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Abstract: Covariate adaptive randomization (CAR) designs, including the strati-

fied permuted block randomization design, are popular in clinical trials. However,

clinical trialists usually ignore the unique feature of the CAR that the treatmen-

t assignment of the current subject depends not only on his or her covariate

information, but also on the covariates and treatment assignments of all prior

subjects. They often analyze the data as if complete randomization was used.

As a result, the inferential conclusions of many clinical trials are open to ques-

tion. This paper provides the theoretical foundation for trials using CAR designs

and the accelerated failure time (AFT) model for time-to-event outcomes. We

derive the asymptotic properties of the test statistics and explain the effect of

the CAR design on the variability of the estimated treatment effect and the type
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CLINICAL TRIALS WITH CAR AND TIME-TO-EVENT OUTCOMES 2

I error rate. We also obtain the consistency and asymptotic normality of the

estimators. Based on the theoretical results, we propose new test statistics to

control the type I error rate. Numerical studies demonstrate our theoretical find-

ings and show that our methods successfully protect the type I error rate. Our

theoretical and numerical results provide practical guidance for future clinical

trials employing CAR designs and time-to-event outcomes.

Key words and phrases: Accelerated failure time model, Conservative tests, Co-

variate adaptive design, Type I error.

1. Introduction

Covariate adaptive randomization (CAR) is popular in clinical trials

(Rosenberger and Lachin, 2015) and development economics research (Duflo

et al., 2007; Bruhn and McKenzie, 2009). However, the validity of the

inference following CAR has been questioned (Weir and Lees, 2003; Hagino

et al., 2004). In this paper, we study the validity of inference in clinical trials

with CAR and the accelerated failure time (AFT) model for time-to-event

outcomes.

We first introduce the importance and advantages of CAR designs. It

is well accepted that many covariates (biomarkers) are associated with cer-

tain diseases (Ashley et al., 2010), and this has led to precision medicine.

When designing an efficient clinical study for precision medicine, clinical

trial practitioners’ first and most common concern is balancing the treat-
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CLINICAL TRIALS WITH CAR AND TIME-TO-EVENT OUTCOMES 3

ment allocation for influential covariates. CAR design balances the patients’

prognostic factors in each treatment arm by sequentially assigning the next

patient to an arm based on the current covariate and the previous treat-

ment assignments and covariates. CAR design can avoid the inaccuracy

introduced into the estimation of treatment effects by a poor balance in the

patients’ characteristics. A balance in prognostic factors across treatments

is also desirable for clinical trials that, for example, have a small sample

size, involve interim analysis, or require subgroup analysis (Toorawa et al.,

2009). An overview of CAR designs can be found in Rosenberger and

Sverdlov (2008). Stratified permuted block randomization (Taves, 1974)

is popular not only in clinical trials but also in economic research (Bugni

et al., 2018), and from 1989 to 2008 Pocock and Simons marginal procedure

(Pocock and Simon, 1975) was used in over 500 trials (Taves, 2010). Other

CAR designs can be found in Nordle and Brantmark (1977), Wei (1978),

Signorini et al. (1993), Heritier et al. (2005), Russell et al. (2011), Hu and

Hu (2012), Lebowitsch et al. (2012), and Antognini and Zagoraiou (2011).

Next, we briefly discuss a major issue with CAR designs. The Studen-

t’s t-test is common in clinical trials (Sverdlov, 2015), and only between

24% and 34% of randomized trials adjust covariates in their main analyses

(Kahan et al., 2014). There are several reasons for not using the full model
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to adjust covariates. It is difficult to incorporate some covariates into the

working model; for example, in a multi-center trial the investigation site is

usually omitted from the analysis. Furthermore, fewer covariates improve

the simplicity and transparency of the test procedure. Adjusting too many

covariates usually leads to a more complicated model that is less robust

to model misspecification. However, through simulation, researchers have

realized that CAR will lead to a conservative type I error rate if some of

the randomization covariates are omitted from the analysis (see, e.g., Bir-

kett (1985), Forsythe (1987), Aickin (2002), Weir and Lees (2003), Hagino

et al. (2004)). Shao et al. (2010), Ma et al. (2015, 2020), and Shao and

Yu (2013) have offered a theoretical explanation for such conservativeness

in the context of linear regression models and generalized linear models.

Further, Bugni et al. (2018) investigated robust inference under CAR.

We study the validity of the statistical inference and the control of the

type I error rate for clinical trials with CAR and the AFT model for time-to-

event outcomes. The AFT model is an essential alternative to the propor-

tional hazards model. For example, in the CREST trial (Lal et al., 2012),

the stratified permuted block design was used to balance allocation over

two characteristics (center and symptomatic status), and the AFT model

was fitted to study treatment differences in the restenosis rates. There-
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fore, it is significant to investigate clinical trials with CAR and AFT due to

both approaches’ advantages and importance. Inference procedures for AF-

T and their asymptotic properties have been studied extensively (Buckley

and James (1979), Koul et al. (1981), Tsiatis (1990), Miller and Halpern

(1982), Ritov (1990), Lai and Ying (1991), Ying (1993), Lin and Ying

(1995), Jin et al. (2003), Leon et al. (2009), Stute (1993, 1996)). However,

the validity of inference under the CAR and AFT models has not been

explicitly investigated.

The difficulties of our research include the complicated correlation struc-

ture of the within-stratum imbalances and the allocation probability func-

tion’s discreteness. Moreover, the dependence among the survival times,

the covariates, and the assignments complicates the study of the properties

of the estimators of both the survival function and the parameters. For

example, in linear or generalized linear models the covariates in the esti-

mator of the parameter can be separated into balanced and unbalanced

parts; but the estimator in the AFT model depends on an estimator of

a non-parameter function, so the covariates cannot be separated directly.

Additional challenges include the incomplete data due to right censoring

and the variability caused by inverse provability weighting. We use ad-

vanced theoretical techniques such as martingale theory to overcome these
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challenges, and we study a general family of CAR designs. Note that (i)

we consider the q-balance CAR to satisfy various requirements of clinical

trials; (ii) we study a family of CAR designs that include not only SPB,

Pocock and Simon’s design, but also that of Hu and Hu (2012). Under some

conditions, we obtain the fundamental theory for inference for trials with

CAR and AFT, including the asymptotic properties of the test statistics

and the consistency and asymptotic normality of the parameter estimators.

As a result, the type I error rate can be well controlled. In addition to

the main treatment effects, we investigate the general form of hypothesis

testing for the significance of the covariates. Further important lemmas and

theoretical conclusions can be found in the Supplementary Material.

We show that CAR procedures will shrink the variability of the esti-

mated treatment effect and give a conservative type I error rate if we do not

include all the randomization covariates in the data analysis. We propose

model-based approaches to adjust the estimated variance of the treatment

effects, and the numerical results show that our methods successfully pro-

tect the type I error rate.

The remainder of our article is organized as follows. In Section 2, we

introduce the framework and the major theorems. We give the numerical

results in Section 3 and provide a discussion in Section 4. The proofs are
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given in the Supplementary Material.

2. Statistical Inference in Clinical Trials with Survival Analysis

and CAR Designs

2.1 Framework

Consider a randomized clinical trial in which CAR designs are used to se-

quentially assign n subjects to one of two treatments. Let Ii, i = 1, 2, . . . , n,

indicate the assignment of the ith patient, i.e., Ii = 1 for treatment 1 and

Ii = 0 for treatment 2. Let Ti be the survival times and Ci be the censor-

ing times. Denote the covariates of interest by Xi = (Xi,1, Xi,2 . . . Xi,p1)
T

and Zi = (Zi,1, Zi,2 . . . Zi,p2)
T , and assume that the CAR designs are ap-

plied with respect to both the Xis and Zis, but only the Xis are used in

the analysis. More details of the CAR design will be given in Section 2.2.

The observed data are represented by (Yi, δi,Xi,Zi) , i = 1, 2, ..., n, where

Yi = min (Ti, Ci) , δi = I{Ti ≤ Ci}, and I{·} is the indicator function. Fol-

lowing the assumptions of Cheng et al. (1995) and Shen et al. (2009), we

assume that the survival function G(·) of Ci does not depend on Xi and

Zi and FG(·) = 1−G(·) is the cumulative distribution of Ci. Further, the

censoring time Ci and the survival time Ti are assumed to be independent

given the covariates Xi and Zi.
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2.1 Framework8

Recall that the AFT model gives a linear relationship between the log-

arithms of the survival time and the covariates of interest (Kalbfleisch and

Prentice (2011), Cox and Oakes (1984)). Assume that the ith subject’s

response follows the following AFT model:

logTi = µ1Ii+µ2(1−Ii)+β1Xi,1 + · · ·+βp1Xi,p1 +γ1Zi,1 + · · ·+γp2Zi,p2 +εi.

(2.1)

Here µ1 and µ2 are parameters measuring the main effects of treatments 1

and 2; (β1, . . . , βp1) and (γ1, . . . , γp2) are unknown parameters; the εis are

random errors with mean zero and variance σ2
ε . We assume that (εi, Ci,Xi,Zi),

i = 1, . . . , n, are independent random vectors and identically distribut-

ed as (ε, C,X,Z), and, for each i, εi is independent of Ci, Xi,k and Zi,j,

k = 1, . . . , p1, j = 1, . . . , p2, all the random variables have finite variances,

and, the covariance matrix V ar(X) of X is nonsingular.

Let Y = (Y1, Y2, . . . , Yn)T , T = (T1, T2, . . . , Tn)T , ε = (ε1, ε2, . . . , εn)T ,

β = (µ1, µ2, β1, . . . , βp1)
T , and γ = (γ1, . . . , γp2)

T . Moreover,
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2.1 Framework9

X =



I1 1− I1 X1,1 . . . X1,p1

I2 1− I2 X2,1 . . . X2,p1

...
...

...
. . .

...

In 1− In Xn,1 . . . Xn,p1


and Z =


Z1,1 . . . Z1,p2

...
. . .

...

Zn,1 . . . Zn,p2

 .

Then model (2.1) can be written as

logT = Xβ +Zγ + ε,

and the working AFT model is

E[logTi] = µ1Ii + µ2(1− Ii) + β1Xi,1 + · · ·+ βp1Xi,p1 ,

i.e.,

logTi = µ1Ii + µ2(1− Ii) + β1Xi,1 + · · ·+ βp1Xi,p1 + ui, (2.2)

where ui = γ1Zi,1 + · · · + γp2Zi,p2 + εi is considered as the residual. From

the weighted least squares (WLS) method (Stute (1993, 1996); Shen et al.

(2009)), the regression coefficients can be estimated by

β̂ =

{
n∑
i=1

δiX iX
T
i

Ĝ (Yi)

}−1 n∑
i=1

δiX ilogYi

Ĝ (Yi)
(2.3)

=β +

{
n∑
i=1

δiX iX
T
i

Ĝ (Yi)

}−1 n∑
i=1

δiX i

Ĝ (Yi)
ui,
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2.1 Framework10

where X i =
(
Ii, 1− Ii,XT

i

)T
= (Ii, 1− Ii, Xi,1, Xi,2 . . . Xi,p1)

T . Here Ĝ(·)

is the Kaplan–Meier estimator of the survival function G (·) which is defined

(c.f. Gill (1983) or (3.2.6) of Gill (1980))by

Ĝ(t) =
∏
s≤t

(
a− dNc(s)

Y (s)

)
,

Y (t) = #{Yi ≥ t} and Nc(t) = #{Yi ≤ t, δi = 0}.

Then the estimator of the residual ui is ûi = log Yi − X iβ̂, and the

WLS estimator of the variance-covariance of β̂ is

V̂arWLS(β̂) =
1

n
Γ̂−1β Σ̂β,WLSΓ̂−1β ,

where

Γ̂β =
1

n

n∑
i=1

δiX iX
T
i

Ĝ (Yi)
, (2.4)

Σ̂β,WLS =
1

n

n∑
i=1

δ2iX iX
T
i

Ĝ2 (Yi)
û2i =

1

n

n∑
i=1

δ2iX iX
T
i

Ĝ2 (Yi)

(
log Ti −X iβ̂

)2
. (2.5)

In general, the WLS estimator Σ̂β,WLS may be biased because of the esti-

mating the G(·). A valid estimator is given by

V̂ar(β̂) =
1

n
Γ̂−1β

(
V̂arWLS(β̂)− Σ̂β,G

)
Γ̂−1β ,

where Σ̂β,G is defined by

Σ̂β,G =

∫ ∞
0

B̂⊗21 (s)

π̂(s)
dΛ̂G(s), (2.6)
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2.2 CAR designs11

where B̂1(s) = 1
n

∑n
i=1 δiI{Yi ≥ s}X i(log Yi−X iβ̂)/Ĝ(Yi), π̂(s) = 1

n

∑n
i=1 I{Yi ≥

s}, and Λ̂G(s) is the Nelson estimate for the cumulative hazard function

ΛG(s) of C.

We discuss clinical trials with the following hypothesis test:

H0 : µ1 − µ2 = 0 versus HA : µ1 − µ2 6= 0. (2.7)

The test statistic for (2.7) is

T (n) =
LT β̂

{V̂ar(LT β̂)}1/2
, (2.8)

where L = (1,−1, 0, .., 0)T and V̂ar(LT β̂) = LT V̂ar(β̂)L. We will show

(see S1.22) that under the null or local alternative hypothesis,

nV̂ar(LT β̂) = nLT V̂arWLS(β̂)L+ oP (1)

=
4

n

n∑
i=1

δi

Ĝ2(Yi)

(
log Ti −X iβ̂

)2
+ oP (1).

Hence, in (2.8) we can use 4
n2

∑n
i=1

δi
Ĝ2(Yi)

(
log Ti −X iβ̂

)2
as the estimator

of Var(LT β̂).

2.2 CAR designs

In clinical trials, CAR designs are usually based on discrete covariates

(Taves (2010)). If a continuous covariate is to be used in the randomization,

it need to be discretized. Define H∗ = {k|Xk is continuous, k = 1, . . . , p1}
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2.2 CAR designs12

and H = {j|Zj is continuous, j = 1, . . . , p2}, d∗k(Xk). Let dj(Zj) be discrete

functions, and define

X̃k =


Xk if k /∈ H∗

d∗k(Xk) if k ∈ H∗

and

Z̃j =


Zj if j /∈ H

dj(Zj) if j ∈ H.

The CAR design will assign the (m + 1)th patient based on X̃i,k, Z̃i,j, i =

1, ...,m+ 1 and Ii, i = 1, ...,m.

Suppose X̃k has s∗k levels and Z̃j has sj levels. LetWi =
(
X̃i,1, . . . , X̃i,p1 , Z̃i,1,

. . . , Z̃i,p2

)
represent the ith patient’s covariate profile used in the CAR de-

signs. We use (t1, t2, . . . , tp1 , r1, r2, . . . , rp2) to denote the stratum formed

by the patients with the same covariate levels xtkk for X̃k, k = 1, . . . , p1 and

z
rj
j for Z̃j, j = 1, . . . , p2. Let (k; tk) be the margin formed by patients with

level xtkk for covariate X̃i,k and (j; rj) be that formed by patients with level

z
rj
j for covariate Z̃i,j. We next introduce the measures for imbalances. In

some trials, unbalanced allocations are required. For example, one may

be willing to allocate more patients to the treatment group than to the

placebo group. We therefore consider the q-balance, in which the number

of patients in group 1 is nearly q × 100% of the total number of patients,
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0 < q < 1. We introduce the following notation:

1. D
(q)
n : difference between the number of patients in treatment group 1

and q × 100% of the overall number of patients;

2. D
(q)
n (X, k; tk) and D

(q)
n (Z, j; rj): difference between the number of pa-

tients in group 1 and q× 100% of the total number of patients on the

margins (k; tk) and (j; rj), respectively;

3. D
(q)
n (t1, t2, . . . , tp1 , r1, r2, . . . , rp2): difference between the number of

patients in group 1 and q × 100% of the total number of patients in

the stratum (t1, t2, . . . , tp1 , r1, r2, . . . , rp2).

When q = 1/2, Dn = 2D
(q)
n , Dn(X, k; tk) = 2D

(q)
n (X, k; tk), andDn(t1, . . . , tp1 , r1, . . . , rp2) =

D
(q)
n (t1, . . . , tp1 , r1, . . . , rp2) are the usual imbalance measures when balance

is required.

2.3 Main results

When CAR designs are applied in clinical trials, the main concerns are

whether traditional tests are still valid with well-controlled type I error

rates due to the dependence among the responses, treatment assignments,

and covariates. The primary purpose of this section is to derive the asymp-

totic properties of hypothesis tests following CAR designs under both the
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null hypothesis and the alternative hypothesis. A test is said to be (asymp-

totically) conservative if the true type I error is smaller than the significance

level under the null hypothesis. We have the following theorem for compar-

ing treatment effects and performing test (2.7).

Theorem 1. Suppose that a covariate-adaptive design satisfies the following

three conditions:

(A) Cov(Xi,k, ui) = 0, k = 1, . . . , p1;

(B)
∑n

i=1(Ii − q)ŭi = oP (
√
n), where ŭi = E[ui|Wi]− E[ui];

(C) the within-stratum q-imbalances for all covariates are of order o(n)

in probability, i.e., D
(q)
n (t1, . . . , tp1 , r1, . . . , rp2) = oP (n) for all tks and

rjs.

Further, suppose that the regularity conditions (Ra)–(Rc) in the Supplemen-

tary Material are satisfied. Then we have the following results:

(i) Under H0 : µ1 − µ2 = 0,

T (n)
D→ N(0, τ 2), with τ 2 =

σ2
δ,G

σ2
z,G

(2.9)

where σ2
z,G = E

[
(ui − Eui)2/G(Ti ∧ τG)|H0

]
, σ2

δ,G = σ2
z,G − Eŭ2i .
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(ii) Under HA : µ1−µ2 6= 0, consider a sequence of local alternatives, i.e.,

µ2 = µ1 − δ/
√
n for a fixed δ 6= 0. Then

T (n)
D→ N(∆, τ 2), with ∆ =

δ
√
q(1− q)
σz,G

. (2.10)

Assumption (A) is used to make the parameters µ1 − µ2, β1, . . . , βp1 in

the working model (2.2) identifiable. Assumption (B) is a general condition.

The fist remark tell us that when it is satisfied under the marginal CARs

or stratified CARs.

Remark 1. (i) Suppose that the marginal q-imbalances for covariates Z1, . . . , Zp2

are of order o(
√
n) in probability, i.e., D

(q)
n (Z, j; rj) = oP (

√
n), j = 1, . . . , p2,

and that Z1, . . . , Zp2 are independent and independent ofX. Then Assump-

tions (A) and (B) are satisfied. In this case, E[ŭ2i ] =
∑p2

j=1 γ
2
jV ar(E[Zi,j|Z̃i,j]).

(ii) Suppose that the within-stratum q-imbalances for Z1, . . . , Zp2 are

of order o(
√
n) in probability, i.e., D

(q)
n (Z; r1, . . . , rp2) = oP (

√
n) for all

rjs, and that Z is independent of X. Then Assumptions (A) and (B) are

satisfied.

(iii) Suppose the order o(n) in Assumption (C) is strengthened to

o(
√
n). Then Assumptions (B) and (C) are satisfied.

Further, when Assumption (A) is not satisfied, we can project ui to the

linear space spanned by {Xi,1, · · · , Xi,p1} such that u∗i = ui −
∑p1

k=1 β̃kXi,k
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2.3 Main results16

satisfies Assumption (A). Then the working model becomes

log Ti = Iiµ1 + (1− Ii)µ2 +

p1∑
k=1

β∗kXi,k + u∗i , (2.11)

where β∗k = βk + β̃k, and, Assumptions (A)-(C) are satisfied and Theorem

1 holds with µ∗i taking the place of ui. In particular, the test is valid in

the sense of that limn→∞ P(|T (n)| > Z1−α/2|H0) ≤ α, where Z1−α/2 is the

(1− α/2)th quantile of a standard normal distribution.

Remark 2. Recently, for time-to-event outcomes under CARs, Ye and Shao

(2020) proposed log-rank test and robust score test, Wang et al. (2023) con-

sidered Kaplan-Meier estimator, and Ye et al. (2022) proposed a covariate-

adjusted log-rank test for treatment effects. These papers do not make any

assumptions on the true outcome generating process and the test is model-

free. When the order o(n) in Assumption (C) is strengthened to o(
√
n), our

test T (n) can be regarded as a model-free test for treatment effect, because

under the null alternative hypothesis that the distribution of Ti is the same

for Ii = 1 and Ii = 0, log Ti can be written as the form of (2.11) with µ1 = µ2

by projecting log Ti to the linear space spanned by {1, Xi,1, . . . , Xi,p1}. The-

orem 1 (i) remains true under the the null hypothesis, but Theorem 1 (ii)

no longer holds.

Remark 3. If Ci = ∞, i.e., there is no censoring, then G(t) ≡ 1, and
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2.3 Main results17

σ2
z,G = V ar(ui), σ

2
δ,G = V ar(ui − E[ui|Wi]).

Remark 4. The values of σz,G, σδ,G, and τ do not depend on q. However,

|∆| depends on q and takes its largest value |δ|
2σz,G

when q = 1/2. This means

that the test will lose its power when q 6= 1/2 under the local alternatives.

Remark 5. The weighted least square method introduced Kaplan–Meier

weights for the estimators, leading to significant complexity in deriving the

asymptotic properties of the test statistics. We show in the Supplementary

Material that the Kaplan–Meier estimator Ĝ(·) of the underlying survival

function G(·) has asymptotically the same contribution to the estimators

of µ1 and µ2, and the contribution is canceled in the estimator of µ1−µ2 so

that the Kaplan–Meier estimator has no impact on the asymptotic variance

of the estimator of µ1 − µ2 under both the null hypothesis and the local

alternative hypothesis.

Theorem 2. Suppose that the conditions of Theorem 1 are satisfied. Then,

if the test statistic (2.8) is used to perform the hypothesis test (2.7), we have

the following results:

(1) A valid type I error rate can be obtained if all the randomization co-

variates are included in the data analysis.

(2) The type I error rate is conservative if not all the randomization co-
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variates are included in the analysis and E[ui|Wi] 6≡ Constant. That

is, for a given significance level α, there is a constant α0 such that,

when H0 holds, limn→∞ P(|T (n)| > Z1−α/2) ≤ α0 < α.

This echoes Forsythe’s recommendation (Forsythe, 1987) that in time-

to-event data analysis all variables used in the minimization should also be

used as covariates in the analysis.

From Theorems 1 and 2, the balance of the covariates plays an im-

portant role in inference for covariate-adaptive designs. For the stratified

permuted block design, the difference within any stratum is at most half of

the block size. Since the number of strata is finite, the overall and marginal

differences are less than a constant, so conditions (A), (B), and (C) are satis-

fied. Hu and Hu (2012) proposed a large class of covariate-adaptive designs

in which the overall difference, marginal differences, and within-stratum

imbalance are all bounded in probability, i.e., Dn = OP (1), Dn(X, k; tk) =

OP (1), Dn(Z, j; rj) = oP (1), and Dn(t1, . . . , tp1 , r1, . . . , rp2) = OP (1), un-

der certain conditions, and conditions (A), (B), and (C) are satisfied. For

Pocock and Simon’s marginal procedure (Pocock and Simon, 1975), the

marginal difference and the overall difference have been proved by Ma et al.

(2015) to be bounded in probability, and the within-stratum imbalance has

been proved by Hu and Zhang (2020) to be of order O(
√
n) in probability.
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We summarize these results in the corollary below.

Corollary 1. Suppose q = 1/2 and that the regularity conditions (Ra) and

(Rb) in the Supplementary Material are satisfied. Theorems 1 and 2 hold

under the following covariate-adaptive designs:

(i) stratified permuted block designs;

(ii) the class of covariate-adaptive designs proposed by Hu and Hu (2012);

(iii) Pocock and Simon’s marginal procedure (Pocock and Simon, 1975) with

the Assumption that Z1, . . . , Zp2 are independent and independent of

X.

In addition to the above conclusions concerning inference under our

procedure, we offer more details about the consistency and asymptotic nor-

mality of the parameter estimators.

Theorem 3. Under assumption (C) of Theorem 1 and regularity conditions

(Ra)–(Rc), β̂ is a consistent estimate of β.

Theorem 4. Under the conditions of Theorem 1,

√
n
(
β̂ − β

) D→ N
(
0,Γ−1β ΣβΓ−1β

)
, (2.12)

where Γβ is the limit of Γ̂β and is defined as in (2.4), Σβ is defined as in

(S1.14) and Σβ+q(1−q)LLTE(ŭi)
2 is the limit of Σ̂β = V̂arWLS(β̂)−Σ̂β,G.
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We also consider general forms of hypothesis testing for the significance

of the covariates. Let P be an m×(p1+2) matrix of rank m with m < (p1+

2), where the entries of the first two columns are all zero. Our hypothesis

would be

H ′0 : Pβ = ξ0 versus H ′A : Pβ = ξ1 6= ξ0. (2.13)

The test statistic for (2.13) is

Tβ = (Pβ̂ − ξ0)T [PV̂ar(β̂)PT ]−1(Pβ̂ − ξ0). (2.14)

It can be shown that PΓ−1β L = 0. Then

lim
n→∞

P
(
nV̂ar(β̂)

)
PT = lim

n→∞
PΓ−1β

(
Σβ + q(1− q)LLTE(ŭi)

2
)

Γ−1β P
T

=PΓ−1β ΣβΓ−1β P
T ,

which is the asymptotic covariance matrix of
√
nP
(
β̂−β

)
. Hence have the

following theorem.

Theorem 5. Under the conditions of Theorem 1, we have the following

results:

(i) Under H ′0 : Pβ = ξ0,

Tβ
D−→ χ2

(m).

Hence, the hypothesis test for (2.13) can achieve the correct Type I

error.
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(ii) Under H ′A : Pβ = ξ1, consider a sequence of local alternatives, i.e.,

ξ1 = ξ0 + η/
√
n for a fixed η 6= 0. Then

Tβ
D−→ χ2

(m)(λ), with λ = ηT [PM−1PT ]−1η,

where M = lim
n→∞

nV̂ar(β̂) and λ is the noncentral parameter.

3. Numerical studies

In this section, we discuss how to control the type I error rate and investigate

the finite-sample performance of our methods. Herein, we use T (n)/τ̂ as the

test statistic, where τ̂ is a consistent estimator of τ . We fit model (2.1) with

full data to obtain consistent estimators of all the unknown parameters. We

compare Pocock and Simon’s design (PS), stratified permuted block design

(SPB), and complete randomization (CR); we use either the ordinary test

statistic (2.8) or our adjusted test statistic.

We assume that the survival time Ti follows the following AFT model:

log(Ti) = µ1(1− Ii) + µ2Ii + β1Zi,1 + β2Zi,2 + εi, (3.15)

where β1 = β2 = 0.5, Zi,1 and Zi,2 are independent. For simplicity, we

do not distinguish the notation of X and Z. The following two models

are fitted to the data: (1) no covariates are included in the AFT model
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(AFT ), and (2) both Z1 and Z2 are included (AFT (Z1, Z2)). We report the

parameter estimates (µ̂2 as a representative) and the type I error rate. We

also compare the estimated standard deviation (Est.Sd) and the empirical

standard deviation (Emp.Sd) of the estimated treatment effects µ̂1 − µ̂2.

In Table 1, both covariates are binary with a success rate of 0.5, and

εi follows N(0, 0.252). The censoring time is generated from a uniform

distribution on (0, c), and c = 10 is chosen to make the censoring rate

approximately 20%. We can see that if we include all the randomization

covariates in the analysis, the type I error rate can be controlled, and the

parameter can be accurately estimated for both complete randomization

and CAR designs. The Est.Sd of the estimated treatment effects without

any adjustment as in (2.8) and the Emp.Sd are similar. However, if we do

not use the randomization covariates in the AFT model, the type I error

rates are conservative under CAR designs, and the Emp.Sd of the estimated

treatment effects is smaller than the Est.Sd. In other words, CAR designs

reduce the variability of the estimated treatment effect. When using our

adjusted test statistics, we can control the type I error rate well for CAR

designs. Moreover, the Est.Sd after our adjustment is quite consistent with

the Emp.Sd, which explains why our methods can control the type I error

rate well. We also found that our methods can accurately estimate the
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Table 1: Performance of our methods when error follows normal distribution

and both covariates are binary

(µ1, µ2) Model Allocation Type I error Est.Sd Emp.Sd µ̂2

(0.5, 0.5) AFT(Z1, Z2) CR 0.050 0.025 0.025 0.500

PS 0.054 0.025 0.025 0.500

SPB 0.051 0.025 0.025 0.500

AFT CR 0.051 0.044 0.045 0.500

PS 0.007 0.044 0.031 0.500

PSadj 0.054 0.031 0.031 0.500

SPB 0.006 0.044 0.031 0.499

SPBadj 0.054 0.031 0.031 0.499

(0.4, 0.4) AFT(Z1, Z2) CR 0.051 0.025 0.025 0.400

PS 0.054 0.025 0.025 0.400

SPB 0.054 0.025 0.025 0.400

AFT CR 0.056 0.043 0.044 0.399

PS 0.007 0.043 0.030 0.400

PSadj 0.054 0.030 0.030 0.400

SPB 0.004 0.043 0.030 0.400

SPBadj 0.053 0.030 0.030 0.400

unknown parameter.

In Table 2, we study the performance of our methods when the errors
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follow the logistic distribution with location parameter 0 and scale param-

eter α. In Table 3, we study the case where both covariates follow the

Normal distribution N(0, 0.52). The censoring time is generated from a u-

niform distribution on (0, 8). All the other settings are as in Table 1. Our

conclusions are similar to those for the binary covariates (Table 1).

In Table 4, we study the performance of our methods in terms of the

hypothesis test for the covariates under H0 : β1 = 0 when both covariates

are binary with success rate 0.5 and εi follows N(0, 0.252). The censoring

time is generated from a uniform distribution on (0, 8). The following two

models will be fitted to the data: (1) only Z1 is included in the AFT model

(AFT (Z1)), and (2) both Z1 and Z2 are included (AFT (Z1, Z2)). All the

other settings are as in Table 1. Our theorem shows that we can control the

type I error rate without adjustment, and Table 4 confirms these theoretical

results. For simplicity, we report only the type I error rate here.

We have carried out numerical studies for various combinations of the

distributions of the errors and covariates, the values of the unknown pa-

rameters, and hypothesis tests for the treatment or covariate effects. All

led to similar conclusions, and the details are omitted.
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Table 2: Performance of our methods when error follows logistic distribution

and both covariates are binary

(µ1, µ2, α) Model Allocation Type I error Est.Sd Emp.Sd µ̂2

(0.4, 0.4, 0.12) AFT(Z1, Z2) CR 0.052 0.021 0.022 0.400

PS 0.047 0.021 0.021 0.399

SPB 0.049 0.021 0.022 0.399

AFT CR 0.050 0.041 0.041 0.399

PS 0.003 0.041 0.027 0.399

PSadj 0.052 0.027 0.027 0.399

SPB 0.002 0.041 0.027 0.399

SPBadj 0.052 0.027 0.027 0.399

(0.6, 0.6, 0.15) AFT(Z1, Z2) CR 0.048 0.028 0.028 0.599

PS 0.054 0.028 0.028 0.599

SPB 0.054 0.028 0.028 0.599

AFT CR 0.049 0.046 0.046 0.599

PS 0.007 0.046 0.034 0.599

PSadj 0.052 0.034 0.034 0.599

SPB 0.009 0.046 0.034 0.599

SPBadj 0.050 0.034 0.034 0.599
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Table 3: Performance of our methods when error and both covariates follow

normal distribution

(µ1, µ2) Model Allocation Type I error Est.Sd Emp.Sd µ̂2

(0.4, 0.4) AFT(Z1, Z2) CR 0.050 0.025 0.025 0.400

PS 0.050 0.025 0.026 0.400

SPB 0.050 0.025 0.026 0.399

AFT CR 0.052 0.045 0.046 0.399

PS 0.022 0.045 0.038 0.399

PSadj 0.053 0.038 0.038 0.399

SPB 0.019 0.045 0.038 0.399

SPBadj 0.049 0.038 0.038 0.399

(0.3, 0.3) AFT(Z1, Z2) CR 0.055 0.025 0.025 0.300

PS 0.052 0.025 0.025 0.300

SPB 0.051 0.025 0.025 0.299

AFT CR 0.053 0.045 0.045 0.299

PS 0.019 0.044 0.037 0.299

PSadj 0.050 0.037 0.037 0.299

SPB 0.024 0.045 0.038 0.299

SPBadj 0.055 0.037 0.038 0.299
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Table 4: Performance of our methods for hypothesis tests about covariate

effects when error follows normal distribution and both covariates are binary

(µ1, µ2, β2) Allocation AFT(Z1, Z2) AFT(Z1)

(0.5, 0.5, 0.5) CR 0.053 0.050

PS 0.052 0.046

SPB 0.046 0.050

(0.5, 0.6, 0.7) CR 0.047 0.050

PS 0.048 0.051

SPB 0.054 0.047

4. Conclusion

CAR designs, especially stratified permuted block randomization designs,

are popular in clinical trials since balancing the treatment allocation for

influential covariates is important. Two questions about CAR designs are

of interest. First, what are the asymptotic imbalances at different levels:

within strata, marginal, and overall? Hu and Hu (2012) used the Markov

technique to derive the order of these imbalances for a family of CAR de-

signs. Ma et al. (2015) proved the asymptotic imbalance for both Pocock

and Simon’s marginal procedures (Pocock and Simon, 1975) and stratified
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permuted block designs.

Second, why is the type I error rate conservative when not all the covari-

ates are included in the analysis? This has been numerically demonstrated

in different settings. However, there has been little research into the per-

formance of hypothesis testing for trials with time-to-event outcomes under

a general family of CAR designs. We have provided the theoretical prop-

erties of hypothesis testing under the AFT model with CAR designs. We

derived the asymptotic distribution of the test statistic under both the nul-

l and alternative hypotheses and showed the consistency and asymptotic

normality of the estimators. We explained the conservativeness of the type

I error rate when only some of the randomization covariates are used in the

model. Based on our theoretical results, we proposed methods to control

the type I error rate. Numerical results confirmed our theoretical findings

and demonstrated the success of our methods.

This paper opens the door to further study of clinical trials with CAR

designs and time-to-event outcomes. There are several future research di-

rections. First, modern trials often require an interim analysis, and we need

the joint distribution of the sequential statistics. The current paper offer-

s the marginal distribution of each of these sequential statistics. Second,

both the industry and the FDA demand the evaluation of new therapies in
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a time-sensitive and cost-effective manner. We can study adaptive seamless

phase II/III clinical trial designs (ASD) with CAR and AFT to satisfy this

need for time-to-event responses. Based on different approaches for ASD,

we may need to generalize our results to trials with multiple treatments and

investigate the correlation of statistics from different phases. Third, robust

inference under CAR designs has recently attracted much attention, and it

would be interesting to explore robust inference for clinical trials with CAR

and survival responses.
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