g(·) denote a link function such that

g(θ∗i ) = β∗0 + x′iβ + ξδδi + ςi, (2.1)

where β0 is a baseline, β = (β1, . . . , βq)
′ is a vector of regression coefficients associated with

xi, and ξδ denotes a jump coefficient associated with the jump set. (More details about

the link function can be found in Assumption 1 of the Appendix.) For the spatial noise,

we assume that ςi does not involve δi and xi. Also, conditional on ς1, . . . , ςn, Y1, . . . , Yn are

assumed to be independent.
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Since in practice, the status variable δi is unknown, traditional statistical inference for

generalized linear mixed models can not be directly applied for the hidden model (2.1). To

address this issue, we derive a complementary model associated with Yi. Let θi = E(Yi),

where by the double expectation theorem, θi = EςE(Yi|ςi) ≡ Eς(θ
∗
i ) and Eς(·) denotes an

expectation over a probability space associated with the spatial noise. It thus follows from

(2.1) that

θi = Eς{g−1(β∗0 + x′iβ + ξδδi + ςi)}. (2.2)

Let f̈(u) = ∂2g−1(u)/∂u2 denote a second-order derivative of g−1(u) with respect to u.

To find an approximation for θi from (2.2), we recall that ςi does not involve xi and δi.

Then, on the right-hand side of (2.2), we first use a second-order Taylor series to expand

g−1(β∗0 + x′iβ + ξδδi + ςi)(≡ θ∗i ) with respect to ςi, and then compute an approximation for

Eς(θ
∗
i )(≡ θi). It can be shown that θi

.
= g−1{β∗0 + x′iβi + ξδδi + 0.5f̈(0)σ2

ς }. Note that the

offset parameter 0.5f̈(0)σ2
ς can be adjusted by the baseline β0. With re-scaling the intercept

parameter by setting β0 = β∗0 + 0.5f̈(0)σ2
ς , we can approximate θi by

g(θi) = β0 + x′iβi + ξδδi. (2.3)

Nevertheless, one important issue for model (2.3) is that the intercept β0 is a combination

of β∗0 from model (2.1) and spatial variation σ2
ς from the spatial noise, which would thus

cause an identifiable problem for the intercept parameter. Details to address this issue in a

computation algorithm can be seen in Section 3.1.
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The model (2.3) can also be expressed as g(θi) = β0+ξδ+x
′
iβi−ξδδci , where δci = I[si ∈ ∆c]

denotes a complement status variable of δi. Let Y = (Y1, . . . , Yn)′, X = (x1, . . . ,xn)′,

δ = (δ1, . . . , δn)′, δc = 1− δ = (δc1, . . . , δ
c
n)′, and ς = (ς1, . . . , ςn)′. Associated with the status

vector δ, let θδ = (θ1, . . . , θn)′. A vector form for the mean responses can be expressed as

either θδ = g−1(β0 + Xβ + ξδδ) or θδc = g−1(βc0 + Xβ − ξδδc), where βc0 = β0 + ξδ. We

refer to the two forms as the complementary models for the marginal mean response vector

related to δ. However, the status vector δ for the true jump set ∆ is unknown. To search

for δ, let ψα = (ψα,1, . . . , ψα,n)′ denote a status vector for a candidate jump set Ψα, where

ψα,i = I[si ∈ Ψα]. (Details on how to create candidate status vectors are discussed later.)

Let Ω = {ψ1, . . . ,ψN} denote a collection of candidate status vectors, where N denotes the

number of candidate status vectors. For simplicity, we also use ψ = (ψ1, . . . , ψn) to denote

ψα, unless clarity demands as in Section 3. Let ψc = 1 − ψ denote a complement status

vector for ψ. Likewise the complementary models for the true status vector δ, for a given

candidate status vector ψ ∈ Ω, we model the respective mean response vectors in terms of

ψ and ψc by

θψ = g−1(β0 +Xβ + ξψψ) and θψc = g−1(βc0 +Xβ + ξψcψ
c), (2.4)

where βc0 = β0 + ξψ. Note that β0 is fixed at the same value for all ψ ∈ Ω as that of the true

model. The two forms in (2.4) are referred to as candidate complementary models associated

with ψ.
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From the true complementary models associated with δ, we have θψ 6= θψc in general

unless ψ = δ. Furthermore, we will show that θδ ≡ θψ ≡ θψc if and only if ψ is (asymptot-

ically) equal to δ (see details in the Appendix). Hence, one way to estimate δ by candidate

complementary models is to choose δ̂ ∈ Ω such that θδ̂ and θδ̂c , where δ̂c = 1 − δ̂, are as

close as possible. Below we develop a likelihood ratio test to measure homogeneity between

θψ and θψc .

2.2 A Likelihood Ratio Test for Candidate Status Vectors

Let λψ = (β0,β
′, ξψ)′ and λψc = (βc0,β

′, ξψc)
′ denote the parameters of interest for the candi-

date complementary models (2.4). To evaluate homogeneity between the pair of generalized

complementary models in (2.4), we develop a test statistic based on a QL ratio. Let Vλψ ≡

V (λψ, τ ) denote a covariance matrix of Y associated with (2.1), where τ denotes a vector

of covariance parameters. Note that from (2.1), we have g{E(Y |ς)} = β∗0 +Xβ + ξψψ + ς.

The covariance matrix Vλψ is therefore a function of λψ and τ , and the parameters τ are

associated with those related to the spatial noises ς. (More details about the covariance

structure can be seen in Assumption 2.) Also, let Λλψ ≡ V −1
λψ

denote the inverse matrix

of Vλψ . Given an observed value y of Y , a QL function (McCullagh and Nelder, 1989) for

correlated data,

Υ{θ(λψ); τ} =

∫ θ(λψ)

θ(λ+)

Λ(t, τ )(y − t)dt, (2.5)
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is particularly useful for estimating the unknown parameters λψ, where λ+ is a given refer-

ence point.

To see whether the integration in the QL function Υ{θ(λψ); τ} of (2.5) is line-independent,

we first make two remarks on the covariance matrix Vλψ . First, by Assumption 1(e) in the

Appendix, the ith component of Vλψ involves only θi and τ . Second, recall that given ς, Y

are independent. Since E(YiYj) = Eς{E(YiYj|ς)}, by an argument similar to the derivation

for the complementary models in Section 2.1, we can conclude that cov(Yi, Yj) involves only

θi, θj, and τ . That is, the (i, j) entry of Vλψ does not involve θk, i 6=  6= k. Let Λi,j denote

the (i, j)th element of Λ. We thus have ∂Λi,j/∂θk = 0 for i 6= j 6= k, and therefore V satisfies

the required condition for the existence of the QL function (McCullagh and Nelder, 1989).

Let Υ{θ(λψ); τ} and Υ{θ(λψc); τ} denote the QL functions associated with θψ and θψc ,

respectively. A log-QL ratio between θψ and θψc is defined as

H0{θ(λψ),θ(λψc)} = log

{
supλψ Υ{θ(λψ); τ}

supλψc Υ{θ(λψc); τ}

}
,

where sup Υ(·) denotes the supremum function of Υ(·). By using a first-order Taylor expan-

sion for (2.5), the log-QL ratio can be approximated by H{θ(λ̂ψ),θ(λ̂ψc)} as

H{θ(λ̂ψ),θ(λ̂ψc)} = (2n)−1{θ(λ̂ψ)− θ(λ̂ψc)}′(Λλ̂ψ
+ Λλ̂ψc

){θ(λ̂ψ)− θ(λ̂ψc)}, (2.6)

where λ̂ψ and λ̂ψc are QL estimates for λψ and λψc , respectively. (The QL estimates are

introduced in Section 2.3.) Details for the derivation process can be seen in the Supplemen-

tary Material. We refer to H{θ(λ̂ψ),θ(λ̂ψc)} in (2.6) as a homogeneity measure for the pair
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of generalized complementary models at a given candidate status vector ψ ∈ Ω.

Finally, since ψ ≈ δ if and only if θ̂ψ ≈ θ̂ψc , where θ̂ψ = θ(λ̂ψ) and θ̂ψc = θ(λ̂ψc), we

propose to estimate the true status vector δ by minimizing the homogeneity measure (2.6)

δ̂ = arg minψ∈ΩH{θ(λ̂ψ),θ(λ̂ψc)}. (2.7)

In (2.7), the estimated status vector δ̂ is called a homogeneous likelihood ratio (HLR) esti-

mate for δ.

2.3 Estimating Equations

To estimate the parameters in the complementary models (2.4), we develop a set of QL

estimating equations. Let Q1(λψ; τ ) = ∂Υ{θ(λψ); τ}/∂λψ ∈ Rq+2 denote a QL score

function for λψ by taking a derivative of Υ{θ(λψ); τ} with respect to λψ. Since the QL

function (2.5) is well-defined under the covariance structure Vλψ as shown in Section 2.2,

the QL score function has a unique root (McCullagh and Nelder, 1989) in probability as

n → ∞. To see this, we note from Assumption 3, n−1(∇λψθψ)′Λλψ(∇λψθψ) converges to a

full-rank matrix as n → ∞, where ∇ag ≡ ∇ag(a) denotes a Jacobian matrix for a vector

function g(a) with respect to a vector a. This thus ensures that the system of equations

(∇λψθψ)′Λλψ{Y −θ(λψ)} = 0 has a unique solution in probability as n→∞. More details

about the relationship between the derivative of Q1(λψ; τ ) and information matrix can be

seen the proof of Theorem 5 in Supplementary Material.
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From (2.5), the QL score function for λψ = (β0,β
′, ξψ)′ can be derived as

Q1(λψ; τ ) = (∇λψθψ)′Λλψ{Y − θ(λψ)}. (2.8)

We define the first QL estimating equation as Q1(λψ; τ )|λψ=λ̂ψ
= 0, where the solution

λ̂ψ = (β̂0, β̂
′
ψ, ξ̂ψ)′ denotes the QL estimate for λψ. When θψ is nonlinear, a Newton-

Kantovorich method (Argyros, 2008) can be applied to solve this QL estimating equation.

Under Assumptions 1-3, the Newton iteration for the QL estimating equation is convergent

in probability as n → ∞. The related result can be seen in Theorem 5, Corollary 3, and

Corollary 4, while more issues about convergence of the Newton iteration can be seen in

Karimireddy et al. (2019).

Since βc0 = β0 + ξψ, we estimate βc0 by β̂c0 = β̂0 + ξ̂ψ. So, in the part of θψc in (2.4), now

only β and ξψc need be estimated. Let λ∗ψc = (β̂c0,β
′, ξψc)

′ denote the updated parameters

of λψc . Also, let θ∗ψc ≡ g−1(β̂c0 +Xβ + ξψcψ
c) and Λλ∗ψc

≡ Λ{(β̂c0,β′, ξψc), τ}. A QL score

function for λ∗ψc is given by

Q2(λ∗ψc ; τ ) = (∇λ∗ψcθ
∗
ψc)
′Λλ∗ψc

(Y − θ∗ψc). (2.9)

We define the second QL estimating equation for β and ξψc as Q2(λ∗ψc ; τ )
∣∣
λ∗ψc=λ̂∗ψc

= 0, where

the solution λ̂∗ψc = (β̂c0, β̂
′
ψc , ξ̂ψc)

′ denotes the QL estimate. Also, λ̂ψc ≡ λ̂∗ψc = (β̂c0, β̂
′
ψc , ξ̂ψc)

′

can be regarded as the QL estimate for λψc .

Finally, we use a variogram to estimate the covariance parameters τ . Let θ̂ψ = g−1{β̂0 +

Xβ̂ψ + ξ̂ψψ} denote an estimate of θψ and let εψ = Y − θ̂ψ = (ε(s1), . . . , ε(sn))′ denote a
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vector of residuals, which contain information about the spatial errors. For a spatial random

field, a variogram γ(h) = var{ε(si) − ε(sj)}, where h = ‖si − sj‖ denotes the Euclidean

distance between si and sj, is commonly used to quantify spatial correlation. The variogram

can be estimated by an empirical variogram γ̂(h) =
∑

(si,sj)∈Eh){ε(si) − ε(sj)}2/|Eh|, where

| · | denotes the cardinality of a set and Eh = {(si, sj) : h − c0 < ‖si − sj‖ ≤ h + c0} for

some c0 > 0 (Cressie, 1993). For a given variogram model γτ (h), the parameters τ can be

estimated by minimizing a weighted sum of squares:

τ̂ = arg minτ
∑
h

|Eh|{γ̂(h)/γτ (h)− 1}2. (2.10)

Details about the computational procedure are given in Section 3.1.

3 Jump Set Identification

3.1 Single Jump Set Identification

Recall that Ω = {ψ1, . . . ,ψN} is the collection of candidate status vectors, and we aim to

choose δ̂ ∈ Ω such that H{θ(λ̂δ̂),θ(λ̂δ̂c)} is minimized. In practice, there are two issues for

selecting suitable δ̂ from Ω: (i) the number of candidate status vectors in Ω may be large,

and (ii) most of the candidate jump sets are misspecified. Recall that in the approximation

process for θi from (2.2) to (2.3), the intercept β0 is adjusted by an initial intercept β∗0 of (2.1)

and spatial variation σ2
ς . Since the variogram estimation (2.10) is sensitive to misspecified
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models, and the intercept estimation could also be affected by the offset parameter related

to spatial noises, our estimation method should be calibrated to ensure that every candidate

model has a same baseline. To maintain the intercept and covariance estimates to be the

same for all candidate models, we propose a three-step computational algorithm, associated

with a test to address the multiple testing issue, to iteratively update the estimates of

parameters and status vectors.

To develop the test for parameters, first note that it may happen thatH{θ(λ̂ψ),θ(λ̂ψc)} =

0 but there is no jump set. So, before using (2.7) to select the status vector, we use the

following procedure to test significance of ξ̂ψ. Specifically, let Hψ denote the null hypothesis

that ξψ ≤ 0 for ψ ∈ Ω. A QL Z-test statistic, Zψ = ξ̂ψ/σψ, is then used to test Hψ, where

σ2
ψ = var(ξ̂ψ). To compute σψ, we let Uψ = {(∇ξψθψ)′Λλψ(∇ξψθψ)}−1(∇ξψθψ)′Λλψ . Under

Hψ and the conditions given in Theorem 4 of the Appendix, we can show that, as n→∞,

σ2
ψ = UψVλψU

′
ψ + op(1). (3.1)

However, in practice, Vλψ is unknown. We thus estimate Uψ by

Ûψ = {(∇ξψ θ̂ψ)′Λ̂λψ(∇ξψ θ̂ψ)}−1(∇ξψ θ̂ψ)′Λ̂λψ ,

where ∇ξψ θ̂ψ = ∇ξψθψ|λψ=λ̂ψ
and Λ̂λψ = {V (λ̂ψ; τ̂ )}−1. A sandwich estimate for σ2

ψ is given

by σ̂2
ψ = ÛψṼλψÛ

′
ψ, where Ṽλψ is an estimate of Vλψ by a sample covariance matrix of Y . Let

ϕ denote a desired significance level forHψ. We thus rejectHψ if P (Z ≥ Zψ) ≤ 1−(1−ϕ)1/N ,

where Z denotes the standard normal random variable.
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In the following algorithm, for each iteration m, m = 1, 2, . . ., let β̂
(m)
0 , τ̂ (m), and δ̂(m)

denote the estimates for the intercept β0, covariance parameters τ , and status vector δ,

respectively. In the initial step of the algorithm (i.e., m = 0), assume that τ̂ (0) ≡ 0. Then,

we fit the complementary model (2.4) for each ψ ∈ Ω with the intercept estimate being fixed

at β̂
(0)
0 =

∑
Yi/n. We use (2.8) and (2.9) to obtain initial estimates λ̂

(0)
ψ =

(
β̂

(0)
0 , β̂

(0)′

ψ , ξ̂
(0)
ψ

)′
for λψ and λ̂

∗(0)
ψc =

(
β̂

(0)
0 + ξ̂

(0)
ψc , β̂

(0)′

ψc , ξ̂
(0)
ψc

)′
for λ∗ψc . Import λ̂

(0)
ψ and λ̂

(0)
ψc ≡ λ̂

∗(0)
ψc into (2.7)

to get an initial estimate δ̂(0) for the status vector. Then, for iteration m = 1, . . ., conduct

the following Algorithm 1.

Algorithm 1: Three-Step Algorithm

Step 1. Update the intercept and covariance estimates

(i) Given δ̂(m−1) and τ̂ (m−1), use Q1(λδ̂(m−1) ; τ̂ (m−1)) = 0 in (2.8) to get QL estimates

λ̂δ̂(m−1) =
(
β̂0,δ̂(m−1) , β̂′

δ̂(m−1) , ξ̂δ̂(m−1)

)′
. Update the intercept estimate to β̂

(m)
0 = β̂0,δ̂(m−1) .

(ii) Let εδ̂(m−1) = Y − θ̂δ̂(m−1) . Update τ̂ (m−1) to τ̂ (m) by (2.10).

Step 2. Update estimates of jump coefficients for candidate models

(i) Let λ∗ψ = (β̂
(m)
0 ,β′, ξψ)′. Use Q1{λ∗ψ; τ̂ (m)) = 0 in (2.8) to get QL estimates λ̂

∗(m)
ψ =

(β̂
(m)
0 , β̂

(m)′

ψ , ξ̂
(m)
ψ )′.

(ii) Use Q2{λ∗ψc ; τ̂ (m)} = 0 in (2.9) to get QL estimates λ̂
∗(m)
ψc = (β̂

(m)
0 + ξ̂

(m)
ψ , β̂

(m)′

ψc , ξ̂
(m)
ψc )′.

Step 3. Update an estimate for the status vector

(i) Test significance of ξ̂
(m)
ψ by the QL Z-test.
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(ii) For ψ with significant ξ̂
(m)
ψ , import λ̂

(m)
ψ ≡ λ̂∗(m)

ψ and λ̂
(m)
ψc ≡ λ̂

∗(m)
ψc from Step 2 into

(2.7) to update δ̂(m−1) to δ̂(m).

In Algorithm 1, we stop the iteration if δ̂(m) = δ̂(m−1). Otherwise, let m = m + 1

and repeat Steps 1-3. Since the homogeneity measure (2.6) is in a linear form and the QL

score function has a unique root under the given dependence structure, convergence of the

computational algorithm can be seen in Corollary 5. More discussions about convergence

can be found in Section 6 and the Supplementary Material.

3.2 Multiple Jump Sets Identification

We now develop a sequential method to identify multiple jump sets based on the identification

procedure developed in Section 3.1. Assume that by Algorithm 1, we have chosen k status

vectors, say δ̂1, . . . , δ̂k, in the first k stages, k = 1, 2, . . . Let Ω(k+1) denote a collection of

candidate status vectors that has been updated at the (k + 1)th-stage, and let ψ
(k+1)
α ∈

Ω(k+1) denote a given candidate status vector. To mitigate collinearity in the multiple

jump-set model, we require δ̂1, . . . , δ̂k and ψ
(k+1)
α to be disjoint. That is, each element in

δ̂1 + · · · + δ̂k + ψ
(k+1)
α is less than or equal to one. (How to partition δ̂1, . . . , δ̂k and ψ

(k+1)
α

such that they are disjoint can be seen in Section 4.)

A multiple jump-set model for the mean response in terms of ψ
(k+1)
α associated with
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δ̂1, . . . , δ̂k is given by

θ
ψ
(k+1)
α ;δ̂1,...,δ̂k

= g−1
{
β0 +Xβ +

k∑
j=1

ξδ̂j δ̂j + ξ
ψ
(k+1)
α

ψ(k+1)
α

}
, (3.2)

where β, ξδ̂1 , . . . , ξδ̂k , and ξ
ψ
(k+1)
α

are the coefficients for the covariates, the estimated status

vectors δ̂1, . . . , δ̂k, and the candidate status vector ψ
(k+1)
α , respectively. Let δ̂cj = 1− δ̂j, j =

1, . . . , k, and ψ̄
(k+1)
α = 1− ψ(k+1)

α . The complementary model then becomes

θ
ψ̄
(k+1)
α ;δ̂c1,...,δ̂

c
k

= g−1
{
βc0 +Xβ +

k∑
j=1

ξδ̂cj
δ̂cj + ξ

ψ̄
(k+1)
α

ψ̄(k+1)
α

}
, (3.3)

where βc0 = β0 +
∑k

j=1 ξδ̂j + ξ
ψ
(k+1)
α

. Note that models (3.2) and (3.3) are analogous to the

generalized complementary models (2.4) and thus, the sequential identification procedure is

the same as that for finding a single jump set.

4 Simulation Study

In this section, we conduct a simulation study to study consistency and convergence of the

proposed method for irregularly gridded data. Additional simulations for regularly gridded

data are presented in the Supplementary Material with related discussions given in Section

6. In particular, we introduce a partition method that can create disjoint (candidate) jump

sets for models (3.2) and (3.3) associated with irregularly gridded data.

To simulate irregularly gridded data, we use the geographic structure of the poverty case

study with n = 535 counties and five socio-economic explanatory variables, x1 through x5.
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Three collections of geographic cells, ∆1, ∆2, and ∆3, are chosen to be the true jump sets

with |∆1| = 20, |∆2| = 50, and |∆3| = 50 (Figure A2 of the Supplementary Material). Let

δk,i = I[si ∈ ∆k] denote the status variables associated with ∆k, i = 1, . . . , 535, k = 1, 2, 3.

For the lth simulation run, we generate θ∗i,l = β0 + β1x1,i + β2x2,i + β3x3,i + β4x4,i + β5x5,i +

ξ1δ1,i + ξ2δ2,i + ξ3δ3,i + εi,l, where εi,l are simulated from a Gaussian distribution with mean

zero, variance 0.0025, and correlation corr(εi,l, εj,l) = 0.5 exp(−0.005‖si − sj‖). Also, we set

the true regression coefficients to β0 = −1, β1 = 1, β2 = −0.5, β3 = 1, β4 = −5, β5 = 1.5, and

the jump coefficients ξ1 = 3, ξ2 = 2, and ξ3 = 1. The simulated poverty rates are then given

by Y ∗i,l = exp(θ∗i,l)/{1 + exp(θ∗i,l)}, i = 1, . . . , 535, and transformed to Y l
i = log{Y ∗i,l/(1−Y ∗i,l)}

(see Section 5). There are a total of L = 200 simulation runs (or, replicates).

For jump set identification, we create an initial collection of candidate jump sets by

Ψ
(1)
αj = {si : αj ≤ Yi}, j = 1, . . . , N , where α1 < · · · < αN denote a collection of thresholds.

Let ψ
(1)
αj denote a candidate status vector corresponding to the jump set Ψ

(1)
αj . Also, let

I(1) ≡ {α1, . . . , αN} denote an initial collection of thresholds, and let Ω(1) ≡ {ψ(1)
αj : j =

1, . . . , N} denote an initial collection of candidate status vectors. Algorithm 1 is then applied

to identify a status vector from Ω(1) as an estimated status vector for the jump set. If there

is no significant estimated status vector, then the identification procedure stops. Otherwise,

a significant estimated status vector δ̄
(1)
1 from Ω(1) is found and we continue as follows to

ensure that the required condition for model (3.2) be satisfied.
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Ψ
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Ψ
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Ψ
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Ψ
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jump set by α(1)

jump set by α(2)

Figure 1: Examples for making disjoint jump sets by the partition method in various stages. Chosen

thresholds α(1) and α(2) and candidate threshold αj are used to segment observations. (a) The

partition process associated with α(1) chosen from Stage 1. (b) The partition process associated

with α(1) and α(2) chosen from Stages 1 and 2, respectively.

Figure 1(a) illustrates how to update each status vector in the first stage so that they

are disjoint in the second stage. First, with δ̄
(1)
1 ∈ Ω(1), we have α(1) ∈ I(1) such that

δ̄
(1)
1 ≡ ψ

(1)

α(1) . Also, let αj ∈ I(2) be a given threshold, where I(2) = I(1) − α(1). Figure

1(a) depicts two possible relationships between α(1) and αj: α
(1) > αj (case 1) or α(1) < αj

(case 2), where Ψ
(1)

α(1) and Ψ
(2)

α(1) denote the corresponding estimated jump set associated

with α(1) in the first and second stages, respectively. Also, we let Ψ
(1)
αj and Ψ

(2)
αj denote the

candidate jump set associated with αj in the first and second stages, respectively. Thus, in

case 1 (α(1) larger), the estimated jump set associated with α(1) is the same in both stages

with Ψ
(1)

α(1) ≡ Ψ
(2)

α(1) = {si : α(1) ≤ Yi}, while the candidate jump set associated with αj

is updated from Ψ
(1)
αj = {si : αj ≤ Yi} to Ψ

(2)
αj = {si : αj ≤ Yi < α(1)}. In case 2 (αj
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larger), the candidate jump set associated with αj remains the same in both stages with

Ψ
(1)
αj ≡ Ψ

(2)
αj = {si : αj ≤ Yi}, while the estimated jump set associated with α(1) is updated

from Ψ
(1)

α(1) = {si : α(1) ≤ Yi} to Ψ
(2)

α(1) = {si : α(1) ≤ Yi < αj}.

Let ψ
(2)

α(1) and ψ
(2)
αj denote the corresponding status vectors for Ψ

(2)

α(1) and Ψ
(2)
αj , respec-

tively. Proceeding from the disjoint status vectors, we now build a multiple jump-set

model associated with δ̄
(2)
1 ≡ ψ

(2)

α(1) and ψ
(2)
αj for analyzing the simulated data. Let µi =

β0 + β1x1,i + β2x2,i + β3x3,i + β4x4,i + β5x5,i and µ = (µ1, . . . , µ535)′. The multiple jump-set

model associated with thresholds α(1) and αj is

θ
ψ
(2)
αj

;δ̄
(2)
1

= g−1
{
µ+ ξ

δ̄
(2)
1
δ̄

(2)
1 + ξ

ψ
(2)
αj

ψ(2)
αj

}
, (4.1)

where ξ
δ̄
(2)
1

and ξ
ψ
(2)
αj

denote the jump coefficients associated with δ̄
(2)
1 and ψ

(2)
αj , respectively.

Our identification procedure in Sections 3.1 and 3.2 for model (4.1) then searches over all

thresholds αj ∈ I(2). If there is a threshold, say α(2), associated with another estimated

status vector, then Figure 1(b) illustrates an example how to update the status vectors from

the second to the third stage.

For the lth simulation, we create candidate thresholds αlj = min{Y l
j : j = 1, . . . , 535} +

0.001(j − 1), j = 1, 2, . . ., such that αlj is less than max{Y l
j : j = 1, . . . , 535} + 0.001. Our

HLR method is applied to analyze the simulated data and is compared with an alternative

approach by the HM-QL method (Lin and Zhu, 2020). If two estimated status vectors δ̄k

and δ̄k′ are close in the sense that the difference of the estimated coefficients |ξ̂δ̄k− ξ̂δ̄k′ | is less
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than 0.1, then they are considered to be the same. Also, if an estimated status vector has an

estimated jump coefficient smaller than 0.1, then we leave out the estimated status vector.

The final identified jump sets are sorted by their corresponding p-values, from the smallest to

the largest. For the lth simulation, let ∆̄l
i,LR and ∆̄l

i,HM denote the corresponding identified

jump sets with the ith smallest p-value by the HLR and HM-QL methods, respectively.

∆̄l
i,LR and ∆̄l

i,HM are used to be estimates for ∆i, i = 1, 2, 3, by the HLR and HM-QL

methods, respectively, at the lth simulation. For convenience, we also use ∆̄i,LR and ∆̄i,HM

to denote ∆̄l
i,LR and ∆̄l

i,HM, respectively. The average numbers of counties in ∆i that have

been classified into ∆̄i,· are

Ti,j = L−1

L∑
l=1

|∆̄l
i,· ∩∆j|, i, j = 1, 2, 3, (4.2)

and thus, Ti,i/|∆i| represents a true positive rate of ∆̄i,· for ∆i (Table 1). Further, we

let ∆̄4,· denote a collection of the identified jump sets other than ∆̄1,·, ∆̄2,·, and ∆̄3,·, and

∆∅ denote a collection of counties without jump coefficients. That is, ∆̄4,· = ∪i≥4∆̄i,· and

∆∅ = D −∆1 −∆2 −∆3.

Table 1 shows that our HLR method accurately identifies the jump sets ∆1 and ∆2 by

∆̄1,LR and ∆̄2,LR, respectively, in all the simulation runs. Also, on average, the HLR method

classifies 97% of ∆3 into ∆̄3,LR, while a small proportion of ∆3 are classified to additional

estimated jump sets. On the other hand, although the HM-QL method can also accurately

identify ∆1 in all the simulation runs, it has a tendency to under-detect a jump set when

22

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



Table 1: The average numbers of counties in the true jump set ∆i, i = 1, 2, 3, that were classified

into ∆̄j,· by the homogeneous likelihood ratio (HLR) and heterogeneity measure quasi-likelihood

(HM-QL) methods. The simulation result is based on 200 replicates.

HLR HM-QL

True ∆̄1,LR ∆̄2,LR ∆̄3,LR ∆̄4,LR ∆̄1,HM ∆̄2,HM ∆̄3,HM ∆̄4,HM

∆1 20.0 0.00 0.00 0.00 20.0 0.00 0.00 0.00

∆2 0.00 50.0 0.00 0.00 0.00 44.3 5.70 0.00

∆3 0.00 0.00 48.5 1.50 0.00 5.90 30.2 6.80

∆∅ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

the magnitude is relatively weak. For example, the HM-QL method misses about 14% of the

hot spots in ∆3, whose jump coefficient is equal to 1. We also test the difference of the true

positive rates between the HLR and HM-QL methods by a traditional Z-test. Specifically,

for i = 1, 2, 3, let T LR
i,i and THM

i,i denote the corresponding values of Ti,i by the HLR and HM-

QL methods, respectively. And, let P LR
i = T LR

i,i /|∆i| and PHM
i = THM

i,i /|∆i| denote the true

positive rates for ∆i by the HLR and HM-QL methods, respectively. Let Diffi = P LR
i −PHM

i

denote the difference of the true positive rates between the HLR and HM-QL methods for

∆i, i = 1, 2, 3. From Table 1, Diff2 and Diff3 have Z-ratios of 2.5 (p-value
.
= 0.01) and of 5.0

for (p-value
.
= 0.00), respectively. This provides evidence that the HLR method outperforms

the HM-QL method in identifying jump sets whose jump coefficients are moderately small,

based on the Z-test.
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Table 2: Simulation results by homogeneous likelihood ratio (HLR) and heterogeneity measure

quasi-likelihood (HM-QL) methods. Means and standard errors (in parentheses) for the estimated

parameters with three jump sets ∆1, . . . ,∆3, based on 200 replicates.

Variable β0 β1 β2 β3 β4 β5 ∆1 ∆2 ∆3

True -1.0 1.0 -0.5 1.0 -5.0 1.5 3.0 2.0 1.0

HLR -1.0 1.0 -0.5 1.0 -4.9 1.5 3.0 2.0 1.0

(0.04) (0.04) (0.03) (0.08) (0.19) (0.06) (0.01) (0.01) (0.01)

HM-QL -1.2 1.9 -0.6 1.5 -6.8 2.7 2.9 1.3 0.8

(0.1) (0.6) (0.1) (0.5) (1.1) (0.4) (0.05) (0.2) (0.1)

Additionally, Table 2 provides the estimation result by averaging the estimated param-

eters across the L = 200 simulation runs for each method. From Table 2, the HLR method

estimates the model parameters well with generally small biases and relatively stable stan-

dard errors. The HM-QL method, in contrast, tends to underestimate the jump coefficients

for ∆2 and ∆3, leading to larger biases for the parameter estimates. One possible reason

for this is that the HM-QL method uses a variable selection procedure to identify jump sets

and thus, confounding effects could make serious impact when the number of covariates is

large. This result agrees with the phenomenon that the HM-QL method has less power in

identifying ∆2 and ∆3 than the HLR method.
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Figure 2: An image plot for the transformed poverty rates in the Midwest data.

5 Data Analysis for the Midwest Poverty

For illustration of the methodology developed in this paper, we examine poverty in relation

to the social and economic factors in the US based on the 1960 census data in 535 counties of

the five states in the Upper Midwest (Illinois, Indiana, Michigan, Minnesota, and Wisconsin).

The response is a poverty rate, computed as the proportion of the county’s population living

below the poverty threshold. Let si denote the latitude and longitude of the centroid of

county i, and let Y ∗i ≡ Y ∗(si) denote the poverty rate. The observed poverty rate ranges

are from 0.055 to 0.526 with a mean value of 0.245. As in Curtis et al. (2013), we take a

logistic transformation of the poverty rate Yi = log{Y ∗i /(1− Y ∗i )}.

The observed transformed poverty rates are mapped in Figure 2. A QQ-plot (not shown
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here) for the transformed data indicates that Y = (Y1, . . . , Yn)′ follow a Gaussian distribu-

tion approximately. Thus in the data analysis, we adopt an identity link function. A quasi-

deviance method (Lin, 2011) is applied and selects among the five explanatory variables,

namely, the proportions of the county population employed in agriculture (x1), manufactur-

ing (x2), services (x3), finance, insurance, and real estate (FIRE) (x4), and the proportion

of African American (x5). Let

µi = β0 + β1x1,i + β2x2,i + β3x3,i + β4x4,i + β5x5,i (5.1)

denote a marginal mean of Yi associated with the explanatory variables. The estimates of

the intercept β0 and the slopes β = (β1, . . . , β5)′ by a standard regression are given in Table

A5 of Supplementary Material, and the slopes are all significant.

When setting five states as five known jump sets, we find that most estimates for the

jump coefficients are not significant. This finding suggests that spatial pattern of jump

sets would not follow the state boundaries, thereby nullifying the utility of standard spatial

regimes. To identify more localized but hidden jump sets besides the explanatory variables,

we apply our HLR method. First, we sort the transformed poverty rates, from the largest

to smallest ones, to be Y(1) > Y(2) > · · · > Y(535). Let αj ≡ Y(j) denote a candidate

threshold. A candidate status variable associated with the threshold αj for county i is given

by ψαj ,i = I[αj ≤ Yi]. Let ψαj = (ψαj ,1, . . . , ψαj ,535)′ denote the status vector associated

with αj and let Ω = {ψαj : j = 1, . . . , 535} denote the collection of the resulting status
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Figure 3: (a) A map for counties in the five identified jump sets, ∆̄1, . . . , ∆̄5, from the data analysis.

(b) An image plot for the estimated poverty rates from the final jump-set model.

vectors. We then use the identification procedure similar to the one used in the simulation to

sequentially identify the multiple jump sets by the HLR method. Additionally, similar to the

simulation, we also combine two identified jump sets if difference between the corresponding

estimated jump coefficients is not significant.

By the HLR method, five jump sets, namely, ∆̄1, . . . , ∆̄5 are identified. Figure 3(a)

shows locations of the five jump sets with |∆̄1| = 5, |∆̄2| = 25, |∆̄3| = 63, |∆̄4| = 126,

and |∆̄5| = 176. Note that the five jump sets include about 74% of total counties, and as

can be seen from Figure 3(a), the identified counties are distributed quite randomly in the

study area. These phenomena may thus render traditional clustering methods infeasible to

find geographic clusters. For example, we also apply the spatial scan (SatScan) method to

analyze the Midwest data, but SatScan does not yield any geographic cluster. Thus, both

27

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



approaches appear to be under-powered. The final estimated model for the marginal mean

response is thus given by

θ̂i = µ̂i +
5∑
j=1

ξ̂∆̄j
δ∆̄j

(si), (5.2)

where δ∆̄j
(si) is the status variable for ∆̄j, and ξ̂∆̄j

is an estimate for the jump coefficient

associated with ∆̄j. The parameter estimates are given in Table A5 of the Supplementary

Material, along with the standard errors by Corollary 2 of the Appendix. Additionally, the

estimated spatial correlation function is ρ̂i,j = 0.62 exp(−0.005‖si − sj‖), with a moderate

spatial correlation ranging from 0.48 to 0.62 for counties within 50 km of each other. The

estimated poverty rates θ̂ = (θ̂1, . . . , θ̂535)′ by the HLR method are mapped in Figure 3(b),

which are similar to the observed poverty rates in Figure 2.

To compare the models with and without jump sets (5.1)-(5.2), we compute a weighted

least squares (WLS) (Y −θ̂)′V̂ −1(Y −θ̂), where V̂ is an estimate of the covariance matrix for

Y . As can be seen from Table A5 of the Supplementary Material, accounting for jump sets

in the model substantially improves the model fit based on the WLS values. The regression

coefficients and the jump coefficients for the five jump sets are all significant. Five jump

sets are identified and the counties in the same jump set tend to be close to one another

geographically. The counties in the jump sets ∆̄1 and ∆̄2 have the higher poverty rates and

tend to concentrate in the northern and southern parts of the study region. Many counties

along the shores of the Great Lakes are in the complement of the jump sets with low poverty
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rates, which is plausible due to the positive association with strong, stable manufacturing

jobs in the area during this period of pre-deindustrialization. The spatial pattern of jump

sets suggests smaller scale, more localized forces are at play in generating county poverty

rates. Ultimately, results direct future research to examine shared attributes and processes

among the five collections of place-types, perhaps including the ways in which industrial and

racial forces interact.

Further, for the study region as a whole, the proportions of agriculture and service

employment as well as the proportion of African Americans are positively related to poverty,

whereas those of manufacturing and FIRE have a negative relation. This pattern reflects a

greater vulnerability to poverty among places that were more reliant upon agriculture and

services as compared to places more reliant up on manufacturing and the FIRE industries.

Above and beyond the influence of industry, poverty rates were higher in counties with

larger concentrations of African Americans (x5), a racialized group historically marginalized

in American society.

6 Conclusions and Discussion

Here we have developed novel methodology for simultaneous regression and jump-set anal-

ysis for the case study of poverty history in the Upper Midwest of the US. Since the hidden

jump sets are unknown, the proposed generalized complementary models are different from
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the traditional generalized linear models. We have also proposed a partition approach asso-

ciated with the complementary models to create candidate jump sets and developed a novel

homogeneity measure from an approximation of the log-QL likelihood ratio to connect jump

set identification and regression analysis. Since the homogeneity measure is in a quadratic

form and the proposed score function has a unique root, the three-step computational algo-

rithm achieves convergence fairly quickly. Particularly, in the simulation study shown in the

Supplementary Material, the HLR method for Gaussian responses takes only one iteration

toward convergence almost every time (Table A1). A QL Z-ratio test shown in Section 3.1

is also proposed to evaluate whether a hidden jump set exists.

In addition, we have established a large-sample property (consistency) for the HLR

method in a series of theorems. A simulation study in the Supplementary Material shows

that the HLR method is also consistent in jump set identification rates and parameter es-

timation for Gaussian and Poisson responses (Tables A1 and A2). That is, as sample size

increases, the identification accuracy for jump sets increases and the sample variance for

estimates decreases. The finite-sample properties in the simulation study have supported

the theory. Thus, the proposed method based on the QL homogeneity measure is both the-

oretically justified and computationally feasible. In another simulation study (not shown

here), we have found that the more similar candidate jump sets are to the true jump set, the

closer the corresponding homogeneity measures are to zero. For example, for the jump set

30

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



|∆3| shown in Figure A2 of the Supplementary Material with |∆3| = 150, an average value

of the simulated homogeneity measures for ∆3 over 200 replicates is about 1.1, while those

for candidate jump sets with numbers of counties to be 120, 130, and 140 are 68, 42, and

20, respectively.

For the HLR method, the computation time would depend on the number of candidate

jump sets. For example, in analysis of the Midwest data, 535 candidate jump sets were

considered, and the HLR method would take 4 hours to get convergence. However, in the

simulation for 12 × 12 grids of the Gaussian responses, it would take only 20 minutes for

one simulation setting (500 replicates). Additionally, we have shown that estimates by the

HLR method have asymptotic normality, and used a WLS error as a criterion for model

selection in the data analysis. In a simulation study shown in the Supplementary Material

that has a high proportion of counties included in the jump sets, we have found that the HLR

method can identify all the true jump sets accurately and give unbiased estimates for most

coefficients (Tables A3 and A4). To further evaluate whether the WLS error is suitable for

model selection, we have computed the WLS error in the simulation. The simulation results

show that an average of WLS errors for the (final) jump set model is about 0.5, while that

for the traditional regression model is about 50 (Table A4). These results support the use

of WLS errors for the data analysis. To further improve the accuracy and efficiency of our

methodology, we could consider more flexible ways of creating candidate jump sets. Another
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natural extension of our methodology would be simultaneous identification of jump sets in

space and change points in time by creating spatio-temporal status vectors, which we leave

for future investigation.

Appendix: Assumptions and Theorems

To ensure a unique root for a score function of the QL function, we make some assumptions

for the QL function to exist.

Assumption 1 (a) The mean functions satisfy max{|θi|4 : i = 1, . . . , n} is finite. (b)

The explanatory variables xi are not multiples of a binary variable. (c) The link function

g(·) is one-to-one. (d) The first- and second-order derivatives of the link function g(·) are

continuous. (e) There exists a smooth function V (·) such that var(Yi) = V (θi, σ), where σ

is a nuisance parameter.

We next impose mixing conditions for the responses to ensure the validity of the QL es-

timation for the jump-set model. Let Ξ ⊆ D and let YΞ =
∏
si∈Ξ Y (si). Let ρk,l(h) =

sup
{
|corr(YΞ1 ,YΞ2)| : |Ξ1| ≤ k, |Ξ2| ≤ l, d(Ξ1,Ξ2) ≥ h

}
, where corr(·, ·) denotes a correla-

tion function, and d(Ξ1,Ξ2) = inf{‖s1 − s2‖ : si ∈ Ξi} (see, e.g., Lin, 2008).

Assumption 2 The mixing coefficient ρk,l(h) satisfies the following conditions: (a) ρ1,1(h) =

O(h−2−k1) for some k1 > 0. (b) ρk,l(h) = o(h−2) for k+ l ≤ 4. (c) ρ1,1(h) is positive definite.
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By Assumption 2(a), we have
∑n

i=1 Λi,j = O(1) for all j = 1, . . . , n and thus it is reason-

able to make the following assumption.

Assumption 3 The information matrix −n−1(∇λδθδ)′Λλδ(∇λδθδ) converges to a positive-

definite matrix I(λδ; τ ) as n→∞.

Let
P−→ and

L−→ denote convergence in probability and in distribution, respectively, as

n → ∞. Also, let o∗(nq) denote a vector containing either 0 or 1 with a sum on the order

o(nq) as n → ∞. Let ψ0 be a given status vector with ψ0 = δ + o∗(n1/2). We have the

following results for asymptotic properties of the HLR method.

Theorem 1 Suppose nδ = O(n) and Assumptions 1–3 hold. Then, at each iteration m =

0, 1, 2, . . . of Algorithm 1, the QL estimates λ̂
(m)
ψ0

are consistent in the sense that λ̂
(m)
ψ0

P−→ λδ,

as n→∞.

Theorem 1 states that, when a candidate status vector and the true status vector are asymp-

totically equivalent, the QL estimates associated with the corresponding candidate model

are consistent. In more typical iterative estimation methods, the consistency of regression

parameter estimates hinges on the consistency of covariance parameter estimates (Guyon,

1995). Here, in contrast, the estimates of the regression coefficients and the jump coefficient

can be consistent, even if the covariance parameter estimates are biased.
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Corollary 1 Under the assumptions of Theorem 1, we have λ̂
(m)
ψ

P−→ λδ and λ̂
(m)
ψc

P−→ λδc

if and only if ψ ≡ ψ0 = δ + o∗(n1/2), where λδc = (β0 + ξδ,β
′,−ξδ)′.

The asymptotic normality of λ̂
(m)
ψ0

and λ̂
(m)
ψc0

can be established on the consistency in the

following Corollary 2.

Corollary 2 Under the assumptions of Theorem 1, we have, as n → ∞, n1/2λ̂
(m)
ψ0

L−→

N
(
λδ, I

−1(λδ; τ
†)
)

and n1/2λ̂
(m)
ψc0

L−→ N
(
λδc , I

−1(λδc ; τ
†)
)

where I(λδ; τ
†) is given in As-

sumption 3. Moreover, if the selected variogram model is correctly specified, then, as n→∞,

n1/2λ̂
(m)
ψ0

L−→ N (λδ, I
−1(λδ; τ )), and n1/2λ̂

(m)
ψc0

L−→ N (λδc , I
−1(λδ; τ )).

Let nψ =
∑n

i=1 ψi and nδ =
∑n

i=1 δi. The following Theorems 2 and 3 show that the QL

homogeneity measure (2.6) has a (unique) minimum value when the candidate jump set is

(asymptotically) equal to the true jump set. These results consequently ensure the selection

consistency for the proposed jump-set identification procedure.

Theorem 2 Suppose nδ = O(n), nψ = O(n), and Assumptions 1–3 hold. Then, at each

iteration m = 0, 1, . . . of Algorithm 1, we have an inequality minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
≥

0, with probability one. In addition, the equality (asymptotically) holds if and only if ψ ≡ ψ0;

that is, H
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
= op(n

−1) if and only if ψ = δ + o∗(n1/2).

Assume that Ω (asymptotically) contains the true status vector δ in the sense that at least

one status vector ψ0 is in Ω. By Theorem 2, H
{
θ(λ̂

(m)
ψ0

),θ(λ̂
(m)
ψc0

)
}

is (asymptotically) equal
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to zero, where ψc
0 = 1 − ψ0. This implies that ψ0 minimizes H

{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
, which

gives existence of minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
. Recall that the estimated status vector at

the mth iteration of Algorithm 1 is denoted by δ̂(m) = minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
. Then,

we have the following result about the consistency of the jump-set selection.

Theorem 3 Suppose that Ω (asymptotically) contains the true status vector δ and that the

assumptions of Theorem 2 hold. We have, at each iteration m = 0, 1, . . . of Algorithm 1,

δ̂(m) = minψ∈ΩH
{
θ(λ̂

(m)
ψ ),θ(λ̂

(m)
ψc )

}
if and only if δ̂(m) = δ + o∗(n1/2).

Theorem 3 states that the estimated status vector from the minimizer of the homogeneity

measure is asymptotically equivalent to the true status vector. That is, Algorithm 1 asymp-

totically selects the true jump set and thus is consistent in the jump-set identification. We

consider the asymptotic behavior of the case that there is no jump set (i.e., δ = 0).

Theorem 4 Suppose that there is no jump set and Assumptions 1–3 hold. Then, the fol-

lowing results hold. (a) The difference between the two jump coefficient estimates is asymp-

totically equivalent such that (ξ̂ψ + ξ̂ψc)
P−→ 0 for any ψ ∈ Ω, as n → ∞. (b) The test

statistic Zψ follows the standard normal distribution.

By Theorem 4, when there is no jump set, the test statistic Zψ is asymptotically normal and

thus an approximate normal test can be performed.

Finally, we provide theorems for convergency of the proposed methods.
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Theorem 5 Under Assumptions 1–3, the derivative of n−1Q̇(λδ; τ ) converges in probabil-

ity to the positive-definite matrix I(λδ; τ ) of Assumption 3 as n → ∞. Furthermore, the

derivative of the QL function is uniformly bounded in probability as n → ∞. That is,

‖Q̇(λδ; τ )‖ ≤M in proability as n→∞.

Corollary 3 Under Assumptions 1-3, Q̇(λδ; τ ) satisfies the Lipschitz condition in probabil-

ity as n → ∞. That is, ‖Q̇(λδ; τ ) − Q̇(λ∗δ ; τ )‖ ≤ l‖λδ − λ∗δ‖ in probability for some l > 0

as n→∞.

Corollary 4 Under Assumptions 1-3, a Newton iteration of the QL function is globally

convergent in probability as n→∞.

Corollary 5 Under Assumptions 1-3, the iterative procedure of Algorithm 1 converges in

probability as n→∞.

The proofs of the above theorems are given in the Supplementary Material.

Supplementary Materials

Technical details, extra simulation studies and computer codes can be found in the Supple-

mentary Material.
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