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Collective anomaly detection in High-dimensional VAR Models
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Abstract: There is increasing interest in detecting collective anomalies: potentially short

periods of time where the features of data change, before reverting back to normal be-

haviour. We propose a new method for detecting a collective anomaly in VAR models.

Our focus is on situations where the change in the VAR coefficient matrix at an anomaly

is sparse, i.e. a small number of entries of the VAR coefficient matrix change. To tackle

this problem, we propose a test statistic for a local segment that is built on the lasso es-

timator of the change in model parameters. This enables us to detect a sparse change

more efficiently, and our lasso-based approach becomes especially advantageous when the

anomalous interval is short. We show that the new procedure controls Type 1 error and has

asymptotic power tending to one. The practicality of our approach is demonstrated through

simulations and two data examples, involving New York taxi trip data and EEG data.

Key words and phrases: Collective anomaly; High-dimensional time series; Lasso; Sparse

changes; Epidemic change; Vector autoregressive model.
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1. Introduction

There is a growing need for modelling and analysis of high-dimensional time

series, as such series have become increasingly common in many application

areas. Applications include estimating causal relationships among genes and

constructing gene regulatory networks (Shojaie and Michailidis, 2010), discov-

ering causal interactions in Neuroimaging (Seth et al., 2015), detecting changes

in the network structure of functional magnetic resonance imaging data (Cribben

and Yu, 2017) and analysing the network structure of volatility interconnections

in the S&P 100 data (Barigozzi and Hallin, 2017).

The majority of existing methods are built on the assumption of stationary

and stable time series, however if there is either a structural change or a period

of anomalous behaviour in a time series, detecting its location is an important

task. High-dimensional changepoint analysis has recently received increasing

attention and is still in its early stage. The types of changes that are of interest

differ depending on application, and we only mention a selection. Detecting a

change in mean is the most popularly studied area and early works include Bai

(2010) which studies the consistency of the least squares estimator of a single

change-point. The CUSUM procedure has been popularly used in changepoint

analysis, with Zhang et al. (2010) and Horváth and Hušková (2012) presenting

a test statistic for detecting a change in multivariate data that is based on l2-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



aggregation of the CUSUM values for individual series. Jirak (2015) proposes

an l∞-aggregation of CUSUM statistics and Enikeeva and Harchaoui (2013) pro-

pose a combination of two chi-square type test statistics so as to be able to detect

changes that affect many or only a few series. Other recent works dealing with

cross-sectionally sparse changes include Cho and Fryzlewicz (2015), Cho (2016)

and Wang and Samworth (2018). Related topics in high-dimensional time series

include detecting changes in covariance (Aue et al., 2009; Wang et al., 2017) and

in factor models (Chen et al., 2014; Barigozzi et al., 2018).

One of the most popular models for high-dimensional time series is the vec-

tor autoregressive (VAR) model (Sims, 1980; Lütkepohl, 2005), due to its abil-

ity to capture complex temporal and cross-sectional relationships. However, the

estimation of the coefficient matrix becomes challenging as the number of pa-

rameters increases quadratically with the number of time series. To overcome

this, structured sparsity of the VAR coefficients is often assumed as this assump-

tion dramatically reduces the number of model parameters. For example, Song

and Bickel (2011) use lasso type, that is `1, penalties to encourage sparsity in

the estimates of the VAR coefficients. Basu and Michailidis (2015) investigate

the theoretical properties of `1-penalised estimators for a Gaussian VAR model

and show consistency results, while Lin and Michailidis (2017) generalise the

results by considering a general norm instead of being restricted to the `1-norm
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for the penalty. Recently, more complex structures have been studied in the lit-

erature: Basu et al. (2019) study the low-rank and structured sparse VAR model

and Nicholson et al. (2020) impose a hierarchical structure on VAR coefficient

matrices according to the lag order, thus addressing both the dimensionality and

the lag selection issues at the same time.

Despite the large body of literature on VAR models, detecting a structural

change has rarely been studied. Kirch et al. (2015) consider two scenarios, de-

tecting at-most-one-change and epidemic change in model parameters of multi-

variate time series which is not restricted to VAR models. Safikhani and Shojaie

(2020) consider the multiple change-point setting for the VAR coefficient ma-

trix under a high-dimensional regime and propose a three-stage procedure that

returns consistent estimators of both change-points and parameters. Wang et al.

(2019) also study the same setting (i.e. when the model parameters have a form

of piecewise constant over time) and use a dynamic programming approach for

localising change-points and improving the corresponding error rates. Bai et al.

(2020) study the multiple change-point setting but assume the low-rank plus

sparse structure on the VAR coefficient matrices and consider the case where

only the sparse structure changes over time, while the low-rank parts remain con-

stant. We will explain how our proposal is different from these existing works

later in this section.
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In contrast to these earlier works, we focus on settings where we have plenty

of information about the current or normal behaviour of our time-series, and

wish to detect periods of different or anomalous behaviour. First, this can arise

when detecting collective anomalies or epidemic changepoints – where we have

a, potentially short, period of time where the behaviour of our model changes

before it reverts back to pre-change behaviour. Note that both collective anomaly

and epidemic change can be modelled as two classical changepoints, and for ease

of presentation, we use the terminology collective anomaly from now on.

Collective anomaly detection is a problem of significant interest in many

applications such as genetics (Siegmund et al., 2011; Jeng et al., 2012; Bardwell

and Fearnhead, 2017) and brain science (Aston and Kirch, 2012; Kirch et al.,

2015). A selection of existing works include cost function based approaches for

univariate (Yao, 1993; Fisch et al., 2018), independent multivariate (Fisch et al.,

2021) and cross-correlated multivariate (Tveten et al., 2020) data. Anomaly

detection has also been widely studied in the machine learning literature, see

Chandola et al. (2009) for an extensive review. Secondly, the settings we focus

on, where we have a lot of information about the normal behaviour of the time

series, also arises with sequential change detection (Lai, 1995), when we observe

data in real-time and wish to detect any change away from the current behaviour

as quickly as possible. Although our primary focus is on a posteriori collective
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anomaly detection, we show how our method can be extended to the online

framework in Section 5. The key feature of our detection problem is that we have

substantially more information about the current or normal behaviour than about

the anomaly. This suggests that we should potentially use different procedures

to estimate the parameters of the VAR model for the normal behaviour than for

the anomaly. We do this through making an assumption that it is the change in

VAR parameters that is sparse.

We focus on improving the detection power when the difference between

the coefficient matrices at anomaly point is sparse (i.e. a small number of en-

tries of the VAR coefficient matrix change). To tackle this problem, we propose

a test statistic for a local segment which is built on the lasso estimator of the

change in model parameters. This enables us to detect a sparse change more

efficiently, as the sparsity of change is considered in establishing the test statis-

tic. Moreover, our lasso-based approach become more advantageous over, say,

the standard likelihood-ratio test statistic for shorter anomalous intervals: as for

shorter intervals we have fewer observations to estimate the new VAR coefficient

matrix. Conversely, our approach becomes more like a high-dimensional prob-

lem where the number of observations is similar to or less than the number of

parameters to estimate.

In Section 4, our approach is compared with a method that is built on esti-
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mating the change in VAR matrix using ordinary least squares estimator, and the

results show that our method outperforms it when detecting sparse change. As

we consider the setting where a relatively longer region has a normal behaviour

than the anomalous behaviour, it is reasonable to assume that the underlying

VAR coefficient matrix is estimated well enough. Thus, we first develop our

method when the normal behaviour is assumed to be known and extend it to

the case where an appropriate estimator for the VAR coefficient is used instead.

Our theory in Section 3 shows the validity of this approach providing that the

estimator for the VAR coefficient is close enough to the true one. Although our

main focus is on single anomaly detection, we show that the new method can be

extended for detecting multiple anomalies in Section 2.1.

Among those relevant works already introduced earlier in this section, Safikhani

and Shojaie (2020) and Bai et al. (2020) are most closely related to our work in

that they also control the change in VAR parameters with a lasso penalty, how-

ever their approaches are different from our method in several aspects. To ob-

tain the initial estimate of change-points before screening, Safikhani and Shojaie

(2020) use a fused lasso penalty on a full model considering all time points being

a candidate for change-point. Thus their objective function controls the sparsity

of VAR parameters and the sparsity of its difference at the same time. Bai et al.

(2020) follows a similar procedure to Safikhani and Shojaie (2020) under the
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multiple change-point framework. They use a block fused lasso penalty by as-

suming that the model parameters in a block is fixed, while our objective function

controls only the sparsity of change in building a test statistic and search many

segments to find an anomalous interval. Also, Safikhani and Shojaie (2020)

and Bai et al. (2020) assume that the l2-norm of a change in VAR parameter is

bounded away from zero, whereas our assumption on the l2-norm of a change

is related to the sparsity of change which is in line with the assumptions used

in Wang et al. (2019). Although those change-point detection methods are not

exactly designed for the anomaly setting we consider in this paper, we compare

our performance with theirs and present results in the supplementary material.

Our method works better especially when the underlying VAR coefficient ma-

trix is dense but the change is sparse, and surprisingly even in the case where the

VAR coefficient matrix has a low rank plus sparse structure and only a sparse

component changes. Full details can be found in the supplementary material.

The remainder of the article is organised as follows. Section 2 gives a full

description of our procedure and the relevant theoretical results are presented in

Section 3. The supporting simulation studies are described in Section 4. Our

methodology is illustrated through two datasets in Section 5 and we end with

additional discussion in Section 6. The proofs of our main theoretical results are

in the supplementary material.
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2. Methodology

2.1 Problem setting

We consider a zero-mean, stationary, p-dimensional multivariate time series xt =

(x1t, . . . , xpt)′ generated by a VAR(1) model:

xt = Atxt−1 + εt, εt
i.i.d.
∼ N(0,Σε), t = 1, . . . ,T, (2.1)

where {At}
T
t=1 is a p×p matrix and Σε is a positive definite matrix. We assume that

the high-dimensional VAR model shows an anomalous behaviour at t ∈ [η1, η2]

such that 0 < η1 < η2 < T . Then the sequence of {At}
T
t=1 forms piecewise-

constant coefficient matrices as follows

A(1) = A1 = · · · = Aη1−1, A(2) = Aη1 = · · · = Aη2 , A(1) = Aη2+1 = · · · = AT ,

where A(1) , A(2) and A(1), A(2) ∈ Rp×p. The model in equation (2.1) can be

represented as the following linear regression,


x′1
x′2
...

x′T


T×p

=



x′0 0
...

...

x′η1−2 0
x′η1−1 x′η1−1
...

...

x′η2−1 x′η2−1

x′η2
0

...
...

x′T−1 0


T×2p

(
θ(1)′

θ(2)′

)
2p×p

+


ε′1
ε′2
...

ε′T


T×p

, (2.2)
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2.1 Problem setting

where θ(1) = A(1), θ(2) = A(2) − A(1). The model, as written in equation (2.2), is

a linear regression of the form Y = XΘ + E. As such, it can be represented as

YT p×1 = XT p×2p2Θ2p2×1 + ET p×1, where X = Ip ⊗ X and ⊗ is the tensor product

of two matrices.

Now our interest is in estimating the collective anomaly [η1, η2]. Our mo-

tivation is for scenarios where there is substantial information about the normal

or pre-change behaviour of the data. Thus, for ease of presentation, we will first

assume that θ(1) in (2.2) is known. In practice we will use an estimate of θ(1), and

our theory shows that our approach has good asymptotic properties if we plug-in

a suitably accurate estimate of θ(1) in the following procedure. We assume that

the change θ(2) is sparse in that it has small number of nonzero entries which

will be formulated in a later section. Assuming the base coefficient matrix A(1)

is known, we can rewrite the model as


x′1
x′2
...

x′T


T×p

−



x′0θ
(1)′

...

x′η1−2θ
(1)′

x′η1−1θ
(1)′

...

x′η2−1θ
(1)′

x′η2
θ(1)′

...

x′T−1θ
(1)′


T×p

=



0
...

0
x′η1−1
...

x′η2−1

0
...

0


T×p

(
θ(2)′

)
p×p

+


ε′1
ε′2
...

ε′T


T×p

, (2.3)

that can be represented as Y − X(1)θ(1)′ = X(2)θ(2)′ + E. With slight abuse of
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2.2 Lasso-based approach

notation by using different definitions of Y, X and Θ, we can rewrite (2.3) as

YT p×1 = XT p×p2Θp2×1 + ET p×1, (2.4)

where X = Ip ⊗ X
(2).

2.2 Lasso-based approach

To detect a collective anomaly we derive a test for whether data in an interval

of time is anomalous, and then apply this test to data from a set of suitably

chosen intervals, JT,p(L). To help with the presentation of theory in Section 3, we

parameterise this set by the length, L, of the smallest interval it contains. For any

interval J ∈ JT,p(L), by extracting the corresponding rows from each matrix in

(2.3), the linear regression form can be rewritten as: YJ−X
(1)
J θ

(1)′ = X
(2)
J θ

(2)′+EJ,

that can be vectorised in a form of YJ = XJΘ + EJ as in (2.4).

One of the standard ways to detect change or epidemic changes in regression

models is to use a likelihood ratio test (Kim and Siegmund, 1989; Siegmund and

Venkatraman, 1995; Yau and Zhao, 2016; Baranowski et al., 2019; Dette and

Gösmann, 2020), and these methods can be applied in the VAR setting. To detect

a collective anomaly in a set of intervals, our procedure involves calculating the

likelihood ratio statistic for each interval J ∈ JT,p(L) as

−2
{∑

s∈J

ls
(
Θ = 0,Σε

)
−

∑
s∈J

ls
(
Θ̂,Σε

)}
, (2.5)
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2.2 Lasso-based approach

where Θ̂ is the maximum likelihood estimator and the likelihood function has

the form of

∑
s∈J

ls
(
Θ,Σε

)
= −

1
2

{
|J|p log(2π) + |J| log |Σε|+ (YJ −XJΘ)>(Σ−1

ε ⊗ I)(YJ −XJΘ)
}
.

As we consider only Θ varying, the first two terms are constant and will cancel

in the test statistic. It is common to assume Σε is the identity matrix, in which

case the maximum likelihood estimator of Θ is the ordinary least squares (OLS)

estimator. Alternatively we can estimate the variance from the residuals obtained

when estimating the parameters of the VAR model on training data. For ease of

presentation, we will assume Σε is an identity matrix from now on, but our the-

oretical results are still valid if this assumption is not correct. Furthermore, the

theory can be extended to situations where we assume either Σε is any positive

identity matrix or an estimate of Σε is used. We now give details of the likelihood

ratio statistic and our suggested improvement based on penalised estimation of

the change in the VAR coefficients.

The OLS method Before introducing the lasso-based approach, we consider

the test statistic based on the least squares estimator which we refer to as the

OLS method. The OLS estimator has been popularly used in the changepoint

detection literature e.g. in a linear model setup, CUSUM-type approaches built

on the least squares estimator are studied by Horváth et al. (2004), Aue et al.
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2.2 Lasso-based approach

(2006) and Fremdt (2015). For any interval J ∈ JT,p(L), the test statistic of the

OLS method takes the form,

T (J) = ‖YJ‖
2
2 −min

Θ

{
‖YJ − XJΘ‖

2
2
}

(2.6)

that is the same as the likelihood ratio statistic in (2.5) when Σε is the identity

matrix. T (J) has a χ2
p2 distribution under the null, Θ = 0. The classical least

squares estimator Θ̂ = argminΘ
{
‖YJ − XJΘ‖

2
2
}

in (2.6) is not able to be used

when the dimension p is greater than T . Note that Θ̂ also depends on J but this

is suppressed in the notation for simplicity.

The Lasso method To handle the case when Θ is sparse more effectively, we

propose a test statistic based on a lasso estimator:

T lasso(J) = ‖YJ‖
2
2 −min

Θ

{
‖YJ − XJΘ‖

2
2 + λ‖Θ‖1

}
. (2.7)

To detect a collective anomaly, we calculate this test statistic for a collection

of intervals, JT,p(L). We detect an anomaly if the maximum value of these test

statistics is above a pre-determined threshold. If we detect an anomaly, we es-

timate its location as the interval in JT,p(L) with the largest test-statistic value.

The detailed procedure is given in Algorithm 1.
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2.3 Extensions to VAR(q) model and multiple anomaly detection

Algorithm 1: Single anomaly detection

INPUT: X matrix in (2.4), L, λ
thr

Step 1: Set a collection of intervals JT,p(L) where L is the minimum
length of intervals.

Step 2: For any interval J ∈ JT,p(L), calculate T lasso(J) as in (2.7).

Step 3: Using a pre-specified threshold λ
thr

, pick the candidate set

I∗ =
{
J ∈ JT,p(L) : T lasso(J) > λ

thr}
.

If I∗ , ∅, reject the null hypothesis (no anomaly exists) and save the
estimator of the anomaly interval,

Î = argmax
J∈JT,p(L)

T lasso(J). (2.8)

OUTPUT: Î.

For setting the collection of intervals JT,p(L) in Step 1, there exist two

general methods; randomly generated intervals (Fryzlewicz, 2014; Baranowski

et al., 2019) and deterministic construction of intervals (Kovács et al., 2020). In

this paper, we use both methods and compare their performance in Section 4.

2.3 Extensions to VAR(q) model and multiple anomaly detection

Our method can be extended to deal with VAR(q) model and multiple anomaly

detection. The details can be found in Section S1 of the supplementary material.

3. Theoretical results

In this section, we explore the asymptotic behaviour of the proposed method.

We show that our method controls the familywise error under the null (i.e. when
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there exist no anomaly) with an appropriate threshold and give conditions under

which the asymptotic power of the method tends to 1. These results are based

upon the following assumptions.

Assumption 1. For each j = 1, 2, let Γ j(`) be the population version of the lag-`

covariance matrix of x j where x j is x1 = {x1, . . . , xη1−1}, and x2 = {xη1 , . . . , xη2}.

For κ ∈ [−π, π], there exist the spectral density matrices,

f j(κ) =
1

2π

∑
l∈Z

Γ j(l) exp−
√
−1κl .

In addition, max jM( f j) = max j

{
ess supκ∈[−π,π] Λmax( f j(κ))

}
< +∞ and min jm( f j) =

min j

{
ess infκ∈[−π,π] Λmin( f j(κ))

}
> 0, where Λmax(A) and Λmin are the largest and

the smallest eigenvalues of the symmetric matrix A, respectively.

This first condition is needed to control the stability properties of the VAR

models. This is a spectral density condition that is not only valid for VAR model

but also holds for a large class of general linear process. Basu and Michailidis

(2015) use the same assumption but for a stable VAR setting without consid-

ering anomalies, while we extend it to the single collective anomaly setting by

assuming a spectral density function for each common and anomalous segments

separately.

In order to bound the power of our method we need conditions on the size

and length of any anomaly and the set of intervals we use – essentially we will
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need at least one interval of sufficient length to be contained within the anomaly.

To this end we introduce the following:

Assumption 2. The dimensionality p satisfies p ∼ Tα for some fixed α ∈ [0,∞).

Assumption 3. There exist at least one interval J ∈ JT,p(L) such that J ⊆ [η1, η2]

and the choice of L for a set of intervals JT,p(L) satisfies log(T∨p)
L → 0 as T → ∞,

where any interval J ∈ JT,p(L) has length at least L.

Assumption 4. The sparsity of change is fixed; ‖Θ‖0 = d0.

Assumption 5. For any ξ > 0, L · ‖Θ‖22 > C2 · d2
0 · log1+ξ (T ∨ p), where C2 > 0

is a constant.

Assumption 4 gives the condition on the number of nonzero entries of the

coefficient matrix, where the sparsity parameter d0 affects the signal-to-noise

ratio condition in Assumption 5. Our Assumption 5 is similar to the condi-

tions required in other change-point problem in high-dimensional VAR models.

For example, Wang et al. (2019) study a multiple changepoint setting and their

signal-to-noise ratio assumption becomes equal to ours in the case when single

change-point is considered, while Safikhani and Shojaie (2020) assume ‖Θ‖2 is

bounded away from zero.

Assumption 6. For the estimator θ̂(1),
∥∥∥θ(1) − θ̂(1)

∥∥∥
∞
< C

√
log(T∨p)

L with proba-

bility approaching 1 as T → ∞ and p→ ∞, where C > 0 is a constant.
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Assumption 6 states the necessary condition on the estimation error bound

on θ̂(1) and is only used to extend our theoretical results to the case when θ(1)

is estimated. Such error bounds are presented in Proposition 4.1 of Basu and

Michailidis (2015) and Lemma 15 of Wang et al. (2019): when θ(1) is assumed

to be sparse with the condition ‖θ(1)‖0 = k, then its lasso estimator, θ̂(1), satisfies∥∥∥θ(1)− θ̂(1)
∥∥∥

2
≤ c
√

k
√

log(T∨p)
T with probability tending to 1, where θ̂(1) is obtained

from a sample of size T . This estimation error bound in `2-norm implies our

Assumption 6 presented in `∞-norm when the sparsity k is fixed.

We now present our main theoretical results where the proofs can be found

in Section S2 of the supplementary material. The following theorem gives con-

ditions on the lasso penalty to ensure the procedure asymptotically controls the

familywise error when there is no anomaly.

Theorem 1. Let Assumptions 1-3 hold. If there exist no anomaly, for a tuning

parameter λ = C3
√

L(2 log p + log T ) with a constant C3 large enough, we have

P
(

max
J∈JT,p(L)

T lasso(J) ≤ λthr
)
≥ P

(
max

J∈JT,p(L)
T lasso(J) = 0

)
≥ 1 −C4 exp(−C5(2 log p + log T )),

where C4,C5 > 0, λthr > 0 and λ is a tuning parameter in (2.7).

In Theorem 1, it is clear that our result applies to any positive threshold

λthr. In the proof of Theorem 1 in the supplementary material, we show that the
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familywise error is controlled under an appropriate tuning parameter λ, and the

argument still holds if we use λJ = C3
√
|J|(2 log p + log T ) instead of λ, where

λJ varies with each interval J. We now turn to the asymptotics of the test statistic

under the alternative.

Theorem 2. Let Assumptions 1-5 hold. If there exist an anomaly, with a tuning

parameter λ = C2
√

L(2 log p + log T ) for a large enough C2, as T → ∞, then

P
(

max
J∈JT,p(L)

T lasso(J) ≤ λthr
)
→ 0 and P(Î ∩ [η1, η2] , ∅)→ 1,

where λthr has the order of
√

L · log(p ∨ T ), the estimated anomaly Î is as in

(2.8) and λ is a tuning parameter in lasso regression in (2.7).

Theorem 2 states that the test statistic corresponding to the intervals in the

candidate set is greater than the pre-specified threshold if the interval is located

within the true anomaly. In other words, it shows that the individual test has

asymptotic power one. The argument in the proof of Theorem 2 still applies if

we make λ vary with interval J by replacing L by |J| in the definition of λ. The

following theorem shows that our method has larger power to detect a sparse

collective anomaly.

Theorem 3. Assume that xt follows (2.3) and let Assumptions 1-5 hold. Let the

null hypothesis hold, then for any {J : J ∈ JT,p(L), J ∩ [η1, η2] = ∅}, the test

statistic of the OLS method in (2.6) follows a χ2
p2 distribution. Consequently,
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we have an asymptotic level α test if the null hypothesis is rejected for T (J) >

χ2
p2;(1−α), where χ2

p2;(1−α) is the (1 − α)-quantile of chi-square distribution with

p2 degrees of freedom. Under the alternative, for any J ∈ JT,p(L) such that

J ⊆ [η1, η2], the upper bound on the power of the OLS method is given as

E
(
‖YJ‖

2
2 − ‖YJ − XJΘ‖

2
2
)

Wp
, (3.9)

where Wp = Op(p).

Note that Wp in (3.9) is linked to the false positive rate as it is the approxima-

tion of χ2
p2;(1−α) − p2. See the proof in Section S2 of the supplementary material

for further details.

Theorem 3 shows the asymptotic behaviours of the test statistic of the OLS

method under both the null and the alternative hypotheses. Furthermore, Theo-

rem 3 implies that the test statistic built on the lasso estimator can detect weaker

anomalies than using the OLS estimator when the change is sparse. The intuition

behind this is that the test statistic of the OLS method in (2.6) can be written as

‖YJ‖
2
2 − ‖YJ − XJΘ‖

2
2 +

{
‖YJ − XJΘ‖

2
2 − ‖YJ − XJΘ̂‖

2
2
}
, (3.10)

and E(‖Y‖22 − ‖Y − XΘ‖22) needs to be at least as large as Op(p) to have high

power. By comparison, if we denote the lasso estimator of Θ by Θ̂, then the test
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statistic of the lasso method in (2.7) can be written as

‖YJ‖
2
2 − ‖YJ − XJΘ‖

2
2 − λ‖Θ‖1 +

{
‖YJ − XJΘ‖

2
2 + λ‖Θ‖1 − ‖YJ − XJΘ̂‖

2
2 − λ‖Θ̂‖1

}
.

(3.11)

Noting that the term in {}s in (3.11) is positive, the lasso-based test statistic

requires that ‖Y‖22 − ‖Y − XΘ‖22 should at least as large as Op(λ‖Θ‖1) and λ =

C2
√

L(2 log p + log T ). The following corollary states that the assertions in The-

orems 1-2 remain true if the θ(1) is replaced by an estimator θ̂(1) that satisfies the

condition in Assumption 6.

Corollary 1. Theorems 1-2 hold with a different constant if θ̂(1) is used in cal-

culating the test statistic instead of the true parameter θ(1), where θ̂(1)′ is an

estimator fulfilling Assumption 6.

4. Simulation study

4.1 Parameter choice and setting

We compare the performance of our lasso-based approach with the OLS method

described in Section 2.2. Whilst there are other methods for detecting changes

in a VAR model, such as those of Safikhani and Shojaie (2020) and Bai et al.

(2020), they are not designed for the collective anomaly setting that we consider.

For completeness, we compare their performances with ours, and the details can
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4.1 Parameter choice and setting

be found in Section S3 of the supplementary material. Perhaps due to not being

designed for the collective anomaly setting, we find these alternative methods

perform substantially worse than ours, particularly when the underlying matrix

A(1) is dense but the change is sparse.

In practice, the underlying parameter A(1) is often unknown and needs to

be estimated. In this case, as the accuracy of our method depends on how ac-

curately we can estimate A(1), considering two extreme cases gives upper and

lower bounds on our method: A(1) is known and A(1) is estimated from a rela-

tively small amount of data with ridge or lasso penalty depending on the given

sparsity of A(1). In the latter case, the training data is the same size as the test

data which we examine for detecting an anomaly.

The threshold of each test is selected by choosing the 99% quantile of the

test statistics obtained through the 100 simulation runs performed under the null.

This can be easily done when A(1) is known. A naı̈ve approach when A(1) is un-

known is to simulate data from the model with the estimator Â(1) obtained from

the training set. However this ignores the estimation error in A and consequently

leads to thresholds that are too low. To overcome this we use a two stage sim-

ulation procedure. We simulate a data set with the estimator Â(1) obtained from

the training set and re-estimate A from this data set. This estimate is denoted by

Ã(1). Then we use data simulated from Ã(1) as the data simulated under the null
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4.1 Parameter choice and setting

that is used to obtain the threshold.

For the error variance, we set Σε to be the identity matrix. In the following

sections, we report the results when Σε is known. The results for when Σε is

estimated can be found in Section S3 of the supplementary material.

As presented in Theorems 1-2, the performance of the lasso-based method

depends on the tuning parameter selection. Our theoretical results hold under

both λ = C
√

L(2 log p + log T ) and λJ = C
√
|J|(2 log p + log T ), where λ is a

fixed tuning parameter for all intervals of different lengths and λJ varies with the

length of each interval J. Based on our empirical experience, in practice we use

λJ with the default constant C = 0.15, as it achieves stable performance across

the different settings as presented in the following section. In practice, similar

performance is obtained for any C ∈ [0.05, 0.25]. Using a fixed constant C is

advantageous over optimising λJ for each interval (e.g. by minimising cv), as it

makes the algorithm faster especially when both T and p are large and it leads

to the stable performance especially when |J| is substantially small.

We also look at how the choice of the set of intervals, JT,p(L), affects perfor-

mance. We vary both the number of intervals which we denote by s, and the way

we choose the intervals, randomly or deterministically, with a pre-determined

minimum length of interval. For the deterministic construction of intervals, we

use the technique proposed in Definition 1 of Kovács et al. (2020) with the de-
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4.2 Simulation settings

cay parameter 1/a = 1.1, 1.2. Regardless of the way of choosing the intervals,

we force the minimum length intervals to be greater than p in order to compare

our approach with the OLS method. To deal with the high-dimensional settings

(such as M7 and M8 in Table 1), we set the minimum length intervals to be

greater than dp/10e and report only the results of the lasso-based method.

4.2 Simulation settings

We simulate data from 8 settings presented in Table 1 and the true coefficient

matrices of some settings are shown in Table 2. Those settings are categorised

into two scenarios: (1) A(1) is dense (M1-M4) and (2) A(1) is sparse (M5-M8);

where the number of non-zero elements is large in (1) and small in (2).

T p [η1, η2] [η3, η4] η2 − η1 η4 − η3 ∆1 ∆2 ‖Θ‖0

M1 500 10 [227, 272] 45 0.35 10
M2 500 10 [233, 266] 33 0.35 10
M3 500 10 [133, 166] [333, 366] 33 33 0.6 0.6 5
M4 500 10 [33, 66] [433, 466] 33 33 0.5 0.5 5
M5 500 20 [222, 277] 55 0.55 19
M6 500 20 [229, 270] 41 0.55 19
M7 100 50 [44, 55] 11 1.1 49
M8 100 70 [40, 60] 20 1.1 69

Table 1: Simulation settings, where ∆1 = |A(2) − A(1)|, ∆2 = |A(3) − A(1)| and ‖Θ‖0
is the number of non-zero elements of Θ.

In the settings M1-M4, we consider the case when all entries of A(1) are non-

zero. The coefficient matrix is randomly generated by using the algorithm pro-

posed by Ansley and Kohn (1986) and implemented in R package gmvarkit
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4.2 Simulation settings

M1, M2

A
(1)

A
(2)

A
(1)

X

X

X

X

X

X

X

X

X

X

M3, M4

A
(1)

A
(2)

A
(1)

A
(3)

A
(1)

X

X

X

X

X

X

X

X

X

X

M5, M6

A
(1)

A
(2)

A
(1)

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

Table 2: The underlying coefficient matrices for some of the simulation settings
described in Section 4.2, where A(2) and A(3) correspond to anomalies and X
marks indicate which elements undergo change.

which forces the resulting VAR model to be stationary, where the range of the

entries of A(1) is obtained as [−0.67, 0.58]. Under the settings M1 and M2, the

single anomaly, [η1, η2], is considered with the corresponding coefficient matrix

A(2), while two collective anomalies, [η1, η2] and [η3, η4], are assumed for both

M3 and M4, where the corresponding coefficient matrix is A(2) and A(3), respec-

tively. To detect multiple anomalies, we use Algorithm 3 presented in Section

S1 of the supplementary material. As given in Assumption 4, only a few (ten

for M1-M2 and five for M3-M4) entries in the VAR coefficient matrix undergo

change in anomalous interval where the details are presented in Table 1.
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4.3 Results

Under the settings M5-M8, we consider the case when A(1) is sparse i.e.

only a smaller number of entries are non-zero. Similar to the settings used in

Safikhani and Shojaie (2020), the 1-off diagonal values of the coefficient matrix

are non-zero as shown in Table 2. M7 and M8 are the high dimensional settings

in the sense that the width of anomaly (η2 − η1) is less than the dimension (p).

When A(1) is unknown, it is estimated from the training data with a ridge penalty

for M1-M4 and with a lasso penalty for M5-M8. In the following section, we

present the simulation results for all settings.

4.3 Results

Tables 3 and 4 show the summary of simulation results for the single and mul-

tiple anomaly cases, respectively. As shown in Table 3, the lasso-based method

tends to detect an anomaly more often than the OLS-based approach in all set-

tings regardless of the sparsity of A(1), the way of choosing intervals to investi-

gate and whether A(1) is known or estimated. The lasso-based method also out-

performs in terms of distance between the estimated and the true anomaly and

its variance. As expected, compared to the results when the true A(1) is known,

both OLS and lasso methods perform less well when Â(1) is used. The number

of estimated anomalies located within the true anomaly tends to be proportional

to empirical power, and to be larger when segments are chosen deterministically
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4.3 Results

Empirical power mean (sd)
(# ([η̂1, η̂2] ⊆ [η1, η2]) ) of dH

A(1) known Â(1) A(1) known Â(1)

M1

R OLS 100 (19) 93 (15) 1.59 (1.31) 5.43 (12.08)
(s=1029) LSS 100 (19) 99 (17) 1.47 (0.93) 1.95 (4.62)

D OLS 100 (43) 94 (33) 0.39 (0.25) 3.55 (11.64)
(s=1029) LSS 100 (46) 99 (40) 0.35 (0.16) 0.81 (4.55)

D OLS 100 (25) 94 (19) 0.39 (0.33) 3.52 (11.65)
(s=540) LSS 100 (26) 99 (27) 0.32 (0.22) 0.78 (4.55)

M2

R OLS 98 (12) 69 (7) 2.85 (6.52) 17.67 (21.43)
(s=1029) LSS 98 (18) 89 (10) 2.63 (6.46) 7.31 (14.79)

D OLS 98 (44) 74 (31) 1.32 (6.57) 14.30 (21.31)
(s=1029) LSS 99 (50) 90 (50) 0.82 (4.67) 5.63 (14.68)

D OLS 98 (69) 72 (52) 1.27 (6.58) 15.14 (21.78)
(s=540) LSS 99 (76) 87 (71) 0.76 (4.68) 7.24 (16.77)

M5

R OLS 100 (20) 68 (12) 1.67 (1.21) 15.51 (20.22)
(s=499) LSS 100 (29) 99 (33) 1.54 (0.99) 2.08 (4.41)

D OLS 100 (46) 87 (48) 0.43 (0.24) 6.21 (15.00)
(s=499) LSS 100 (63) 100 (75) 0.34 (0.12) 0.37 (0.13)

M6

R OLS 99 (14) 16 (5) 2.59 (4.66) 39.06 (16.45)
(s=499) LSS 100 (21) 68 (32) 1.90 (1.48) 15.66 (21.07)

D OLS 100 (34) 34 (21) 0.45 (0.48) 30.63 (21.80)
(s=499) LSS 100 (65) 93 (76) 0.29 (0.40) 3.55 (11.76)

M7
R (s=367) LSS 100 (14) 91 (23) 2.53 (1.22) 6.35 (12.58)
D (s=367) LSS 100 (13) 88 (33) 1.36 (1.32) 7.01 (14.55)

M8
R (s=270) LSS 100 (25) 100 (28) 2.67 (1.43) 2.64 (1.25)
D (s=270) LSS 100 (61) 100 (84) 1.61 (0.49) 1.84 (0.37)

Table 3: Empirical power (%), the number of estimated anomalies located within
the true anomaly and the mean (standard deviation) of dH (Hausdorff distance)
from 100 simulation runs for two methods under M1, M2 and M5-M8, where s
is the number of intervals examined. Note that Random, Deterministic, Lasso
are shortened to R, D, LSS, respectively.

rather than randomly. Although it is not shown in the table, the mean of Haus-

dorff distance computed from the estimated anomalies located within the true

anomaly tends to be smaller than the one computed from the estimated anoma-
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4.3 Results

#(detected anomalies) mean (sd) of dH

A(1) known Â(1)
A(1) known Â(1)

1 2 3 0 1 2

M3

R OLS 27 73 0 1 56 43 3.28 (3.10) 8.29 (9.01)
(s=1944) LSS 21 78 1 0 39 61 2.87 (3.03) 5.02 (5.86)

D OLS 24 76 0 0 53 47 2.46 (2.62) 6.73 (9.07)
(s=1944) LSS 12 86 2 0 32 68 1.97 (2.68) 3.44 (5.16)

D OLS 26 74 0 1 54 45 2.59 (2.57) 7.13 (9.27)
(s=1029) LSS 21 77 2 0 35 65 2.43 (2.66) 3.50 (4.36)

M4

R OLS 6 93 1 11 64 25 2.97 (4.53) 9.91 (4.69)
(s=1944) LSS 1 96 3 0 29 71 2.57 (5.43) 4.76 (5.22)

D OLS 4 95 1 6 59 35 1.92 (4.19) 8.59 (5.72)
(s=1944) LSS 1 96 3 0 21 79 1.50 (3.80) 3.53 (5.08)

D OLS 4 95 1 8 59 33 1.98 (4.22) 8.72 (5.61)
(s=1029) LSS 1 98 1 0 22 78 1.44 (3.68) 3.54 (5.00)

Table 4: Distribution of the number of detected anomalies and the mean (stan-
dard deviation) of dH (Hausdorff distance) from 100 simulation runs for two
methods under M3-M4, where s is the number of intervals examined. Note that
Random, Deterministic, Lasso are shortened to R, D, LSS, respectively.

lies those are not exactly located within the true anomaly. Comparing the ran-

domly and the deterministically chosen segments with the same size, for both

the OLS and the lasso methods, the deterministic way tends to give a similar or a

slightly larger power regardless of whether A(1) is known or not. Note, when A(1)

is estimated in Table 3, the deterministically chosen intervals with smaller sam-

ple size (s = 540) shows a larger power than those chosen randomly with a larger

sample size (s = 1029) for both methods, and the difference becomes larger as

the length of anomalous interval becomes shorter (from M1 to M2 as presented

in Table 1). Table 4 shows similar interpretations. Other simulation settings
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including stronger signal-to-noise ratio scenarios (M9-M10) and changepoint

scenarios (M11-M12) are explored in Section S3 of the supplementary material.

5. Data analysis

5.1 Yellow cab demand in New York City

To demonstrate the usefulness of our method, we now turn to real data applica-

tions. In our first example, we apply our method to the yellow taxi trip data that

has previously been analysed by Safikhani and Shojaie (2020). The data can be

downloaded from the New York City Taxi and Limousine Commission (TLC)

Database (https://www1.nyc.gov). This data consists of the number of

yellow taxi pick-ups recorded from 10 randomly selected zones in Manhattan,

a borough in New York City. We aggregate the number of yellow taxi pick-ups

every 30 minutes from March 11, 2019 to February 29, 2020 which results in

17088 time points. The raw data has an anomaly on November 3, 2019 that is

caused by a daylight-saving time adjustment (Wu and Keogh, 2021) as two hours

of data are placed into a single hour when the time change occurred. To solve

this, we simply divided the number of observations by two for the correspond-

ing hour and used the adjusted data. To prevent the detection procedure being

affected by other effects, we remove weekly, seasonal and bank holiday effects

by regressing the raw time series onto the corresponding indicator variables and
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5.1 Yellow cab demand in New York City

using the residuals. We also remove the first order nonstationarity from the data

by having the differenced version of the time series. The first 6835 data points is

used to estimate the underlying VAR coefficient A(1) by applying a lasso penalty.

As the true A(1) is unknown in practice, to determine the threshold, we basically

use the same technique proposed in Section 4.1 and choose the 99% quantile

of the test statistics from 100 deterministically chosen intervals. The remain-

ing 10252 data points are used to detect a single anomaly, where the length of

the smallest interval is set to L = dp/4e = 3. Note that the same minimum

length dp/4e is also applied for analysing the EEG data under the online change

detection framework in Section 5.2.

The top plot in Figure 1 shows that a few spikes are observed between De-

cember 30, 2019 and January 2, 2020, where the interval within green vertical

lines is enlarged in the bottom plot. From the middle plot, we see that the largest

test statistic is obtained for a small interval which includes the spikes shown in

the top plot. The bottom plot shows that the spikes occur around New Year’s

Eve and our method detects an anomaly between 10:30pm on December 31,

2019 and 4am on January 1, 2020. We emphasise that this anomaly is detected

even after removing the holiday effect for 10 federal holidays from the period

between March 11, 2019 to February 29, 2020 that includes January 1, 2020.

From Figure 2, we see that a sudden high demand occurred at the 2nd and 7th
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5.1 Yellow cab demand in New York City
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Figure 1: (Top) The differenced yellow taxi pickups recorded from March 11,
2019 to February 29, 2020 in Manhattan. (Middle) The 50 largest test statistics
with the corresponding interval. The blue horizontal dashed line indicates the
threshold. (Bottom) The portion of the top plot indicated with dashed green
vertical lines. Red vertical lines show the estimated anomaly, [Dec 31, 2019
00 : 00, Jan 1, 2020 04 : 00].

zones located near to Times Square, while there was no such change for the 3rd

zone that is located far from Times Square. Therefore, we can interpret that there

was a sudden high demand near Times Square where the annual New Year’s Eve

celebration takes place, and this changes the relationship between the 10 zones

we investigate.

The OLS method gives the same estimated anomaly with the lasso-based

method although the larger L = p = 10 is used. Comparing with other methods

designed for detecting changes in a VAR model, Safikhani and Shojaie (2020)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



5.2 EEG Data
−

2
0
0

−
1
0
0

0
1
0
0

2
0
0

dates[time.idx]

d
a
t0

[t
im

e
.i
d
x
, 
2
]

30−Dec−19 16:30 31−Dec−19 22:30 01−Jan−20 04:00 02−Jan−20 10:00

−
2
0
0

−
1
0
0

0
1
0
0

2
0
0

d
a
t[
ti
m

e
.i
d
x
, 
2
]

30−Dec−19 16:30 31−Dec−19 22:30 01−Jan−20 04:00 02−Jan−20 10:00

Figure 2: Taxi demand (Top) and differenced Taxi demand (Bottom) for 2nd
(black), 3rd (blue) and 7th (green) zones in Manhattan recorded from December
30, 2019 to January 2, 2020. Red vertical lines show the estimated anomaly.

estimates 8 changes including 4:30am on Jan 3, 2020 while Bai et al. (2020)

returns 11 changes including 00:30am on Jan 1, 2020 that coincides with the

estimated anomaly by our method. All the estimated changepoints can be found

in Section S4 of the the supplementary material.

5.2 EEG Data

We now show how our method can be used in as an online changepoint detection

method. We demonstrate this on electroencephalogram (EEG) data collected

from an epileptic patient. Other ways of analysing this dataset can be found

in Ombao et al. (2001), Ombao et al. (2005) and Schröder and Ombao (2019).

The data consists of brain electrical potentials recorded by placing electrodes on
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Figure 3: (Top) EEG data recorded at 18 different channels. Blue solid ver-
tical line is the time at which the neurologist thinks seizure starts and the red
dashed vertical line is the anomaly detected in the online setting. (Bottom) The
maximum test statistics at each time point obtained through Algorithm 2. The
horizontal red solid line presents the pre-specified threshold.

18 locations on the scalp of a patient. The EEG signals are recorded during an

epileptic seizure, thus these exists a visible change in the data as shown in Figure

3. The brain wave patterns are recorded over 500 seconds with the sampling rate

100 Hz (i.e. 100 points per second). As done in Safikhani and Shojaie (2020),

to speed up computation, we use 2 observations per second which reduces the

number of time points to T = 1000.

We separate the data into a training set of the size T1 = 600 and a test set

of the size T2 = 400. The first half of the training set is used to estimate the

underlying VAR coefficient A(1) by applying a lasso penalty and the second half
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is used to have a threshold that is chosen as the 99% quantile of the test statistics

computed from 327 deterministically chosen intervals. Then we perform the

single anomaly detection using a test set.

Algorithm 2: Online anomaly detection

INPUT: X, λ
thr

, t0
t ← t0
FLAG← 0
while FLAG = 0 do

t ← t + 1
K ←

⌊
log t
log 2

⌋
j← 1
while FLAG = 0 and j ≤ K do

s j ← t −max(2( j−1), dp/4e)
J ← [s j, t]
FLAG← 1{T lasso(J) > λ

thr
}

j← j + 1
end

end
OUTPUT: t.

As mentioned in Section 1, here we show how our method can be applied

to the online framework. We refer the reader to Fisch et al. (2020) and Yu et al.

(2021) for the recent works on online detection algorithm for change-points or

anomalies. In the online setting, we make sequential decisions about the occur-

rence of an anomaly whenever each new observations is obtained. Our algorithm

for online anomaly detection is similar to Algorithm 2 of Yu et al. (2021). The

detailed procedure is given in Algorithm 2 where we set t0 = 10. As shown

in Figure 3, an anomaly is estimated at t = 119, giving a detection delay of 5

time points compared to the time at which the neurologist states a seizure oc-
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curred. When a different lower bound of max(2( j−1), ξ) is used in Algorithm

2 with ξ = dp/2e, dp/3e, dp/5e instead of dp/4e, it still detects an anomaly at

t = 119. If a larger lower bound is set with ξ = dpe, d1.5pe in which case the

OLS method can also be used, an anomaly is estimated at t = 122, giving a

detection delay of 8 time points.

6. Discussion

Our lasso-based approach is motivated for data where we have substantially

more data about the normal behaviour of the time series than for any anomaly

or epidemic change. We provide a numerical evidence that our method outper-

forms existing competitors in detecting sparse change when A(1) is either dense

or sparse. Our method searches a set of local segments to detect an anoma-

lous interval, whereas the existing change detection methodologies for the VAR

model perform global optimisation. The local optimisation aspect of our method

permits the extension to the online setting.

Supplementary Materials

The Supplementary material for “Collective anomaly detection in High-dimensional

VAR Models” contains the technical proofs and the additional simulation results.
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Kovács, S., H. Li, P. Bühlmann, and A. Munk (2020). Seeded binary segmen-

tation: A general methodology for fast and optimal change point detection.

arXiv:2002.06633.

Lai, T. L. (1995). Sequential changepoint detection in quality control and dy-

namical systems. J. R. Stat. Soc. Ser. B. Stat. Methodol. 57, 613–644.

Lin, J. and G. Michailidis (2017). Regularized estimation and testing for high-

dimensional multi-block vector-autoregressive models. The J. Mach. Learn.

Res. 18, 4188–4236.

Lütkepohl, H. (2005). New introduction to multiple time series analysis.

Springer Science & Business Media.

Nicholson, W. B., I. Wilms, J. Bien, and D. S. Matteson (2020). High dimen-

sional forecasting via interpretable vector autoregression. J. Mach. Learn.

Res. 21, 1–52.

Ombao, H., R. Von Sachs, and W. Guo (2005). SLEX analysis of multivariate

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



REFERENCES

nonstationary time series. J. Amer. Statist. Assoc. 100, 519–531.

Ombao, H. C., J. A. Raz, R. von Sachs, and B. A. Malow (2001). Automatic

statistical analysis of bivariate nonstationary time series. J. Amer. Statist.

Assoc. 96, 543–560.

Safikhani, A. and A. Shojaie (2020). Joint structural break detection and pa-

rameter estimation in high-dimensional nonstationary var models. J. Amer.

Statist. Assoc., 1–14.
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