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Abstract: Motivated by increasing pressure for decision makers to shorten the

time required to evaluate the efficacy of a treatment such that treatments deemed

safe and effective can be made publicly available, there has been substantial recent

interest in using an earlier or easier to measure surrogate marker, S, in place of

the primary outcome, Y . To validate the utility of a surrogate marker in these

settings, a commonly advocated measure is the proportion of treatment effect on

the primary outcome that is explained by the treatment effect on the surrogate

marker (PTE). Model based and model free estimators for PTE have also been

developed. While this measure is very intuitive, it does not directly address the

important question of how S can be used to make inference on the unavailable Y

in the next phase clinical trials. In this paper, to optimally use the information

of surrogate S, we provide a framework for deriving an optimal transformation

of S, gopt(S), such that the treatment effect on gopt(S) maximally approximates

the treatment effect on Y in a certain sense. Based on the optimally transformed

surrogate, gopt(S), we propose PTE and a new measure to quantify surrogacy,

the relative power (RP), and demonstrate how RP can be used to make decisions

with S instead of Y for next phase trials. We propose nonparametric estimation
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procedures, derive asymptotic properties, and compare the RP measure with the

PTE measure. Finite sample performance of our estimators is assessed via a

simulation study. We illustrate our proposed procedures using an application to

the Diabetes Prevention Program (DPP) clinical trial to evaluate the utility of

hemoglobin A1c and fasting plasma glucose as surrogate markers for diabetes.

Key words and phrases: Clinical trial, surrogate marker, relative power, nonpara-

metric estimation, proportion of treatment effect explained.

1. Introduction

Motivated by increasing pressure for decision makers to shorten the time re-

quired to evaluate the efficacy of a treatment such that treatments deemed

safe and effective can be made publicly available, there has been substantial

recent interest in using an earlier or easier to measure surrogate marker in

place of a primary outcome. The development and testing of clinical treat-

ments, including vaccines, often require years of research and participant

follow-up. Though strict and regulated testing is essential to guarantee that

treatments are safe and effective, early indications about the effectiveness

of the treatment based on a surrogate marker could potentially be used to

make inference about the treatment effect on the primary outcome. The use

of a surrogate marker in this way may allow for early testing of a treatment

effect and lead to reduced follow up time and/or costs. For example, during
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the COVID-19 public health emergency in 2020, the Food and Drug Ad-

ministration issued guidance allowing for an emergency use authorization

for vaccines demonstrating efficacy with respect to a surrogate marker that

is “reasonably likely to predict” protection against COVID-19 (Avorn and

Kesselheim, 2020; FDA, 2020). These urgent needs highlight the impor-

tance of developing methods to identify valid surrogate markers such that

they may be used in future studies.

For decades, the statistical, epidemiological, and clinical research com-

munities have made substantial progress by proposing and evaluating meth-

ods to assess the value of potential surrogate markers (Prentice, 1989;

Molenberghs et al., 2002; Alonso et al., 2004; Burzykowski et al., 2005;

Frangakis and Rubin, 2002; Gilbert and Hudgens, 2008; Huang and Gilbert,

2011; VanderWeele, 2013; Price et al., 2018). A formal definition for a valid

surrogate marker was proposed in Prentice (1989) and since then, numerous

methods have been proposed to validate surrogate markers or quantify the

surrogacy of such surrogate markers. For example, Freedman et al. (1992)

proposed a measure for the proportion of treatment effect on the primary

outcome that is explained by the treatment effect on the surrogate (PTE)

by examining the change in the treatment coefficient in a regression model

predicting the primary outcome from the treatment with vs. without the
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surrogate marker included in the model. As a more flexible alternative,

Wang and Taylor (2002) proposed to quantify the PTE by evaluating what

the treatment would be if the surrogate marker in the treatment group

had the same distribution as the surrogate in the control group. While

useful, these methods are model based and lead to biased estimates of the

PTE under model misspecification. A robust nonparametric model free

estimation method was proposed by Parast et al. (2016) to estimate the

PTE defined by Wang and Taylor (2002). However, this method requires

a monotone relationship between the outcome and the surrogate marker.

Recently, Wang et al. (2020) proposed a model free strategy to quantify

PTE that involves identifying an optimal transformation of the surrogate

marker that best predicts the treatment effect on the primary outcome.

This method is robust and provides a way to infer the treatment effect on

the primary outcome by using the optimally transformed surrogate marker.

The derivation of the optimal transformation function relies on a working

independence assumption, though the forms of the optimal transformation

and PTE are not sensitive to the departure of the assumption. Note that

these quantities were proposed for a single study setting, different from

a meta-analytic setting where multiple studies are available to investigate

the surrogate marker and alternative measures have been developed to val-
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idate surrogacy (Daniels and Hughes, 1997; Buyse and Molenberghs, 1998;

Burzykowski et al., 2005).

In this paper, we first derive an optimal transformation of the sur-

rogate, gopt(·), which avoids the above-mentioned working independence

assumption, and is such that the treatment effect on gopt(S) maximally ap-

proximates the treatment effect on the primary outcome using a distinct

but complementary approach as that of Wang et al. (2020). The form of

gopt(S) is analogous to the optimal transformation derived in Wang et al.

(2020) and our simulation study shows that these two optimal transforma-

tions perform similarly. Using our optimal transformation, we propose a

PTE quantity based on this transformation and discuss how this measure

compares to existing approaches/measures.

The PTE quantity based on the proposed optimal transformation of

the surrogate can provide useful information regarding the strength of a

potential surrogate within, for example, a Phase 2 clinical trial, where test-

ing is often conducted in a small number of patients in order to assess

safety, monitor how a drug is metabolized, and gather initial data on effi-

cacy. In the next clinical trial, such as a Phase 3 clinical trial which is a

large trial in patients to test efficacy and safety that provide the key data

on efficacy in submissions for regulatory approval, one may be interested in
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understanding how this surrogate marker can be used to to make inference

about the treatment effect on the primary outcome. That is, knowing that

a particular surrogate marker explains, for example, 90% of the treatment

effect in an existing trial (Phase 2), what can be expected in a future trial

(Phase 3) with respect to effect size and power, if that surrogate is used

to make inference about the treatment effect instead of the primary out-

come? With respect to using a surrogate marker to test for a treatment

effect, useful methods have been proposed to improve power through the

use of the surrogate marker information, when combined with the primary

outcome (Pepe, 1992; Robins and Rotnitzky, 1992; Rotnitzky and Robins,

1995; Venkatraman and Begg, 1999; Parast et al., 2014). Some recent work

has addressed the question of how one can use a surrogate marker to replace

a primary outcome in a future study. For example, in a setting with multiple

surrogate markers, Athey et al. (2019) proposed a model-based approach

to combine surrogate markers into a surrogate index that can be used to

predict a treatment effect on the primary outcome. In a survival setting,

Parast et al. (2019) proposed a testing procedure to test for a treatment ef-

fect using a single surrogate marker measured earlier in time. Importantly,

this testing procedure requires a similar monotonicity assumption as Parast

et al. (2016), discussed earlier.
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In this paper, our main contribution is the proposal of an alterna-

tive/additional measure of surrogacy, the relative power (RP) which, like

the PTE, is based on the optimal transformation of the surrogate. This

measure aims to quantify the feasibility of using surrogate marker informa-

tion to make inference about the primary outcome in a subsequent study.

We define this measure and additionally demonstrate how it can be used

to inform future trial design.

We propose robust nonparametric estimation procedures for gopt(·), the

PTE and the RP measures and derive asymptotic properties of our esti-

mators. Simulation results suggest that the proposed estimators perform

well in finite samples. We illustrate our approach using an application to

the Diabetes Prevention Program (DPP) study where we examine two po-

tential surrogate markers for diabetes, hemoglobin A1c and fasting plasma

glucose.

2. Identifying and Estimating an Optimal Transformation

2.1 Notation, Setting, and Assumptions

Let Y denote the primary outcome and S be the surrogate marker such

that S can either be measured earlier than Y or at the same time as Y but

with less cost or patient burden. The surrogate marker S can be discrete
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2.1 Notation, Setting, and Assumptions

or continuous; we treat S as continuous for conciseness of presentation but

the proposed methods can be easily modified to accommodate discrete S.

Under the standard causal inference framework, let Y (a) and S(a) denote the

respective potential outcome and potential surrogate under treatment A =

a ∈ {0, 1}. In practice, (Y (1), S(1)) and (Y (0), S(0)) cannot both be observed

for the same subject. We assume that treatment assignment is random and

without loss of generality P (A = a) = 0.5. The observable data for analysis

consist of n sets of independent and identically distributed random vectors

D = {Di = (Yi, Si, Ai)
T, i = 1, ..., n}, where Yi = Y

(1)
i Ai + Y

(0)
i (1 − Ai),

Si = S
(1)
i Ai + S

(0)
i (1 − Ai) and n is the sample size. The treatment effect

on the primary outcome, ∆ is defined as:

∆ = µ1 − µ0, where µa = E(Y (a)).

If there is no treatment effect on the outcome i.e., ∆ = 0, then the entire

idea of determining whether a potential surrogate can capture the treatment

effect on the outcome is not well-defined. Without loss of generality, we

assume ∆ > 0, which can always be realized by switching the two different

treatment groups or redefining the outcome in an opposite way for analytic

purposes if needed.
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2.2 Identifying gopt

2.2 Identifying gopt

It is desirable to identify an optimal prediction function such that the re-

sulting g(s) maximally predicts Y while ensuring that ∆g ≤ ∆ to maintain

a desirable interpretation of ∆g, which is the treatment effect on g(S),

∆g = µg,1 − µg,0 = E{g(S(1))−E{g(S(0))}. Wang et al. (2020) identified an

optimal g that minimizes the mean squared error:

Loracle(g) = E
[
(Y (1) − Y (0))− {g(S(1))− g(S(0))}

]2
under the working independence assumption (Y (1), S(1)) ⊥ (Y (0), S(0)). This

assumption is needed because the correlation between (Y (1), S(1)) and (Y (0), S(0))

is not identifiable. Although the inference procedures proposed in Wang

et al. (2020) for quantifying the PTE of g(S) do not require this assumption

to hold and the form of the optimal transformation is not sensitive to the

departure of the assumption, the optimality of the resulting transformation

may not hold when the working independence assumption is violated.

To overcome this challenge, we propose in this paper an alternative

optimal g that does not rely on this assumption. To this end, we note

that maximizing PTEg = ∆g/∆ under the constraint of PTEg ≤ 1 (and

assumption that ∆ > 0) is equivalent to minimizing ϵg ≡ ∆−∆g ≡ E{Y (1)−

Y (0)} − E{g(S(1)) − g(S(0))} with respect to g under the constraint that

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.2 Identifying gopt

ϵg ≥ 0. Note that PTEg ≤ 1 implies that ∆g ≤ ∆ and thus if ∆ = 0

then ∆g = 0. Since g is not location identifiable, one may constrain the

minimization under both E{Y (0) − g(S(0))} = 0 and ϵg ≥ 0, which leads to

the equivalent minimization problem of

ϵ2g = [E{Y (1) − g(S(1))}]2 s.t. E{Y (0) − g(S(0))} = 0 and ϵg ≥ 0.

By Jensen’s inequality ϵ2g = [E{Y (1) − g(S(1))}]2 ≤ E{Y (1) − g(S(1))}2. If

we can find a g function such that the loss function E{Y (1) − g(S(1))}2 is

very small, then the loss ϵ2g will automatically be very small. That is, we

use Jensen’s inequality to approximate our problem and provide a solvable

closed form expression. To this end, as an alternative strategy, we minimize

L(g) = E{Y (1) − g(S(1))}2 s.t. E{Y (0) − g(S(0))} = 0. (2.1)

Note that we have also dropped the constraint that ϵg ≥ 0 since it is satisfied

automatically with the solution to the optimization problem (2.1) under

conditions (Conditions (C1) and (C2) described in Section 2.3) that can be

empirically checked with observed data. However, gopt(s) optimizing (2.1)

is not uniquely identifiable for s ∈ D0 = Ω0 \ Ω1, where Ωa denotes the

support of S(a) for a = 0, 1. For identifiability, we let gopt(s) = m0(s) + c

for s ∈ D0, where m0(s) = E(Y (0)|S(0) = s) and c is an unknown constant

to be determined. Under this constraint, we show in Appendix B that the

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



2.2 Identifying gopt

following gopt minimizes (2.1):

gopt(s) =


m1(s) + λ r(s), s ∈ Ω1 = Dc ∪D1

m0(s) + c, s ∈ D0

(2.2)

where Dc ≡ Ω1 ∩ Ω0, D1 = Ω1 \ Ω0, ma(s) = E(Y (a) | S(a) = s), fa(s) =

dFa(s)/ds is the conditional density of S(a) with Fa(s) = P (S(a) ≤ s),

r(s) = f0(s)/f1(s) is the density ratio,

λ = {K2 +K1r(s
∗)}−1

[∫
Dc

∆01(s)f0(s)ds+K1∆01(s
∗)

]
,

c = {K2 +K1r(s
∗)}−1

[
r(s∗)

∫
Dc

∆01(s)f0(s)ds−K2∆01(s
∗)

]

with ∆01(s) = m0(s)−m1(s), K1 =
∫
D0
f0(s)ds, K2 =

∫
Dc
r(s)f0(s)ds and

s∗ being the intersection point of Dc and D0. When Ω0 ⊆ Ω1, D0 is empty,

K1 = 0, and gopt is reduced to

gopt(s) = m1(s) + λ r(s), where λ = K−1
2

∫
Dc

∆01(s)f0(s)ds. (2.3)

Remark 1. With the aim of predicting Y , a natural choice of gopt(s) for

s ∈ D0 is m0(s) as in D0, there are only observations from group 0 with

the surrogate marker and thus, m0(s) = m(s) = E[Y |S = s] for s ∈ D0 is

the best prediction function of S for Y . However, an additional constant c

is needed to make the function gopt(s) to satisfy the constraint, and, at the
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2.3 Estimating gopt

same time, to be continuous at the intersection point s∗, where

gopt(s
∗) =

r(s∗)

K2 +K1r(s∗)

[∫
Dc

∆01(s)f0(s)ds+K1∆01(s
∗)

]
+m1(s

∗),

which is well defined even if f1(s
∗) = 0.

Remark 2. From the forms of λ and c, it can be seen that if m0(s) =

m1(s) = m(s) for s ∈ Dc (a perfect surrogate), then λ = 0, and gopt(s) =

m(s) for the whole domain. Therefore, ∆gopt = E[gopt(S
(1)) − gopt(S

(0))] =

E[m(S(1))−m(S(0))] =
∫
m(s)f1(s)ds−

∫
m(s)f0(s)ds =

∫
m1(s)f1(s)ds−∫

m0(s)f0(s)ds = ∆. That is, PTE = 1, which is as would be expected for

a perfect surrogate.

2.3 Estimating gopt

We propose to estimate gopt non-parametrically by first estimating fa(s),

ma(s) and λ as

f̂a(s) = n−1
a

∑
Ai=a

Kh(Si − s), m̂a(s) =

∑
Ai=aKh(Si − s)Yi∑
Ai=aKh(Si − s)

, ∆̂01(s) = m̂0(s)− m̂1(s)

λ̂ =
{
K̂2 + K̂1r̂(s

∗)
}−1

{∫
Dc

∆̂01(s)f̂0(s)ds+ K̂1∆̂01(s
∗)

}
,

ĉ =
{
K̂2 + K̂1r̂(s

∗)
}−1

{
r̂(s∗)

∫
Dc

∆̂01(s)f0(s)ds− K̂2∆̂01(s
∗)

}
,

where r̂(s) = f̂0(s)/f̂1(s), K̂1 =
∫
D0
f̂0(s)ds, K̂2 =

∫
Dc
r̂(s)f̂0(s)ds, Kh(·) =

K(·/h)/h is a symmetric kernel function with bandwidth h = O(n−ν),
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2.3 Estimating gopt

ν ∈ (1/5, 1/2). Based on these quantities, we may construct a plug-in

estimate for gopt, denoted by ĝ, as follows

ĝ(s) =


m̂1(s) + λ̂r̂0(s), s ∈ Dc ∪D1

m̂0(s) + ĉ, s ∈ D0.

In Appendix D, we show that (nh)
1
2{ĝ(s)−gopt(s)} converges in distribution

to a normal distribution with mean 0 and variance-covariance Σ2(s).

The resulting PTE for gopt(S) can be obtained as PTEgopt = ∆gopt/∆

and estimated as

P̂TEĝ = ∆̂ĝ/∆̂,

where ∆̂ = µ̂1 − µ̂0, ∆̂g = µ̂g,1 − µ̂g,0, µ̂a = n−1
a

∑n
i=1 I(Ai = a)Yi, na =∑n

i=1 I(Ai = a), µ̂g,a = n−1
a

∑n
i=1 I(Ai = a)g(Si). With respect to PTE,

Parast et al. (2017) proposed a class of surrogacy measures based on the

PTE to evaluate a surrogate marker, PTEL, indexed by a reference distri-

bution of the surrogate marker. We show in Appendix C that PTEgopt is

approximately equivalent to PTEL with a particular reference distribution

uniquely defined by gopt(·) and ∆gopt(S). In addition, this PTEgopt only re-

quires the following conditions (C1) and (C2) to guarantee that PTEgopt is

between 0 and 1.

(C1) S1(u) ≥ S0(u) for all u,

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



(C2) M1(u) ≥ M0(u) for all u in the common support of gopt(S
(1))

and gopt(S
(0)),

where Sa(u) = P{gopt(S(a)) > u | A = a}, Ma(u) = E{Y (a) | gopt(S(a)) =

u}, for a = 0, 1. Condition (C1) means that S1(u) is larger than S0(u),

or gopt(S
(1)) is distributed to the right of gopt(S

(0)); Condition (C2) means

the conditional mean of Y given gopt(S
(1)) is larger than the conditional

mean of Y given gopt(S
(0)). These assumptions can be empirically verified

based on the observed data. In addition, compared with the four required

assumptions of Parast et al. (2017), these two conditions are less strict and

more likely to hold since gopt(S) is chosen to be close to Y .

3. Evaluating Surrogacy Using Relative Power combined with

PTE

3.1 Relative Power Measure

Our goal is to evaluate the surrogacy of S for the primary outcome Y . For

any g such that 0 < ∆g ≤ ∆, such as gopt in Section 2, it would be valid

to test for the treatment effect H0 : ∆ = 0 based on ∆g. We propose to

quantify the surrogacy of g(S) based on the extent to which the estimated

∆g can be used to detect the target treatment effect ∆. To this end, consider

a pair of regular asymptotically normal estimators ∆̂ and ∆̂g for ∆ and ∆g
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3.1 Relative Power Measure

such that

n
1
2 (∆̂−∆) → N(0, σ2), and n

1
2 (∆̂g −∆g) → N(0, σ2

g).

Then we may define the effect sizes for Y and g(S) as ∆/σ and ∆g/σg, which

directly indicate the potential power of a study in detecting a treatment

difference H0 : ∆ = 0 using Y versus using g(S) with a given sample size n̄.

Thus, we propose to measure the surrogacy of g(S) based on the relative

power (RP):

RPg(n̄) := RPg(n̄, n̄), where RPg(n1, n2) =
P(∆g/σg, n1)

P(∆/σ, n2)
,

where P(∆g/σg, n1) = 1−Φ(1.96−√
n1 ∆g/σg), P(∆/σ, n2) = 1−Φ(1.96−

√
n2 ∆/σ), the testing power based on g(S) and Y , respectively. A good

surrogate marker will have RPg(n̄) great than or equal to 1 while RPg(n̄)

being less than 1 would indicate a poor surrogate. Importantly, while

PTEg ≡ ∆g/∆ ≤ 1 is true with the class of g of interest, it is not nec-

essarily the case that RPg(n̄) ≤ 1. If the variance of ∆̂g is sufficiently

smaller than that of ∆̂, RPg(n̄) may be larger than 1, indicating greater

power and efficiency when the effect size is calculated using the surrogate

information due to the reduction in variation. Whether it is possible for

the variance of ∆̂g to realistically be smaller than that of ∆̂ depends on

the outcomes/measures and the particular setting. In our diabetes exam-
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3.2 Estimation of RP

ple described in Section 6, the estimated variance of ∆̂g when the surrogate

is fasting plasma glucose is smaller than ∆̂, resulting in an RE estimate

greater than 1. In contrast, when examining HbA1c as a surrogate, the

estimated variance of ∆̂g is not smaller than ∆̂. As another example, using

data from a randomized clinical trial of children with nonalcoholic fatty

liver disease (NAFLD) (Lavine et al., 2011), the estimated variance of ∆̂g

considering change in alanine aminotransferase (measured via blood) as a

surrogate for NAFLD activity score (measured via biopsy) is smaller than

the estimated variance of ∆̂ (standard error = 0.24 for ∆̂g vs. 0.45 for ∆̂).

Compared with PTEg, RPg(n̄) considers variation in estimating ∆g and

provides more direct information on the power of the study if g(S) is used

instead of Y . We examine both RPg(n̄) and PTEg in our numerical studies.

3.2 Estimation of RP

To estimate RPg(n̄) for a given g, we estimate ∆ and ∆g, respectively, by

∆̂ = µ̂1 − µ̂0 and ∆̂g = µ̂g,1 − µ̂g,0.

In Appendix A, we show that
√
n(∆̂ − ∆) and

√
n(∆̂g − ∆g) respectively

converge in distribution to N(0, σ2) and N(0, σ2
g), where σ

2 = E{ψ2
i } and

σ2
g = E{ψ2

g,i} can be respectively estimated by σ̂2 = n−1
∑n

i=1 ψ̂
2
i and

σ̂2
g = n−1

∑n
i=1 ψ̂

2
g,i. ψi, ψg,i, ψ̂i and ψ̂g,i are influence functions and their
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3.3 Using RP to Design a Future Trial

estimates. Their rigourous definitions are given in Appendix A. With these

estimators, we may construct a plug-in estimator for RPg(n̄) as

R̂Pg(n̄) := R̂Pg(n̄, n̄) where R̂Pg(n1, n2) =
P(∆̂g/σ̂g, n1)

P(∆̂/σ̂, n2)
.

To assess the variability of R̂Pg(n1, n2), one can show that
√
n{R̂Pg(n1, n2)−

RPg(n1, n2)} converges in distribution to a zero-mean normal distribution

with variance σ2
RPg

(n1, n2) based on the weak convergence of the random

vector
√
n(∆̂−∆, ∆̂g −∆g, σ̂

2 − σ2, σ̂2
g − σ2

g)
T. In practice, we may approx-

imate σ2
RPg

(n1, n2) via standard perturbation resampling procedures (Park

and Wei, 2003; Cai et al., 2005) described in Appendix E.

With gopt(·) estimated as ĝ(·), we may estimate ∆gopt as ∆̂ĝ and σ
2
gopt as

σ̂2
ĝ = n−1

∑n
i=1 ψ̂

2
ĝ,i. A plug-in estimate for RPgopt(n̄) can be constructed ac-

cordingly, denoted as R̂Pĝ(n̄), whose asymptotic variance can be estimated

by perturbation resampling procedures similarly.

3.3 Using RP to Design a Future Trial

With a surrogate marker identified in an existing trial (Phase 2 trial), it is

possible to use our estimate of RP to inform the design of a new trial (Phase

3 trial) wherein one would use the treatment effect on the surrogate infor-

mation to predict or test for the treatment effect on the primary outcome.

We assume the transportability of ∆g/σg between the existing trial and the
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3.3 Using RP to Design a Future Trial

future trial, which is generally reasonable in the Phase 2 trial and Phase

3 trial setting since these trials usually have the same inclusion-exclusion

criteria. Under this assumption, we may consider relative power between a

future trial and an existing trial as:

RPg(n
∗, n̄) =

P(∆g/σg, n
∗)

P(∆/σ, n̄)
, (3.4)

where n∗ is the sample size in the future trial. RPg(n
∗, n̄) can be interpreted

approximately as the power ratio of

∆g/se(∆̂
∗
g) vs. ∆/se(∆̂),

where ∆̂∗
g is the estimator of ∆g in the future trial with sample size n∗ and

∆̂ is the estimator of ∆ in the existing trial with sample size n̄. Of course,

(3.4) can be re-written such that we can use the expression to determine

the needed sample size n∗ for the future trial given a desired RPg(n
∗, n̄) in

the future trial.

Alternatively, one could consider selecting n∗ such that it is ensured

that the lower bound of the one-sided 100(1−α)% confidence interval (CI)

for RPg(n
∗, n̄) exceeds a desired threshold value κ.
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4. Final Estimation and Inference for RP and PTE with Esti-

mated gopt(·)

Using the same dataset to estimate both gopt and its corresponding RP(n̄) =

RPgopt(n̄) may lead to overfitting bias as in standard prediction settings.

Therefore, we employ cross-validation (CV) wherein we split the data ran-

domly into two subsets and estimate gopt with one subset, and estimate

RPg(n̄) given g using a separate subset.

Specifically, denote Ik and I−k = {1, ..., n} \ Ik, k = 1, ..., K, be a

random partition of the index set {1, ..., n} of equal sizes, and let DI =

{Di, i ∈ I}. Let ĝI denote gopt estimated based on DI. Given ĝIk , RPgopt(n̄)

is estimated using data in DI-k , and denoted by R̂P
(-k)

ĝIk
(n̄). Then, we define

the CV-based estimator of RPgopt(n̄) as

R̂PCV(n̄) = K−1

K∑
k=1

R̂P
(-k)

ĝIk
(n̄).

The consistency of ĝIk to gopt and that of R̂P
(-k)

g (n̄) to RPg(n̄) guar-

antee the consistency of R̂PCV(n̄) to RP(n̄). The asymptotic distribution

of R̂PCV(n̄) − RP(n̄) can be obtained from the asymptotic expansions of

ĝIk − gopt and R̂P
(-k)

g (n̄) − RPg(n̄). Specifically, when h = O(n−ν) with

ν ∈ (1/4, 1/2),

n
1
2{R̂PCV(n̄)− RPgopt(n̄)} = n− 1

2

n∑
i=1

ψRPgopt ,i
(n̄) + op(1),
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which converges in distribution to a normal with mean 0 and variance

τ 2RPgopt (n̄) = E{ψ2
RPgopt ,i

(n̄)}. Similar to σRPg(n̄), it is difficult to construct

explicit estimation of τ 2RPgopt (n̄) and we instead employ resampling methods.

Estimation and inference for PTE = PTEgopt , whose estimate we denote as

P̂TECV, can be derived similarly.

5. Simulation studies

5.1 Simulation Goals

We conducted simulation studies to: (1) evaluate the finite sample perfor-

mance of the proposed estimation and inference procedures for RP(n̄), n̄ =

50, 100, 150, 200, with respect to bias, accuracy of standard error estimates,

and coverage probabilities in a variety of settings, (2) compare estimates of

RP(n̄) and PTE, and (3) compare PTE of our proposed optimal transfor-

mation with existing PTE methods. Specifically, for comparison of PTEs,

we include PTE estimate from the methods of (i) Wang et al. (2020), de-

noted as PTEW2020 ; (ii) Parast et al. (2016), denoted as PTEL; (iii) Wang

and Taylor (2002), denoted as PTEW ; and (iv) Freedman et al. (1992),

denoted as PTEF .
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5.2 Simulation Setup

5.2 Simulation Setup

We examined five simulation settings; settings were selected in an effort to

examine settings with varying surrogate strength (e.g. weak vs. moderate

vs. strong surrogate) and settings that violate certain assumptions required

by existing comparator methods. Throughout, we let n = 2000, variances

were estimated using perturbation resampling, and a normal density was

used for the kernel function. We chose the bandwidth h = hoptn
−c0 with

c0 = 0.06 to ensure under-smoothing needed for RP(n̄) estimation, where

hopt is obtained using the procedure of Scott (1992); this under-smoothing

is needed to ensure weak convergence of our estimator, see Carroll et al.

(1997). For settings k = 1, 2, 3, we generate

S(1) ∼ Gamma(shape = a
(1)
k , scale = b

(1)
k ), S(0) ∼ Gamma(shape = a

(0)
k , scale = b

(0)
k ),

Y (1) = I{E(1)/G
(1)
k (S(1)) > t}, Y (0) = I{E(0)/G

(0)
k (S(0)) > t},

where E(0) and E(1) follow the unit exponential distribution, and we let

a
(1)
1 = 2, b

(1)
1 = 2, a

(0)
1 = 9, b

(0)
1 = 0.5, G

(1)
1 (s) = 0.2s,G

(0)
1 (s) = 0.2 + 0.22s;

a
(1)
2 = 2, b

(1)
2 = 2, a

(0)
2 = 9, b

(0)
2 = 0.5, G

(1)
2 (s) = 0.2 + 0.22(s− 3 log(s)), G

(0)
2 (s) = 0.6;

a
(1)
3 = 5, b

(1)
3 = 1, a

(0)
3 = 9, b

(0)
3 = 0.5, G

(1)
3 (s) = 0.1s,G

(0)
3 (s) = 2 + 0.22s.

In setting (4), S(1) ∼ Uniform(1, 3), S(0) ∼ Uniform(2, 4), and Y (1), Y (0) are

generated the same as above with G
(1)
4 (s) = 0.2s,G

(0)
4 (s) = 0.2 + 0.22s. In

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



5.3 Simulation Results

setting (5), we generatedS(1)

S(0)

 ∼ N


5
5

 ,
2 1

1 1


 ,

and Y (1) and Y (0) from the same as above with G
(1)
5 (s) = 1+0.1s2, G

(0)
5 (s) =

4 + 0.1s2.

In setting (1), all assumptions required by Parast et al. (2016) are sat-

isfied. However, in settings (2), the effect of S on Y is non-monotone and

in settings (3) and (4), S(0) and S(1) have rather different supports; thus,

in these settings, the assumptions required by Parast et al. (2016) do not

hold. The working independence assumption of Wang et al. (2020) holds in

settings (1)-(4) but not in setting (5). In all settings, our conditions (C1)

and (C2) hold.

5.3 Simulation Results

Simulation results are shown in Table 1 and Table 2, for PTE and RP,

respectively. All results are summarized based on 500 replications for each

setting. Across all settings, the point estimates for our proposed RP mea-

sure using gopt have negligible bias, estimated standard errors are close to

the empirical standard errors, and coverage probabilities of the confidence

intervals are close to their nominal level 0.95. Similar results are observed
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5.3 Simulation Results

for the PTE estimate using our proposed gopt. With respect to comparing

RP and PTE, in setting (1) and (4), where the estimates of PTEgopt are

relatively higher (above 0.5) than other settings, the estimates of RPgopt(n̄)

are above 1, so PTE and RP are consistent in indicating the surrogacy of

a surrogate marker. This also suggests that although the estimated ∆gopt

is slightly smaller compared to ∆, the variation of ∆̂gopt is substantially

smaller than the corresponding variation of ∆̂, leading to higher power if

the study were to be based on gopt(S) rather than the outcome Y itself.

This illustrates the advantage of using PTE combined with RP for quanti-

fying surrogacy since it is more closely tied to study power and effect size

compared to PTE alone.

Table 1 also summarizes the results of other PTE estimators. Across

all settings, the methods of Wang and Taylor (2002) and Freedman et al.

(1992) misspecify the underlying model and as a result, PTEW and PTEF

estimates differ substantially from the nonparametric estimates of PTE (us-

ing gopt), PTEW2020 and PTEL. For setting (2), where we have introduced

a deviation from the monotone increasing assumption for E(Y | S = s),

we observe that except for our proposed PTE and PTEW2020 estimates, the

other methods yield PTE estimates negative or close to zero. This is due to

the fact that the monotone assumption fails in this case and our proposed
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5.3 Simulation Results

PTE and PTEW2020 evaluate the PTE for gopt(S) rather than S, thus demon-

strating the robustness of the proposed PTE and PTEW2020 . In setting (3),

PTEL, PTEW and PTEF all fail with their estimates being negative. This

may be due to the supports of the treatment and control groups being quite

different. In contrast, the proposed PTE and PTEW2020 perform well here.

In setting (4), both our proposed PTE and PTEW2020 estimates identify

this setting as one with strong surrogacy while the comparison methods fail

to do so. Across all settings, the proposed PTE estimates are compara-

ble or a little bit larger than corresponding estimates of PTEW2020 , so both

estimators are relatively robust and comparable.

To further explore the implications of violating the working indepen-

dence of assumption of Wang et al. (2020), within settings (1) through (4),

we introduced dependence between S(1) and S(0) and evaluated the result-

ing PTE estimators. Specifically, we let S(1), S(0) be the same as described

above in each setting, but defined a new versions of the surrogate in the

control group to be S
(0)
new = 0.5S(1) + 0.5S(0) + N(0, 0.1). Results showed

that across the settings, the proposed PTE estimates are comparable or a

bit larger than corresponding estimates of PTEW2020 . Detailed results are

shown in Appendix F.

In settings (2), (3), and (5) where the true PTE is quite small, our
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results show slight over-coverage for our proposed PTE estimate. This is

not unexpected as PTE is a ratio and may prove difficult to estimate when

the true ∆ and/or ∆g and/or PTE are close to 0, which would lead to

irregularity in the estimator and hence poor performance for the normal

approximation in finite sample

6. Application to the Diabetes Prevention Program Study

To illustrate our proposed RP measure, we apply our procedures to the

Diabetes Prevention Program (DPP) study which was a randomized trial

investigating the effect of several prevention strategies for reducing the risk

of type 2 diabetes (T2D) among high risk individuals with pre-diabetes

(Diabetes Prevention Program Group, 1999, 2002). DPP data are publicly

available through the the National Institute of Diabetes and Digestive and

Kidney Diseases Central Repository. The participants were randomized to

one of four treatment groups: placebo, lifestyle intervention, metformin and

troglitazone. The primary endpoint of the trial was time to T2D onset and

the participants were followed up to 5 years with a mean follow up of 2.8

years. Both lifestyle intervention and metformin were shown to significantly

reduce T2D risk among participants.

For illustration, we focused on the comparison of the lifestyle interven-
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tion group (n1 = 1007) versus the placebo group (n0 = 1010) with respect

to diabetes risk at t = 1, 2, 3, 4 years. Our goal is to investigate to what ex-

tent surrogate information on hemoglobin A1C (HbA1c) or fasting glucose

at t0 = 0.5 years (i.e., 6 months), can be used to predict treatment effect

on diabetes risk at t = 1, 2, 3 or 4 years. Only 10 patients developed T2D

before t0 and were excluded from this analysis. We evaluate the surrogacy

potential of these markers based on the proposed RP measure primary, and

also calculate PTE for comparison.

Results are shown in Table 3 and Table 4 where in Table 3 we provide

all PTE estimates for comparison, and in Table 4 we report RP at the n̄

such that the power for testing on the primary outcome, P(∆/σ, n̄), is 0.8,

0.9 or 0.95. For both HbA1c and glucose, RP generally decreases as t gets

further from t0 = 0.5. The PTE estimate with the proposed gopt is generally

larger than or comparable to corresponding estimates of PTEW2020 , PTEL,

PTEW and PTEF , which is similar to what was observed in the simula-

tions meaning that the proposed transformed surrogate explains a larger

proportion of the treatment effect on the outcome than the untransformed

surrogate. In addition, using either PTE or RP, fasting glucose appears to

be a stronger surrogate compared to HbA1C.

To illustrate how these estimates can be used to design a future trial,
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consider the estimated RP(n∗, 50) in (3.4) for the primary outcome at t = 2

for fasting glucose. To ensure a 95% lower bound of R̂P(n∗, 50) above 1,

we obtain a needed sample size n∗ ≥ 60. This suggests that with a future

sample size n∗ ≥ 60, the power of a future 0.5-year trial based on gopt(S)

could be at least as high as the power of the DPP study with sample size

50 based on the diabetes onset information collected up to 2 years. For

this application, we empirically validated the Conditions (C1) and (C2),

which is supported by the evidence that the estimates of P{g(S(1)) > u}−

P{g(S(0)) > u} and E{Y (1) | g(S(1)) = u} − E{Y (0) | g(S(0)) = u} are

non-negative.

7. Discussion

In this paper, our main contribution is the proposed relative power measure

to quantify the utility of a potential surrogate marker which is measured

either earlier than the primary outcome or with less burden/cost compared

to the primary outcome. Unlike the PTE measure, the RP measure provides

a direct link to the expected power of subsequent phase trials and can be

used to inform their design. Specifically, it directly reflects the expected

gain or loss in power when considering the use of a surrogate marker in

a future trial relative to relying on the primary outcome. Through the
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calculation of a sample size, actionable information to determine needed

study size and duration can be obtained. We have provided a nonparametric

inference approach for the optimal transformation of the surrogate, the

corresponding PTE, and the RP, which demonstrated good finite sample

performance. Our methods have the advantage of both being model-free

and requiring flexible assumptions about the surrogate marker distribution

and its relationship with the outcome. In practice, we suggest our proposed

RP measure be used on combination with PTE to guide decisions related

to surrogacy. These procedures can be implemented using the R package

PTERP available on CRAN.

A second contribution of this work is the derivation of the optimal

transformation of the surrogate marker that avoids the requirement of the

working independence assumption in Wang et al. (2020). Numerical studies

investigating the optimal transformation and the PTE defined based on this

optimal transformation showed good performance and demonstrated that

both the proposed optimal transformation and the optimal transformation

of Wang et al. (2020) are robust to various scenarios and have comparable

performances. While performance was similar, our proposed transformation

here may be more desirable in practice than that of Wang et al. (2020) if

there is concern about the validity of the working independence assumption.
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Importantly, the ability to calculate a sample size to inform the design

of a future trial relies on the assumption of transportability of the quantity

∆g/σg from the existing trial to a future trial, and the signs of ∆ and ∆g in

the current study and in the future study being the same. This is reasonable

for different phases of trials as these trials often use parallel inclusion criteria

of participants. But using surrogate to inform different future studies needs

caution. According to our knowledge, the transportability is unavoidable

in studying surrogate markers. We choose to assume the transportability of

∆g/σg instead of, for example, the complete joint distribution of outcome

and surrogate marker. Transportability of information learned about a

surrogate marker in a previous study is a complex and interesting issue and

is an active area of research (Wang et al., 2020; Price et al., 2018; Athey

et al., 2016). Of course, the ultimate goal underlying surrogate marker

research is that if they can be identified, they can be used in future trials,

and reduce follow-up time and costs, but successfully achieving this goal

strongly relies on the assumption of transportability. Violations of this

transportability assumption could have important consequences and future

work in this area is warranted.

Our work has some limitations. In Section 2.2, Jensen’s inequality is

used to get an upper bound of the loss function to approximate the min-
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imization problem so that the transformation function has a closed form

solution. This technique has been extensively used in statistical inference,

statistical learning and deep learning. For example, the evidence lower

bound (ELBO) is a quantity that is a critical component of important al-

gorithms in probabilistic inference including the expectation-maximization

and variational inference; this quantity is a lower bound of the evidence

or likelihood derived via Jensen’s inequality (Wainwright et al., 2008; Hall

et al., 2020; Kingma et al., 2019; Rezende et al., 2014). There may be other

upper bound functions closer to the original loss function that make the

transformation function solvable, which warrants further research. Given

our nonparametric estimation approach, we require a relatively large sam-

ple size such that the kernel smoothing will behave properly, and also

(∆̂, ∆̂g, σ̂
2, σ̂2

g) can be estimated well. Our methods would likely not be

a reasonable option for studies with a very small sample size and in those

cases, a parametric approach may need to be considered. In addition, we do

not address issues of drop-out, censoring, or staggered entry. Each of these

issues would introduce additional complexities and while extensions of the

approach proposed in Wang et al. (2021) may be reasonable, they would

likely not be trivial and thus, handling these issues warrants future work.

Lastly, we focus on evaluating and using a single surrogate marker. Of-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



ten, studies have multiple potential surrogate markers and/or a surrogate

marker measured repeatedly over time i.e., a longitudinal marker (Wang

et al., 2022). While methods have been developed to evaluate surrogate in

these settings, this area of research would benefit from further development

of methods that address the issue of how to design future clinical trial stud-

ies that would use such markers to replace the primary outcome (Parast

et al., 2021; Athey et al., 2019; Agniel and Parast, 2021).

In this paper we view R̂P ĝ as both an estimator for RPgopt and for RPĝ.

Since different choices of g will affect RPg and ĝ is approximating gopt, we

view RPĝ as approximating the relative power of using the true optimal

transformation gopt in the hypothesis test. In our calculation of R̂P ĝ, we

account for the variability of estimating gopt. For a future study, we will

need to use this “fixed” ĝ to transform the future surrogate. With ĝ given,

for variance estimation of ˆPTEĝ or R̂P ĝ, we do not need to re-estimate gopt

in each resampling.

The DPP data used in this paper are publicly available via a signed

data use agreement with NIDDK. Information regarding application for

the dataset is available upon request from the authors.
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Proposed PTEW2020 PTEL PTEW PTEF

True Est ESEASE CP Est ESE Est ESE Est ESE Est ESE

(1) .657 .666 .073.074 .956 .616 .060 .374 .078 .195 .043 .189 .041

(2) .188 .207 .057.068 .968 .140 .049 -.226 .060 .075 .020 .059 .016

(3) .095 .092 .023.027 .972 .077 .015 -.042 .013 -.049 .011 -.037 .008

(4) .772 .794 .056.062 .942 .806 .033 .382 .280 .546 .118 .463 .086

(5) .301 .308 .080.101 .986 .244 .057 .177 .065 .001 .039 .001 .027

Table 1: Estimates (Est) of PTE (using our proposed gopt), PTEW2020, PTEL,

PTEW , and PTEF along with their empirical standard errors (ESE) under set-

tings (1)-(5); for PTE estimates using our proposed gopt, we also present the

averages of the estimate standard errors (ASE, shown in subscript) along with

the empirical coverage probabilities (CP) of the 95% confidence intervals.
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True Est ESEASE CP

(1)
RP(50) 2.133 2.110 .379.410 .954

RP(100) 1.754 1.791 .343.372 .948

RP(150) 1.438 1.503 .269.305 .954

RP(200) 1.247 1.317 .205.245 .972

(2)
RP(50) .638 .720 .260.321 .976

RP(100) .620 .691 .255.326 .978

RP(150) .636 .682 .230.299 .990

RP(200) .664 .685 .210.273 .988

(3)
RP(50) .219 .206 .055.060 .924

RP(100) .385 .355 .099.109 .922

RP(150) .531 .483 .127.143 .922

RP(200) .650 .586 .141.163 .926

(4)
RP(50) 2.290 2.309 .357.391 .966

RP(100) 1.387 1.408 .166.193 .966

RP(150) 1.141 1.160 .090.111 .968

RP(200) 1.053 1.068 .051.069 .978

(5)
RP(50) .709 .729 .187.202 .946

RP(100) .679 .694 .213.235 .948

RP(150) .683 .688 .216.241 .948

RP(200) .700 .691 .212.237 .944

Table 2: Estimates (Est) of RP(n̄) (using our proposed gopt), with their empirical

standard errors (ESE), the averages of the estimate standard errors (ASE, shown

in subscript) and the empirical coverage probabilities (CP) of the 95% confidence

intervals under settings (1)-(5).
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HBA1c

PTE PTEW2020 PTEL PTEW PTEF

t = 1 .223.088 .240.033 .241.010 .163.004 .195.004

t = 2 .189.063 .250.025 .179.004 .155.002 .208.002

t = 3 .217.060 .248.020 .186.004 .137.002 .176.002

t = 4 .205.060 .240.021 .169.004 .139.002 .175.002

Fasting glucose

PTE PTEW2020 PTEL PTEW PTEF

t = 1 .414.085 .475.045 .337.016 .267.012 .478.013

t = 2 .536.084 .535.035 .603.021 .449.011 .536.011

t = 3 .529.073 .515.028 .495.012 .382.007 .478.007

t = 4 .517.075 .521.031 .479.014 .377.007 .481.008

Table 3: Estimates of PTE using the proposed gopt, and PTEW2020, PTEL,

PTEW , PTEF , along with the estimated standard errors (shown in sub-

script).
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HBA1c

RPP(∆/σ,n̄)=0.8 RPP(∆/σ,n̄)=0.9 RPP(∆/σ,n̄)=0.95

t = 1 .847.303 .880.262 .911.228

t = 2 .660.242 .728.227 .793.213

t = 3 .598.184 .655.178 .713.171

t = 4 .589.197 .647.191 .711.184

Fasting glucose

RPP(∆/σ,n̄)=0.8 RPP(∆/σ,n̄)=0.9 RPP(∆/σ,n̄)=0.95

t = 1 1.117.226 1.053.172 1.024.133

t = 2 1.118.191 1.060.142 1.031.107

t = 3 1.049.151 1.015.115 1.001.088

t = 4 1.094.182 1.047.139 1.021.103

Table 4: Estimates of RP using the proposed gopt along with the estimated

standard errors (shown in subscript).
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