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Abstract: This paper studies the full rank least squares estimator (FLSE) and reduced rank least squares

estimator (RLSE) of the heavy-tailed and partially nonstationary ARMA model with the tail index

α ∈ (0, 2). It is shown that the rate of convergence of the FLSE related to the long-run parameters is

n (sample size) and that related to the short-term parameters are n1/αL̃(n) and n, respectively, when

α ∈ (1, 2) and ∈ (0, 1). Its limiting distribution is a stochastic integral in terms of two stable random

processes when α ∈ (0, 2) for the long-run parameters and is a functional of some stable processes when

α ∈ (1, 2) for the short-run parameters. Based on FLSE, we derive the asymptotic properties of the

RLSE. The finite-sample properties of the estimation are examined through a simulation study and an

application to three U.S. interest rate series is given.

Key words: ARMA models, Cointegration, Heavy-tailed time series, Full rank LSE, Reduced rank LSE.

1. Introduction

Consider the m-dimensional time series {Yt} generated by the ARMA model:

Φ(L)Yt = Θ(L)εt, (1.1)
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where Φ(z) = Im −
∑p

i=1Φiz
i and Θ(z) = Im −

∑q
i=1 Θiz

i are matrix polynomials in z

of degrees p and q, L is the backshift operator, Φi(1 ≤ i ≤ p) and Θi(1 ≤ i ≤ q) are

m × m matrices, Im denotes the m × m identity matrix, and {εt} is a sequence of inde-

pendent and identically distributed (i.i.d.) m-dimensional vector noises. When all the roots

of det{Φ(z)} = 0 lie outside the unit circle, model (1.1) is stationary, where det{} means

the determinant of a matrix. In this case, model (1.1) has been extensively applied in many

areas such as economics and finance and its modeling procedure was fully established in Tsay

(2014).

When det{Φ(z)} = 0 has d < m unit roots and the remaining roots outside the unit circle,

model (1.1) is called the partially nonstationary ARMA model. Denote Wt = Yt − Yt−1.

Model (1.1) can be rewritten as

Wt = CYt−1 +

p−1∑
j=1

Φ∗
jWt−j + εt −

q∑
j=1

Θjεt−j, (1.2)

where Φ∗
j = −

∑p
k=j+1Φk, C = −Φ(1) = −(Im −

∑p
j=1Φj) and C = AB has reduced rank

r = m− d, where A and B are full-rank matrices of dimensions m× r and r ×m. The true

values of unknown parameters are C0 = A0B0, Φ
∗
0,j and Θ0,j. Let A⊥ be an m×d orthogonal

matrix of A0 i.e. A
′
0A⊥ = 0 and B⊥ be a d ×m orthogonal matrix of B0 i.e. B⊥B

′
0 = 0.

In model (1.2), each component of Yt is nonstationary, but B
′Yt is stationary. Each column

of B is called the cointegrating vector of Yt and r is called its cointegrating rank. The

parameters in model (1.2) can be estimated by the least squares estimation (LSE) under two

scenarios: C is estimated as a whole matrix and as a reduced form AB, respectively, called

the full rank LSE (FLSE) and reduced rank LSE (RLSE). When E∥εt∥2 < ∞, they were

studied by Yap and Reinsel (1995), see Tsay and Tiao (1990) for the vector unit root ARMA
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model.

When q = 0, model (1.2) reduces to the vector error correction (VEC) model. The VEC

model was introduced by Granger (1983) and Engle and Granger (1987). The early research

can be found in Phillips and Durlauf (1986) and Johansen (1995), among many others.

Recently, Wang (2014) established a martingale limit theorem for a nonlinear cointegrat-

ing regression model. Cai, Gao, and Tjøstheim (2017) introduced a new class of bivariate

threshold VAR cointegration models. Zhang, Robinson, and Yao (2019) studied a factor

model dealing with high-dimensional nonstationary time series. Almost all research on coin-

tegration systems required the noises to have a second or even high finite moment. Only very

few results are available for the VEC model with the heavy-tailed noises.

The heavy-tailed time series do not have a finite second moment. They have been well

observed in financial market, engineering, network system and other areas, see in Resnick

(1997). Davis and Resnick (1985, 1986) showed the limiting distribution of the LSE of the

parameters in a heavy-tailed AR model is the functional of two stable random variables with

the rate of convergence much faster than
√
n, see Davis, Knight, and Liu (1992). Mikosch et

al. (1995) studied the Whittle estimators for the heavy-tailed ARMA model and this result

was extended by She, Mi and Ling (2021) for model (1.1). Davis, Mikosch and Pfaffel (2016)

studied the sample covariance matrix of a heavy-tailed multivariate time series. Caner (1998)

developed two tests for a special heavy-tailed VEC model. She and Ling (2020) derived the

limiting distributions of the FLSE and RLSE of the heavy-tailed VEC model. Guo, Ling,

and Mi (2021) proposed a Lasso approach to determine its cointegrating rank and estimate

parameters simultaneously.

However, when εt is a heavy-tailed noise, no result is available yet for model (1.2). This
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paper is to fill in this gap. We assume that εt satisfies the following condition:

nP (
ε1
an

∈ ·) v−−→ µ(·), (1.3)

as n → ∞, where µ is a Radon measure on (Rm,Bm), an is an increasing sequence diverging

to ∞, and
v−−→ denotes the vague convergence. (1.3) is also known as a regular variation

condition, under which exists α > 0 called tail index of εt such that, for any y > 0 as

n → ∞,

nP (
∥ε1∥
an

> y) −→ c0y
−α,

where the notation ∥·∥ denotes the Frobenius norm and c0 is some constant. When α ∈ (0, 2),

ε1 does not have a finite covariance matrix and is called a heavy-tailed random vector. For

example, when εt is defined as

εt = |xt|1/α(cosφt, sinφt), (1.4)

where xt ∼i.i.d Cauchy distribution and φt ∼ i.i.d U [0, 2π], and they are independent, we

can show that it satisfies (1.3) and the measure µ has the following density function:

f(x, y) =
α(x2 + y2)

α
2
−1

2π2[1 + (x2 + y2)α]
,

see Figure 1 (a) and (b) for its plots when α = 0.8 and 1.6.

This paper will study the FLSE and the RLSE of model (1.2) under the condition (1.3).

It is shown that the rate of convergence of the FLSE related to the long-run parameters is n

(sample size) and that related to the short-term parameters are n1/αL̃(n) and n, respectively,
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Figure 1: Density f(x, y)

when α ∈ (1, 2) and ∈ (0, 1). Its limiting distribution is a stochastic integral in terms of

two stable random processes when α ∈ (0, 2) for the long-run parameters and is a functional

of some stable processes when α ∈ (1, 2) for the short-run parameters. Based on FLSE, we

derive the asymptotic properties of the RLSE. Unlike those in Yap and Reinsel (1995), the

FLSE and RLSE related to the short-run parameters A have a different limiting distribution.

The rest of this paper is arranged as follows. Section 2 presents the FLSE and derives

its limiting distribution. Section 3 shows the results of the RLSE. Simulation results are

reported in section 4 and a real example is given in section 5. All proofs and the results of

model (1.2) with a constant term are provided in the appendix and Supplementary Material.

2. Full Rank Estimation

This section studies the FLSE of model (1.2). We first make the following assumption.

Assumption 1. (i). |Cz +
∑p−1

j=1 Φ
∗
j(1− z)zi − Im(1− z)| ̸= 0 if |z| < 1,
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(ii). the matrix A
′

⊥(Im −
∑p−1

j=1 Φ
∗
j)B

′

⊥ is nonsingular,

(iii). det{Θ(z)} = 0 has all its roots lying outside the unit circle and the term Φ(z) and Θ(z)

are left coprime (i.e. if Φ(z) = U(z)Φ1(z) and Θ(z) = U(z)Θ1(z), then U(z) is unimodular

with constant determinant,where Φ1(z) and Θ1(z) are matrix polynomials in z).

The condition (i) and (ii) are the same as Ahn and Reinsel (1990) and Johansen (1995),

and (iii) is the usual invertible and identification of the vector ARMA model, see Yap and

Reinsel (1995). Let β = vec[C,Ψ], where Ψ = [Φ∗
1, . . . ,Φ

∗
p−1,Θ1, . . . ,Θq], denote the (p +

q)m2 vector of unkonwn parameters, and the vec operator transforms a matrix into a column

vector by stacking the columns of matrix below each other. The true value of β is denoted

by β0 = vec[C0,Ψ0], where Ψ0 = [Φ∗
0,1, . . . ,Φ

∗
0,p−1,Θ0,1, . . . ,Θ0,q]. The FLSE of β0, denoted

by β̂ = vec[Ĉ, Φ̂∗
1, . . . , Φ̂

∗
p−1, Θ̂1, . . . , Θ̂q], is the minimizer of the objective function:

L(β) =
n∑

t=1

ε′t(β)εt(β),

where εt(β) = Wt − ([Y
′
t−1,W

′
t−1, . . . ,W

′
t−p+1,−ε

′
t−1(β), . . . ,−ε

′
t−q(β)]⊗ Im)β, and ⊗ de-

notes the Kronecker product. The partial derivatives of L(β) with respect to β are given

by

∂L(β)

∂β
=

n∑
t=1

∂ε
′
t(β)

∂β
εt(β) = −

n∑
t=1

Xt−1(β)εt(β),

whereXt−1(β) = −∂ε′t(β)/∂β is a (p+q)m2×m matrix. Because the equations ∂L(β)/∂β =

0 are nonlinear in β (except when q = 0), iterative numerical procedures are needed to obtain

the solutions to these equations. Following Yap and Reinsel (1995), we obtain the FLSE of
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β by the following one-step iteration

β̂ = β̄ +

[
n∑

t=1

Xt−1(β̄)X
′
t−1(β̄)

]−1 [ n∑
t=1

Xt−1(β̄)εt(β̄)

]
,

where β̄ is an initial estimator.

We next consider the asymptotic properties of the FLSE. Let P and Q = P−1 be m×m

matrices. Partition Q′ = [Q1,Q2] and P = [P1,P2] such that Q1 and P1 are m× d matrices

and Q2 and P2 are m × r matrices. Denote Q1 = B′
⊥, Q2 = B′

0, P1 = B̄′
⊥ and P2 = B̄′,

where B̄⊥ = (B⊥B
′
⊥)

−1B⊥ and B̄ = (B0B
′
0)

−1B0. Define Zt = QYt so that Z1,t = Q′
1Yt

and Z2,t = Q′
2Yt. To derive the asymptotic properties of the FLSE, we rewrite model (1.2)

as

Wt = CP1Z1,t−1 +CP2Z2,t−1 +

p−1∑
j=1

Φ∗
jWt−j + εt −

q∑
j=1

Θjεt−j,

where {Z2,t} and {Wt} are stationary and have the following representations:

Wt =
∞∑
j=0

Bjεt−j and Z2,t =
∞∑
j=0

Cjεt−j, (2.5)

with Bj = O(ρj) and Cj = O(ρj) and ρ ∈ (0, 1), but {Z1,t} is purely nonstationary; see Yap

and Reinsel (1995) and Johansen (1995)

Let c∗ = vec(CP1), which is an md-dimensional zero vector. Also, let Q∗ = Diag[Q ⊗

Im, I(p−1+q)m2 ], Q∗
2 = Diag[Q′

2 ⊗ Im, I(p−1+q)m2 ], c = vec(C), and θ = [{vec(CP2)}′,ψ′]′,

where ψ = vec[Ψ]. Then, partition Q∗Xt−1(β) into two parts corresponding to c∗ and θ:

Q∗Xt−1(β) =

Z∗
1,t−1(β)

U∗
t−1(β)

 , where Z∗
1,t−1(β) = −(Q′

1 ⊗ Im)
∂ε′t(β)

∂c
, (2.6)
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U∗
t−1(β) is the [rm+ (p− 1 + q)m2]×m matrix,

U∗
t−1(β) = Q∗

2Xt−1(β) = −Q∗
2

∂ε′t(β)

∂β
=

−(Q′
2 ⊗ Im)∂ε

′
t(β)/∂c

−∂ε′t(β)/∂ψ

 .

The matrices U∗
t−1(β) satisfy the recursive equations

(Im −
q∑

j=1

ΘjL
j)U∗′

t−1(β) = U
′

t−1(β)⊗ Im, (2.7)

where Ut−1(β) = [Z
′
2,t−1,W

′
t−1, . . . ,W

′
t−p+1,−ε

′
t−1(β), . . . ,−ε

′
t−q(β)]

′
. Let

Θ(L)−1 = (Im −
q∑

j=1

ΘjL
j)−1 ≡ γ(L) =

∞∑
k=0

γkL
k, (2.8)

where γk = O(ρk) for some ρ ∈ (0, 1), and

(Im −
q∑

j=1

Θ0,jL
j)−1 ≡

∞∑
k=0

γ0,kL
k.

From (2.7) and (2.8), we have

U∗
t−1(β) =

∞∑
k=0

(Ut−1−k(β)⊗ Im)γ
′

k. (2.9)

Denote Ut−1 = Ut−1(β0) = [Z
′
2,t−1,W

′
t−1, . . . ,W

′
t−p+1,−ε

′
t−1, . . . ,−ε

′
t−q]

′
. By Lemma 1 in

the appendix, Z∗
1,t−1(β) = (Z1,t−1 ⊗ Θ

′−1) − Rt. By Theorem 4.2 in Johansen (1995) and
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Assumption 1, we have the following expansions

Ut =
∞∑
i=0

Aiεt−i and Z1,t = [Id,0]
t∑

i=1

∞∑
j=0

ϕjεi−j,

where Ai = O(ρi) and ϕi = O(ρi) with some ρ ∈ (0, 1) are [m(p − 1 + q) + r] × m matrix

and m×m matrix, respectively.

The estimator of β obtained using the iterative relations will be consistent if the initial

estimator β̄ satisfies

DnQ
∗′−1(β̄ − β0) = Op(1), (2.10)

where

Dn =


nI(p+q)m2 if α ∈ (0, 1), or α = 1 and L̃(n) → ∞,

diag(nIdm, n
1/αL̃(n)Irm+(p−1+q)m2) if α ∈ (1, 2), or α = 1 and L̃(n) → 0.

In the last part of this section we will discuss the instrumental variable approach and Whittle

parameter estimation for obtaining β̄. With these consistent initial estimators, we obtain

the asymptotic representation

DnQ
∗′−1(β̂ − β0) =[Q∗

n∑
t=1

Xt−1(β̄)X
′
t−1(β̄)Q

∗′D−1
n ]−1 (2.11)

{Q∗
n∑

t=1

Xt−1(β̄)[X
′
t−1(β̄)(β̄ − β0) + εt(β̄)]}.

Denote ĉ∗ = vec(ĈP1) and θ̂ = [{vec(ĈP2)}′, ψ̂′]′. ThenQ∗′−1(β̂−β) = [(ĉ∗−c∗)′, (θ̂−θ)′]′.

c∗0 and θ0 are the true values of c∗ and θ, respectively. We now give the rate of convergence

and the limiting distribution of FLSE as follows.
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Theorem 1. Suppose that (1.3) and Assumptions 1 hold, εt has a symmetric distribution

and E∥ε1∥α = ∞ with α ∈ (0, 2). If the initial estimator β̄ satisfy (2.10), then, as n → ∞,

(a). n(Ĉ−C0)B̄
′
⊥

d−−→ Θ0R1S
−1
11 ,

(b). n1/αL̃(n)(θ̂ − θ0)
d−−→ Γ−1

22 vec[
∞∑
l=0

γ
′

0,lR2l],

when α ∈ (1, 2) or α = 1 and L̃(n) → 0,

(c). n(θ̂ − θ0)
d−−→ −Γ−1

22 vec[
∞∑
l=0

γ
′

0,l(F0S12l + F1l)],

when α ∈ (0, 1) or α = 1 and L̃(n) → ∞,

where Θ0 = Im−
∑q

j=1Θ0,j, F1l =
q∑

j′=1

j′−1∑
i=0

∞∑
k′=0

Θ−1
0 Θ0,j′γ0,k′Θ0R1S

−1
11 B⊥S22k′il, F0 = R1S

−1
11 ,

Γ22 =
∑∞

k=0

∑∞
j=0 S22kj⊗γ ′

0,kγ0,j, L̃(n) is a slowly variation function, and R1, S11, R2l, S22kj,

S12l and S22k′il are defined as Lemma 2 in the appendix.

From Theorem 1, we see that the rate of convergence of the FLSE related to the long-

term parameters B is always n, while the one related to the short-term parameters (A,Ψ)

depends on the tail index α. When q = 0, the result is reduced to Theorem 2.1 in She and

Ling (2020). The symmetry of ε1 is to use Theorem B.1 in She and Ling (2020) and Theorem

2 in She, Mi and Ling (2021). When ε1 is asymmetric, some shift terms need to be added

into those limits in Lemma 2 in Appendix and the corresponding results of Theorem 1 can

be derived. But in this case, they will be more complicated, see Theorem 3.3 of Davis and

Resnick (1986) when m = 1.

We now discuss the initial values of our estimation. The instrumental variable approach

was discussed by Hall (1989) and Pantula and Hall (1991) for a consistent estimator of
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AR parameters in the univariate ARMA(p, q) model. It was applied for model (1.1) to

obtain a consistent estimator for the AR parameters in Yap and Reinsel (1995). For il-

lustration, we consider the ARMA(1,1) model, Wt = CYt−1 + εt − Θ1εt−1. Using the

instrumental variable Yt−2 for Yt−1, we can show that the resulting estimator of C, given

by C̄ = (
∑n

t=3WtY
′
t−2)(

∑n
t=3Yt−1Y

′
t−2)

−1, is consistent and

n(C̄−C0)B̄
′
⊥

d−−→ Θ0R1S
−1
11 , (2.12)

which is the same as the limiting distribution given in Theorem 1 of n(Ĉ − C0)B̄
′
⊥ for

ARMA(1,1) model. Also,

n(C̄−C0)B̄
′ d−−→ F1 when α ∈ (0, 1) or α = 1 and L̃(n) → ∞,

n1/αL̃(n)(C̄−C0)B̄
′ d−−→ F2, when α ∈ (1, 2) or α = 1 and L̃(n) → 0,

where F1 and F2 are functionals of some stable processes, which can be shown to be different

from that in Theorem 1 (b)-(c). Since the limiting distributions of the initial estimator on the

direction B̄ and that in Theorem 1(b)-(c) are not normal, it hard to claim which one is more

efficient. Furthermore, we do not know the rank r in practice. The FLSE will be used together

with the RLSE to determine r as for LRT in (3.19). Based on the consistent estimator C̄,

n1/αL(n)-consistent estimators of the MA parameters can be obtained by Whittle estimation,

see She, Mi and Ling (2021), of the MA(1) process Nt = Wt −CYt−1 = εt −Θ1εt−1, using

N̄t = Wt − C̄Yt−1. This method can be readily extended to the higher-order ARMA(p, q)

case to obtain consistent initial estimator β̄ satisfies (2.10).
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3. Reduced-Rank Estimation

This section considers the RLSE of model (1.2), in which C has the reduced form C = AB.

Let H
′
denote the d × m matrix [0, Id]. Since Yt has cointegrating rank r, Yt can always

be re-arranged so that the d-dimensional series Y2,t = H
′
Yt is not cointegrated. For unique

parametrization, we assume B = [Ir,B
∗], where B∗ is an r×dmatrix of unknown parameters.

The model (1.2) becomes

Wt = A[Ir,B
∗]Yt−1 +

p−1∑
j=1

Φ∗
jWt−j + εt −

q∑
j=1

Θjεt−j. (3.13)

Let b = vec(B∗) and δ = vec[A,Φ∗
1, . . . ,Φ

∗
p−1,Θ1, . . . ,Θq]. Then η = (b

′
, δ

′
)
′
is the vector

of unknown parameters with dimension f = rd + mr + (p − 1 + q)m2 and its true value

is denoted by η0 = (b
′
0, δ

′
0)

′
. The RLSE of η is the minimizer of the objective function

L(η) =
∑n

t=1 ε
′
t(η)εt(η), where

εt(η) = (Im −
q∑

j=1

ΘjL
j)−1(Wt −A[Ir,B

∗]Yt−1 −
p−1∑
j=1

Φ∗
jWt−j).

Denote the RLSE of η by η̃ = (b̃
′
, δ̃

′
)
′
and the estimator of B∗, A, Φ∗

i and Θi by B̃∗, Ã, Φ̃∗
i

and Θ̃i. Then, the f ×m matrices X∗
t−1(η) = −∂ε

′
t(η)/∂η satisfy the recursive equations

(Im −
q∑

j=1

ΘjL
j)X∗′

t−1(η) = [(H
′
Yt−1)

′ ⊗A, Ũ
′

t−1(η)⊗ Im],

where Ũt−1(η) = [(BYt−1)
′
,W

′
t−1, . . . ,W

′
t−p+1,−ε

′
t−1(η), . . . ,−ε

′
t−q(η)]

′ and Ũt−1(η0) =

Ut−1. Since L(η) is a nonlinear function, we need an initial estimator to obtain the RLSE.

The consistent initial estimators of A and B∗ can be constructed using the full-rank
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estimators Ĉ and Θ̂i, i = 1, . . . , q, so that together with Φ̂∗
j , j = 1, . . . , p−1 and Θ̂i they can

be used to produce the consistent estimators for the parameters in model (3.13). Partition Ĉ

as Ĉ = [Ĉ1, Ĉ2], where Ĉ1 is an m×r matrix and Ĉ2 is an m×d matrix. Then, Â ≡ Ĉ1 is an

initial estimator of A, and B̂∗ ≡ [Â
′
Θ̂

′−1Θ̂−1Â]−1[Â
′
Θ̂

′−1Θ̂−1Ĉ2], with Θ̂ = Im −
∑q

j=1 Θ̂j,

is an initial estimator of B∗. Using [B̄
′

⊥, B̄
′
][B

′

⊥,B
′
0]

′
= Im and B0 = [Ir,B

∗
0], we have

Â−A0 = (Ĉ−C0)[B̄
′

⊥, B̄
′
][B

′

⊥,1, Ir]
′
= (Ĉ−C0)B̄

′
+ (Ĉ−C0)B̄

′

⊥B⊥,1,

where B⊥,1 is the first r columns of B⊥. Let B̄
′

⊥ = [B̄
′

⊥,1, B̄
′

⊥,2]
′
and B̄

′
= [B̄

′
1, B̄

′
2]

′
, where

B̄⊥,2 and B̄2 is the last d rows of B̄
′

⊥ and B̄
′
, respectively. Since [B̄

′

⊥, B̄
′
][B

′

⊥,B
′
]
′
= Im, we

can see that B⊥,1 + B̄−1
⊥,2B̄2 = 0. Then, it follows that

Â−A0 = (Ĉ−C0)B̄
′ − (Ĉ−C0)B̄

′

⊥B̄
−1
⊥,2B̄2. (3.14)

Note that B0B̄
′

⊥ = 0. It follows that B∗
0 = −B̄⊥,1B̄

−1
⊥,2 and C0B̄

′

⊥ = 0. Then,

B̂∗ −B∗
0 = [Â

′
Θ̂

′−1Θ̂−1Â]−1Â
′
Θ̂

′−1Θ̂−1[(Ĉ−C0)B̄
′

⊥B̄
−1
⊥,2]. (3.15)

Denote M = (A
′
0Θ

′−1
0 Θ−1

0 A0)
−1A

′
0Θ

′−1
0 . By (3.14), (3.15) and Theorem 1, it is straightfor-

ward to get the following corollary.

Corollary 1. If the conditions of Theorem 1 hold, then, as n → ∞,

(a). n(B̂∗ −B∗
0)

d−−→ MR1S
−1
11 B̄

−1
⊥,2,

(b). n1/αL̃(n)(δ̂ − δ0)
d−−→ Γ−1

22 vec[
∞∑
l=0

γ
′

0,lR2l],
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when α ∈ (1, 2) or α = 1 and L̃(n) → 0,

(c). n(δ̂ − δ0)
d−−→ −Γ−1

22 vec[
∞∑
l=0

γ
′

0,l(F0S12l + F1l)]− vec{F0B̄
−1
⊥,2B̄2[Ir,0]},

when α ∈ (0, 1) or α = 1 and L̃(n) → ∞.

Denote η̂ = ([vec(B̂∗)]
′
, [vec(Â, Ψ̂)]

′
)
′
. Then, using these consistent initial estimators,

we can readily obtain η̃ by one-step iteration

η̃ = η̂ +

[
n∑

t=1

X∗
t−1(η̂)X

∗′
t−1(η̂)

]−1 [ n∑
t=1

X∗
t−1(η̂)εt(η̂)

]
.

Let

D∗
n =


nIrd+mr+(p−1+q)m2 if α ∈ (0, 1), or α = 1 and L̃(n) → ∞,

diag(nIrd, n
1/αL̃(n)Imr+(p−1+q)m2) if α ∈ (1, 2), or α = 1 and L̃(n) → 0.

Thus, we have the following asymptotic representation

D∗
n(η̃ − η0) =[

n∑
t=1

X∗
t−1(η̂)X

∗′
t−1(η̂)D

∗−1
n ]−1

× {
n∑

t=1

X∗
t−1(η̂)[X

∗′
t−1(η̂)(η̂ − η0) + εt(η̂)]}. (3.16)

The partial derivatives ∂ε
′
t(η)/∂b satisfy the recursive equations

(Im −
q∑

j=1

ΘjL
j)
∂εt(η)

∂b′ = −(H
′
Yt−1)

′ ⊗A,

where H
′
Yt−1 = [0, Id]PZt−1 = B̄⊥,2Z1,t−1 + B̄2Z2,t−1. We note that H

′
Yt−1 and Z1,t are

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



15

purely nonstationary, Z2,t is stationary and B̄⊥,2 is nonsingular. By Lemma 3 in the appendix,

we obtain

X∗
t−1(η̂) =

 Z̃∗
1,t−1(η̂)

Ũ∗
t−1(η̂)

 , (3.17)

where Z̃∗
1,t−1(η̂) = [(B̄⊥,2Z1,t−1 + B̄2Z2,t−1)⊗ Â

′
Θ̂

′−1] + R̂∗
t , with R̂∗

t defined as in Lemma 3

in the appendix, and the matrices Ũ∗
t−1(η̂) satisfy the recursive equations

Θ̂(L)Ũ∗′
t−1(η̂) = Ũ

′

t−1(η̂)⊗ Im, (3.18)

with Ũt−1(η̂) = [(B̂Yt−1)
′
,W

′
t−1, . . . ,W

′
t−p+1,−ε

′
t−1(η̂), . . . ,−ε

′
t−q(η̂)]

′
. The limiting distri-

bution of RLSE can be derived utilizing the similar arguments that led to Theorem 1. We

now state the result of RLSE as follows.

Theorem 2. Suppose that the condition of Theorem 1 hold. Then, as n → ∞, we have

(a). n(B̃∗ −B∗
0)

d−−→ MR1S
−1
11 B̄

−1
⊥,2,

(b). n1/αL̃(n)(δ̃ − δ0)
d−−→ Γ−1

22 vec[
∞∑
l=0

γ
′

0,lR2l],

when α ∈ (1, 2) or α = 1 and L̃(n) → 0,

(c). n(δ̃ − δ0)
d−−→ Γ−1

22 vec[
∞∑
l=0

γ
′

0,l(F2l + F3l + F4l)],

when α ∈ (0, 1) or α = 1 and L̃(n) → ∞,

where F2l = [Im −Θ−1
0 A0M]F0R

′
1[M

′,0,Θ′
0Im.q], F3l = −Θ−1

0 A0MF0(S12l + B̄−1
⊥,2B̄2S22l),

F4l = −Θ−1
0

∑q
j′=1

∑j′−1
i=0

∑∞
k′=0 Θ0,j′γ0,k′A0MF0B̄

−1
⊥,2HS22k′il.

When q = 0, we can show that Theorem 2 reduces to Theorem 3.1 in She and Ling (2020).
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Corollary 1 and Theorem 2 show that B̃∗ and B̂∗ have the same asymptotic distribution,

which is similar to those as in Johansen (1995), Ahn and Reinsel (1988, 1990) and She and

Ling (2020). When α ∈ (1, 2) or α = 1 and L̃(n) → 0, the FLSE and RLSE of (A,Ψ) have

the same distribution. However, when α ∈ (0, 1) or α = 1 and L̃(n) → ∞, their distributions

are different from each other.

Using Theorems 1-2, we now consider the likelihood ratio test (LRT) for testing the rank

r in model (1.2). Under the null hypothesis H0: rank(C) = r against the alternative HA:

rank(C) = m, the LRT is

Λn = −n log

(
|

n∑
t=1

εt(β̂)ε
′

t(β̂)|/|
n∑

t=1

εt(η̃)ε
′

t(η̃)|

)
.

Using Theorem 1 and Theorem 2, it is straightforward to show that

Λn
d−−→ tr{S−1

1 DR1S
−1
11 R

′

1D}, (3.19)

where D = Im −Θ−1
0 A0(A

′
0Θ

′−1
0 Θ−1

0 A0)
−1A

′
0Θ

′−1
0 . Based on the residuals {εt(β̂)}, we can

estimate α using the Hill’s estimator as follows

Hn(k) =

{
1

k

k∑
t=1

log

(
|ε̂|(t)

|ε̂|(k+1)

)}−1

,

where {|ε̂|(t)} is the decreasing order statistics of {|εt(β̂)|} and k is the number of chosen

order statistics, see Resnick (1997).

The RLSE involves less parameters and directly estimates the cointegrating vector B∗
0

and hence it is commonly used if the rank r is known. However, r is unknown in practice and
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this is a key issue. One usually needs to test the rank r by using the limiting distribution of

the RLSE and FLSE. Our RLSE and FLSE are not new approaches, but Theorems 1-2 show

that their limiting distributions are fully different from those when E∥εt∥2 < ∞. Thus, the

limiting distribution of the LRT in (3.19) is different from that when E∥εt∥2 < ∞ and hence

the critical values in Johansen (1995) and Yap and Reinsel (1995) cannot be used for testing

the rank r under our setting.

4. Simulation Study

This section studies the finite performance of FLSE and RLSE in Sections 2 and 3. We

consider the model

Yt = Φ1Yt−1 + εt −Θ1εt−1 (4.20)

where εt is defined by (1.4) and

Φ1 =

 ϕ11 ϕ12

ϕ21 ϕ22

 =

 0.6 1.0

0.12 0.7

 and Θ1 =

 θ11 θ12

θ21 θ22

 =

 0.3 0.2

0.2 0.4

 ,

Hence, corresponding to model (1.2), we have

C =

 c11 c12

c21 c22

 =

 −0.4 1.0

0.12 −0.3

 = AB,

with A = (a1, a2)
′
= (−0.4, 0.12)

′
and B = (1, b∗) = (1,−2.5). For each of 1000 replications,

samples of series length n = 500, 1000 and 1500 are generated. The tail index α = 0.5 and

1.5 are considered.

We computed the estimate C̄ of C using the instrumental variable approach and com-
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Table 1: Means, SDs and MSEs of the FLSE and RLSE

α n a1 = −0.4 a2 = 0.12 b∗ = −2.5 θ11 = 0.3 θ21 = 0.2 θ12 = 0.2 θ22 = 0.4

α = 0.5 500 FLSE Mean -0.3963 0.1193 -2.5084 0.2987 0.1886 0.1818 0.4145
SD 0.0525 0.0511 0.0718 0.2423 0.4401 0.3127 0.3049
MSE 0.0526 0.0511 0.0723 0.2421 0.4400 0.3131 0.3052

RLSE Mean -0.3920 0.1235 -2.5042 0.3049 0.1928 0.1861 0.4186
SD 0.0817 0.0832 0.1013 0.2501 0.4451 0.3172 0.3099
MSE 0.0821 0.0832 0.1013 0.2502 0.4449 0.3173 0.3104

1000 FLSE Mean -0.4014 0.1196 -2.5022 0.3007 0.1956 0.2012 0.3971
SD 0.0439 0.0655 0.0873 0.1350 0.1457 0.1849 0.1519
MSE 0.0442 0.0655 0.0875 0.1350 0.1458 0.1848 0.1519

RLSE Mean -0.3967 0.1234 -2.4980 0.3042 0.1983 0.2049 0.4018
SD 0.0447 0.0666 0.0856 0.1357 0.1464 0.1870 0.1517
MSE 0.0448 0.0666 0.0856 0.1358 0.1464 0.1870 0.1518

1500 FLSE Mean -0.3990 0.1201 -2.5018 0.3006 0.2018 0.1975 0.4009
SD 0.0195 0.0204 0.0225 0.0556 0.1217 0.1009 0.1077
MSE 0.0195 0.0204 0.0225 0.0556 0.1216 0.1008 0.1077

RLSE Mean -0.3967 0.1224 -2.4995 0.3029 0.2042 0.1999 0.4013
SD 0.0213 0.0219 0.0212 0.0565 0.1221 0.1008 0.1074
MSE 0.0215 0.0220 0.0212 0.0566 0.1221 0.1007 0.1074

α = 1.5 500 FLSE Mean -0.3876 0.1236 -2.5082 0.3095 0.1913 0.1687 0.3870
SD 0.0808 0.0703 0.0405 0.0995 0.1045 0.2110 0.1789
MSE 0.0817 0.0704 0.0413 0.0999 0.1049 0.2132 0.1793

RLSE Mean -0.3792 0.1320 -2.4992 0.3179 0.2097 0.1771 0.3954
SD 0.0831 0.0785 0.0427 0.1019 0.1102 0.2163 0.1780
MSE 0.0856 0.0793 0.0427 0.1034 0.1106 0.2174 0.1780

1000 FLSE Mean -0.3926 0.1211 -2.5062 0.3079 0.1953 0.1823 0.3931
SD 0.0434 0.0460 0.0225 0.0618 0.0696 0.1155 0.1146
MSE 0.0439 0.0460 0.0233 0.0622 0.0697 0.1168 0.1148

RLSE Mean -0.3864 0.1267 -2.5004 0.3141 0.2015 0.1886 0.3965
SD 0.0451 0.0487 0.0183 0.0633 0.0715 0.1166 0.1140
MSE 0.0471 0.0491 0.0183 0.0648 0.0715 0.1171 0.1142

1500 FLSE Mean -0.3949 0.1208 -2.5003 0.3041 0.1962 0.1928 0.3941
SD 0.0428 0.0409 0.0140 0.0565 0.0604 0.1085 0.1057
MSE 0.0430 0.0409 0.0143 0.0566 0.0604 0.1085 0.1057

RLSE Mean -0.3909 0.1235 -2.4997 0.3077 0.1999 0.1945 0.3977
SD 0.0439 0.0422 0.0118 0.0571 0.0603 0.1087 0.1054
MSE 0.0440 0.0423 0.0118 0.0570 0.0603 0.1087 0.1056

puted the FLSE Ĉ and Θ̂1. The initial estimates Â and b̂∗ were then calculated as starting

estimates for the reduced-rank estimation to obtain Ã, b̃∗ and Θ̃1. Table 1 summarizes the

sample mean (Mean), the sample standard deviation (SD) and root mean square error (MSE)

of FLSE and RLSE. It is clear that all estimators are close to true values and their SDs be-
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come smaller when n is increasing. Furthermore, the SD and root MSE of FLSE and RLSE

do not have a big different. This phenomenon has been observed in She and Ling (2020).

Most likely, this is because the rate of convergence of estimated parameters is very fast in

the heavy-tailed case. In practice, we do not know the co-integration rank r and need both

FLSE and RLSE to determine r as for LRT in (3.19).
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Figure 2: Empirical Densities of n(b̃∗ − b∗) and n(b̂∗ − b∗)
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(b) α = 0.5 and cn = n

Figure 3: Empirical Densities of cn(ã2 − a2) and cn(â2 − a2)

To see the overall feature of limiting distribution, Figure 2-4 plot the empirical densities of
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Figure 4: Empirical Densities of cn(θ̃11 − θ11) and cn(θ̂11 − θ11)

FLSE (dashed) and RLSE (solid) when n = 2500. Figure 2-3 show that the density functions

of FLSE and RLSE of (b∗, a2) are close each other when α ∈ (1, 2). When α ∈ (0, 1), Figure

2 shows that the density functions of FLSE and RLSE of b∗ are close each other. However,

Figure 3 and Figure 4 clearly show that the density functions of FLSE and RLSE of (a1, a2)

are different in this case. Figure 4 shows the density functions of of FLSE and RLSE of θ11

when α ∈ (1, 2) are almost identical. However, the density functions of of FLSE and RLSE

of θ11 are clearly different when α ∈ (0, 1). More simulation results can be found in the

supplementary materials. All simulation results show that the FLSE has a good performance

even if we have a low-rank structure and α ∈ (0, 1).

Table 2: Critical values of Test Λn for Model (4.20)

H0
α = 0.5 α = 1.5

10% 5% 1% 10% 5% 1%

r = 1 6.208 11.80 62.83 3.210 4.666 9.497
r = 0 .0303 .3442 26.49 5.804 9.665 37.48

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



21

Table 3: Sizes and Powers of Test Λn for Model (4.20)

α = 0.5 α = 1.5

10% 5% 1% 10% 5% 1%

r = 1 Λn n = 500 0.114 0.049 0.007 0.099 0.046 0.011
n = 1000 0.105 0.057 0.010 0.092 0.046 0.010

(size) YR n = 500 0.186 0.130 0.076 0.479 0.441 0.313
n = 1000 0.156 0.104 0.068 0.374 0.319 0.288

r = 0 Λn n = 500 0.998 0.998 0.996 1.000 1.000 0.998
(power) n = 1000 1.000 1.000 1.000 1.000 1.000 1.000

The limiting distribution of tr{S−1
1 DR1S

−1
11 R

′
1D} in (3.19) can be approximated by

tr{n(
n∑

t=1

εtε
′
t)

−1DR1nS
−1
11nR

′

1nD},

see Lemma A.1 in She and Ling (2020), and Lemma 1 and Lemma 2 in the appendix. For

model (4.20), we use sample size n = 2500 and 5000 replications to simulate the critical

values of this limiting distribution under the hypotheses r = 0 and r = 1, respectively. The

results are reported in Table 2. Using the critical values, we examine the performance of test

Λn when the sample size n = 500 and n = 1000 via 1000 replications. The size and power

of Λn are reported in Table 3. We can see that the sizes are all close to the nominal values

under the null hypothesis r = 1, and the powers increase when the sample size n increases

from 400 to 800 under alternative hypothesis r = 0. When using the critical values of Yap

and Reinsel (1995) which is for model (1.2) with E∥εt∥2 < ∞, the sizes of Λn are reported

in the rows with YP in Table 3. It can be seen that the sizes are fully distorted in this case

and hence these critical values cannot be used for testing the rank r when εt is a heavy-tailed

noise.
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5. Real Example

In this section, we consider three U.S. monthly interest rate series over the period 1970-01-01

to 2000-11-01 with 371 observations. The three series are the Federal Fund rate, 90-day

Treasury Bill rate and 1-year Treasury Bill rate. Let Xt = (x1t, x2t, x3t)
′ denote the original

data and Yt = (y1t, y2t, y3t)
′ denote the log-rate, i.e. yit = log(xit) for i = 1, 2, 3. {Yt} is

plotted in Figure 5. We use the first k largest data and the Hill’s estimator to estimate the
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Figure 5: The Logarithms of {Yt}.

tail index of log-returns (i.e. rit = yit − yit−1) of each prices. Figure 6 is the plot of these

estimated tail indices in term of k. It shows that the tail index of each log-return most likely

is less than 2 but larger than 1. It seems to be reasonable to assume that these data are

heavy-tailed time series. Similar to Section 7 in Yap and Reinsel (1995), we consider the

following model

Wt = µ
∗ +CYt−1 + εt −Θ1εt−1. (5.21)
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Figure 6: Hill estimator of tail index.

The full-rank LS estimates are given by

Ĉ =


−0.3875 0.2384 0.1344

−0.1288 0.0476 0.0538

−0.0834 0.1965 −0.1089

 and Θ̂1 =


−0.0667 −0.2537 −0.2583

0.0711 −0.5475 0.0429

−0.0752 −0.2404 −0.2715

 ,

and the estimated µ∗ is about (0.0079, 0.0517,−0.0099).

Table 4: Tests for Cointegration Based on LRT Statistic

H0 LRT
α = 1 α = 1.5

10% 5% 1% 10% 5% 1%

r = 2 4.18 6.93 10.36 27.69 6.61 8.74 16.36
r = 1 372.24 18.68 25.38 56.76 16.42 19.90 32.22
r = 0 118.97 36.08 47.52 98.33 30.41 34.99 40.71

We use the LRT in Caner (1998) to test the rank of cointegration in model (5.21). Table

4 reports the values of LRT and its critical values given in Caner (1998) at significant level

10%, 5% and 1% when α = 1 and α = 1.5. From this table, we can obtain that the rank
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r = 2 cannot be rejected at significant level 5%.

A reduced-rank ARMA(1, 1) model with rank(C) = 2 imposed is fitted to the series using

the procedure described in Section 3. The initial estimate of B∗, calculated based on the

full-rank LS estimation, is B̂∗ = [−0.9273,−0.9106]′. The results of RLSE are as follows:

C̃ =


−0.4313 0.3103

−0.1578 0.0518

−0.1435 0.2381


 1 0 −0.9270

0 1 −0.9187

 =


−0.4313 0.3103 0.1148

−0.1578 0.0518 0.0987

−0.1435 0.2381 −0.0857

 ,

and Θ̃1 =


−0.0879 −0.2378 −0.2479

0.1566 −0.5654 −0.0261

−0.0110 −0.2662 −0.3171

 .

This result shows that the 90-day Treasury Bill rate and the 1-year Treasury Bill rate do not

have a cointegrating relationship, but each of them have a cointegrating relationship with

the Federal Fund rate: z1t ≡ y1t − 0.927y2t and z2t ≡ y1t − 0.9187y3t. {z1t} and {z2t} are

plotted in Figure 7, from which we can see that two relationships are very stable.

6. Appendix

We need some preliminary results to prove the main theorems. We first choose an as follows

an = inf{x : P (∥ε1∥ > x) < n−1}.
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Then, (1.3) implies that an = n1/αL(n), where L(n) is a slowly variation function; see

Bingham, Goldie and Teugels (1989). Similarly, we define ãn as follows

ãn = inf{x : P (∥ε1ε
′

2∥ > x) < n−1}.

We can show that a2n/ãn = n1/αL̃(n), where L̃(n) is also a slowly varying function, see Lemma

4 in She, Mi and Ling (2021) and Bingham, Goldie and Teugels (1989). From Proposition

3.1 in Resnick (1986), we can see that the condition (1.3) is equivalent to the following

convergence
n∑

t=1

δ εt−1
an

v−−→
∞∑
i=1

δPi
= PRM(µ),

as n → ∞, where PRM(µ) is a Poisson random process with intensity measure µ and {Pi} is

a sequence random vectors such that
∑∞

i=1 δPi
is the point representation of PRM(µ). From
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Davis and Resnick (1986) we can see that

nP (
ε1ε

′
2

ãn
∈ ·) v−−→ µ̃(·) and ãn/an → ∞,

as n → ∞ when E∥ε1∥α = ∞, where µ̃ is a Radon measure on (Rm2
,Bm2

). Let {P(j)
i } be

a sequence random vectors such that
∑∞

i=1 δP(j)
i

is the point representation of PRM(µ̃) for

j = 2, 3, . . . ., and they are independent each other for different j. Using the same technique

as that of Lemma 1 in Yap and Reinsel (1995), it is straightforward to show the following

lemma.

Lemma 1. Consider model (1.2), then we have

(Q′
1 ⊗ Im)

∂ε′t(β)

∂c
= −(Z1,t−1 ⊗Θ

′−1) +Rt,

where Rt =
∑q

j=1

∑j−1
l=0

∑∞
k=0(Q

′
1Wt−1−k−l ⊗ γ

′

kΘ
′
j)Θ

′−1.

Lemma 1 is fundamental to the proof of Theorem 1, and a proof can be found in the

Supplementary Material. Let

Pn(r) = a−1
n

[nr]∑
t=1

εt

with r ∈ [0, 1]. By Appendix 3.5 in Resnick (1986) and (1.3), and when εt has a symmetric

distribution, we can show that there exists a stable process P(r) such that

Pn(r)
D−−→ P(r),

as n → ∞, where
D−−→ means weak convergence in the space D[0, 1] of càdlàg multivariate
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functions equipped with the Skorokhod J1 topology, see Billingsley (1999). The process P(r)

is a stable process with Itô representation

P(r) =
∑
tk≤r

jk1[∥jk∥>1] + lim
δ↓0

[
∑
tk≤r

jk1[∥jk∥∈(δ,1]] − r

∫
∥s∥∈(δ,1]

sν(ds)],

where the PRM has points (tk, jk) ∈ R+× (R0)m with R+ = [0,∞) and R0 = (∞, 0)∪ (0,∞),

and ν satisfies
∫
(∥x∥2 ∧ 1)ν(dx) < ∞. The process P(r) does not have a closed distribution

for each r, but it can approximated by Pn(r) in practice. By Theorem B.1 in She and Ling

(2020) and Theorem 2 in She, Mi and Ling (2021), we have the following lemma.

Lemma 2. Suppose that (1.3) and Assumptions 1 hold, εt has a symmetric distribution and

E∥ε1∥α = ∞ with α ∈ (0, 2). Then, we have

(a). a−2
n

n∑
t=1

εtZ
′

1,t−1
d−−→ R1,

(b). (na2n)
−1

n∑
t=1

Z1,t−1Z
′

1,t−1
d−−→ S11,

(c). ã−1
n

n∑
t=1

εtU
′

t−1−l
d−−→ R2l,

(d). a−2
n

n∑
t=1

Ut−1−kU
′

t−1−j
d−−→ S22kj,

(e). a−2
n

n∑
t=1

Z1,t−1U
′

t−1−l
d−−→ S12l,

(f). a−2
n

n∑
t=1

Z2,t−1U
′

t−1−l
d−−→ S22l,

(g). a−2
n

n∑
t=1

Wt−1−k′−iU
′

t−1−l
d−−→ S22k′il,

as n → ∞, where R1 = [
∫ 1

0
P(r)dP

′
(r)]

′
ϕ

′
[Id,0]

′
with ϕ =

∞∑
i=0

ϕi, R2l =
∑∞

i=0 Si+2+lA
′
i,
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S11 = [Id,0]ϕ[
∫ 1

0
P(r)P

′
(r)dr]ϕ

′
[Id,0]

′
, S22kj =

∑∞
i=0 AiS1A

′

i+k−j, S22l =
∑∞

j=0CjS1A
′

j+l,

S22k′il =
∑∞

j=0BjS1A
′

j+k′+i−l, S12l = {R′
1

∑∞
i=0A

′

i+l + [Id,0]
∑∞

i=0

∑i
j=0ϕjS1A

′

i+l}, P(r) is

a stable process, S1 =
∑∞

i=1P
(1)
i P

(1)′

i with P
(1)
i = Pi and Sj =

∑∞
i=1 P

(j)
i for all j > 1.

Proof of Theorem 1. Denote

R̂1n =
n∑

t=1

Z∗
1,t−1(β̄)εt + e1n, R̂2n =

n∑
t=1

U∗
t−1(β̄)εt + e2n,

Ŝ11n =
n∑

t=1

Z∗
1,t−1(β̄)Z

∗′
1,t−1(β̄), Ŝ22n =

n∑
t=1

U∗
t−1(β̄)U

∗′
t−1(β̄),

Ŝ12n =
n∑

t=1

Z∗
1,t−1(β̄)U

∗′
t−1(β̄),

where [e1n, e2n] = [Z∗′
1,t−1(β̄),U

∗′
t−1(β̄)]

′[X′
t−1(β̄)(β̄ − β0) + εt(β̄)− εt]. By (2.11), we have

[n(ĉ∗ − c∗0)
′, n1/αL̃(n)(θ̂ − θ0)′]′ =


1

na2n
Ŝ11n

ãn
a4n
Ŝ12n

1
nãn

Ŝ
′
12n

1
a2n
Ŝ22n


−1 

1
a2n
R̂1n

1
ãn
R̂2n

 .

Solve the previous group equations, it follows that

n(ĉ∗ − c∗0) = { 1

na2n
Ŝ11n −

ãn
a4n

Ŝ12n(
1

a2n
Ŝ22n)

−1 1

nãn
Ŝ

′

12n}−1

× { 1

a2n
R̂1n −

ãn
a4n

Ŝ12n(
1

a2n
Ŝ22n)

−1 1

ãn
R̂2n}, (6.22)

n1/αL̃(n)(θ̂ − θ0) = { 1

a2n
Ŝ22n −

1

nãn
Ŝ

′

12n(
1

na2n
Ŝ11n)

−1 ãn
a4n

Ŝ12n}−1

× { 1

ãn
R̂2n −

1

nãn
Ŝ

′

12n(
1

na2n
Ŝ11n)

−1 1

a2n
R̂1n}. (6.23)
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Let

Θ̄(L)−1 = (Im −
q∑

j=1

Θ̄jL
j)−1 =

∞∑
k=0

γ̄kL
k, (6.24)

where γ̄k = O(ρk) for some ρ ∈ (0, 1). Under (2.6) and Lemma 1, we have

Z∗
1,t−1(β̄) = (Z1,t−1 ⊗ Θ̄

′−1) + R̄t, (6.25)

where R̄t =
∑q

j=1

∑j−1
l=0

∑∞
k=0(Q

′
1Wt−1−k−l⊗ γ̄

′

kΘ̄
′
j)Θ̄

′−1. By Lemma 2 (b), (d), (e), we have

1

na2n
Ŝ11n =

1

na2n

n∑
t=1

(Z1,t−1Z
′
1,t−1)⊗ Θ̄

′−1Θ̄−1 + op(1). (6.26)

Note that

(Im −
q∑

j=1

Θ̄jL
j)[εt − εt(β̄)] =(C̄−C0)Yt−1 +

p−1∑
j=1

(Φ̄∗
j −Φ∗

0,j)Wt−j

+

q∑
j=1

(Θ0,j − Θ̄j)εt−j. (6.27)

By (2.9), (6.25) and (6.27), we have

1

a2n
Ŝ12n =

1

a2n

∞∑
l=0

n∑
t=1

(Z1,t−1U
′
t−1−l)⊗ Θ̄

′−1γ̄l (6.28)

+
1

a2n

∞∑
l=0

n∑
t=1

(Z1,t−1Z
′
1,t−1P

′
1(C̄−C0)

′JΘ̄(L)
′−1)⊗ Θ̄

′−1γ̄l

+
1

a2n

∞∑
l=0

n∑
t=1

q∑
j=1

j−1∑
i=0

∞∑
k=0

Q
′

1Wt−1−k−lU
′
t−1−l(β̄)⊗ γ̄

′

kΘ̄
′

jΘ̄
′−1γ̄l,

where J denotes the m× [r+(p−1+q)m] matrix [0,J1, . . . ,Jq] with Ji = Im for i = 1, . . . , q.
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By (6.27), (2.10), Lemma 1 and Lemma 2 (a), (b), (e), we obtain a−2
n e1n = op(1). Thus,

1

a2n
R̂1n =

1

a2n

n∑
t=1

(Z1,t−1 ⊗ Θ̄
′−1)εt + op(1). (6.29)

By (6.27), (2.10) and Lemma 2, we can show that

1

a2n

n∑
t=1

Ut−1−k(β̄)Ut−1−j(β̄)
′ =

1

a2n

n∑
t=1

Ut−1−kU
′
t−1−j + op(1), (6.30)

and its proof can be found in the Supplementary Material. Then, we have

1

a2n
Ŝ22n =

1

a2n

n∑
t=1

∞∑
k=0

∞∑
j=0

[Ut−1−kU
′
t−1−j]⊗ γ̄ ′

kγ̄j + op(1)

d−−→
∞∑
k=0

∞∑
j=0

S22kj ⊗ γ ′
0,kγ0,j ≡ Γ22, (6.31)

as n → ∞. When 1 < α < 2 or α = 1 and L̃(n) → 0, we have n
1
α
−1L̃(n) → 0. Thus, we have

ã−1
n e2n = op(1). Furthermore, we have

1

ãn
R̂2n =

1

ãn

n∑
t=1

∞∑
k=0

[Ut−1−k ⊗ Im]γ̄
′
kεt + op(1). (6.32)

When 0 < α < 1 or α = 1 and L̃(n) → ∞, then n1− 1
α L̃−1(n) → 0. Thus, we have

na−2
n e2n = op(1). Furthermore, we have

n

a2n
R̂2n =

n

a2n

n∑
t=1

∞∑
k=0

[(Ut−1−k(β̄)−Ut−1−k)⊗ Im]γ̄
′
kεt + op(1). (6.33)

Note that a2n/ãn = n
1
α L̃(n) → ∞, as n → ∞. By (2.10), (6.27)-(6.28), (6.31)-(6.32), Lemma
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1 and Lemma 2, we can show that

1

na2n
Ŝ12nŜ

−1
22nŜ

′

12n = op(1) and
ãn
a4n

Ŝ12n(
1

a2n
Ŝ22n)

−1 1

ãn
R̂2n = op(1). (6.34)

Thus, by (6.22) and (6.34), we have

n(ĉ∗ − c∗0) = { 1

na2n
Ŝ11n}−1{ 1

a2n
R̂1n}+ op(1).

Therefore, under Lemma 1 and Lemma 2,

n(ĉ∗ − c∗0) = a−2
n

n∑
t=1

{[(na2n)−1

n∑
t=1

Z1,t−1Z
′

1,t−1]
−1Z1,t−1 ⊗ Θ̄}εt + op(1),

or equivalently

n(Ĉ−C0)B̄
′
⊥ = (a−2

n

n∑
t=1

Θ̄εtZ
′

1,t−1)[(na
2
n)

−1

n∑
t=1

Z1,t−1Z
′

1,t−1]
−1 + op(1)

d−−→ Θ0R1S
−1
11 ,

as n → ∞. That is, (a) holds. When 1 < α < 2 or α = 1 and L̃(n) → 0, we have

n
1
α
−1L̃(n) → 0. By (2.12), (6.26)-(6.29), Lemma 1 and Lemma 2 (a), (b), (d), (e), (g), we

have

1

a2n
Ŝ

′

12nŜ
−1
11nŜ12n = op(1) and

1

nãn
Ŝ

′

12n(
1

na2n
Ŝ11n)

−1 1

a2n
R̂1n = op(1),

which follows that

n1/αL̃(n)(θ̂ − θ0) = { 1

a2n
Ŝ22n}−1 1

ãn
R̂2n + op(1).
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Therefore, by (6.31)-(6.32) and Lemma 2

n1/αL̃(n)(θ̂ − θ0)
d−−→ Γ−1

22 vec[
∞∑
l=0

γ
′

0,lR2l],

as n → ∞. That is, (b) holds. When 0 < α < 1 or α = 1 and L̃(n) → ∞, by (6.23),

(6.26)-(6.31) and (6.33), we have

n(θ̂ − θ0) ={ 1

a2n
Ŝ22n}−1 n

a2n
R̂2n

− { 1

a2n
Ŝ22n}−1{− 1

a2n
Ŝ

′

12n(
1

na2n
Ŝ11n)

−1 1

a2n
R̂1n}+ op(1)

d−−→− Γ−1
22 vec[

∞∑
l=0

γ
′

0,l(F0S12l + F1l)],

as n → ∞. That is, (c) holds, which completes the proof.

Lemma 3. Consider the model (3.13), then

∂ε
′
t(η)

∂b
= −[(B̄⊥,2Z1,t−1 + B̄2Z2,t−1)⊗A

′
Θ

′−1] +R∗
t ,

where R∗
t =

∑q
j=1

∑j−1
l=0

∑∞
k=0(H

′
Wt−1−k−l ⊗A

′
γ

′

kΘ
′
j)Θ

′−1.

Lemma 3 is used to prove Theorem 2. Its proof is given in Supplemental material of this

paper. Under Lemma 2 (c), (d) and Lemma 3, we obtain that ã−1
n

∑n
t=1 εtR

∗′
t is of order

Op(1), and a−2
n

∑n
t=1R

∗
tR

∗′
t is of order Op(1).

Proof of Theorem 2: Denote

R̃1n =
n∑

t=1

Z̃∗
1,t−1(η̂)εt + ẽ1n, R̃2n =

n∑
t=1

Ũ∗
t−1(η̂)εt + ẽ2n,
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S̃11n =
n∑

t=1

Z̃∗
1,t−1(η̂)Z̃

∗′
1,t−1(η̂), S̃22n =

n∑
t=1

Ũ∗
t−1(η̂)Ũ

∗′
t−1(η̂),

S̃12n =
n∑

t=1

Z̃∗
1,t−1(η̂)Ũ

∗′
t−1(η̂),

where [ẽ1n, ẽ2n] = [Z̃∗
1,t−1(η̂), Ũ

∗
t−1(η̂)][X

∗′
t−1(η̂)(η̂ − η0) + εt(η̂) − εt]. Then, by (3.16), we

have

[n(b̃− b0)
′, n1/αL̃(n)(δ̃ − δ0)′]′ =


1

na2n
S̃11n

ãn
a4n
S̃12n

1
nãn

S̃
′
12n

1
a2n
S̃22n


−1 

1
a2n
R̃1n

1
ãn
R̃2n

 .

Solve the previous group equaiton, it follows that

n{vec(B̃∗ −B∗
0)} = { 1

na2n
S̃11n −

ãn
a4n

S̃12n(
1

a2n
S̃22n)

−1 1

nãn
S̃

′

12n}−1

× { 1

a2n
R̃1n −

ãn
a4n

S̃12n(
1

a2n
S̃22n)

−1 1

ãn
R̃2n}, (6.35)

n1/αL̃(n)(δ̃ − δ0) = { 1

a2n
S̃22n −

1

nãn
S̃

′

12n(
1

na2n
S̃11n)

−1 ãn
a4n

S̃12n}−1

× { 1

ãn
R̃2n −

1

nãn
S̃

′

12n(
1

na2n
S̃11n)

−1 1

a2n
R̃1n}. (6.36)

Let

Θ̂(L)−1 = (Im −
q∑

j=1

Θ̂jL
j)−1 =

∞∑
k=0

γ̂kL
k, (6.37)

where γ̂k = O(ρk) for some ρ ∈ (0, 1). By Lemma 3 and (3.17), we have

Z̃∗
1,t−1(η̂) = [(B̄⊥,2Z1,t−1 + B̄2Z2,t−1)⊗ Â

′
Θ̂

′−1] + R̂∗
t , (6.38)
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where R̂∗
t =

∑q
j=1

∑j−1
l=0

∑∞
k=0(H

′
Wt−1−k−l ⊗ Â

′
γ̂

′

kΘ̂
′
j)Θ̂

′−1. Then,

1

na2n
S̃11n =

1

na2n

n∑
t=1

B̄⊥,2Z1,t−1Z
′
1,t−1B̄

′
⊥,2 ⊗ Â

′
Θ̂

′−1Θ̂−1Â+ op(1). (6.39)

By (3.18) and (6.38), we have

1

a2n
S̃12n =

1

a2n

n∑
t=1

∞∑
l=0

(B̄⊥,2Z1,t−1U
′
t−1−l)⊗ Â

′
Θ̂

′−1γ̂l (6.40)

+
1

a2n

n∑
t=1

∞∑
l=0

(B̄⊥,2Z1,t−1[Ũt−1−l(η̂)−Ut−1−l]
′)⊗ Â

′
Θ̂

′−1γ̂l

+
1

a2n

n∑
t=1

∞∑
l=0

(B̄2Z2,t−1U
′
t−1−l)⊗ Â

′
Θ̂

′−1γ̂l

+
1

a2n

n∑
t=1

∞∑
l=0

q∑
j=1

j−1∑
i=1

∞∑
k=0

(H′Wt−1−k−iU
′
t−1−l)⊗ Â

′
γ̂ ′
kΘ̂

′
jΘ̂

′−1γ̂l + op(1).

Note that

(Im −
q∑

j=1

Θ̂jL
j)[εt − εt(η̂)] =(ÂB̂−A0B0)Yt−1 +

p−1∑
j=1

(Φ̂∗
j −Φ∗

0,j)Wt−j

+

q∑
j=1

(Θ0,j − Θ̂j)εt−j. (6.41)

By (6.41), Corollary 1 and Lemma 2, we can show that

1

a2n

n∑
t=1

Ũt−1−k(η̂)Ũt−1−j(η̂)
′ =

1

a2n

n∑
t=1

Ut−1−kU
′
t−1−j + op(1).

Thus,

1

a2n
S̃22n =

1

a2n

n∑
t=1

∞∑
k=0

∞∑
j=0

[Ut−1−kU
′
t−1−j]⊗ γ̂ ′

kγ̂j + op(1). (6.42)
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By Corollary 3.1, (6.38), (6.41) and Lemma 2, we obtain a−2
n ẽ1n = op(1). Thus,

1

a2n
R̃1n =

1

a2n

n∑
t=1

(B̄⊥,2Z1,t−1 ⊗ Â′Θ̂
′−1)εt + op(1). (6.43)

When 1 < α < 2 or α = 1 and L̃(n) → 0, we have n
1
α
−1L̃(n) → 0. Thus, we have

ã−1
n ẽ2n = op(1). Furthermore, we have

1

ãn
R̃2n =

1

ãn

n∑
t=1

∞∑
k=0

[Ut−1−k ⊗ Im]γ̂
′
kεt + op(1). (6.44)

When 0 < α < 1 or α = 1 and L̃(n) → ∞, then n1− 1
α L̃−1(n) → 0. Thus, we have

na−2
n ẽ2n = op(1). Furthermore, we have

n

a2n
R̃2n =

n

a2n

n∑
t=1

∞∑
k=0

[(Ũt−1−k(η̂)−Ut−1−k)⊗ Im]γ̂
′
kεt + op(1). (6.45)

By (6.40)-(6.42), (6.44)-(6.45) and Lemma 2, we have

ãn
a4n

S̃12n(
1

a2n
S̃22n)

−1 1

ãn
R̃2n = op(1) and

1

na2n
S̃12nS̃

−1
22nS̃

′

12n = op(1). (6.46)

Denote M̂ = (Â
′
Θ̂

′−1Θ̂−1Â)−1Â
′
Θ̂

′−1. Then, by (6.35), (6.39), (6.43) and Lemma 2,

n(B̃∗ −B∗
0) = M̂(a−2

n

n∑
t=1

εtZ
′

1,t−1)[(na
2
n)

−1

n∑
t=1

Z1,t−1Z
′

1,t−1]
−1B̄−1

⊥,2 + op(1)

d−−→ MR1S
−1
11 B̄

−1
⊥,2,

as n → ∞. That is, (a) holds. When 1 < α < 2 or α = 1 and L̃(n) → 0, we have
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n
1
α
−1L̃(n) → 0. By Lemma 2, (6.40), (6.39) and (6.43), we have

1

nãn
S̃

′

12n(
1

na2n
S̃11n)

−1 1

a2n
R̃1n = op(1).

It follows that

n1/αL̃(n)(δ̃ − δ0)
d−−→ Γ−1

22 vec[
∞∑
l=0

γ
′

0,lR2l],

as n → ∞. That is, (b) holds. When 0 < α < 1 or α = 1 and L̃(n) → ∞, by (6.36), (6.39)

(6.40)-(6.43) and (6.45), it follows that

n(δ̃ − δ0)
d−−→ Γ−1

22 vec[
∞∑
l=0

γ
′

0,l(F2l + F3l + F4l)],

as n → ∞. That is, (c) holds. This completes the proof.

Supplementary Material

In the Supplementary Material, we provide a list of notation, additional simulation results,

the results of the model with a constant term included, and proofs of Lemma 1, Lemma 3

and result (6.30).
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