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Abstract:

This paper describes the dynamics of daily new cases arising from the Covid-19 pandemic using a

long-range dependent model. A new long memory model, LFIGX (Log-linear zero-inflated general-

ized Poisson integer-valued Fractionally Integrated GARCH process with eXogenous covariates), is

proposed to account for count time series data with a long-run dependent effect. It provides a novel

unified framework for integer-valued processes with serial and long-range dependence (positive or

negative), over-dispersion, zero-inflation, nonlinearity, and exogenous variable effects. We adopt an

adaptive Bayesian Markov Chain Monte Carlo (MCMC) sampling scheme for parameter estimation.

This new modeling is applied to the daily new confirmed cases of the Covid-19 pandemic in six

countries including Japan, Vietnam, Italy, the United Kingdom, Brazil, and the United States. The

LFIGX model provides insightful interpretations of the impacts of policy index and temperature and

delivers good forecasting performance for the dynamics of the daily new cases in different countries.
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1. Introduction

The Covid-19 pandemic has disastrously caused an enormous global human health prob-

lem and economy disruption since December 2019. The World Health Organization has

reported more than 350 million Covid-19 confirmed cases in over 200 countries, including

about 5.1 million deaths as of mid-January 2022. There has been abundant literature

studying the Covid-19 pandemic across multiple disciplines since the outbreak; See, e.g.,

the macroeconomic and societal impact of Covid-19 (Ludvigson et al., 2020; Atkeson, 2020;

Chakraborty and Maity, 2020), concerns and effects of the Covid variants (Vaidyanathan,

2021; Volz et al., 2021; Faria et al., 2021), dynamic modeling of new cases, deaths, or in-

fection rate of Covid-19 (Lin et al., 2020; Jiang et al., 2020; Agosto et al., 2021; Roy and

Karmakar, 2021; Li and Linton, 2021), and the effect of exogenous factors on the Covid-19

pandemic (Dandekar and Barbastathis, 2020; Chen et al., 2021; Chernozhukov et al., 2021).

In particular, the effect of containment policies on the transmission of the Covid-19 virus

has been widely studied, with mixed findings under various cultural and health conditions

or in different frameworks of modeling and covariates, see e.g. Hsiang et al. (2020), Cher-

nozhukov et al. (2021), and Chen et al. (2021). Han et al. (2022) and Qiu et al. (2020)

argued that a country’s new case growth of Covid-19 increases with higher temperatures

due to the encouragement of social activity and gatherings under warm weather. While

Shi et al. (2020) and Mecenas et al. (2020) have presented that cold weather leads to
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higher level of incidences as such weather conditions potentiate the spread of the Covid-

19 virus. While these studies are insightful with mixed findings, they do not investigate

the long-range dependence of Covid-19 pandemic, or analyze the effects of multiple fac-

tors simultaneously in a long-range dependent framework. In this paper, we investigate

the long-range dependence and the effects of multiple exogenous covariates on daily new

Covid-19 cases. We examine the temperature and policy effectiveness in terms of both

immediate impact, namely, in the following one and two days, and intermediate impact

after one and two weeks since the policy’s initiation in a unified long memory framework.

Furthermore, it is important to capture the developing trend of newly confirmed Covid-19

cases, not only for short terms e.g. one- or two-day-ahead but also for the intermediate

terms e.g. 7- and 14-day ahead. These features are useful for people’s activities and gov-

ernment policy determination. Therefore, we conduct multiple steps ahead forecasting for

six countries across four continents.

The counts of daily new Covid-19 cases are discrete and integer-valued, exhibiting fea-

tures of over-dispersion and serial correlation and could also be influenced by exogenous fac-

tors such as lockdown and wearing mask polices simultaneously. Statistical analysis of count

time series has been an active research area, covering a broad range of studies and implemen-

tations from the incidence of epidemiology and pandemics to criminal incidents, queueing

systems and insurance claims (Davis and Dunsmuir, 2016; Chen and Lee, 2016). Among

others, Ferland et al. (2006) proposed the integer-valued generalized autoregressive condi-

tional heteroscedastic model with Poisson deviates (P-INGARCH), which is commonly used

model for the count time series with overdispersion. The P-INGARCH models are further
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generalized with, e.g., the log-linear P-INGARCH (Fokianos and Tjøstheim, 2011, 2012)

and generalized Poisson/negative binomial/zero-inflated Poisson-INGARCH(X) models (Famoye

and Singh, 2006; Zhu, 2011; Chen and Lee, 2016; Xu et al., 2020). A comprehensive

methodological review of count time series modeling refers to Davis et al. (2021) and the

references therein. However, these works focus on modeling count time series in a short-

memory framework, which is unable to achieve or produce long-memory process. The slow

decay phenomenon in the sample autocorrelation is exhibited in the Covid-19 pandemic

data, which may be ascribed to the long-range dependence or a long-memory property.

The study of long-memory phenomenon dates back to Hurst (1951) in explaining the

long-range dependence in the record of the Nile River. Granger (1980) suggested that

aggregation of short-memory processes could lead to a long-memory time series. Fraction-

ally integrated processes have frequently been considered for their hyperbolically decaying

shock propagation in the literature of long memory. A typical example is the fractional

integrated generalized autoregressive conditional heteroscedaticity (FIGARCH) model pro-

posed by Baillie et al. (1996), which displays better empirical performance in modeling

stock return volatility processes opposed to a standard GARCH model. The autoregres-

sive fractional integrated moving average (ARFIMA) process (Granger and Joyeux, 1980;

Bhardwaj and Swanson, 2006) has also emerged as a prevalent model for long-range de-

pendent time series, especially in volatility process modeling. However, there is limited

study on long memory modeling for integer-valued time series. Quoreshi (2014) proposed

an integer-valued ARFIMA model to capture the long-memory aspects of high-frequency

stock transaction numbers. Livsey et al. (2018) extended the vector ARFIMA model to
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bivariate integer-valued case with an application to the annual number of major hurricanes,

see also Darolles et al. (2019) and Quoreshi (2017). As for the extension of FIGARCH to

count time series, Segnon and Stapper (2019) considered an integer-valued FIGARCH pro-

cess with the Poisson distribution (P-INFIGARCH). However, this model cannot capture

the multiple features of count time series, e.g., over/under-dispersion, nonlinearity and the

effects of exogenous covariates.

In this paper, we focus on a new synthetic methodology for modeling the long-range de-

pendence phenomenon with periodic behavior for the Covid-19 daily new cases series. We

propose a log-linear zero-inflated generalized Poisson integer-valued fractionally integrated

GARCH model with exogenous covariates (LFIGX) to capture multiple features of daily

Covid-19 new cases in a long memory framework. Existing INGARCH with Poisson or

generalized Poisson type models can only handle short memory features. Note that Segnon

and Stapper (2019) also considered the P-INFIGARCH model but without exogenous vari-

ables, and it cannot handle over-dispersion, zero-inflation, and nonlinearity. The question

on the true source of long memory diagnosis still remains a question (Chen et al., 2010),

and the presence of structural breaks can lead to misleading inference regarding long mem-

ory diagnosis (Diebold, 1986; Lamoureux and Lastrapes, 1990; Mikosch and Stărică, 2004).

Instead of using short memory with breaks or time-varying models (Xu et al., 2020; Chen

and Lee, 2016), we consider long memory modeling for Covid-19 data, not only because it

is natural to introduce long-range dependence for the intensity for Covid-19 count series

due to the aggregation of possible numerous latent Covid-19 infectors (Granger, 1980), but

also because it has practical implications for future policy design and long-term prediction.
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The proposed LFIGX model incorporates a long-memory integer-valued FIGARCH

model with exogenous covariates for the intensity of Covid-19 count time series, and zero-

inflated generalized Poisson distribution is applied to allow for possible over-dispersion and

zero-inflation features. Hence, the model is flexible to describe the dynamics of daily new

Covid-19 case series with mixed features of serial dependence (positive or negative), over-

dispersion, zero-inflation, nonlinearity, exogenous covariates impact, and long-memory in a

unified framework. Bayesian method is adopted for parameter estimation based on adaptive

MCMC procedure. The Bayesian inference for LFIGX model is advantageous because it

provides a way of estimation and prediction taking into account parameter uncertainty and

prior knowledge of a stochastic process. Bollerslev and Mikkelsen (1996) and Baillie et al.

(1996) have proved asymptotic consistency and normality properties of the quasi maximum

likelihood estimators (qMLE) under sufficient nonnegativity conditions of conditional vari-

ance for the FIGARCH process in the modeling of high-frequent volatility process, and

Conrad and Haag (2006) extended these results of nonnegativity parameter conditions to

higher-order cases, which were adopted by Segnon and Stapper (2019) for estimation of

the P-INFIGARCH model. Though our paper adopts Bayesian method and involves a

different distribution, the numerical study demonstrates reasonably good estimation per-

formance for the LFIGX model. We apply the LFIGX model to the Covid-19 daily new

cases data from six countries across four continents and conduct a comprehensive analysis

to their dynamics and the effects of exogenous covariates. Our analysis provides insightful

interpretations on the short and intermediate term impacts of policy index and tempera-

ture, and delivers good multiple step ahead forecasting performance for the dynamics of
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Covid-19 daily new cases.

Our contributions include the following. 1) We propose a new synthetic LFIGX model

for the long-range dependent count time series, which enables us to account for a number of

features in a unified framework and simultaneously incorporate the impact of multivariate

exogenous covariates. In comparison, existing works only consider a subset of the features

and/or do so under a short memory framework. 2) We demonstrate the application of

Bayesian MCMC sampling method for parameter estimation of FIGARCH type models

for count time series. The existing literature of integer-valued long memory modeling,

e.g. INARFIMA model (Quoreshi, 2014) and P-INFIGARCH (Segnon and Stapper, 2019)

all utilize the qMLE methods. 3) We provide an interpretable estimation of the stochastic

intensity of the Covid-19 daily new cases and the short/middle-term impacts of multivariate

environmental and policy variables.

The rest of this paper is organized as follows. Section 2 describes the daily new Covid-

19 cases data and the exogenous variables. Section 3 presents the LFIGX model and the

parameter estimation procedure using the Bayesian MCMC sampling technique. Section

4 investigates the finite sample performance of the LFIGX model under various scenarios.

In Section 5, we demonstrate the real data analysis to the daily news cases of Covid-19

pandemic in six countries. Section 6 concludes.

2. The Covid-19 Data

We consider daily new cases of Covid-19 in six countries with a wide spectrum across

four continents, respectively. Asian countries suffered the first outbreak of the Covid-
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19 pandemic since December 2019, we consider two Asian countries: Japan (JPN) and

Vietnam (VNM) as illustrations. We also choose two American countries, the United

States (USA) which has the largest amount of accumulated confirmed cases and deaths,

and Brazil (BRA) which ranks third in terms of total number of confirmed cases and deaths

globally (till 4 January 2022). Lastly, we select two countries from Europe: Italy (ITA),

which suffers from the first outbreak in Europe, and the United Kingdom (GBR) which

has the most accumulated cases among the European countries (till 4 January 2022).

The primary data sources include daily new Covid-19 cases, policy indicators, and tem-

perature. We collected the daily new cases data of six representative countries from Our

World in Data website maintained by the University of Oxford. We also obtain the contain-

ment and health index as policy indicator variable from there. The index on any given day

takes a value between 0 and 100 with a higher score indicating a stricter government policy.

We collect the daily mean temperature from the National Oceanic and Atmospheric Ad-

ministration (NOAA). The NOAA records raw temperature data by several stations from

various locations within each country. We take the daily average of the temperatures that

are completely recorded from different stations in a country to use except USA. For USA,

we select four representative states: California, New Jersey, Texas, and Minnesota, and

take the average temperature of the four states to use, considering the large lead are of

USA. Meanwhile, to investigate the weekly seasonality of new Covid-19 counts, especially

the weekday and weekend effect, we add a dummy variable Dt = 1 if the day is Saturday,

Our World in Data: https://ourworldindata.org/coronavirus-source-data. The index is con-
structed from taking the weighted sum over a group of policy categories such as school closures, workplace
closures, face coverings and testing policy. The detailed categories of policies considered refer to Our World
in Data website.
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or Sunday, and equals zero otherwise.

Table 1 reports the descriptive statistics of the daily new Covid-19 cases in each country.

It is obvious that these six series are all overdispersed with the sample variance much larger

than the mean, and ratio ranges from 7.42(×103) to 4.49(×104). The daily new cases at

VNM has 19.09% of zeros which indicates the feature of excess zeros, while for other five

datasets, there are no or few number of zeros. Meanwhile, the magnitude of counts series

is much larger for ITA, GBR, BRA, and USA than the values of two Asian countries.

Table 1: Description and summary statistics of daily new cases.

Dataset(Code) Period n Min Max Mean Variance Variance/Mean 0s %
Japan(JPN) 2020/1/23∼2022/1/13 722 0 2.59(×104) 2.50(×103) 1.86(×107) 7.42(×103) 1.38

Vietnam(VNM) 2020/1/23∼2022/1/14 723 0 3.91(×104) 2.75(×103) 2.88(×107) 1.05(×104) 19.09
Italy(ITA) 2020/2/21∼2022/1/11 691 17 2.20(×105) 1.13(×104) 5.05(×108) 4.49(×104) 0

United Kingdom(GBR) 2020/1/31∼2022/1/4 705 0 2.21(×105) 1.94(×104) 6.93(×108) 3.57(×104) 1.41
United States(USA) 2020/1/23∼2022/1/9 718 0 1.07(×106) 8.40(×104) 1.02(×1010) 1.21(×104) 3.76

Brazil (BRA) 2020/2/26∼2021/12/10 654 0 1.24(×105) 3.38(×104) 5.97(×108) 1.76(×104) 1.2

Figures 1 and 2 display the time series plot and autocorrelation functions (ACF) plot

of the daily new cases of Covid-19, respectively. We can find different dynamic patterns

in, e.g., trend, intensity, duration, and frequency of waves, as well as ACF decays of these

countries. For example, both JPN and USA suffer six waves from January 2020 to January

2022, while USA develops more volatile intensity than JPN at last two waves. VNM shows

only two waves and remains stable at low level until June 2021 when a sharp increment

occurs. The data of BRA fluctuates seriously with largest volatility among 6 countries

during the whole period. In Figure 2, the ACF plots show the slower decay for VNM and

GBR, which may reveal a long-dependent feature of the data. JPN and ITA decrease to

be insignificant at around lag 40, while BRA monotonously decreases but still exhibits

significant ACF till lag 100. The weekly seasonality is more obvious in BRA and USA. The
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values, dynamics, and ACFs of the daily new Covid-19 case series vary from one country

to another, which increases the complexity of modeling in a unified framework. The mul-

tiple features and complex dynamics in the empirical data require a comprehensive model

that can effectively handle the long-range or short-range dependence and over-dispersion

simultaneously.

Figure 1: Time series plots of the daily new cases of the Covid-19 pandemic at six countries.

Figure 3 displays the time series plots of the two exogenous variables for JPN, ITA,

and USA, as illustration. The graphical demonstration of other countries refers to Figure

A in Supplementary Materials. The policy index reveals a sharp increasing trend first and

remains relatively stable after that in each country. The strictness of government policy is

strongest in ITA and weakest in JPN among these three countries. The temperature series

exhibit strong seasonality patterns with higher values at corresponding summer seasons

and lower values at winters.
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Figure 2: The sample ACF plots of the daily new cases of the Covid-19 pandemic at six
countries.

Figure 3: The policy index and temperature at JPN, ITA, and USA.
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3. Model and Methodology

In this section, we introduce the Log-linear zero-inflated generalized Poisson integer-valued

Fractionally Integrated GARCH with eXogenous covariates model with order p, q and

fractional parameter d (LFIGX(p, d, q)). The model is flexible to handle the dynamics of

the daily Covid-19 new case series with features of autocorrelation, heteroscedasticity, over-

dispersion, excess zero observations, and effects of exogenous covariates simultaneously in

a long-range dependent framework.

3.1 The LFIGX(p, d, q) model

A random variable Y follows a zero-inflated generalized Poisson (ZIGP) distribution (Gupta

et al., 1996) with parameters λ, ρ, and ϕ whose probability density function is given by

P (Y = y) =



ρ+ (1− ρ)e−λ if y = 0

(1− ρ)λ(λ+ ϕy)y−1e−(λ+ϕy)/y! if y = 1, 2, . . .

0 for y > m if ϕ < 0,

where λ > 0, 0 ≤ ρ < 1, max(−1,−λ/m) < ϕ < 1, and m(≥ 4) is the largest positive

integer to satisfy λ + ϕm > 0 when ϕ < 0. The distribution reduces to the generalized

Poisson distribution when ρ = 0, and to the Poisson distribution when ρ = ϕ = 0. We

refer to Xu et al. (2020) for more discussions of the ZIGP distribution.
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3.1 The LFIGX(p, d, q) model

If a random variable Y ∼ ZIGP(λ, ρ, ϕ), the conditional expectation and variance are:

E(Y ) =
1− ρ
1− ϕ

λ, and Var(Y ) = (1− ρ)

[
ρλ2

(1− ϕ)2
+

λ

(1− ϕ)3

]
.

It is straightforward to find that variance of Y is greater than the mean (i.e. over-dispersion)

if 0 ≤ ϕ < 1. When ρ = 0, the variance is equal or smaller than the mean when ϕ = 0 or

ϕ < 0 respectively.

Let {Yt; t = 1, . . . , n} denote a count series that is conditionally ZIGP distributed with

mean λt, such as the daily new cases of Covid-19 pandemic. Let Xt = (xt,1, . . . , xt,K)>

be the K exogenous covariates. In our study, the exogenous covariates include the policy

index, temperature, and a weekend dummy. Let Yt and Xt denote all the past count

and exogenous variables’ observations at time t, respectively. The family of log-linear

INGARCH(p, q) models for intensity λt has been widely studied (see e.g. Fokianos and

Tjøstheim, 2011), which is defined as:

log(λt) = ω +

p∑
k=1

αk log(Yt−k + 1) +

q∑
k=1

βk log(λt−k)

= ω + α(L) log(Yt + 1) + β(L) log(λt)

rearranging log(λt) =
ω

1− β(1)
+
{

1− Φ∗(L)

1− β(L)

}
log(Yt + 1),

(3.1)

where L denotes the lag or backshift operator, i.e, Lixt ≡ xt−i. Here α(L) =
∑p

k=1 αkL
k

and 1 − β(L) = 1 −
∑q

k=1 βkL
k are lag polynomials with the roots assumed to lie outside

the unit circle, and Φ∗(L) = 1 − β(L) − α(L). The log-intensity log(λt) is adopted which

relaxes the restriction that both sides should be positive.
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3.1 The LFIGX(p, d, q) model

In many applied works of the GARCH(p, q) model, the estimated lag polynomial Φ∗(x) =

0 has a root which is statistically indistinguishable from unity (Bollerslev and Mikkelsen,

1996). For example, we found that α1 + β1 = 0.981 using INGARCH(1,1) model for the

daily new Covid-19 cases in GBR. While the formulation of model (3.1) has geometric

memory, which is only suitable for the short-memory phenomena. Motivated by this em-

pirical regularity, if the polynomial Φ∗(L) has a unit root and therefore it can be factored

as Φ∗(L) = Φ(L)(1 − L), where Φ(L) has all the roots outside the unit circle. Engle and

Bollerslev (1986) proposed the so-called Integrated GARCH, or IGARCH process, which

exhibits infinite dependence on initial conditions, indicating complete persistence of shocks

to the intensity. While it is possible that shocks to the intensity could be highly persistent,

i.e., a slow hyperbolic decay, but nevertheless transitory. For example, in Figure 2, the

sample ACF of VNM tends to decay more slowly than exponential rate. To cope with such

long-range dependence, Baillie et al. (1996) introduced the so-called FIGARCH model,

which replaces the first difference operator (1−L) in Φ∗(L) with the fractional differencing

operator (1− L)d, where d is a fraction 0 < d < 1.

Taking into account of these modeling properties and the unique features of count

time series, we propose to combine the ZIGP distribution and a nonlinear structure to

accommodate zero-inflation, over-dispersion and positive/negative association as well as the

effects of exogenous covariates in a long memory framework. The proposed LFIGX(p, d, q)
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3.1 The LFIGX(p, d, q) model

model is defined as

Yt|(F (y)
t−1,Xt−1) ∼ ZIGP(λ∗t , ϕ, ρ),

λ∗t =
1− ϕ
1− ρ

λt, log(λt) = η +
(

1− Φ(L)(1− L)d

1− β(L)

)
log(Yt + 1) +

K∑
k=1

γkXt−1,k,

(3.2)

where 0 ≤ ρ < 1, max(−1,−λ∗t/m) < ϕ < 1, m(≥ 4) is again the largest positive integer

for which λ∗t + ϕm > 0 when ϕ < 0. Here, F
(y)
t−1 is the σ-fields generated by previous

observations {Yt−1, . . . , Y1}. We consider 0 ≤ ϕ < 1 for the over-dispersion case. Note

that Segnon and Stapper (2019) also considered an INFIGARCH model for count time

series, yet cannot handle possible over-dispersion, zero-inflation and nonlinear dependence

features by using Poisson distribution and without exogenous variables as well.

Denote the lag polynomial ψ(L) as

ψ(L) = 1− Φ(L)(1− L)d

1− β(L)
=
∞∑
k=1

ψkL
k (say),

we set 0 < d ≤ 0.5 accounting for the finite variance of log(Yt + 1) series (Taniguchi and

Kakizawa, 2000) and all the roots of Φ(L) and 1 − β(L) lie outside the unit circle. The

fractional differencing operator (1−L)d can be written in terms of hypergeometric function:

(1− L)d = F (−d, 1, 1;L) =
∞∑
k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
Lk :=

∞∑
k=0

δd,kL
k,

where δd,0 = 1. It is noted that the dependence is driven by the coefficients in ψ(L) in model

(3.2), which allows for the investigation of the temporal dependence of intensity and the
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3.1 The LFIGX(p, d, q) model

memory of the process on the past observations. The lag coefficients ψ(L) in the infinite

ARCH representation are approximately ψk ∼ ck−d−1, where c is a positive constant (Kılıç,

2011). Hence the log-intensity can be expressed as the distributed lag of past observations

with coefficients decaying at a hyperbolic rate, which makes it distinctively different from

the short (geometric) memory models like the GARCH and IGARCH models.

We intensively discuss the derivation and estimation of LFIGX(1, d, 1) model, since the

FIGARCH(1, d, 1) model is definitely the most often used specification and appears to be

particularly useful in empirical applications. To be specific, the LFIGX(1, d, 1) model is

defined as

Yt|(F (y)
t−1,Xt−1) ∼ ZIGP(λ∗t , ϕ, ρ),

λ∗t =
1− ϕ
1− ρ

λt, log(λt) = η +
(

1− (1− φ1L)(1− L)d

1− β1L

)
log(Yt + 1) +

K∑
k=1

γkXt−1,k.

(3.3)

Equating autoregression coefficients of the lag operator ψ(L) in model (3.3), we have

ψ1 = φ1 − β1 + d,

ψk = β1ψk−1 +
(k − 1− d

k
− φ1

)
δd,k−1, for all k ≥ 2.

The unknown parameters in model (3.3) include θ = (η, β1, φ1, ρ, ϕ, d, γ1, . . . , γK). Con-

rad and Haag (2006) derived the nonnegativity conditions for the conditional variance in

the FIGARCH(p, d, q) model of the order p ≤ 2 under a linear framework, while the sta-

tionarity condition for general FIGARCH process is still an open question. In our nonlinear

LFIGX(1, d, 1) model, the parameters do not need to satisfy any nonnegativity constraints
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3.2 Bayesian approach and parameter estimation

to make the model be well-defined.

The estimation for the fractionally integrated models necessitates the truncation of the

infinite distributed lags in model (3.3). In the estimation, we consider the coefficients with

the truncating R number of lag polynomial, that is

ψR(L) = 1− (1− φ1L)(1− L)d

1− β1L
=

R∑
k=1

ψkL
k. (3.4)

Because the fractional differencing operator is designed to model the long-memory features

of the series, a too low truncation at a lag may loss important long-run dependencies

information (Baillie et al., 1996). Our Covid-19 dataset has small sample size (around

700), so we set R = 200 as an illustration in real data analysis and investigate the effect of

R in the numerical analysis.

3.2 Bayesian approach and parameter estimation

Bayesian methods have been increasingly applied to diverse research areas, which are con-

sidered as a staple in modern statistical analysis. We tackle the estimation problem only

for LFIGX(1, d, 1) model with the Bayesian method as an illustration. The Markov Chain

Monte Carlo (MCMC) procedure is adopted to produce a powerful analysis for the pro-

posed models, which is advantageous to incorporate the parameter constraints via a prior

density.

For notational simplicity, let ϑ = (η, β1, φ1) and Γ = (γ1, . . . , γK). Let θ` denotes

certain parameter group in θ, i.e., ϑ, ρ, ϕ, d, and Γ, respectively for ` = 1, · · · , 5, and

π(θ`) is its prior density. Let θ 6=` be the parameter vector of θ excluding the element θ`.
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3.2 Bayesian approach and parameter estimation

Given the series of counts Yt up to time t and the covariates Xt−1 up to time t − 1, the

LFIGX(1, d, 1) model (3.3) with parameter θ has the conditional likelihood function:

L(Yt|Xt−1,ϑ) = ΠYs=0

{
ρ+ (1− ρ)e−λ

∗
s
}

ΠYs>0

{
(1− ρ)

λ∗s(λ
∗
s + ϕYs)

Ys−1

Ys!
e[−(λ

∗
s+ϕYs)]

}
,

(3.5)

where λ∗s is computed recursively by

λ∗s =
1− ϕ
1− ρ

exp
(
η + ψR(L) log(Ys + 1) +

K∑
k=1

γkXs−1,k

)
, for R ≤ s ≤ t. (3.6)

To ensure the required constraints, for first group ϑ, since it is still an open question for

the stationarity conditions of ϑ, we consider setting restrictions to ϑ such that all the roots

of Φ(L) and 1−β(L) lie outside the unit circle. That is, φ1 ∈ [−1, 1] while not equal to β1,

and β1 ∈ [−1, 1]. We adopt a constrained uniform prior defined by indicator I(A1), where

A1 is the set of ϑ satisfying the restrictions above. This uniform prior generates a flat

prior on the parameters in ϑ restricted by the indicator that is non-zero inside A1 and zero

outside. We also adopt constrained uniform priors on the parameters (groups) ρ, ϕ and d

defined by indicators I(Aj), j = 2, . . . , 4, where Aj is the set of corresponding parameter

satisfying 0 6 ρ < 1, 0 6 ϕ < 1, and 0 < d ≤ 0.5, respectively. We again adopt a flat prior

on the components of Γ = (γ1, . . . , γK), denoted by I(A5). The choices of priors are similar

in Chen and Lee (2016) and Xu et al. (2020), which are not the only ones possible, but are

instead chosen to be non-informative.

We use the likelihood and the priors that were described above to give the conditional

posterior kernels for each parameter group as follows. For notational convenience, let f
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3.2 Bayesian approach and parameter estimation

denote the target density given by

p(θ`|Yt,Xt−1,θ6=`) ∝ p(Yt|Xt−1,θ)π(θ`|θ6=`),

∝ ΠYs=0

{
ρ+ (1− ρ)e−λ

∗
s
}

ΠYs>0

{
(1− ρ){λ∗s(λ∗s + ϕYs)

Ys−1}e[−(λ∗s+ϕYs)]
}
I(A`)

(3.7)

Details of the MH steps for θ` are as follows.

Step 1: At iteration i, generate a point θ∗` = θ
[i−1]
` + N(0, c`Σ`), where c` is the scaling

parameter of the normal proposal, which could be adjusted by controlling the

acceptance rate of the posterior samples (Gelman et al., 1996), and Σ` is covariance

matrix in the random walks of θ`. The stability condition of θ` would be imposed

through an accept-rejection MH sampling procedure.

Step 2: Accept θ∗` as θ
[i]
` with probability

min
{

1, f
(
θ∗`
)
/f
(
θ
[i−1]
`

)}
,

where θ
[i]
` is the ith iterate of θ`. Otherwise, set θ

[i]
` = θ

[i−1]
` .

Usually a suitable value of c` with good convergence properties can be chosen by setting

an acceptance probability of 25% to 50% (Chen and So, 2006).

Finally we construct the estimate of intensity λt from the mean of the posterior distri-

bution via the MCMC sampling scheme by

λ̂t =
1

N −M

N∑
i=M+1

λ
[i]
t ,
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where λ
[i]
t is the i-th iteration of λt recursively constructed using ϑ[i], ρ[i], ϕ[i], d[i], and Γ[i].

N is the total number of iterates, and M is the number of burn-in iterates. In the following

sections we set N = 15, 000 for the simulation study and N = 20, 000 for real data analysis.

We drop the first M = 3000 iterations as a burn-in sample.

4. Simulation

In this section, we examine the finite-sample performance of the LFIGX model. We in-

vestigate the estimation performance and compare it with several alternative models un-

der different data generating processes. Moreover, we conduct robustness analysis on the

choice of priors in the MCMC procedure, the effect of truncating number R of the lag

polynomial, and the estimation performance under misspecified number of the exogenous

variables. Source code for simulation replication and reproducibility is available online at

https://github.com/Xiaofei-Xu/LFIGX-project.

4.1 Estimation analysis

In this section, we examine the performance of the LFIGX model in inference under a

known data generating process with two exogenous covariates. We also provide a detailed

comparison with several alternative methods.

To investigate the estimation performance, we generate count series in a homogeneous

scenario with a set of globally constant parameters. We consider three scenarios for data

generation: LFIGX(1, d, 1) (denoted as DS-default), LFIG(1, d, 1) (i.e., without exogenous

covariates, denoted as DS-X), and LFIGX(0, d, 1) (i.e., φ1 = 0, denoted as DS-φ). We use
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4.1 Estimation analysis

sample sizes of n = 400, 900, and 1300, and start the estimation from time t = 201, 601,

and 1001, respectively, until the end for each scenario. For n = 400, we set R = 200 to

mimic the real data situation with small sample size and R value. For n = 900 and 1300,

we set R = 600 and 1000, respectively, considering the larger sample size. The parameter

sets of θ in each design are reported in Table 2. We generate a total of 200 replications

for each design. The two exogenous covariates, x1 and x2, are generated from the standard

normal distribution.

Table 2: Estimation and corresponding standard deviation (in parentheses) of the param-
eters using LFIGX modelling under n = 400. The in-sample log-likelihood, AIC, and BIC
are also reported.

Scenario LogLik AIC BIC η φ1 β1 ρ ϕ d γ1 γ2
True value 0.600 0.700 0.400 0.200 0.400 0.200 0.500 -0.300

d = 0.1 -586.75 1215.88 1189.50 0.732 0.745 0.349 0.204 0.396 0.100 0.500 -0.297
(0.086) (0.040) (0.054) (0.031) (0.038) (0.028) (0.033)

d = 0.2 -586.51 1215.40 1189.01 0.602 0.683 0.384 0.204 0.395 0.200 0.500 -0.297
(0.068) (0.054) (0.066) (0.031) (0.037) (0.028) (0.033)

DS-default d = 0.3 -587.15 1216.68 1190.29 0.495 0.604 0.399 0.203 0.396 0.300 0.501 -0.297
(0.057) (0.080) (0.089) (0.031) (0.037) (0.029) (0.034)

d = 0.4 -589.21 1220.81 1194.43 0.414 0.420 0.308 0.202 0.403 0.400 0.501 -0.297
(0.049) (0.160) (0.154) (0.032) (0.038) (0.031) (0.036)

d = 0.5 -592.00 1226.39 1200.00 0.340 0.102 0.092 0.200 0.408 0.500 0.503 -0.298
(0.045) (0.233) (0.226) (0.032) (0.040) (0.033) (0.037)

True value 0.600 0.700 0.400 0.200 0.400 0.200 0.000 0.000
d = 0.1 -587.41 1217.20 1190.81 0.721 0.743 0.342 0.204 0.394 0.100 -0.001 -0.002

(0.090) (0.045) (0.069) (0.030) (0.039) (0.030) (0.035)
d = 0.2 -587.37 1217.12 1190.74 0.595 0.677 0.371 0.204 0.394 0.200 -0.001 -0.003

(0.071) (0.063) (0.081) (0.030) (0.039) (0.030) (0.035)
DS-X d = 0.3 -588.50 1219.38 1192.99 0.491 0.587 0.373 0.202 0.397 0.300 -0.001 -0.002

(0.059) (0.104) (0.115) (0.030) (0.039) (0.030) (0.036)
d = 0.4 -589.96 1222.30 1195.91 0.412 0.389 0.267 0.201 0.401 0.400 -0.002 -0.003

(0.051) (0.171) (0.163) (0.031) (0.038) (0.031) (0.037)
d = 0.5 -591.64 1225.67 1199.28 0.342 0.097 0.074 0.199 0.404 0.500 -0.002 -0.003

(0.044) (0.221) (0.212) (0.030) (0.038) (0.032) (0.038)
True value 0.600 0.000 0.400 0.200 0.400 0.200 0.500 -0.300

d = 0.1 -453.98 950.35 923.96 0.930 -0.081 0.221 0.194 0.393 0.100 0.493 -0.295
(0.122) (0.153) (0.145) (0.040) (0.048) (0.061) (0.067)

d = 0.2 -453.84 950.07 923.68 0.605 -0.022 0.379 0.195 0.393 0.200 0.494 -0.296
(0.104) (0.144) (0.130) (0.039) (0.049) (0.060) (0.068)

DS-φ d = 0.3 -454.06 950.50 924.12 0.397 0.012 0.509 0.195 0.393 0.300 0.495 -0.296
(0.091) (0.134) (0.112) (0.039) (0.048) (0.061) (0.067)

d = 0.4 -454.50 951.39 925.00 0.258 0.018 0.608 0.194 0.395 0.400 0.495 -0.295
(0.079) (0.118) (0.095) (0.039) (0.047) (0.061) (0.068)

d = 0.5 -454.94 952.28 925.89 0.168 0.008 0.694 0.193 0.397 0.500 0.495 -0.296
(0.069) (0.102) (0.077) (0.039) (0.047) (0.061) (0.069)

The row labeled by “True value” indicates the true value of parameters in each design. Each experiment is replicated

200 times. The best performance is marked in bold.
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4.1 Estimation analysis

Table 2 reports the parameter estimation and standard deviations for the three scenar-

ios with n = 400. Since we find that direct estimation of the parameter d poses a challenge,

hence, we suggest selecting the value of d based on the likelihood results of a few candi-

dates, and we also compute the AIC and BIC results with d varying for d estimation. To

achieve this, we obtained five sets of parameter estimates while keeping d fixed at 0.1, 0.2,

0.3, 0.4, and 0.5, respectively. The results reveal that the correct guess, d = 0.2, yields the

best fitting results of likelihood, AIC and BIC(rows with bold values), as expected, across

all three designs. For each design, the parameter estimates are quite accurate where the

estimated coefficients are close to the true value, with relatively small standard deviations

as well, under the correct estimated value of d. This reflects that it is feasible to con-

duct estimation of d with likelihood and AIC/BIC and the Bayesian estimation provides

reasonable estimates of parameters in LFIGX modeling.

Table 3 reports the estimated parameters and their standard deviations for the three

scenarios with sample sizes of 900 and 1300. We only present the results with fixed d = 0.2

which is selected with maximum likelihood value among five candidates. It shows that

the LFIGX model exhibits accurate and stable estimation among different data generation

processes and sample sizes, with the estimated parameters close to the true values for each

case, and the standard deviations of almost all parameters are relatively small and decrease

as the sample size increases.

To compare estimation accuracy, we consider four prevalent short memory models

over the same estimation period: the P-INGARCH, log-linear GP-INGARCHX, log-linear

ZIGP-INGARCH, and log-linear ZIGP-INGARCHX models. The P-INGARCH model
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4.1 Estimation analysis

Table 3: Estimation and corresponding standard deviation (SD) of the parameters using
LFIGX modeling under n = 900 and 1300. The symbol “−” refers that d = 0.2 is fixed
during estimation.

n = 900
Scenario η φ1 β1 ρ ϕ d γ1 γ2

True 0.600 0.700 0.400 0.200 0.400 0.200 0.500 -0.300
DS-default Estimate 0.597 0.696 0.398 0.203 0.405 − 0.499 -0.302

SD (0.051) (0.032) (0.043) (0.026) (0.031) − (0.020) (0.022)
True 0.600 0.700 0.400 0.200 0.400 0.200 0.000 0.000

DS-X Estimate 0.594 0.692 0.388 0.202 0.395 − 0.001 0.000
SD (0.056) (0.045) (0.057) (0.024) (0.030) − (0.024) (0.024)

True 0.600 0.000 0.400 0.200 0.400 0.200 0.500 -0.300
DS-φ Estimate 0.596 0.003 0.398 0.202 0.401 − 0.498 -0.304

SD (0.070) (0.107) (0.091) (0.029) (0.034) − (0.046) (0.041)
n = 1300

True 0.600 0.700 0.400 0.200 0.400 0.200 0.500 -0.300
DS-default Estimate 0.597 0.695 0.395 0.202 0.399 − 0.500 -0.300

SD (0.047) (0.035) (0.045) (0.024) (0.028) − (0.020) (0.020)
True 0.600 0.700 0.400 0.200 0.400 0.200 0.000 0.000

DS-X Estimate 0.596 0.695 0.397 0.203 0.397 − -0.002 0.002
SD (0.054) (0.042) (0.055) (0.024) (0.034) − (0.022) (0.024)

True 0.600 0.000 0.400 0.200 0.400 0.200 0.500 -0.300
DS-φ Estimate 0.595 -0.021 0.379 0.197 0.397 − 0.498 -0.302

SD (0.067) (0.099) (0.086) (0.028) (0.036) − (0.046) (0.041)

(Ferland et al., 2006) is widely used for count time series with overdispersion. The log-linear

GP-INGARCHX (Chen and Lee, 2017) is also a popular count time modeling which could

account for both overdispersion and underdispersion and also enable to include exogenous

covariates in a straightforward manner. The other two models have been well studied for

the log-linear zero-inflated over-dispersed counts with/without the effect of exogenous co-

variates (Lee et al., 2016; Xu et al., 2020). Table 4 summarizes the root mean squared

error (RMSE) and mean absolute deviation (MAD) of the estimated intensity λt of the

five models. The LFIGX model outperforms the other four short memory models with

better accuracy in terms of RMSE and MAD by accounting for the long-range dependence

involved in the count time series.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



4.2 Robustness checking

Table 4: RMSE and MAD of the λt estimation of three designs using LFIGX model com-
pared with P-INGARCH, GP-INGARCHX, ZIGP-INGARCH, ZIGP-INGARCHX models
under different sample sizes. The best accuracy is highlighted in bold.

Model P-INGARCH GP-INGARCHX ZIGP-INGARCH ZIGP-INGARCHX LFIGX
n=400 RMSE MAD RMSE MAD RMSE MAD RMSE MAD RMSE MAD

DS-default 16.771 9.056 13.805 7.830 15.773 8.719 4.846 2.603 1.925 1.052
DS-X 2.103 1.438 5.512 4.042 1.349 0.952 1.462 0.997 1.228 0.859
DS-φ 2.754 1.980 1.095 0.716 2.747 1.963 0.847 0.559 0.666 0.447
n=900

DS-default 23.962 11.889 26.689 17.465 22.437 11.488 6.962 3.383 0.741 0.385
DS-X 2.562 1.702 9.461 8.544 1.510 1.044 1.608 1.071 1.188 0.813
DS-φ 4.521 4.322 1.582 1.250 3.371 2.383 0.917 0.603 0.593 0.387

n=1300
DS-default 25.557 12.993 23.750 13.122 23.887 12.533 7.333 3.673 2.032 1.063

DS-X 2.827 1.873 8.979 6.605 1.716 1.184 1.727 1.144 1.300 0.886
DS-φ 3.751 2.694 1.417 0.935 3.742 2.682 0.982 0.650 0.629 0.419

4.2 Robustness checking

We investigate the sensitivity of the LFIGX model to various hyperparameters, including

the choice of priors in the MCMC procedure, truncating value R. We also study the effect of

misspecified exogenous covariates as pointed by one referee. To demonstrate the robustness

of the model, we consider the design DS-default with (η, φ1, β1, ρ, ϕ, d, γ1, γ2)=(0.6, 0.7,

0.4, 0.2, 0.4, 0.2, 0.5, -0.3), R = 600, and n = 900. For each robustness experiment, we

apply alternative priors, R, and different exogenous covariates, redo the estimation, and

compare the estimation performance with the default setup.

We begin by exploring the impact of different priors on the MCMC sampling procedure.

The default choice is non-informative (uniform/flat) priors for all parameters, but this is

not the only possibility. As an illustration, we consider setting the beta distribution as

the priors for parameter ρ and ϕ (Chen and Lee, 2016), and the normal distribution for

Γ. In specific, the following priors are applied: Prior 1: ρ ∼ Beta(2, 8), ϕ ∼ Uniform(0,1),

γk ∼ N(0, 0.5), k = 1, 2; Prior 2: ρ ∼ Beta(10, 90), ϕ ∼ Beta(6, 4), γk ∼ N(0, 0.5), k = 1, 2;

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



4.2 Robustness checking

Prior 3: ρ ∼ Uniform(0,1), ϕ ∼ Beta(60, 40), γk ∼ N(0, 0.5), k = 1, 2. We conduct estima-

tion for the DS-default design using these alternative priors and compare their estimation

performance.

As the fractional differencing operator ψ(L) is designed to capture the long-memory

features of the process, truncating at a too low lag may result in the loss of important

long-run dependencies. In the DS-default design, the process is restricted with R = 600.

To examine the sensitivity of the estimation results to the truncating value, we consider two

alternative settings with R = 200 and R = 700, denoted as “R1” and “R2”, respectively.

Lastly, we investigate the impact of effective covariates by conducting a robustness check

on misspecified models by missing effective covariates or including unrelated covariates in

the model. In each robustness experiment, we keep all remaining settings the same as in

the default case, except for the hyper-parameters under investigation.

Table 5: Robustness checking.

η φ1 β1 ρ ϕ d γ1 γ2 γ3 Loglik AIC BIC
True 0.6 0.7 0.4 0.2 0.4 0.2 0.5 -0.3 0.0
Default 0.597 0.696 0.398 0.203 0.405 0.200 0.499 -0.302 − -914.009 1873.648 1844.018
Prior1 0.599 0.696 0.398 0.201 0.404 0.200 0.499 -0.302 − -913.996 1873.622 1843.992
Prior2 0.631 0.696 0.397 0.174 0.413 0.200 0.499 -0.302 − -914.823 1875.277 1845.646
Prior3 0.611 0.691 0.395 0.202 0.459 0.200 0.497 -0.301 − -914.796 1875.222 1845.592
R1 0.669 0.697 0.399 0.201 0.405 0.200 0.496 -0.298 − -916.311 1878.252 1848.622
R2 0.583 0.693 0.392 0.204 0.402 0.200 0.505 -0.302 − -908.221 1862.073 1832.443
3X 0.597 0.696 0.399 0.204 0.404 0.200 0.498 -0.302 -0.006 -913.458 1878.251 1844.917
1X 0.717 0.658 0.381 0.195 0.595 0.200 0.479 − − -987.382 2014.691 1988.765

“Default” refers to the results under default setup. “Prior1” − “Prior3” refer to the results under 3

alternative priors. “R1” and “R2” refer to two different truncating number R = 200 and 700 in the

estimation, respectively. “3X” and “1X” refers to the misspecified model with one additional covariate

or only with the first covariate, respectively. The symbol “−” means the model/estimation does not

involve this parameter.

Table 5 reports the robustness checking results under alternative priors, R values, and

misspecified models (wrong exogenous covariates). It shows that the parameter estimation
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is not sensitive to the selection of priors (ρ, ϕ, Γ) by delivering similar results to the default.

Regarding the choice of R, as stated before, using a too small value may lead in information

loss, it does induce some bias in the parameter estimation, especailly for η, while the other

parameters seem to be less affected. The results are consistent to the experiments results in

Segnon and Stapper (2019) for R’s influence study. The improvement of estimation is not

significant by using a larger value of R. Lastly, adding unrelated covariates to the model

does not cause any issues for the estimation of other parameters, where the estimated

coefficient of the unrelated covariates is almost zero. While when some of the effective

covariates are missing, there exists influence in parameter estimation, especially for η and

over-dispersion parameter ϕ, while notably, there is no significant effect for the estimating

of γ1, the coefficient of the remaining covariate, though missing certain effective covariates.

In summary, the simulation study shows stable and accurate performances of the LFIGX

model under different scenarios with accurate estimation of parameters with truly selected

d. The adaptive Bayesian estimation is robust to the choice of priors. A too small value

of R does show some influence in parameter estimation, especially for η, and larger value

of R has little improvement in estimation accuracy. Excluding some covariates leads to

variations in the estimates of η, while the estimation of the coefficients for the remaining

covariates is still stable and accurate.

5. Real Data Analysis

In this section, we apply the LFIGX(1, d, 1) model to investigate the dynamic evolution

of the daily new Covid-19 case time series of the six countries. We initialize the first 500

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



5.1 Interpretation

observations for in-sample analysis and conduct the forecasting from the 501th day till the

ending of each dataset. The exogenous covariates Xt includes 3 variables: policy index,

temperature, and a weekend dummy. The detailed description of datasets is in Section 2.

5.1 Interpretation

We investigate the long memory property and the effect of exogenous covariates through the

in-sample analysis using the proposed LFIGX(1, d, 1) model. To evaluate the immediate-

and longer-period effect of the policy after its implementation, we consider using the lag−h

policy index variable, denoted as Policyt−h, and the lag−h temperature variable, denoted

by Temperaturet−h, while the weekend dummy variable at current time, i.e. Dt, is used

since Dt is always available according to the Gregorian calendar. The model is as follows.

Yt|(F (y)
t−1, X̃t−h) ∼ ZIGP(λ∗t , ϕ, ρ),

λ∗t =
1− ϕ
1− ρ

λt, log(λt) = η + ψR(L) log(Yt + 1) + γ1Policyt−h + γ2Temperaturet−h + γ3Dt,

(5.8)

where X̃t−h is the σ-field generated by {Policyt−h, . . . ,Policy1,Temperaturet−h, . . . ,

Temperature1, Dt, . . . , D1} representing all available past information of exogenous vari-

ables policy and temperature till time t− h, and weekend dummy variable till time t. We

consider h = 1, 2, 7, and 14 in the empirical study to evaluate the immediate policy impact

in the following one and two days after implementation, and middle-term delayed effect

after 1 and 2 weeks of implementation.

Table 6 reports the estimated parameters of the LFIGX(1, d, 1) model using the first

500 observations with R = 200 under h = 1 for Policyt−h and Temperaturet−h. The LFIGX
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model delivers different features of the daily new Covid-19 cases among six countries with

different levels of persistence, dependence, and impact of exogenous variables. For example,

the coefficient φ1 is 0.916 and 0.708 for ITA and GBR, respectively, and the magnitude is

much stronger than other countries, indicting a significant and positive neighborhood effect

for the two European countries, while the effect is weaker for the Asian and American coun-

tries. It also shows that the daily new cases series is likely to be modeled by a long-memory

process with nonzero estimate of d. For ITA, d = 0.0144 which is smallest among the six

countries, indicating moderate persistence in the count process. This is consistent to the

feature displayed in Figure 2 where the ACF of ITA decays fast and becomes insignificant

after lag order of 40. For JPN and VNM, d = 0.482 and 0.446, respectively, indicating

higher persistence in Covid-19 count series at these two Asian countries. For the ZIGP

distribution variables, the over-dispersion parameter ϕ is greater than 0.8 for all counties

which is consistent to the significant over-dispersion feature of the series. The zero-inflation

parameter ρ is smaller than 0.1, which is also consistent to the fact that zero percentage is

quite low for all the datasets except for VNM.

Table 6: The estimates of the parameters in LFIGX(1, d, 1) model using the first 500
observations. The estimated coefficients are obtained using the model with h = 1 for
Policyt−h and Temperaturet−h.

Country η φ1 β1 ρ φ d Policy (γ1) Temp. (γ2) W.D. (γ3)
JPN 1.098 0.275 -0.130 0.004 0.909 0.482 -0.014 -0.002 -0.194
VNM 0.930 -0.287 -0.022 0.010 0.804 0.446 0.001 -0.002 -0.076
ITA 1.108 0.916 0.361 0.026 0.958 0.144 -0.008 0.001 -0.063
GBR 0.739 0.708 -0.065 0.009 0.956 0.267 -0.001 -0.001 -0.134
USA 0.841 0.459 -0.009 0.006 0.986 0.315 0.002 0.000 -0.124
BRA 0.157 -0.115 -0.530 0.021 0.985 0.303 0.006 0.010 -0.118

The long memory dependence of Covid-19 pandemic could be caused by the effect of
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5.1 Interpretation

exogenous variables such as policy and temperature, which could affect the latent intensity

process λt in a long-range pattern. Figure 4 displays the estimated coefficients and corre-

sponding 95% credible intervals for policy index and temperature with h = 1, 2, 7 and 14

respectively. It shows that the policy effect changes with different time period after policy

implementation. There is only weak immediate policy impact with small magnitude of

coefficient at h = 1, while it presents a stronger negative intermediate impact after 7 and

14 days with much greater magnitude. For example, when h = 1, the coefficient of policy

is close to zero for all countries except JPN, while when h increases to 14, the negative

coefficient’s magnitude becomes larger for all countries except USA, which means that the

policy effect becomes more significant after 2 weeks’ introduction. The findings indicate

that there exists a delay in the impact of policy after implementation, it is hard to obtain

immediate policy impact, while the policy impact in reducing the daily new Covid-19 cases

becomes more significant after 2 weeks.

Temperature shows positive effect with a stronger magnitude when h is larger, indicating

that after a longer period of policy introduction (14 days), a higher level of the daily new

cases of Covid-19 is likely to occur as a result of warmer temperatures. While if a strict

policy is implemented at previous day, the hot temperature effect to new cases at following

two days is less significant. For example, for the two European countries, the immediate

temperature effect (i.e. h = 1) is 0.001 and -0.001 in ITA and GBR, respectively, while the

impact increases to 0.009 and 0.030, respectively when h = 14. This is possibly due to the

fact that after observing a drop of the daily new cases and after a certain period time of

strict policy introduction, e.g., two weeks, people may get tired of tight regulations and start
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5.1 Interpretation

Figure 4: The estimated coefficients for policy index (top two rows) and temperature
variable (bottom two rows) with h = 1, 2, 7 and 14 for the six countries. The solid line is
the estimated parameter and dashed lines refer to the corresponding 95% credible interval.

to increase social activity and retaliatory gathering under warm weather, which, in turn,

could expand the possibility of infection. This result is consistent with Han et al. (2022)

and Qiu et al. (2020), who documented that cold weather tends to discourage social activity
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5.2 Out-of-sample forecasting

and decrease Covid-19 virus transmission. The feature of warm temperature effect is more

obvious for ITA, GBR and VNM than JPN and USA. Moreover, there exhibits negative

coefficient for the weekend dummy variable, indicting smaller new cases at weekend than

weekdays. While this is possibly because of the test number difference at a weekday and

weekend.

5.2 Out-of-sample forecasting

We conduct a set of multi-period ahead forecasting experiments to the daily new Covid-

19 cases of the six countries. In addition to the conventional 1−day ahead forecasts, we

consider h = 2, 7 and 14, covering 1− and 2−day, 1− and 2−week ahead forecasts. We

start the forecasting from the 501th observation to the end of each dataset. The ZIGP-

INGARCH(1,1) model is considered as a comparative short memory model.

We directly predict counts at time t+ h with the observations at time t, which is more

robust than the iterated forecast under model misspecification (Marcellino et al., 2006).

Especially, we compute the h-day ahead forecast as follows.

Yt+h|(F (y)
t , X̃t) ∼ ZIGP(λ∗t+h, ϕt+h, ρt+h),

λ∗t+h =
1− ϕt+h
1− ρt+h

λt+h,

log(λt+h) = ηt +
R∑
k=0

ψk,tL
k log(Yt + 1) + γ1Policyt + γ2Temperaturet + γ3Dt+h,

where the definition of X̃t is similar as (5.8). Since the daily new cases of Covid-19 exhibit

non-stationary pattern, at each time point t, instead of using all the past observations to
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5.2 Out-of-sample forecasting

conduct Bayesian estimation, we apply rolling window technique using subsamples within

the interval It = [t−m, t] for parameter estimation. We consider a rolling window size of

m = 30 days. That is, we move forward one day at a time to re-do the estimation using

the past 30 days data up to that point and conduct forecast until reaching the end of the

sample.

As the intensity λt is the conditional expectation of observed counts which represents

the essential feature of the data, we thus consider evaluating the prediction performance

by the mean squared error (MSE) of the Pearson residuals defined by

MSE =
1

T − t0 − h

T−h∑
t=t0+1

( Yt+h − λ̂t+h√
Var(Yt+h|(F (y)

t , X̃t)

)2
,

where t0 + 1 indicates the starting time point of forecasting.

Table 7 reports the MSE using the LFIGX(1, d, 1) model and the ZIGP-INGARCH(1,1)

model for out-of-sample h-day ahead forecasting of the six datasets. It shows that LFIGX

model presents better forecasting performance with smaller MSE than short memory ZIGP-

INGARCH(1,1) model among various forecasting horizons and countries. For example,

when h = 1, the LFIGX model outperforms the ZIGP-INGARCH(1,1) at all countries

with smaller MSE. For h = 2, 7, and 14, the LFIGX is also better than short memory

model at 5 out 6 countries.

As illustration, Figures 5-7 display the h-day ahead forecasting with h = 1, 2, 7 and 14

using the LFIGX(1, d, 1) model for JPN, GBR and BRA, respectively. See Figures B, C and

D in the Supplementary Material for the results of VNM, ITA, and USA, respectively. For

short period ahead forecasts at h = 1 and 2, the LFIGX(1, d, 1) model delivers accurate
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5.2 Out-of-sample forecasting

Table 7: The MSE of forecasting using the LFIGX(1, d, 1) and the ZIGP-INGARCH(1,1)
model with rolling window size of 30. The best forecast is marked in boldface.

Model JPN VNM ITA GBR BRA USA
h = 1
LFIGX(1, d, 1) 2.402 2.929 3.034 0.443 11.033 3.849
ZIGP-INGARCH(1,1) 2.575 3.879 3.513 0.608 14.887 5.512
h = 2
LFIGX(1, d, 1) 6.370 3.442 6.981 0.819 8.970 4.971
ZIGP-INGARCH(1,1) 7.616 4.440 6.743 1.021 14.158 8.126
h = 7
LFIGX(1, d, 1) 54.183 8.088 8.010 2.328 5.255 3.962
ZIGP-INGARCH(1,1) 103.572 11.970 18.600 2.780 5.745 3.564
h = 14
LFIGX(1, d, 1) 394.593 43.314 53.047 5.602 15.446 2.705
ZIGP-INGARCH(1,1) 592.102 72.805 53.380 5.176 16.102 2.850

forecasting performance to all datasets, although the forecast gets worse slightly along

with the forecast horizons. The forecast of intensity process λt enables us to capture the

dynamics of the daily new cases of Covid-19 series very well, and it presents a narrow 95%

credible interval for the prediction, indicating that forecasting is not very dispersed but

does exhibit dynamic changes. Even for the longer period forecasts of h = 7 and 14 days,

the LFIGX(1, d, 1) model still captures the dynamics of daily new cases series well with

good prediction in GBR and BRA. For JPN, the LFIGX(1, d, 1) is also able to capture the

true dynamic pattern in general, while exhibiting certain delay in the prediction of the wave

peak at around August-September 2021. It is not surprised that 14-days ahead forecast is

worse than shorter horizons given the non-stationarity of datasets and the larger difficulty

in long period ahead forecasting.
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5.2 Out-of-sample forecasting

Figure 5: The h-day ahead forecasting using the LFIGX(1, d, 1) model with h =1, 2, 7 and
14 for JPN.

Figure 6: The h-day ahead forecasting using the LFIGX(1, d, 1) model with h =1, 2, 7 and
14 for GBR.
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Figure 7: The h-day ahead forecasting using the LFIGX(1, d, 1) model with h =1, 2, 7 and
14 for BRA.

6. Conclusion

In this paper, the LFIGX model (log-linear zero-inflated generalized Poisson integer-valued

fractionally integrated GARCH model with exogenous covariates) is proposed for modeling

the dynamics of the daily new Covid-19 cases. It is a novel long memory integer-valued

modeling which accounts for multiple features including serial dependence (positive or neg-

ative), over-dispersion, zero-inflation, nonlinearity, and the effect of exogenous covariates

in a unified framework. The parameters are estimated by an adaptive Bayesian Markov

Chain Monte Carlo (MCMC) sampling scheme, which is quite new in the literature of long

memory modeling to count time series. The LFIGX model delivers good interpretation

and forecasting performance to the daily new Covid-19 cases for six countries across four

continents: JPN, VNM, ITA, GBR, BRA and USA. We find that the effects of policies

and temperature vary depending on the time period following their implementation. We
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observe a weak immediate policy impact (e.g. 1 and 2 days), but a strong negative in-

termediate impact (e.g. 14 days) after policy implementation. Furthermore, we find that

higher-level daily new Covid-19 cases tend to occur as a result of warmer temperatures

after 14-days of policy introduction. This is possibly due to increased social activities in

warm weather and a decrease in compliance with strict regulations after a certain period of

policy introduction. For out-of-sample forecasting, the LFIGX model also delivers better

forecasting accuracy than the comparative short memory model for most countries and

forecast horizons.

Several extensions could be considered as future research. Firstly, it would be beneficial

to investigate the theoretical properties for parameter estimation such as MCMC conver-

gence rate and the central limit theorem of the LFIGX estimator. Liu (2001) provided

a good review of theoretical study for Bayesian based MCMC technique. The theoretical

derivation of Bayesian method in the long memory model would be an exciting direction

for the count time series. It is also interesting to extend the LFIGX model to a multivariate

framework for modeling multiple or even high-dimensional count time series simultaneously,

or adopting spatial temporal models cooperated with long memory structure for Covid-19

data study, given that the change of policy or the new cases in one country may affect

the Covid situation in other countries. This could possibly deliver new findings to cap-

ture principal features in the dynamics and effects of exogenous covariates on Covid-19.

The multivariate INGARCH-models have been studied by Fokianos et al. (2020) and Cui

et al. (2020). Han et al. (2022) and Celani and Giudici (2022) investigated the policy effec-

tiveness on the Covid-19 pandemic by means of a spatio-temporal approach, allowing for
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spatial and serial dependence. While there are few studies on the extension of these types

of models to count time series in a long memory framework. Lastly, the proposed model

provides a novel approach to handle multiple features, especially the long-range dependence

phenomenon, in count time series. However, it is worth noting that the underlying source

of long memory in the daily new cases of Covid-19 series still requires further investigation.

In practice, dominant, universal and core factors such as policies, temperature, vaccines,

and variants of Covid-19 virus could contribute to the long-range patterns of the latent

intensity process. Additionally, different waves of the pandemic occur as clusters could be

another possible cause of slowly decaying autocorrelation, as suggested by one referee. Ex-

ploring the essential cause of long-range dependence phenomenon and considering dynamic

non-stationary models with time-varying parameters for infectious disease analysis could

be promising avenues for further research on the study of Covid-19 data.

Supplementary Materials

The online supplementary materials provide some additional figures for the exogenous

variables and forecasting performance of the LFIGX model in real data analysis as well as

some empirical results of state-level study of USA considering the large land area of this

country.
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