<table>
<thead>
<tr>
<th>Title</th>
<th>Test for Zero Mean of Errors In An ARMA-GGARCH Model After Using A Median Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>SS-2022-0013</td>
</tr>
<tr>
<td>URL</td>
<td>http://www.stat.sinica.edu.tw/statistica/</td>
</tr>
<tr>
<td>DOI</td>
<td>10.5705/ss.202022.0013</td>
</tr>
<tr>
<td>Complete List of Authors</td>
<td>Yaolan Ma, Mo Zhou, Liang Peng and Rongmao Zhang</td>
</tr>
<tr>
<td>Corresponding Authors</td>
<td>Rongmao Zhang</td>
</tr>
<tr>
<td>E-mails</td>
<td>rmzhang@zju.edu.cn</td>
</tr>
</tbody>
</table>

Notice: Accepted version subject to English editing.
Test for Zero Mean of Errors In An ARMA-GGARCH Model
After Using A Median Inference

Yaolan Ma1, Mo Zhou2, Liang Peng3 and Rongmao Zhang2

1North Minzu University, 2Zhejiang University and 3Georgia State University

Abstract:

The stylized fact of heavy tails makes median inferences appealing in fitting an
ARMA model with heteroscedastic errors to financial returns. To ensure that
the model still concerns the conditional mean, we test for a zero mean of the
errors using a random weighted bootstrap method for quantifying estimation
uncertainty. The proposed test is robust against heteroscedasticity and heavy
tails as we do not infer the heteroscedasticity and need fewer finite moments.
Simulations confirm the good finite sample performance in terms of size and
power. Empirical applications caution the model interpretation after using a
median inference.

\textit{Key words and phrases:} ARMA model, heteroscedasticity, weighted estimation,
zero mean.

1. Introduction

Consider the following ARMA\((r, s)\) model with general GARCH (G-
GARCH) errors

\[
\begin{align*}
X_t &= \mu + \sum_{i=1}^{r} \phi_i X_{t-i} + \sum_{j=1}^{s} \psi_j \varepsilon_{t-j} + \varepsilon_t, \\
\varepsilon_t &= \sigma_t \eta_t, \quad \sigma_t^2 = h(\varepsilon_{t-1}, \varepsilon_{t-2}, \cdots),
\end{align*}
\] (1.1)

where \(\mu \in \mathbb{R}, \phi_i \in \mathbb{R}\) for \(i = 1, \cdots, r, \psi_j \in \mathbb{R}\) for \(j = 1, \cdots, s, \{\eta_t\}\) is a sequence of independent and identically distributed random variables with mean zero and variance one, and \(h\) is a positively measurable function.

Because of \(\mathbb{E}(\eta_t) = 0\) and \(\mathbb{E}(\eta_t^2) = 1\), equation (1.1) models the conditional mean and conditional standard deviation of \(\{X_t\}\). Examples of GGARCH models include ARCH models in Engle (1982), GARCH models in Bollerslev (1986), absolute value GARCH models in Taylor (1986) and Schwert (1989), nonlinear GARCH models in Engle (1990), volatility switching GARCH models in Fornari and Mele (1997), threshold GARCH models in Zakoian (1994), and generalized quadratic ARCH models in Sentana (1995).

Consider ARMA-GARCH models. A commonly employed statistical inference is the quasi maximum likelihood estimation (QMLE) requiring \(\mathbb{E}(\varepsilon_t^4) < \infty\) and \(\mathbb{E}(\eta_t^4) < \infty\) to ensure a normal limit; see Francq and Zakoïan (2004). Recently, by assuming that the median of \(\eta_t\) is zero instead of \(\mathbb{E}(\eta_t) = 0\), Zhu and Ling (2011) propose the self-weighted quasi maximum exponential likelihood estimation (SWQMELE) and derive its asymptotic normality without \(\mathbb{E}(\varepsilon_t^4) < \infty\) and \(\mathbb{E}(\eta_t^4) < \infty\). This relaxation of moment
constraints is vital for analyzing financial returns as the heavy tail is a stylized fact. However, changing $\mathbb{E}(\eta_t) = 0$ in (1.1) to zero median implies that one is interested in modeling conditional median rather than conditional mean, deviating from the purpose of the classical ARMA-GARCH models. We refer to Fan, Qi and Xiu (2014) for more details on the transformation effect of skewed data.

Recently, Zhou, Peng and Zhang (2021) develop an empirical likelihood test for a zero mean of η_t when using a median inference for an ARMA-GARCH model under the assumption that the GARCH errors have a zero median. When we do not reject the null hypothesis, the employed ARMA-GARCH model still concerns the conditional mean and can be inferred with fewer finite moments. Let \mathcal{F}_t denotes the σ-field generated by $\{\eta_s : s \leq t\}$. When $\{w_t > 0\}$ is stationary, w_t is \mathcal{F}_t-measurable, and $\mathbb{E}(\sigma_t/w_{t-1}) \in (0, \infty)$, the null hypothesis of zero mean of η_t in (1.1) is equivalent to zero mean of ε_t/w_{t-1}. This motivates us to test the zero mean of ε_t/w_{t-1} without estimating σ_t and requiring $\mathbb{E}(\varepsilon_t^4) < \infty$. Hence, unlike Zhou, Peng and Zhang (2021), the proposed test is robust against the specification of heteroscedasticity. More specifically, this paper uses the median inference in Zhu and Ling (2015) to estimate the ARMA model, which has a normal limit when $\mathbb{E}(|\varepsilon_t|^\delta) < \infty$ for some $\delta > 0$. Using the sample mean of the
estimated ε_t’s, we test for a zero mean of ε_t/w_{t-1}. To effectively combine the estimation uncertainties, we may use a profile empirical likelihood test based on the estimating equation method in Qin and Lawless (1994). We refer to Owen (2001) for an overview of the empirical likelihood method. Some applications of the empirical likelihood method to ARMA-GARCH models include Chan and Ling (2006) for a GARCH model, Li, Liang and He (2012) for an AR-ARCH model, Chan, Peng and Zhang (2012) and Zhang, Li and Peng (2019) for the tail index of a GARCH(1,1) sequence. However, a brief simulation study shows that the profile empirical likelihood test has a poor finite sample performance. The reason may be that using the median inference complicates the computation of the profile empirical likelihood method. Therefore, we propose to employ a random weighted bootstrap method in Jin, Ying and Wei (2001) and Zhu (2016) to conduct such a test for a zero mean. We can not use the residual-based bootstrap method because we do not infer the heteroscedasticity.

A related study is Ma, Zhou, Peng and Zhang (2021), which develops an empirical likelihood test for a zero median of ε_t after estimating the ARMA model under the assumption of E(η_t) = 0. Because of using weighted least squares estimation in fitting the ARMA model, the proposed profile empirical likelihood method in Ma, Zhou, Peng and Zhang (2021) performs
well.

We organize this paper as follows. Section 2 presents the methodologies and asymptotic results. Sections 3 and 4 are a simulation study and some data analysis, respectively. Section 5 concludes. All proofs are in the Appendix.

2. Methodologies and Theoretical Results

Consider the ARMA\((r, s)\)-GGARCH model (1.1) with zero median of \(\eta_t\) instead of zero mean. Recall that \(\mathcal{F}_t\) denotes the \(\sigma\)-field generated by \(\{\eta_s : s \leq t\}\). Put \(\theta = (\mu, \phi_1, \cdots, \phi_r, \psi_1, \cdots, \psi_s)'\) with \(\theta_0\) denoting the true value. For ease of notations, we write \(\eta_t(\theta_0) = \eta_t, \varepsilon_t(\theta_0) = \varepsilon_t, \sigma_t(\theta_0) = \sigma_t\), and define \(\phi(z) = 1 - \sum_{i=1}^r \phi_i z^i\) and \(\psi(z) = 1 + \sum_{j=1}^s \psi_j z^j\).

Given the observations \(\{X_1, \cdots, X_n\}\) and the initial values \(\{X_0, X_{-1}, \cdots\}\) taken as zero in our simulation study and data analysis, we write the parametric form of (1.1) as

\[
\begin{align*}
\varepsilon_t(\theta) &= X_t - \mu - \sum_{i=1}^r \phi_i X_{t-i} - \sum_{j=1}^s \psi_j \varepsilon_{t-j}(\theta), \\
\sigma_t^2(\theta) &= h(\varepsilon_{t-1}(\theta), \varepsilon_{t-2}(\theta), \cdots), \quad \eta_t(\theta) = \varepsilon_t(\theta)/\sigma_t(\theta).
\end{align*}
\]

This paper aims to test

\[
H_0 : \mathbb{E}(\varepsilon_t/w_{t-1}) = 0 \quad v.s. \quad H_a : \mathbb{E}(\varepsilon_t/w_{t-1}) \neq 0,
\] (2.1)
which is equivalent to

\[H_0 : \mathbb{E}(\eta_t) = 0 \quad v.s. \quad H_a : \mathbb{E}(\eta_t) \neq 0, \]

where \(\{w_t = w(X_t, X_{t-1}, \ldots) > 0\} \) will be defined later. To estimate \(\varepsilon_t \)'s under the zero median assumption, we employ the weighted least absolute deviation estimator (LADE) in Zhu and Ling (2015), defined as

\[\hat{\theta} = \arg \min_{\theta} \sum_{t=1}^{n} w_{t-1}^{-1} |\varepsilon_t(\theta)|. \]

The resulted estimator \(\hat{\theta} \) has a normal limit when \(\mathbb{E}(|\varepsilon_t|^\delta) < \infty \) for some \(\delta > 0 \). Using this estimator, we further estimate \(\varepsilon_t \) by \(\varepsilon_t(\hat{\theta}) \) and estimate \(\nu = \mathbb{E}(\varepsilon_t/w_{t-1}) \) by

\[\hat{\nu} = \frac{1}{n} \sum_{t=1}^{n} w_{t-1}^{-1} \varepsilon_t(\hat{\theta}). \]

To avoid estimating the complicated asymptotic variance of \(\hat{\nu} \) for testing \(H_0 \), we adopt the random weighted bootstrap method in Jin, Ying and Wei (2001) and Zhu (2016).

- **Step 1)** Draw a random sample with size \(n \) from a distribution with mean one and variance one, say standard exponential distribution. Denote them by \(\{\delta_t^b\}_{t=1}^{n} \).

- **Step 2)** Solve

\[\hat{\theta}^b = \arg \min_{\theta} \sum_{t=1}^{n} \delta_t^b w_{t-1}^{-1} |\varepsilon_t(\theta)| \]
and compute
\[\hat{\nu}^b = \frac{\sum_{t=1}^{n} \delta_t^b \epsilon_{t-1}^b (\theta^b)}{\sum_{t=1}^{n} \delta^b_t} . \]

- Step 3) Repeat the above two steps \(B \) times to get \(\{ \hat{\nu}^b \}_{b=1}^B \).

Therefore, we reject the null hypothesis \(H_0 : \nu = 0 \) at the level \(a \) whenever
\[\hat{\nu}^2 / \left\{ \frac{1}{B} \sum_{b=1}^{B} (\hat{\nu}^b - \hat{\nu})^2 \right\} \geq \chi^2_{1,1-a} , \]
where \(\chi^2_{1,1-a} \) denotes the \((1 - a)\)-th quantile of chi-squared distribution with one degree of freedom.

To validate the above test theoretically, we introduce some regularity conditions.

Assumption 1. \(\theta_0 \) is an interior point in \(\Theta \), and for each \(\theta \in \Theta \), \(\phi(z) \neq 0 \) and \(\psi(z) \neq 0 \) when \(|z| \leq 1 \), and \(\phi(z) \) and \(\psi(z) \) have no common root with \(\phi_r \neq 0 \) or \(\psi_s \neq 0 \).

Assumption 2. \(\epsilon_t \) is strictly stationary and ergodic.

Assumption 3. \(\mathbb{E}(w_{t-1}^4 \xi_{\rho,t-1}^4) < \infty \) for any \(\rho \in (0,1) \), where \(\xi_{\rho,t} = 1 + \sum_{i=0}^{\infty} \rho^i |X_{t-i}|, \{ w_t = w(X_t, X_{t-1}, \ldots) \} \) is a stationary sequence satisfying \(\inf_{t \geq 1} w_t > c_0 > 0 \), and \(w_t \) is \(\mathcal{F}_t \)-measurable.

Assumption 4. \(\{ \eta_t \} \) is a sequence of independent and identically distributed random variables with median zero and \(\mathbb{E}(\eta_t^2) = 1 \).
Assumption 5. \(\{\eta_t\} \) has a continuous density function \(g(x) \) satisfying \(g(0) > 0 \) and \(\sup_{x \in \mathbb{R}} g(x) < \infty \).

Assumptions 1 and 2 ensure that there exists a unique, strictly stationary causal solution to the first and second equations of (1.1), respectively (see Zhu and Ling (2015)). When \(\varepsilon_t \) follows a GARCH\((p, q)\) model, Theorem 3.1 of Basrak, Davis, and Mikosch (2002) ensures Assumption 2 if the Lyapunov exponent of the random coefficient matrices \(A_t \) is negative, where \(\varepsilon_t = A_t \varepsilon_{t-1} + B_t \) and \(\varepsilon_t = (\sigma_{t+1}^2, \sigma_t^2, \ldots, \sigma_{t+2}^2, \varepsilon_{t+2}, \ldots, \varepsilon_{t+p+2})' \). The weight \(w_t \) in Assumption 3 reduces the moment effect of \(\sigma_t \) and will be defined later. Assumptions 4 and 5 allow us to employ a median inference for the ARMA model.

Theorem 1. Under Assumptions 1-5 and the null hypothesis of (2.1),

\[
\sqrt{n} \hat{\nu} \xrightarrow{d} N(0, \sigma^2) \quad \text{and} \quad \frac{n}{B} \sum_{b=1}^{B} (\hat{\nu}^b - \hat{\nu})^2 / \sigma^2 \xrightarrow{p} 1 \quad (2.2)
\]

as \(B \to \infty \) and \(n \to \infty \), where

\[
\sigma^2 = (-\Gamma(2g(0)\Sigma)^{-1}, 1) \mathbb{E}[\hat{D}_1 \hat{D}_1'](-\Gamma(2g(0)\Sigma)^{-1}, 1)',
\]

\[
\Gamma = \mathbb{E}[w_{t-1}^{-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta'}|_{\theta = \theta_0}], \quad \Sigma = \mathbb{E}[(w_{t-1} \sigma_t)^{-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta} \frac{\partial \varepsilon_t(\theta)}{\partial \theta'}|_{\theta = \theta_0}],
\]

and

\[
\hat{D}_t = (w_{t-1}^{-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta'}|_{\theta = \theta_0} \text{sgn}(\varepsilon_t), w_{t-1}^{-1} \varepsilon_t)',
\]
The theorem above shows that our proposed test for $H_0 : \nu = 0$ has the asymptotically correct size. To investigate the local power of the proposed test, we consider the following local alternative hypothesis

$$H_a : \nu = \frac{M}{\sqrt{n}} \text{ for some constant } M. \quad (2.3)$$

The following theorem shows that the power of the proposed test goes to one as $|M| \to \infty$.

Theorem 2. Suppose that Assumptions 1-5 hold for model (1.1). Under the alternative hypothesis of (2.3),

$$\frac{\sqrt{n}\hat{\nu}}{\sqrt{nB^{-1} \sum_{i=1}^{B} (\hat{\nu}_i - \hat{\nu})^2}} \overset{d}{\to} N(M/\sigma, 1)$$

as $n \to \infty$ and $B \to \infty$, where σ is defined in Theorem 1.

Like Ling (2007) and Zhu and Ling (2011, 2015), the key idea of choosing w_t’s is to bound $\xi_{\rho,t}$ defined in Assumption 3. There are many different choices, including the one in Ling (2007). Because $\sum_{i=0}^{\infty} e^{\log(h) \log^2(i+1)} < \infty$ and $e^{\log(h) \log^2(t+1)} \geq \rho^t$ for t large enough and any given $\rho \in (0, 1)$ and $h \in (0, 1)$, we can use $\sum_{i=0}^{t-1} e^{\log(h) \log^2(i+1)} |X_{t-i}|$ to bound $\xi_{\rho,t}$ and so control the moment effect of σ_{t+1}. To avoid overweight, we employ the following weight function

$$w_t(h) = \max(C, \sum_{i=0}^{t-1} e^{\log(h) \log^2(i+1)} |X_{t-i}|) \text{ for some } h \in (0, 1) \text{ and } t = 1, \cdots, n, \quad (2.4)$$
where C is chosen as the 90% quantile of $|X_t|$ and $w_0(h) = 1$. Like He, Hou, Peng and Shen (2020), we can show that the above weight function with C replaced by the corresponding sample quantile does not change the asymptotic distribution. Like kernel density estimation, choosing an optimal h in terms of coverage probability is challenging, which requiring the Edgeworth expansion for the proposed test statistic. Nevertheless, our simulation study and data analysis below use $h = 0.2$ and 0.4, which shows good finite sample performance.

3. Simulation study

In this section, we examine the finite sample performance of the proposed test in terms of size and power.

We generate 5000 random samples with sample size $n = 1000$ and 2500 from the ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models with $\mu = 0.1, \phi_1 = 0.5, \psi_1 = 0.2, \omega = 0.1, a_1 = 0.1, b_1 = 0.8, \eta_t = V/\sqrt{\mathbb{E}(V^2)}$, where

$$V = I(U < 1/2)V_1 - I(U \geq 1/2)V_2$$

with $U \sim \text{Uniform}(0,1), V_1 \sim \text{Pareto}(1, \alpha_1)$ (i.e., $P(V_1 \leq x) = 1 - (1+x)^{-\alpha_1}$ for $x \geq 0$), and $V_2 \sim \text{Pareto}(1, \alpha_2)$ being independent. It is easy to check
that

\[
E(V) = \frac{1}{2} \left\{ \frac{1}{\alpha_1 - 1} - \frac{1}{\alpha_2 - 1} \right\}, \quad E(V^2) = \frac{1}{\alpha_1 - 1} + \frac{1}{\alpha_2 - 1},
\]

\eta_t \text{ has a zero median, the right tail index } \alpha_1, \text{ the left tail index } \alpha_2, \text{ a zero mean if } \alpha_1 = \alpha_2, \text{ and a nonzero mean if } \alpha_1 \neq \alpha_2.

We take \(\alpha_1 = \alpha_2 = 2.2, 2.5, 3\) for computing size and \(\alpha_1 = 3.2 \text{ or } 3.5\) with \(\alpha_2 = 3\) for calculating power, which gives \(E(\eta_t) = -0.024\). To implement the proposed test for a zero mean after using the median inference, we use \(B = 1000\) in the random weighted bootstrap method and the weight function \(w_t(h)\) in \(\text{(2.4)}\) with \(h = 0.2 \text{ and } 0.4\). We report the empirical size of the test at levels 10% and 5% in Table 1 and the empirical power in Table 2, which show that the proposed test has an accurate size and nontrivial power. Also, using \(h = 0.2 \text{ and } h = 0.4\) gives robust results, and the power increases when the sample size becomes large or \(\alpha_1\) is away from the null hypothesis.
Table 1: Test size for ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) models.

<table>
<thead>
<tr>
<th>α_1</th>
<th>n</th>
<th>Level</th>
<th>$h = 0.2$</th>
<th>$h = 0.4$</th>
<th>$h = 0.2$</th>
<th>$h = 0.4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ARMA(1,0)-GARCH(1,1)</td>
<td>ARMA(1,1)-GARCH(1,1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>1000</td>
<td>10%</td>
<td>0.0980</td>
<td>0.0944</td>
<td>0.0962</td>
<td>0.0944</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.0466</td>
<td>0.0464</td>
<td>0.0468</td>
<td>0.0470</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>10%</td>
<td>0.0988</td>
<td>0.1040</td>
<td>0.0972</td>
<td>0.1018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.0486</td>
<td>0.0468</td>
<td>0.0494</td>
<td>0.0450</td>
</tr>
<tr>
<td>2.5</td>
<td>1000</td>
<td>10%</td>
<td>0.0966</td>
<td>0.0974</td>
<td>0.0966</td>
<td>0.0986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.0472</td>
<td>0.0468</td>
<td>0.0474</td>
<td>0.0464</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>10%</td>
<td>0.1024</td>
<td>0.1032</td>
<td>0.1002</td>
<td>0.1016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.0528</td>
<td>0.0502</td>
<td>0.0510</td>
<td>0.0494</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
<td>10%</td>
<td>0.0980</td>
<td>0.0990</td>
<td>0.1002</td>
<td>0.1008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.0442</td>
<td>0.0434</td>
<td>0.0468</td>
<td>0.0446</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>10%</td>
<td>0.0975</td>
<td>0.0990</td>
<td>0.0996</td>
<td>0.1010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.0472</td>
<td>0.0476</td>
<td>0.0472</td>
<td>0.0498</td>
</tr>
</tbody>
</table>
Table 2: Test power for ARMA(1,0)-GARCH(1,1) and ARMA(1,1)-
GARCH(1,1) models.

<table>
<thead>
<tr>
<th>α_1</th>
<th>n</th>
<th>Level</th>
<th>$h = 0.2$</th>
<th>$h = 0.4$</th>
<th>$h = 0.2$</th>
<th>$h = 0.4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>1000</td>
<td>10%</td>
<td>0.2244</td>
<td>0.2168</td>
<td>0.2182</td>
<td>0.2140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.1386</td>
<td>0.1338</td>
<td>0.1292</td>
<td>0.1292</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>10%</td>
<td>0.3672</td>
<td>0.3648</td>
<td>0.3676</td>
<td>0.3668</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.2500</td>
<td>0.2526</td>
<td>0.2546</td>
<td>0.2570</td>
</tr>
<tr>
<td>3.5</td>
<td>1000</td>
<td>10%</td>
<td>0.6568</td>
<td>0.6508</td>
<td>0.6490</td>
<td>0.6484</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.5188</td>
<td>0.5242</td>
<td>0.5200</td>
<td>0.5180</td>
</tr>
<tr>
<td></td>
<td>2500</td>
<td>10%</td>
<td>0.9334</td>
<td>0.9322</td>
<td>0.9330</td>
<td>0.9324</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>0.8842</td>
<td>0.8862</td>
<td>0.8842</td>
<td>0.8842</td>
</tr>
</tbody>
</table>

4. **Application: Exchange Rates**

This section studies the daily log-returns ($\times 100$) of six exchange rates from May 3, 2011 to May 2, 2021: HKD/USD, EUR/USD, CNY/USD, CAD/USD, MXN/USD, and INR/USD. We plot these exchange rates in Figure 1.
Figure 1: Plots of the HKD/USD, EUR/USD, CNY/USD, CAD/USD, MXN/USD, and INR/USD exchange rates from May 3, 2011 to May 2, 2021.

We first estimate the tail index of $\{|X_t|\}$ using the Hill estimator in Hill (1975) defined as

$$
\hat{\alpha}(k) = \left[\frac{1}{k} \sum_{i=1}^{k} \log \left(\frac{X_{(n-i+1)}}{X_{(n-k)}} \right) \right]^{-1}
$$

with $\{X_{(t)}\}$ being the ascending order statistics of $\{|X_t|\}$. We plot the Hill estimates against various k in Figure 2, indicating that the tail index of all
the considered log-returns of exchange rates except CAD/USD may be less than 4, i.e., $EX_t^4 = \infty$. Therefore, the inference may not have a normal limit when we fit an ARMA-GARCH model using the QMLE. To explore the possibility of using the SWQMELE to fit an ARMA-GARCH model, we test whether the GARCH model has zero mean after using a median inference. If we do not reject the null hypothesis, the fitted ARMA-GARCH model using a median inference still concerns a conditional mean. Otherwise, the fitted ARMA-GARCH model is interested in conditional median rather than conditional mean, deviating from the conventional purpose of using ARMA-GARCH models.
Figure 2: The Hill estimates for the HKD/USD, EUR/USD, CNY/USD, CAD/USD, MXN/USD, and INR/USD exchange rates from May 3, 2011 to May 2, 2021.

To apply our proposed robust test against heteroscedasticity, we use the function “auto.arima” in the R package “forecast” with Akaike information criterion (AIC) to obtain the appropriate orders of the employed ARMA model, report the fitted models in Table 3, and plot the ACFs of residuals.
in Figure 3 to gain a brief idea of the fittings. Using the selected orders of the ARMA model, we compute the P-value of the proposed test using the weight function $w_t(h)$ in (2.4) with $h = 0.2$ and 0.4 and $B = 5000$ in the random weighted bootstrap method. Table 3 shows that we strongly and weakly reject the null hypothesis of zero mean for INR/USD and MXN/USD exchange rates, respectively, but do not reject the null hypothesis for other currencies. Therefore, one should be cautious in interpreting the data analysis for INR/USD and MXN/USD exchange rates when using the SWQMELE to fit an ARMA-GARCH model to the log-returns, as the ARMA part no longer models the conditional mean. We remark that the above procedure for selecting the ARMA model employs the zero mean of errors rather than the null hypothesis of zero median of errors and ignores the possibility that the least squares estimate has a nonnormal limit due to the lack of enough finite moments. It would be useful but is beyond the scope of this paper to develop an order selection procedure using median inference and allowing heavy tailed residuals.
Table 3: The fitted ARMA models and the computed P-values of the proposed test for zero mean of the log-returns of daily exchange rates from May 3, 2011 to May 2, 2021.

<table>
<thead>
<tr>
<th>Exchange rate</th>
<th>ARMA model</th>
<th>$h = 0.2$</th>
<th>$h = 0.4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKD/USD</td>
<td>ARMA(1,3)</td>
<td>0.3931</td>
<td>0.2159</td>
</tr>
<tr>
<td>EUR/USD</td>
<td>ARMA(0,1)</td>
<td>0.5625</td>
<td>0.4433</td>
</tr>
<tr>
<td>CNY/USD</td>
<td>ARMA(1,2)</td>
<td>0.9138</td>
<td>0.9024</td>
</tr>
<tr>
<td>CAD/USD</td>
<td>ARMA(2,0)</td>
<td>0.2306</td>
<td>0.1622</td>
</tr>
<tr>
<td>MXN/USD</td>
<td>ARMA(0,1)</td>
<td>0.0932</td>
<td>0.1044</td>
</tr>
<tr>
<td>INR/USD</td>
<td>ARMA(3,1)</td>
<td>0.0025</td>
<td>0.0009</td>
</tr>
</tbody>
</table>
Figure 3: We plot the autocorrelation functions of the residuals.

5. Conclusions

The stylized fact of heavy tails makes median statistical inferences popular in fitting an ARMA model with heteroscedastic errors to financial returns. To ensure that the employed ARMA model still concerns conditional mean after using a median inference, we test for zero mean of errors using a
random weighted bootstrap method to quantify uncertainty. The proposed
test is robust against heteroscedasticity and heavy tails because it does not
infer the heteroscedasticity and requires fewer finite moments. A simula-
tion study confirms the good finite sample performance in size and power.
Empirical analysis cautions the model interpretation when using a median
inference to fit an ARMA-GARCH model to the log-turns of INR/USD and
MXN/USD exchange rates as we reject the null hypothesis of zero mean of
errors after employing a median inference for the ARMA model.

Acknowledgments

We thank a co-editor, an associate editor, and two reviewers for their
helpful comments. Ma’s research was partly supported by the Fundamen-
tal Research Funds for the Central Universities, North Minzu Universi-
ty (No. 2021JCYJ06), the Natural Science Foundation of Ningxia (No.
2022AAC03232), the Scientific Research Project of Ningxia Higher Educa-
tion Institutions (No. NGY2020064) and NSFC (No. 62066001/62163001).
Peng’s research was partly supported by the Simons Foundation and the
NSF grant of DMS-2012448. Zhang’s research was supported by grants
from NSFC (No.11771390/12171427/U21A20426), Zhejiang provincial nat-
ural science foundation (No.LZ21A010002), and the Fundamental Research
Test for Zero Mean of Errors

Funds for the Central Universities (No. 2021XZZX002).

References

REFERENCES

Appendix: Proofs of Theorems 1 and 2

Throughout, define
\[\tilde{D}_{t,1} = w_{t-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta} \Big|_{\theta = \theta_0, \text{sgn}(\varepsilon_t)} , \quad \tilde{D}_{t,2} = w_{t-1} \varepsilon_t , \quad \tilde{D}_t = (\tilde{D}_{t,1}, \tilde{D}_{t,2}) , \]

and recall \(\varepsilon_t = \varepsilon_t(\theta_0) \). First, we need two lemmas below.

Lemma 1. Under conditions of Theorem 1, there exist a constant \(\rho \in (0, 1) \), a constant \(C > 0 \), and a neighborhood \(\Theta_0 \) of \(\theta_0 \) such that

\[
\sup_{\Theta_0} |\varepsilon_t(\theta)| \leq C \xi_{\rho, t-1} , \quad \sup_{\Theta_0} \left\| \frac{\partial \varepsilon_t(\theta)}{\partial \theta} \right\| \leq C \xi_{\rho, t-1} , \quad \text{and} \quad \sup_{\Theta_0} \left\| \frac{\partial^2 \varepsilon_t(\theta)}{\partial \theta \partial \theta} \right\| \leq C \xi_{\rho, t-1} ,
\]

where \(\xi_{\rho, t} \) is defined in Assumption 3.

Proof. See Lemma A.1 of Ling (2007).

Lemma 2. Under the conditions of Theorem 1, we have as \(n \to \infty \),

\[
\frac{1}{\sqrt{n}} \sum_{t=1}^{n} \tilde{D}_t \xrightarrow{d} N \left(0, E \{ \tilde{D}_1 \tilde{D}_1' \} \right).
\]

Proof. Recall that \(\mathcal{F}_t \) is the \(\sigma \)-field generated by the sequence \(\{ \eta_t, \eta_{t-1}, \cdots \} \). It is straightforward to verify that

\[
E(\tilde{D}_{t,1}|\mathcal{F}_{t-1}) = E \left(w_{t-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta} \Big|_{\theta = \theta_0, \text{sgn}(\varepsilon_t)} \Big| \mathcal{F}_{t-1} \right) = w_{t-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta} \Big|_{\theta = \theta_0, E(\text{sgn}(\eta_t))} = 0
\]

and

\[
E(\tilde{D}_{t,2}|\mathcal{F}_{t-1}) = E(w_{t-1} \varepsilon_t | \mathcal{F}_{t-1}) = w_{t-1} \varepsilon_t E(\eta_t) = 0,
\]
REFERENCES

i.e., \(\{ \hat{D}_t \} \) is a sequence of Martingale differences. It follows from Assumption 3, Lemma 1, and the dominated convergence theorem that

\[
\max_{1 \leq t \leq n} \left\| \frac{1}{\sqrt{n}} \hat{D}_t \right\| = o_p(1), \quad \frac{1}{n} \sum_{t=1}^{n} \{ \hat{D}_t, \hat{D}_t' \} = \text{E}\{ \hat{D}_t \hat{D}_t' \} + o_p(1), \quad \text{E} \left[\left\| \frac{1}{\sqrt{n}} \hat{D}_t \hat{D}_t' \right\| \right] = o(1).
\]

Hence, the conditions of the central limit theorem for Martingale differences are satisfied (see Theorem 3.2 of Hall and Heyde (1980)), i.e., the theorem follows.

Proof of Theorem 1

It follows from Theorem 2 of Zhu and Ling (2015) that

\[
\sqrt{n} (\hat{\theta} - \theta_0) = -\frac{(2g(0)\Sigma)^{-1}}{\sqrt{n}} \sum_{t=1}^{n} w_{t-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta} |_{\theta = \theta_0} \text{sgn}(\varepsilon_t) + o_p(1), \quad \text{(A.1)}
\]

where \(\Sigma \) is given in Theorem 1. Using Taylor expansion, Lemma 1, and (A.1), we have

\[
\sqrt{n} \nu = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} w_{t-1}^{\prime} \varepsilon_t(\hat{\theta}) = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} w_{t-1} \left[\varepsilon_t(\hat{\theta}) - \varepsilon_t \right] + \frac{1}{\sqrt{n}} \sum_{t=1}^{n} w_{t-1} \varepsilon_t
\]

\[
= \frac{1}{\sqrt{n}} \sum_{t=1}^{n} w_{t-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta} |_{\theta = \theta_0} (\hat{\theta} - \theta_0) + \frac{1}{\sqrt{n}} \sum_{t=1}^{n} w_{t-1} \varepsilon_t + o_p(1),
\]

\[
= -\Gamma \frac{(2g(0)\Sigma)^{-1}}{\sqrt{n}} \sum_{t=1}^{n} w_{t-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta} |_{\theta = \theta_0} \text{sgn}(\varepsilon_t) + \frac{1}{\sqrt{n}} \sum_{t=1}^{n} w_{t-1} \varepsilon_t + o_p(1),
\]

\[
\overset{d}{\rightarrow} N \left(0, (\Gamma (2g(0)\Sigma)^{-1}) \left(\frac{1}{\sqrt{n}} \sum_{t=1}^{n} w_{t-1} \varepsilon_t \right)^2 \right), \quad \text{(A.2)}
\]

where \(\Gamma = \text{E} \left\{ w_{t-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta} |_{\theta = \theta_0} \right\} \) is given in Theorem 1. Hence, the first equation of (2.2) follows.

Similar to the proof of Theorem 2 of Zhu and Ling (2015), we have

\[
\sqrt{n} (\hat{\theta}^b - \theta_0) = -\frac{(2g(0)\Sigma)^{-1}}{\sqrt{n}} \sum_{t=1}^{n} \delta^b_{t-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta} |_{\theta = \theta_0} \text{sgn}(\varepsilon_t) + o_p(1). \quad \text{(A.3)}
\]
Following the proof of (A.2) and using (A.3), we have

\[\sqrt{n} \hat{\nu}^b = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \delta_t w_{t-1}^b \varepsilon_t(\theta^b) + o_p(1) \]
\[= \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \delta_t w_{t-1}^b \frac{\partial \varepsilon_t(\theta)}{\partial \theta}|_{\theta=\theta_0} \delta_t^{\theta_0} + \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \delta_t w_{t-1}^b \varepsilon_t + o_p(1), \]
\[= -\Gamma \frac{(2g(0))^{-1}}{\sqrt{n}} \sum_{t=1}^{n} \delta_t w_{t-1}^b \frac{\partial \varepsilon_t(\theta)}{\partial \theta}|_{\theta=\theta_0} \text{sgn} \varepsilon_t + \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \delta_t w_{t-1}^b \varepsilon_t + o_p(1). \]

(A.5)

By (A.2) and (A.4), we have

\[\sqrt{n}(\hat{\nu}^b - \nu) \]
\[= -\Gamma \frac{(2g(0))^{-1}}{\sqrt{n}} \sum_{t=1}^{n} (\hat{\nu}^b - \nu) w_{t-1}^b \frac{\partial \varepsilon_t(\theta)}{\partial \theta}|_{\theta=\theta_0} \text{sgn} \varepsilon_t + \frac{1}{\sqrt{n}} \sum_{t=1}^{n} (\hat{\nu}^b - \nu) w_{t-1}^b \varepsilon_t + o_p(1). \]

Put

\[Z_{t,1}^b = (\delta_t^b - 1) w_{t-1}^b \frac{\partial \varepsilon_t(\theta)}{\partial \theta}|_{\theta=\theta_0} \text{sgn} \varepsilon_t, \quad Z_{t,2}^b = (\delta_t^b - 1) w_{t-1}^b \varepsilon_t, \]
\[Z_{t,1} = w_{t-1} \frac{\partial \varepsilon_t(\theta)}{\partial \theta}|_{\theta=\theta_0} \text{sgn} \varepsilon_t, \quad \text{and} \quad Z_{t,2} = w_{t-1} \varepsilon_t. \]

Using (A.5) and letting \(B \to \infty \) and \(n \to \infty \), we can show that

\[\frac{1}{B} \sum_{b=1}^{B} (\hat{\nu}^b - \nu)^2 \]
\[= \frac{1}{B} \sum_{b=1}^{B} \left\{ \Gamma (2g(0))^{-1} \sum_{t=1}^{n} Z_{t,1}^b (Z_{t,1})' (\Gamma (2g(0))^{-1})' \right\}
+ \frac{1}{n} \sum_{t=1}^{n} (Z_{t,2})^2 - 2\Gamma (2g(0))^{-1} \sum_{t=1}^{n} Z_{t,1}^b Z_{t,2}^b + o_p(1) \]
\[= \Gamma (2g(0))^{-1} \sum_{t=1}^{n} Z_{t,1} (Z_{t,1})' (\Gamma (2g(0))^{-1})'
+ \frac{1}{n} \sum_{t=1}^{n} (Z_{t,2})^2 - 2\Gamma (2g(0))^{-1} \sum_{t=1}^{n} Z_{t,1} Z_{t,2} + o_p(1) \]
\[= (-\Gamma (2g(0))^{-1}, 1)^T [\hat{D}_t, \hat{D}'_t] [-\Gamma (2g(0))^{-1}, 1]' + o_p(1), \]

i.e., the second equation of (2.2) holds.
Proof of Theorem 2: Put $\tilde{D}^*_t = w^{-1}_{t-1}[\varepsilon_t - \mathbb{E}(\varepsilon_t|\mathcal{F}_{t-1})]$ and $\tilde{D}'_t = (\tilde{D}'_{t,1}, \tilde{D}'_{t,2})'$. Then

$$
\frac{1}{\sqrt{n}} \sum_{t=1}^{n} \tilde{D}'_t = \frac{1}{\sqrt{n}} \sum_{t=1}^{n} (\tilde{D}'_{t,1}, w^{-1}_{t-1}[\varepsilon_t - \mathbb{E}(\varepsilon_t|\mathcal{F}_{t-1})])' + \frac{1}{\sqrt{n}} \sum_{t=1}^{n} (0', w^{-1}_{t-1}\mathbb{E}(\varepsilon_t|\mathcal{F}_{t-1}))'

= \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \tilde{D}'_t + \frac{1}{\sqrt{n}} \sum_{t=1}^{n} (0', w^{-1}_{t-1}\mathbb{E}(\varepsilon_t|\mathcal{F}_{t-1}))'

= \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \tilde{D}'_t + \frac{1}{\sqrt{n}} \sum_{t=1}^{n} (0', w^{-1}_{t-1}\sigma_t \mathbb{E}(\eta_t))'

= \frac{1}{\sqrt{n}} \sum_{t=1}^{n} \tilde{D}'_t + \frac{M}{n} \sum_{t=1}^{n} (0', w^{-1}_{t-1}\sigma_t \mathbb{E}(w^{-1}_{t-1}\sigma_t))',

(A.6)

where 0 is a $(r + s + 1)$-vector, and the last equation follows by $\mathbb{E}(w^{-1}_{t-1}\varepsilon_t) = \mathbb{E}(\eta_t)\mathbb{E}(w^{-1}_{t-1}\sigma_t) = M/\sqrt{n}$.

Because $\mathbb{E}(w^{-1}_{t-1}[\varepsilon_t - \mathbb{E}(\varepsilon_t|\mathcal{F}_{t-1})]|\mathcal{F}_{t-1}) = 0$, $\{\tilde{D}'_t\}$ is a sequence of Martingale differences.

Like the proof of Lemma 2, we have

$$
\frac{1}{\sqrt{n}} \sum_{t=1}^{n} \tilde{D}'_t \overset{d}{\rightarrow} N\left(0, \mathbb{E}\{\tilde{D}'_1 \tilde{D}'_1\}\right) \text{ as } n \rightarrow \infty.
$$

On the other hand, by the weak law of large numbers for stationary series, we have

$$
\frac{M}{n} \sum_{t=1}^{n} w^{-1}_{t-1}\sigma_t \mathbb{E}(w^{-1}_{t-1}\sigma_t) \overset{p}{\rightarrow} M \text{ as } n \rightarrow \infty.
$$

Thus, similar to the proof of Theorem 1 as $B \rightarrow \infty$ and $n \rightarrow \infty$,

$$
\sqrt{n}\hat{\nu} \overset{d}{\rightarrow} N\left(M, \{-\Gamma(2g(0)\Sigma)^{-1}, 1\} \mathbb{E}[\tilde{D}_1 \tilde{D}_1']\{-\Gamma(2g(0)\Sigma)^{-1}, 1\}'\right)
$$

and

$$
\frac{M}{n} \sum_{b=1}^{B} (\hat{\nu}^b - \hat{\nu})^2 = \sigma^2 + o_p(1),
$$

i.e., Theorem 2 holds. \qed