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Community Detection for Large Networks

SUBSAMPLING BASED COMMUNITY

DETECTION FOR LARGE NETWORKS

Sayan Chakrabarty, Srijan Sengupta and Yuguo Chen

Abstract: Large networks are becoming pervasive in scientific applications. Sta-

tistical analysis of such large networks is prohibitive due to exorbitant runtime

and high memory requirements. We propose a subsampling based divide-and-

conquer algorithm, SONNET, for community detection in large networks. The

algorithm splits the original network into multiple subnetworks with a common

overlap, and carries out detection algorithm for each subnetwork. The results

from individual subnetworks are aggregated using a label matching method to

get the final community labels. This method saves both memory and computation

costs significantly as one needs to store and process only the smaller subnetworks.

This method is also parallelizable which makes it even faster.

Key words and phrases: Community detection, computational efficiency, degree

corrected blockmodel, spectral clustering, stochastic blockmodel, subsampling.

1. Introduction

Network data appears in a wide variety of scientific and technological disci-

plines, such as social media (Sarkar and Rózemberczki, 2021), epidemiology
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(Leitch et al., 2019), neuroscience (Roncal et al., 2013), and transportation

(Gastner and Newman, 2006). A number of statistical models have been

developed for analyzing such network data, starting with the homogeneous

random graph model proposed by Erdös and Rényi (1959). In recent years,

there has been substantial interest in blockmodels, such as the stochastic

blockmodel (SBM), that allow nodes to be partitioned into different com-

munities or blocks (Holland et al., 1983; Goldenberg et al., 2010). A number

of generalizations of the SBM have been developed, such as the mixed mem-

bership blockmodel (Airoldi et al., 2008), the degree corrected blockmodel

(DCBM) (Karrer and Newman, 2011), the popularity adjusted blockmodel

(PABM) (Sengupta and Chen, 2018), etc.

One of the main inferential tasks on a network with an underlying com-

munity structure is to discover the community membership of each node.

A number of community detection algorithms have been studied in the lit-

erature. This includes spectral clustering and its variants that leverage the

eigen structure of the network (Rohe et al., 2011; Lei and Rinaldo, 2015;

Sarkar and Bickel, 2015; Sengupta and Chen, 2015; Cao and Chen, 2011),

likelihood based methods that maximize the model likelihood (Amini et al.,

2013; Zhao et al., 2012; Nowicki and Snijders, 2001), as well as optimization

based methods (Chen et al., 2012; Le et al., 2014). Most of these community
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detection algorithms have a high computation complexity. For example, the

simplest version of spectral clustering involves eigen decomposition of the

graph Laplacian, which can have computation complexity of O(n3) for a

network with n nodes (Pan and Chen, 1999). Likelihood modularity based

methods require iterative optimization of the likelihood functions, which is

computationally even more expensive (Mukherjee et al., 2021).

The high computational expense of community detection is also due to

computational memory requirement. During the analysis of the network,

e.g., when performing eigen decomposition, the computer program needs a

large amount of memory to store the intermediate variables in the RAM.

Table 1 illustrates the memory used in storage (ROM) and eigen decompo-

sition (RAM) of a network adjacency matrix stored as a sparse matrix in R.

The following computations were done in a cluster with 1 computing node

and 160 gigabyte of RAM. Although the storage space for a 20000-node

network is 91.61 megabyte, the computation memory is nearly 10 gigabyte,

which is more than the memory available in most personal computers. Ex-

trapolating to a 100000-node network, a computing system with at least

10 × 52 = 250 gigabyte of memory is needed for the eigen decomposition

alone. The computation time also becomes progressively infeasible.
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Number of nodes Storage memory ROM (MB) Computation memory RAM (MB) Computation time (hour)

10000 26.75 2480 4.58

20000 91.61 9806 22.28

30000 188.92 21948 55.22

Table 1: Computation costs in eigen decomposition of large networks.

Many real world networks are even larger than those in Table 1, with

the number of nodes in hundreds of thousands or even millions. Such large

networks are increasingly prevalent in many important application areas,

such as neuroscience and cybersecurity (Guo et al., 2020; Roncal et al.,

2013). Due to high runtime and memory cost, it is infeasible to carry out

statistically principled community detection on such networks.

One way to overcome these issues is to use a subsampling based method

that divides the network into smaller subnetworks and performs the commu-

nity detection algorithm on each of the subnetworks. Each subnetwork re-

quires significantly smaller memory and time for the computation, resulting

in overall gain in both storage and computation costs. There are only a few

divide and conquer based methods for community detection in the statistics

literature. Mukherjee et al. (2021) introduced two algorithms that split a

large network into smaller subnetworks, perform community detection in

the subnetworks, and combine the results in two different ways. These al-

gorithms are shown to improve the runtime by a big margin without much
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compromise in the accuracy of community recovery. There have been many

developments in the computer science literature, where fast computation

methods and/or parallelization were used for the spectral decomposition

methods (Yang and Xu, 2015; Karypis and Kumar, 1998; Yan et al., 2009;

Chen et al., 2011). Any divide and conquer algorithm on networks loses

information on the interaction between the subnetworks. Another challenge

for a divide and conquer algorithm for community detection is of combin-

ing the outputs from the subnetworks into a final set of meaningful labels

for the entire network. Since the community labels are correct up to any

permutation, combining the results becomes challenging.

This paper introduces a versatile algorithm called Subsampling on Net-

works or SONNET that takes subsamples from the network and applies the

relevant community detection algorithm on each subsample. It then stitches

the community labels from each subsample to get the community labels for

the entire network. SONNET can be paired with any community detection

algorithm on any network. Our key methodological innovation is to over-

come the label permutation challenge by first selecting a number of nodes

from the main network to create an overlapping part. Then the remain-

ing nodes are partitioned into several mutually exclusive and exhaustive

groups. SONNET attaches nodes in the overlapping part to each of the
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groups to form a set of induced subnetworks with some common nodes.

It then applies the community detection algorithm on each of the subnet-

works to obtain the community labels for the nodes in each subnetwork.

Finally, the labels from each subnetwork are matched using the labels of

the overlapping nodes to obtain the final set of labels for all the nodes. A

preliminary version of SONNET was discussed by Kumar (2017) in a Mas-

ter’s thesis. We modify and generalize the algorithm so that it can be paired

up with any suitable community detection algorithms to work on a bigger

class of networks. We derive a detailed generalized theory for SONNET and

use SBM and DCBM to illustrate how the general theory can be used to

obtain error bounds and complexities, and how SONNET can be applied on

such networks. We also compare SONNET with contemporary divide and

conquer methods both theoretically and numerically. Open source code

for implementing the algorithm and reproducing the results is available at

https://github.com/sayan-ch/SONNET-Community-Detection.

The paper is structured as follows. Section 2 presents and explains

SONNET. Section 3 contains a general upper bound for the error rate, general

computation complexity, results on data usage by SONNET, and theories

for SBM and DCBM. Section 4 describes the applications of SONNET on

simulated and real networks. Section 5 presents a discussion on SONNET.
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2. Methodology

We first introduce some notations. We use the terminology simple network

to indicate undirected, unweighted graph without any self-loops or multiple

edges between nodes. We use the letter S to denote the set of n nodes in

the entire network G and K to denote the number of communities. For

the scope of this paper, we assume K is fixed and known. We use s and o

to denote the number of subnetworks and the size of the overlapping part

used in SONNET, respectively. The set of o nodes in the overlapping part

is denoted by S0 and the s partitions of the remaining nodes in the non-

overlapping part S\S0 by S
′
1, . . . , S

′
s. The set of nodes in the ith subnetwork

is Si = S0 ∪ S ′
i, i = 1, . . . , s. Given a subset of nodes Sd ⊂ S, the subnet-

work spanned by Sd is denoted by GSd
. We use the terms subnetwork and

subgraph interchangeably. A is the n × n adjacency matrix corresponding

to the network G. C represents the n×K community membership matrix.

The (i, j)th element Cij is 1 if the ith node belongs to the jth community,

and 0 otherwise. Cn×K represents the space of all community membership

matrices of order n×K. For a network with K communities, the proportion

of nodes in the ith community is denoted by πi, i = 1, . . . , K, and πmin and

πmax are the proportions of nodes in the smallest and the largest commu-

nities, respectively. The l0 norm of a matrix C is defined as the number
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of non-zero entries in C, i.e., ∥C∥0 =
∑n

i=1

∑K
j=1 1{Cij ̸= 0}, where 1{·}

is the indicator function. A permutation matrix EK×K is a matrix which

has a single 1 in each row and column, and 0 elsewhere. The space of all

permutation matrices of size K × K is defined as EK . For any matrix D

and two sets of indices I, J , the notation DI,J denotes the submatrix of D

that has the rows corresponding to the indices in I and the columns cor-

responding to the indices in J . Similarly, DI∗ denotes the submatrix of D

with the rows corresponding to the indices in I and all the columns, and

D∗J denotes the submatrix of D with the columns corresponding to the

indices in J and all the rows. For a matrix Mp×q, the matrix 2, 1 norm is

defined as ∥M∥2,1 =
∑p

i=1∥Mi∗∥, where ∥·∥ is the Euclidean norm. We use

the abbreviation ‘w.p.’ for ‘with probability’.

The algorithm SONNET consists of four main parts: division, detection,

stitching, and repetition. At the division step, the entire network is split

into multiple subnetworks, with a set of overlapping nodes which is com-

mon to all the subnetworks. Then at the detection step, we apply a suitable

community detection algorithm on each of the subnetwork. Since the sub-

networks are small compared to the entire network, this step is faster than

community detection on the full network. Also, this is the step which can

be parallelized by running community detection for each subnetwork on dif-
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ferent processors of a multi-core computer. Next, we ‘stitch’ the multiple

sets of labels that we get as the outputs from the multiple subnetworks to

obtain the labels for the entire network. The labels of the overlapping part

from different subnetworks are matched to perform the stitching. Since we

use information from multiple sets of labels for the overlapping part and

only one set of labels for each non-overlapping part, the community de-

tection might not always be accurate for the non-overlapping parts. Thus

we split the entire non-overlapping part again into multiple subgraphs and

perform community detection on each subgraph. We stitch the community

labels from the new subgraphs with the labels from the previous step. We

repeat this step a number of times to get accurate community assignments

for the nodes in the non-overlapping part.

At the division step, we fix the overlap size o and the number of sub-

networks s. Then, we select o nodes from the entire network, and parti-

tion the remaining n − o nodes randomly into s different groups of size

m = (n− o)/s. We form s subnetworks by inducing the subnetworks corre-

sponding to the o+m nodes. Each subnetwork contains all the nodes from

the overlapping part and m nodes from the corresponding partition of the

non-overlapping part. The parameters o and s must be selected in such a

way to ensure that nodes from all communities are represented in each of
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the subnetworks. The selection criterion depends on the random selection

and partitioning mechanism as well. When simple random sampling with-

out replacement (SRSWOR) is used to select the overlapping part, o must

be greater than the order of K3 in a balanced network to guarantee the

inclusion of all the communities in it with a high probability (See Lemma

S3 in the Supplementary Material). In the presence of degree heterogene-

ity in the network, a random selection of the overlapping part might not

be optimal. Since overlapping part contains the information to stitch the

outputs from each subnetwork, it must be well connected with all the par-

titions of the non-overlapping part. In that case, one may use sampling

proportional to the degree or some random walk based methods to ensure

that higher degree nodes from all the communities are well represented in

the overlapping part.

In the next step, we select a community detection algorithm and apply

it on each of the s subnetworks to obtain community labels for the nodes

in each subnetwork. The selection of the community detection algorithm

plays a crucial role in determining the accuracy of the overall community

detection using SONNET. The community detection algorithm itself has to

be reasonably accurate on the subnetworks for SONNET to be accurate.

In the stitching step, we match the community labels of the overlap-
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ping nodes across different subnetworks, which is challenging. For a small

number of communities K, a brute force method (Algorithm S1 in the

Supplementary Material) is used where we search over all possible permu-

tations of the community labels to find the best match between two sets

of labels. The drawback of the brute force method is that it is computa-

tionly expensive for a large value of K as it takes K! searches. For large

K, we use a greedy search algorithm to find the best match between two

sets of labels instead. We present two label matching algorithms, MatchBF

and MatchGreedy, for the brute force search and the greedy search, respec-

tively. Both algorithms take two community membership matrices C1 and

C2 (both o×K) as input, and return a permutation matrix E ∈ EK . While

MatchBF returns E0 = argmin
E∈EK

∥C1E−C2∥0, MatchGreedy is shown to return

E0 under certain assumptions (Mukherjee et al., 2021). The algorithms are

described in Appendix S1. We fix a subnetwork at random (for example,

we choose the first subnetwork in our application) and match the labels of

the overlapping part of the other subnetworks with the fixed subnetwork.

We use the resulting permutations that are used for the overlapping part to

change the labels of the non-overlapping part as well for each subnetwork.

Then, we combine the labels for the non-overlapping part and take a vote

of count for the overlapping part. If there is a tie when taking a vote for
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Algorithm 1 SONNET
Input A network G with n nodes in S and adjacency matrix A, number of communities K, number of

subgraphs s, size of the overlapping part o, number of repetitions r, a community detection algorithm

A, and a label matching algorithm M.

Output A membership matrix Ĉn×K .

procedure SONNET(S,K, s, o, r,A,M)

1. Select o nodes at random from S. Name the corresponding set of nodes S0.

2. Split S \ S0 randomly into s exhaustive parts: S′
1, . . . , S

′
s.

3. Form Si = S0 ∪ S′
i, i = 1, . . . , s.

4. Apply clustering algorithm A on the subnetwork GSi
and label the output as Ĉ

(i)
(m+o)×K

,

i = 1, . . . , s, where m = (n− o)/s.

5. Compute Ei = M
(
Ĉ

(i)
S0∗, Ĉ

(1)
S0∗

)
, i = 2, . . . , s.

6. Update Ĉ(i) = Ĉ(i)Ei, i = 2, , . . . , s. Make Ĉ(i) an n×K matrix by inserting rows with all 0’s for

the nodes that are not present in Ĉ(i), i = 1, . . . , s. Compute Ĉ(temp) such that Ĉ
(temp)
S\S0∗

=
s∑

i=1
Ĉ

(i)
S\S0∗

and Ĉ
(temp)
S0∗ is a matrix of 0’s.

7.

for (j from 1 to r) do

7.1. Split S \ S0 randomly into s partitions: S′
1j , . . . , S

′
sj .

7.2. Apply clustering algorithm A on the subnetwork GS′
ij

and label the output as Ĉ(ij) for

i = 1, . . . , s.

7.3. Compute Eij = M
(
Ĉ(ij), Ĉ

(temp)

S′
ij∗

)
, i = 1, . . . , s.

7.4. Update Ĉ(ij) = Ĉ(ij)Eij , i = 1, . . . , s. Make Ĉ(ij) an n × K matrix by inserting rows

with all 0’s for the nodes that are not present in S′
ij . Compute Ĉj =

s∑
i=1

Ĉ(ij).

8. Set ĈS\S0
= 1

r+1

(
Ĉ(temp) +

r∑
j=1

Ĉj

)
. Replace the highest value in each row corresponding

to S \ S0 by 1 and the rest by 0. Break the ties, if any, randomly.

9. Set ĈS0
= 1

s

s∑
i=1

Ĉ
(i)
S0∗. Replace the highest value in each row by 1 and the rest by 0. Break

the ties, if any, randomly. Make it an n×K matrix by inserting rows with all 0’s for the nodes that

are not in the overlapping part.

10. Return Ĉ = ĈS0
+ ĈS\S0

.
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the nodes in the overlapping part, we use one of the tied labels randomly.

Finally in the repetition step, we split the entire non-overlapping part

randomly into s subnetworks. Then we perform community detection on

each of these parts and match the labels with those from the output from

the stitching step. We repeat this procedure r times and take a vote of count

for each of the nodes in the non-overlapping parts out of the r sets of labels

from this step. This step, although not obligatory, can be used to increase

the accuracy of SONNET. A large value of r can also increase the computation

time significantly, defeating the purpose of SONNET. In practice, we select a

combination of s and o such that we expect a reasonable precision in a quick

time, and then increase the value of r based on the computation budget.

SONNET is presented in Algorithm 1. The following new notations are

used in Algorithm 1. The output membership matrices from applying com-

munity detection algorithm A on each subnetwork spanned by Si is defined

as Ĉ
(i)
(m+o)×K , i = 1, . . . , s.

3. Theoretical Results

3.1 General Error Bound for SONNET

SONNET is a generalized divide and conquer algorithm that can be used with

any community detection algorithm that is reasonably accurate. In this
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section, we develop the general theory for a simplified version of SONNET,

called SimpleSONNET (Algorithm 2). In SimpleSONNET, we assign the labels

from the first subgraph to the nodes in the overlapping part instead of

performing a majority voting. Label matchings are done using brute force

method (Algorithm S1) in SimpleSONNET. We omit the repetition step in

this version of the algorithm. The theory is not specific to any community

detection algorithm or any network model. It provides an upper bound

for the error rate of SimpleSONNET given that the community detection

algorithm has low error rates on the subnetworks. We also apply the general

bound on two special cases: spectral clustering on SBM and spherical K-

median spectral clustering on DCBM in Sections 3.4 and 3.5.

Given two n × K community membership matrices C1 and C2, the

number of mismatches is defined as M(C1, C2) = argmin
E∈EK

∥C1E − C2∥0,

and the proportion of mismatches or error rate is δ(C1, C2) =
1
n
M(C1, C2).

Note that the output from SimpleSONNET algorithm with s subgraphs and

an overlapping size of o can be written as

Ĉ = Ĉ
(1)
S0∗+Ĉ

(1)

S′
1∗
+Ĉ

(2)

S′
2∗
E2+· · ·+Ĉ(s)

S′
s∗Es = Ĉ

(1)
S1∗+Ĉ

(2)

S′
2∗
E2+· · ·+Ĉ(s)

S′
s∗Es, (3.1)

where Ĉ
(j)

S′
j∗

is the community membership matrix obtained by applying the

community detection algorithm A to subgraph GSj
and padded with 0 rows
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for the nodes that are not present in S ′
j, and Ej = argmin

E∈EK

∥Ĉ(j)
S0∗E − Ĉ

(1)
S0∗∥.

Algorithm 2 SimpleSONNET
Input A network G with n nodes in S and adjacency matrix A, number of communities K, number

of subgraphs s, size of the overlapping part o, and a community detection algorithm A.

Output A membership matrix Ĉn×K .

procedure SimpleSONNET(S,K, s, o,A)

1. Select o nodes at random from S. Name the corresponding set of nodes S0.

2. Split S \ S0 randomly into s exhaustive parts: S′
1, . . . , S

′
s.

3. Form Si = S0 ∪ S′
i, i = 1, . . . , s.

4. Apply clustering algorithm A on the subnetwork GSi
and label the output as Ĉ

(i)
(m+o)×K

,

i = 1, . . . , s, where m = n−o
s

.

5. Compute Ei = argmin
E∈EK

||Ĉ(i)
S0∗E − Ĉ

(1)
S0∗||0, i = 2, , . . . , s.

6. Update Ĉ(i) = Ĉ(i)Ei, i = 2, , . . . , s. Make Ĉ(i) an n ×K matrix by inserting 0 rows for the

nodes that are not present in Ĉ(i), i = 1, . . . , s.

7. Return Ĉ = Ĉ
(1)
S0∗ + Ĉ

(1)

S′
1∗

+ Ĉ
(2)

S′
2∗

+ · · ·+ Ĉ
(s)
S′
s∗

.

We are interested in obtaining an upper bound for the quantity δ(Ĉ, C),

where C is the true n × K membership matrix for the network G. Note

that, for any E ∈ EK ,

∥ĈE − C∥0

=∥Ĉ(1)
S0∗E − CS0∗∥0 + ∥Ĉ(1)

S′
1∗
E − CS′

1∗∥0 + ∥Ĉ(2)
S′
2∗
E2E − CS′

2∗∥0 + · · ·+ ∥Ĉ(s)
S′
s∗
EsE − CS′

s∗∥0

=∥Ĉ(1)
S1∗E − CS1∗∥0 + ∥Ĉ(2)

S2∗E2E − CS2∗∥0 + · · ·+ ∥Ĉ(s)
S′
s∗
EsE − CS′

s∗∥0. (3.2)

Taking the minimum over E ∈ EK on the left hand side of (3.2), in general,

results into a larger value than taking the minimum on the individual terms
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on the right hand side, as the minimum is taken over a larger space on the

right hand side where each partition Ĉ
(j)
Sj∗ or Ĉ

(j)

S′
j∗

can have different best

permutation matrices. In the following results, we show that under certain

assumptions on the network and the community detection algorithm, the

permutation matrix that minimizes the term on the left can be used to find

expressions for the permutation matrices that minimize the terms on the

right. We use this insight to find an upper bound for the error rate.

Lemma S2 in the Supplementary Material states that multiplying each

term with a permutation matrix inside ∥.∥0-norm does not change its value.

If some communities are not well represented in the overlapping part

in SimpleSONNET, the stitching step produces erroneous results. Consider

the situation where a particular community is completely absent from the

overlapping part. Then all the nodes in that community will be assigned

community labels at random. To ensure that all the communities are well

represented in the overlapping part, its size o should not be too small.

Lemma S3 in the Supplementary Material states a condition on o such

that the size of the smallest community in the overlapping part is larger

than a certain value. We denote the sizes of the smallest and the largest

communities in the overlapping part by ômin and ômax respectively. Then,

for a balanced network where πmax=πmin=
1
K
, if o/K(K + 1)2 → ∞, then
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ômin ≥ o/(K + 1) and ômax ≤ o/(K − 1) hold with probability ≥ 1 − ωo,

where ωo = K exp{−o/(4K(K + 1)2)}.

The following theorem states that the permutation matrix, which best

matches a subgraph with the truth, also best matches any of its subgraphs,

provided the community detection algorithm satisfies certain conditions. It

also provides an expression for the permutation matrix that stitches each

subgraph with the first subgraph using only the overlapping part.

Theorem 1. Suppose for each partition Sq = S0 ∪ S ′
q, q = 1, . . . , s, there

exists an upper bound ϵ > 0 for the proportion of misclustered nodes in each

subgraph and a probability α (free from q), such that the following conditions

hold:

P
(
∥Ĉ(q)

Sq∗E
∗
q − CSq∗∥0 < ϵ(o+m)

)
≥ 1− α, (3.3)

where E∗
q := argmin

E∈EK

∥Ĉ(q)
Sq∗E − CSq∗∥0, q = 1, . . . , s, and

ϵ(o+m) ≤ oπmin
(1 + πmin)

. (3.4)

Then we have

P
(
argmin
E∈EK

∥Ĉ(q)
S0∗E − CS0∗∥0 = E∗

q

)
≥ 1− ωo − 2α, q = 1, . . . , s, and (3.5)

P
(
E∗
qE

∗−1
1 = argmin

E∈EK

∥Ĉ(q)
S0∗E − Ĉ

(1)
S0∗∥0

)
≥ 1− ωo − 4α, q = 2, . . . , s, (3.6)

where ωo is defined similarly as in Lemma S3.
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Proofs of the above theorem and other theoretical results are given

in the Supplementary Material. Condition (3.3) ensures that there is a

uniform upper bound to the output of algorithm A when applied on the in-

dividual subgraphs in SimpleSONNET. Condition (3.4) states that the error

bound should be reasonably small. Also, the right hand side of Condition

(3.4) tends to be smaller for unbalanced cases, which makes it necessary to

find a tighter upper bound ϵ for the number of misclustered nodes in each

subgraph. To summarize, for the algorithm SimpleSONNET to effectively re-

cover the community labels for a large network using a community detection

algorithm, the communities in the whole network must not be too unbal-

anced, and the underlying community detection algorithm must be able to

recover the community labels in each subgraph with certain accuracy.

Combining the above results, we obtain the following main theorem.

Theorem 2. Under the assumptions in Theorem 1, the overall proportion

of misclustered nodes for the output of SimpleSONNET on G with s subgraphs

and an overlapping size o satisfies

δ(Ĉ, C) =
1

n
min
E∈EK

∥ĈE − C∥0 ≤
s(o+m)

n
ϵ

w.p. ≥1− (s− 1)ωo − (5s− 4)α, (3.7)

where ωo and α are defined in the same way as Theorem 1.
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Theorem 2 gives an upper bound for the error in community detection

using SimpleSONNET in terms of the upper bound ϵ for the error rate in

community detection of the individual subgraphs. In Sections 3.4 and 3.5,

we derive upper bounds on the error rate when SimpleSONNET is applied

with spectral clustering on SBMs, and with spherical K-median spectral

clustering on DCBMs.

3.2 Computational Costs of SONNET

In this section, we find a general expression for the complexity of

SONNET. Assume that SONNET is applied with community detection algo-

rithm A on a network with n nodes and K communities. Let the computa-

tion complexity of A on such a network be T (n,K). Then the computation

complexity of SONNET due to the detection step is O(sT (o + m,K)) as

algorithm A is applied on s subgraphs of size o+m each.

The complexity due to the stitching step for the overlapping part is

dominated by the label matching of the overlapping part in each ofGS2 , . . . , GSs

with that of GS1 . Label matching of two sets of labels of size o, ranging

from 1 to K, takes O(oK!) time. Thus, the computation complexity from

this step is O(soK!). The computation complexity due to the repetition

step is split into two parts. In the repetition step, community detection al-
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gorithm A is applied on s new subgraphs of size m and is repeated r times.

The complexity due to this part is O(rsT (m,K)). In the second part, for

each repetition, s label matchings are performed on sets of labels of size m,

ranging from 1 to K. Thus, the complexity due to this part is O(rsmK!).

Therefore, the total computation complexity of SONNET with community

detection algorithm A and brute force label matching is O(sT (o+m,K))+

O(oK!) + O(rsT (m,K)) + O(rsmK!). In general, the time function T of

the community detection algorithm can be assumed to be non-decreasing

with the size of the network. Thus, T (m,K) ≤ T (o+m,K). Also, for most

of the parameter combinations, rsm = r(n− o) ≥ o. Then we simplify the

above expression to O(rsT (o+m,K)) +O(rsmK!).

For small K, the complexities due to the stitching steps for both the

overlap and the repetitions are small compared to the subgraph detection

parts. For large K, label matching is very slow as the complexity is O(K!),

and some greedy label matching algorithm is recommended. If Algorithm

S2 (MatchGreedy) is used as the label matching algorithm with SONNET, the

computation complexity reduces to O(rsT (o+m,K)) +O(rsmK2).

The complexity of algorithm A depends on many factors including the

base method used (eigen decomposition, or likelihood/modularity optimiza-

tion, or convex optimization, etc.) and the sparsity of the network, e.g.,
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spectral clustering of a dense matrix has the complexity of T (n,K) = n3,

whereas the same can be performed with a complexity of T (n,K) = nθ for

some 1 < θ < 3 depending on the sparsity of the network and the algorithm

used for eigen decomposition. The ratio of complexities of SONNET imple-

mented in parallel using ncore processors to algorithm A with complexity

nθ on the whole network is approximately
⌈

rs
ncore

⌉ (
o+m
n

)θ
. For θ > 1, SONNET

will usually see a computational gain compared to the whole network.

For a network of size n, both the storage and computation memory are

proportional to n2. For SONNET, one only needs to store s subnetworks of

size (m + o) for computation. Since only one subnetwork is stored in the

memory for each computation, the maximum memory required to execute

the computation is proportional to (m + o)2. For example, if SONNET with

s = 100, o = 5000 is applied on a network of size 50000, only (5450)2

500002
×100% =

1.18% of the memory that is required for community detection on the whole

network is needed. In case community detection on the entire network is

infeasible due to memory limitations, SONNET can still be applied.

3.3 Optimizing Trade-off Between Data Usage and Computation

Complexity of SONNET

We use the term data usage to refer to the part of the network adjacency

matrix that is used in SONNET.
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Theorem 3. The expected data usage proportion of SONNET up to the ρth

repetition step with s subgraphs and overlapping size o is

1−
(
n− o

n

)2(
s− 1

s

)ρ+1

. (3.8)

From (3.8), the expected proportion of used pairs up to the ρth rep-

etition step of SONNET is a strictly increasing function of ρ. This result

suggests that one should choose as large a value of r as the computation

resources permit to avoid data wastage. We exploit the trade-off between

expected data usage proportion and the computation complexity to select

the parameters for SONNET. We maximize the data usage proportion over s

and o with an upper bound q of the ratio of complexities of SimpleSONNET

to that of algorithm A on the whole network. Once the optimized values

of s and o are obtained, one may choose the number of repetitions based

on available computing resources.

Assume that the complexity of A is given by nθ for some θ > 0, and the

number of communities K does not scale with n. Then the ratio of com-

plexities of SONNET with A to that of A on the whole network is given by

s((o+m)/n)θ. Let q be the runtime budget for SONNET, expressed as a frac-

tion of the runtime needed for the whole network. For example, q = 0.001

means we want SONNET to take no more than 0.1% of the runtime for the

whole network. Then, we carry out the following constrained optimization
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to obtain s and o:

max
s,o

[
1−

(
n− o

n

)2(
s− 1

s

)]
(3.9)

with the constraint s

(
o+m

n

)θ

≤ q. (3.10)

3.4 SimpleSONNET with Spectral Clustering on SBM

We use the general bound structure to obtain an upper bound for the ex-

pected error rate when SimpleSONNET is applied with spectral clustering

(Algorithm S3 in the Supplementary Material) on SBMs (the Supplemen-

tary Material contains the details of SBM). First, we derive a uniform upper

bound ϵ for the expected error rates when spectral clustering is applied on

each of the subgraph. Then we obtain a final bound using Theorem 2.

Lei and Rinaldo (2015) derived an upper bound for the proportion of

misclustered nodes for the output from spectral clustering on an SBM that

satisfies certain conditions. We restate the bound with our notations in

Theorem S1 in the Supplementary Material. However, Theorem S1 is not

directly applicable to a random subgraph GSd of size d as the terms π
(Sd)
min

and π
(Sd)
max in the error bound are random. Thus, we use a lower bound for

π
(Sd)
min and an upper bound for π

(Sd)
max from Lemma S3 to replace those in the

bound in Theorem S1 and obtain the following results.

Theorem 4. Suppose Sd is a random subset of d nodes from the n nodes in
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S. Assume that the network G satisfies Conditions 1, 2, and 3 of Theorem

S1. Let Ĉ(Sd) be the output of (1+δ)-approximate K-means spectral cluster-

ing (Algorithm S3) applied on GSd. Then there exists an absolute constant

c such that if

(2 + δ)
K(1 + πmin)

2

π2
minλ

2dαn
< c, (3.11)

then with probability at least 1− 1
d
− 3ωd,

δ(Ĉ(Sd), CSd∗) ≤ c−1(2 + δ)
Kπmax(1 + πmin)

2

π2
min(1− πmax)λ2dαn

, (3.12)

where ωd = K exp
(
− dπ3

min

4(1+πmin)2

)
, and αn and λ are defined in Theorem S1.

We use Theorem S1 along with Theorem 4 to derive an upper bound

for the expected error rate when SimpleSONNET is applied with (1 + δ)-

approximate K-means spectral clustering on SBM.

Theorem 5. Let Ĉ be the output of SimpleSONNET, applied with (1 + δ)-

approximate K-means spectral clustering on a network G of size n that is

generated by SBM. Assume G satisfies Conditions 1, 2, and 3 in Theorem

S1. Suppose s subgraphs were used with an overlapping size of o. Then

there exists an absolute constant c such that if

(2 + δ)
K(1 + πmin)

2

π2
minλ

2(o+m)αn
< c, and (3.13)

o ≥ 2c−1(2 + δ)
Kπmax(1 + πmin)

3

π3
min(1− πmax)λ2αn

, (3.14)
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then with probability ≥ 1− (s− 1)ωo − 3(5s− 4)ωo+m − 5s−4
o+m

,

δ(Ĉ, C) ≤ c−1(2 + δ)
sKπmax(1 + πmin)

2

π2
min(1− πmax)λ2nαn

. (3.15)

Condition 3.13 in this theorem is technical and ensures that the network

model parameters are such that we can apply the bound given in Theorem

S1. Condition 3.14 comes from Theorem 1 that ensures that spectral clus-

tering is reasonably accurate for each of the subgraphs.

3.5 SimpleSONNET with Spherical Spectral Clustering on DCBM

We use the general bound structure to obtain an upper bound for the ex-

pected error rate when SimpleSONNET is applied with spherical K-median

spectral clustering on DCBMs. Details of Algorithm S4 and the DCBM are

in the Supplementary Material. First, we derive a uniform upper bound ϵ

for the expected error rates when spectral clustering is applied on each of

the subgraph. Then we obtain a final bound using Theorem 2.

We introduce some new notations for DCBM. Let ψ ∈ Rn be the node-

level degree parameter. Let ϕk be the n × 1 vector that agrees with ψ on

Gk and zero otherwise. Define ϕ̃k = ϕk
∥ϕk∥

, and ψ̃ =
K∑
k=1

ϕ̃k. We also define

effective community size ñk = ∥ϕk∥2. Let ñmin = min {ñ1, . . . , ñK}.

Theorem S2 in the Supplementary Material restates a result by Lei and

Rinaldo (2015) on an upper bound of the proportion of misclustered nodes
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of spherical (1+ δ)-approximate K-median spectral clustering applied on a

DCBM using our notation. However, Theorem S2 is not directly applicable

to a random subgraph GSd of G as the terms ñ
(Sd)
min and ψ̃i’s in the error

bound are random. Thus, we find a lower bound for ñ
(Sd)
min in Lemma S6 and

an upper bound for
∑
i∈Sd

ψ̃−2
i in Lemma S7 in the Supplementary Material,

and replace that in the bound in Theorem S2 to obtain an upper bound

for the error rate of spherical K-median spectral clustering on a random

subgraph GSd . The following theorem uses the two lemmas to obtain an

error bound when spherical K-median spectral clustering is applied on a

subgraph spanned by a random subset Sd of size d of all the nodes in S.

Theorem 6. Suppose GSd is a random subgraph of size d from a network

G of size n that is generated by DCBM. Assume that G satisfies Conditions

1, 2, and 3 of Theorem S2. Let Ĉ(Sd) be the output of spherical spectral

clustering using (1 + δ)-approximate K-median clustering applied on GSd.

Then there exists an absolute constant c such that if

(2.5 + δ)

√
K( d

n
Sψ̃ + η∗)(1 + πmin)

λ
(
d
n
ñmin − γ∗

)
πmin

√
dαn

< c, (3.16)

then, with probability ≥ 1− 1
d
− ωd − 2(K+1)

n
,

δ(Ĉ(Sd), CSd∗) ≤ c−1(2.5 + δ)

√
K( d

n
Sψ̃ + η∗)

λ
(
d
n
ñmin − γ∗

)√
dαn

, (3.17)
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where Sψ̃, γ
∗, and η∗ are defined in Lemmas S6 and S7, αn and λ in The-

orem S2, and ωd = K exp
(
− dπ3

min

4(1+πmin)2

)
.

We use Theorem 2 along with Theorem 6 to derive an upper bound

for the expected error rate when SimpleSONNET is applied with spherical

(1 + δ)-approximate K-median spectral clustering.

Theorem 7. Let Ĉ be the output of SimpleSONNET, applied with spherical

(1 + δ)-approximate K-median spectral clustering on a network G of size

n that is generated by DCBM. Assume G satisfies Conditions 1, 2, 3 in

Theorem S2. Suppose s subgraphs were used with an overlapping size of o.

Then there exists an absolute constant c such that if

(2.5 + δ)

√
K(o+m

n
Sψ̃ + η∗)(1 + πmin)

λ
(
o+m
n
ñmin − γ∗

)
πmin

√
(o+m)αn

< c, and (3.18)

o√
o+m

≥ c−1(2.5 + δ)
(1 + πmin)

√
K(o+m

n
Sψ̃ + η∗)

λπmin
(
o+m
n
ñmin − γ∗

)√
αn

, (3.19)

then, with probability ≥ 1− (s− 1)ωo − (5s− 4)( 1
o+m

+ ωo+m + 2(K+1)
n

),

δ(Ĉ, C) ≤ c−1(2.5 + δ)
s
√

(o+m)K(o+m
n
Sψ̃ + η∗)

λ
(
o+m
n
ñmin − γ∗

)
n
√
αn

. (3.20)

4. Application

We apply SONNET with spectral and spherical K-median spectral clustering

on networks simulated from SBM and DCBM, as well as real-world net-

works. We compare the performance of SONNET with the performance of
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community detection on the whole network and GALE. We did not report

the results for the other divide and conquer algorithm, PACE, proposed in

Mukherjee et al. (2021) as GALE performed better than PACE for the ex-

amples we considered. The implementation details of SONNET are given in

Section S2.7 in the Supplementary Material.

4.1 SONNET with spectral clustering on SBM

We consider two simulation setups for SBM. In each setup, we indepen-

dently generate 100 simple networks with n nodes and each node is ran-

domly assigned to one of the K communities. Edges are generated ran-

domly with probability p(intra) for two nodes in the same community, and

with probability p(inter) for two nodes in different communities. For each

network, we run SONNET with spectral clustering on the Laplacian matrix.

We match the best permutation of the outputs of SONNET with the true

membership of the nodes to compute the error rate. In the first setup, we

take n = 10000, K = 5, p(intra) = 0.2, and p(inter) = 0.05. In the second

setup, we consider n = 20000, K = 20, p(intra) = 0.2, and p(inter) = 0.1.

In both cases, we choose the optimized parameters s̃ and õ obtained by

maximizing (3.9) with the constraint (3.10) for different values of the time

constraint q. For each combination of s̃ and õ, we use r = 0, 2, 5 for 10000-
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node network and r = 0, 10, 20 for 20000-node network. We also applied

GALE with spectral clustering in each setup. We tried several combinations

of parameters p (number of subgraphs) and T (size of each subgraph) of

GALE and reported the cases with the lowest error rate and with the shortest

computation time. All the results are in Table 2. Furthermore, we present

a detailed study on error rates and runtimes of SONNET for different values

of s, o, and r for n = 10000 in Section S2.6 in the Supplementary Material.

Table 2 shows that, using the parameter selection method in Section

3.3, SONNET can achieve error rates close to (and in some cases even lower

than) spectral clustering on the entire network for both n = 10000 and

n = 20000. For n = 10000, SONNET with spectral clustering achieves 0%

error rate in 4.1 seconds (highlighted row in Table 2), compared to 1967.5

seconds for spectral clustering on the entire network and 3.23% error rate

for GALE in 26.3 seconds. For n = 20000, SONNET reaches 0.4% error rate in

only 488 seconds (highlighted row in Table 2), compared to 5.6% error rate

of spectral clustering on the whole network in 15379 seconds and 7.33%

error rate of GALE in 2218 seconds. Overall, SONNET is both faster and more

accurate than spectral clustering on the whole network and GALE on SBMs.
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SBM Method Parameter Selection Error Comp. Time Exp. Data

Specifications q s̃ õ r Rate % in sec. Use %

n = 10000 SC - - - - 0 (0) 1967.5 (9.8) 100

K = 5 SONNET 0 0.98 (0.01) 4.9 (0) 5.5

p(intra) = 0.2 + 0.0001 41 160 2 0.29 (0.01) 11.2 (0) 10.1

p(inter) = 0.05 SC 5 0.01 (0.00) 19.5 (0.1) 16.5(
O(n3)

)
0 0 (0) 4.1 (0) 11.0

0.0005 17 276 2 0 (0) 9.4 (0) 21.2

5 0 (0) 16.4 (0) 34.3

0 0 (0) 4.7 (0) 15.5

0.001 12 400 2 0 (0) 10.0 (0) 29.0

5 0 (0) 17.7 (0) 45.3

0 0 (0) 14.3 (0.1) 33.8

0.005 5 905 2 0 (0) 23.2 (0.1) 57.6

5 0 (0) 38.0 (0.1) 78.3

0 0 (0) 29.8 (0.1) 49.6

0.01 3 1309 2 0 (0) 47.4 (0.3) 77.6

5 0 (0) 74.1 (0.3) 93.4

GALE p T - - -

+ 50 300 14.01 (3.00) 15.2 (0.8) -

SC 50 1000 3.23 (1.04) 26.3 (1.1) -

n = 20000 SC - - - - 5.57 (0.31) 15378.8 (107.2) 100

K = 20 SONNET 0 14.97 (0.08) 112.2 (0.4) 35.2

p(intra) = 0.2 + 0.005 5 2000 10 9.04 (0.05) 414.7 (0.9) 93.0

p(inter) = 0.1 SC 20 3.84 (0.03) 745.0 (1.3) 99.3(
O(n3)

)
0 0.40 (0.04) 487.8 (0.8) 64.1

0.025 5 6605 10 14.66 (0.04) 626.6 (1.1) 96.1

20 12.24 (0.05) 754.8 (1.1) 99.6

0 1.75 (0.14) 932.1 (1.0) 78.55

0.05 5 9625 10 15.87 (0.07) 1003.2 (1.1) 97.7

20 15.12 (0.10) 1091.4 (1.4) 99.8

0 4.86 (0.03) 1123.2 (3.4) 54.3

0.075 35 6280 10 18.33 (0.03) 1206.5 (2.8) 65.8

20 15.48 (0.03) 1274.7 (2.9) 74.4

GALE p T - - -

+ 50 1000 10.15 (4.10) 442 (61) -

SC 50 5000 7.33 (0) 2218 (1364) -

Table 2: SONNET with spectral clustering (SC) on networks simulated from SBM:

Average error rates and computation times from 100 simulations are reported

with standard deviations in the parentheses.
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4.2 SONNET with spherical K-median spectral clustering on DCBM

We consider two simulation setups for DCBM. In each setup, we inde-

pendently generate 100 simple networks with n nodes and each node is

randomly assigned to one of the K communities. Given a degree vector

ψ ∈ Rn, edges are generated randomly with probability ψiψjp
(intra) for two

nodes i, j in the same community, and with probability ψiψjp
(inter) for two

nodes i, j in different communities.

For each network, we run SONNET with spherical K-median spectral

clustering on the Laplacian matrix. We match the best permutation of the

outputs of SONNET with the true membership of the nodes to compute the

error rate. We choose the parameters s̃ and õ as in the SBM case and try

multiple values of r. In the first setup, we take n = 10000 and K = 5. In

the second setup, we consider n = 20000 and K = 20. In both cases, we

have p(intra) = 0.1 and p(inter) = 0.03, with ψ randomly selected between 1

and 100 for each node. The results are presented in Table 3. For n = 10000,

SONNET achieves 3% error rate in only 4 seconds and 0.2% error rate in 76

seconds (highlighted rows in Table 3), compared to 0.09% error rate in 2068

seconds for spherical K-median spectral clustering on the whole network.

GALE achieves 0.9% error rate in 784 seconds in the same setting.
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DCBM Method Parameter Selection Error Comp. Time Exp. Data

Specifications q s̃ õ r Rate % in sec. Use %

n = 10000 SSC - - - - 0.09 (0) 2068.2 (8.62) 100

K = 5 SONNET 0 7.07 (0.04) 5.1 (0) 5.5

p(intra) = 0.1 + 0.0001 41 160 2 5.31 (0.02) 11.9 (0) 10.1

p(inter) = 0.03 SSC 5 3.20 (0.02) 21.1 (0.0) 16.5

ψ ∼ U [1, 100]
(
O(n3)

)
0 3.04 (0.02) 4.0 (0) 11.0

0.0005 17 276 2 2.09 (0.01) 9.6 (0) 21.2

5 1.22 (0.01) 17.1 (0) 34.3

0 2.07 (0.01) 4.7 (0) 15.5

0.001 12 400 2 1.40 (0.01) 10.4 (0) 29.0

5 0.82 (0.01) 18.4 (0.1) 45.3

0 0.73 (0.01) 14.7 (0.1) 33.8

0.005 5 905 2 0.52 (0.01) 24.1 (0.1) 57.6

5 0.32 (0.01) 38.8 (0.1) 78.3

0 0.39 (0.01) 30.1 (0.1) 49.6

0.01 3 1309 2 0.28 (0.01) 49.1 (0.2) 77.6

5 0.20 (0.01) 75.8 (0.3) 93.4

GALE p T - - -

+ 50 300 5.00 (1.00) 38 (1.0) -

SC 50 1000 0.90 (0) 784 (237) -

n = 20000 SSC - - - - 0.76 (0) 15796.2 (98.1) 100

K = 20 SONNET 0 3.72 (0.01) 109.2 (0.3) 35.2

p(intra) = 0.1 + 0.005 5 2000 10 1.67 (0) 398.8 (0.9) 93.0

p(inter) = 0.03 SSC 20 1.33 (0) 712.3 (1.3) 99.3

ψ ∼ U [1, 100]
(
O(n3)

)
0 1.92 (0.01) 473.2 (0.8) 64.1

0.025 5 6605 10 1.76 (0.01) 600.2 (0.9) 96.1

20 1.59 (0) 745.4 (1.1) 99.6

0 1.43 (0) 936.4 (1.2) 78.55

0.05 5 9625 10 1.81 (0) 998.4 (1.1) 97.7

20 1.70 (0.01) 1087.3 (1.4) 99.8

0 3.04 (0.01) 1129.5 (3.0) 54.3

0.075 35 6280 10 10.41 (0.02) 1195.5 (2.6) 65.8

20 7.97 (0.02) 1254.1 (2.6) 74.4

GALE p T - - -

+ 50 1000 15.2 (11.0) 1302 (901) -

SC 50 5000 7.7 (2.0) 3483 (1964) -

Table 3: SONNET with spherical K-median spectral clustering (SSC) on networks

simulated from DCBM: Average error rates and computation times from 100

simulations are reported with standard deviations in the parentheses.

32

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Community Detection for Large Networks

For n = 20000, the lowest error rate of 1.33% for SONNET is achieved with

20 repetitions in 712 seconds (highlighted rows in Table 3), compared to

0.76% error rate in 15796 seconds for sphericalK-median spectral clustering

on the whole network. GALE attains 7.7% error rate in 3483 seconds. SONNET

reaches an error rate comparable to the whole network only in a fraction

of the time, and is faster and more accurate than GALE in both simulation

settings.

4.3 Real Data: DBLP Four-Area Network

The DBLP four-area network was curated by Gao et al. (2009) and Ji

et al. (2010) and previously analyzed by Sengupta and Chen (2015). The

data consists of n = 4057 data mining researchers from the research areas

of database, data mining, information retrieval, and artificial intelligence.

Two nodes are connected if the authors have presented at the same con-

ference, and there are K = 4 ground-truth communities representing the

research areas. We model the network using the SBM and apply spec-

tral clustering on the whole network to set a benchmark of the error rate

and the computation time. We then apply SONNET with spectral clustering

with the optimized parameters as in the SBM simulation setting. Table 4

summarizes results from spectral clustering, SONNET, and GALE.
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Table 4 shows that SONNET is slightly more accurate than spectral clus-

tering on the whole network with a significantly smaller runtime. It achieves

an error rate of 9.51% in 20.5 seconds (highlighted row in Table 4) com-

pared to 9.86% for spectral clustering in 351.8 seconds. SONNET attains a

slightly higher error rate of 9.98% in only 2.9 seconds. GALE achieves an

error rate of 10.03% in 22.1 seconds for this real data example.

4.4 Real Data: Twitch Gamers Social Network

We also analyzed the Twitch Gamers Social Network (Sarkar and Rózemberczki,

2021) with n = 32407 Twitch users fromK = 20 language communities (see

detailed data description in Section S2.7 of the Supplementary Material).

Two Twitch users are connected by an edge if they have a mutual follower.

We apply spectral clustering with row normalization (SC+RN) on the entire

network and SONNET with SC+RN to recover the language communities. Due

to the large size of the network, we did not try repetitions for this example.

We also did not run GALE due to computational constraints. From Table 4,

spectral clustering with row-normalization on the entire network took about

29 hours with an error rate of 4.51%. SONNET achieves 7.54% error (high-

lighted in Table 4) in only 31.3 minutes. This example shows that SONNET

is a practical choice for large networks with unbalanced communities.
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Network Method Parameter Selection Error Comp. Time Exp. Data

Specifications q s̃ õ r Rate % in sec. Use %

DBLP SC - - - - 9.86 351.8 (0.6) 100

Network SONNET 0 10.34 (0.07) 5.6 (0) 6.7

n = 4057 + 0.0001 59 104 2 9.51 (0.03) 20.5 (0.1) 9.8

K = 4 SC 0 10.03 (0.05) 3.0 (0) 11.1

0.0005 17 113 2 9.78 (0.03) 7.0 (0) 21.2

0 9.98 (0.05) 2.9 (0) 15.8

0.001 12 169 2 9.89 (0.04) 6.2 (0.1) 29.3

0 10.08 (0.06) 4.0 (0.1) 33.8

0.005 5 367 2 9.94 (0.07) 6.4 (0.1) 57.6

GALE p T - - -

+ 20 300 13.34 (0.07) 9.7 (0) -

SC 20 1000 10.03 (0.03) 22.1 (0.2) -

Twitch Gamers SC+RN - - - - 4.51 104653.1 100

Network SONNET 0.001 8 6007 0 13.98 (0.07) 780.9 (0.8) 41.9

n = 32407 + 0.01 5 6002 0 13.21 (0.05) 856.8 (1.1) 46.9

K = 20 SC+RN 0.025 2 8425 0 7.54 (0.02) 1880.9 (3.2) 72.6

0.05 8 12879 0 9.02 (0.01) 3283.1 (5.7) 68.2

Table 4: SONNET with spectral clustering on the DBLP four-area network

and the Twitch network: Average error rates and computation times from

100 simulations are reported with standard deviations in the parentheses.

5. Discussion

In this paper, we developed SONNET, a highly versatile and scalable algo-

rithm for community detection in large networks, which pairs with any
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community detection algorithm. We theoretically studied the statistical er-

ror bounds and computational scalability of SONNET under a general setting,

and further specialized our study to spectral clustering on SBMs and spher-

ical K-median spectral clustering on DCBMs. We carried out detailed em-

pirical experiments with simulated and real-world network datasets. These

theoretical and empirical results show that SONNET achieves substantial

computational savings with minimal loss of accuracy compared to com-

munity detection on the full network. Furthermore, SONNET is also found

to be faster and more accurate than other divide and conquer methods.

Rate-optimal community detection methods under the SBM and the

DCBM have been proposed by Gao et al. (2017) and Gao et al. (2018),

respectively. Both papers point out that applying a clustering technique as

an initialization step, followed by a refinement step, can lead to rate-optimal

community detection as long as the initial clustering satisfies certain weak

consistency conditions. We conjecture that SONNET could be used as a

computationally efficient method for the initial step, and rate-optimality

will be preserved after refinement under certain conditions. This will be an

interesting direction for future research.
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Supplementary Materials

The supplementary material contains the definitions and the statements of

some of the relevant methods and results, as well as technical proofs.
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