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Abstract: BIC weighting has been frequently applied to high-dimensional linear

regression when model averaging is considered to address model selection uncer-

tainty. It also plays a central role in model selection diagnostics. However, little

research has been done on its consistency or weak consistency, which are crucial

properties for a model averaging method to perform well for various purposes. In

addition, previous limited work on model averaging consistency excludes the con-

sideration of categorical covariates. In this note, with both continuous covariates

and categorical predictors (with possibly diverging numbers of levels) allowed,

we establish both consistency and weak consistency for BIC weighting.

Key words and phrases: BIC-p weighting, Categorical predictors, Consistency,

Weak consistency.

1. Introduction

Model averaging is an alternative approach to mitigating model selection

uncertainty by weighting estimators across some models. There are various

model averaging approaches proposed, see Buckland et al. (1997), Yang
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(2001), Hjort and Claeskens (2003), Leung and Barron (2006), Hansen

(2007), Zhang et al. (2020) and the references therein.

To our knowledge, however, the previous results focus on estimation

accuracy and little has been done formally on the consistency of model

averaging weighting for general high-dimensional linear modeling. Note

that model averaging based on consistent model selection criteria does not

necessarily lead to consistent weighting. Lai et al. (2015), as an exception,

has derived consistency of the generalized fiducial probabilities for candidate

models in the absence of categorical predictors.

What is worth mentioning is that the consistency of weighting plays

a central role in some important applications. For instance, it provides a

theoretical guarantee for assessing variable selection performance in model

selection diagnostics (see Nan and Yang (2014) and Yu et al. (2020)) and

measuring variable importance (see Ye et al. (2018)). Thus, it is essen-

tial to establish the consistency of weighting for success of model selec-

tion diagnostics. With the above background, in this note, focusing on a

high-dimensional BIC information criterion (BIC-p) with a sparsity oriented

prior on the models, we derive the consistency of BIC-p weighting and pro-

vide theoretical support for previous work in the literature. Detailed proofs

of the theorems are provided in the Supplementary Material.
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2. Main Results

For a linear regression model with both categorical and continuous pre-

dictors, we assume, without loss of generality, that among the p predic-

tors {X1, . . . , Xp}, the first q, {X1, . . . , Xq}, are categorical, while the oth-

ers are continuous. The categorical levels of {X1, . . . , Xq} are denoted by

{J1, . . . , Jq} respectively. For each categorical variableXi, we define dummy

variables Xi,j pertaining to the jth categorical level for j = 1, . . . , Ji−1, and

put XIi = (Xi,1, . . . , Xi,Ji−1)
T with Ii

def
= {(i, 1), . . . , (i, Ji−1)} in the regres-

sion. In a similar fashion, put XIi = Xi with Ii
def
= {i} for each continuous

predictor Xi. Given observations {yi, xi}ni=1 with xi = (xTi,I1 , . . . , x
T
i,Ip)T,

where xi,Ij is the ith sample of XIj , The linear regression model is written

in matrix form as

Y = β0 +Xβ + ε, (2.1)

where Y = (y1, . . . , yn)T is an n-dimensional response vector, X = (x1, . . . ,

xn)T is a covariate matrix, β = (βT
I1 , . . . , β

T
Ip)T is a parameter vector of size

p∗ =
∑q

i=1 Ji + p− 2q, βIi = (βi,1, . . . , βi,Ji−1)
T for i = 1, . . . , q and βIi = βi

for i = q + 1, . . . , p, and ε = (ε1, . . . , εn)T ∼ N(0, σ2In), where In is the

n× n identity matrix.
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For N > 1, let M def
= {Mi, i = 1, . . . , N} be a candidate model set,

where Mi =
⋃
j∈Ai
Ij, Ai ⊂ {1, . . . , p}. Let ‖ · ‖2 be the l2-norm and denote

by | · | the number of elements of a set. For the linear regression model (2.1),

the index set of true variables is defined as M0
def
=
⋃p
i=1 I0i with I0i = Ii for

βIi 6= 0 and I0i = ∅ otherwise. Note that under the sparsity assumption,

that is, |M0| � n, the number of continuous variables in the true model

can increase to infinity with n, which is also applicable to the numbers of

categorical variables and the number of levels of each categorical variable.

Throughout the note, we assume that |M0| log p∗ = o(n) and p∗ → ∞.

Define M def
= {Mi : |Mi| ≤ (p∗)α ∧ (Cn/ log p∗) and i ∈ {1, . . . , N}} for

some constants C > 0 and 0 < α < 1 such that |M0| = o((p∗)α), where

a ∧ b def
= min{a, b}. It is worth noting that the condition |M | ≤ (p∗)α ∧

(Cn/ log p∗) for M ∈ M is much weaker than the condition |M | ≤ k|M0|

for some k > 1, which was assumed by Chen and Chen (2008), Luo and

Chen (2013), Lai et al. (2015) and others. To ensure that any finitely many

categorical variables can be included in our candidate model set, we assume

max{Ji : 1 ≤ i ≤ q and Ii 6⊂M0} = o((p∗)α ∧ (n/ log p∗)).

For each element M in M, we calculate the corresponding weight wM

below according to the BIC-p weighting method. Let RSSM
def
= ‖Y − β̂0 −

XM β̂M‖22 be the residual sum of squares of the model M , where XM denotes
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an n×|M | submatrix of the design matrixX, and β̂0 and β̂M are correspond-

ing least squares estimators. Let IM
def
= n log (RSSM) + |M | log n− n log n.

Following Nan and Yang (2014), the BIC-p weight wM is defined as

wM
def
= exp

(
− IM

2
− ψCM

)
/
∑
M ′∈M

exp
(
− IM ′

2
− ψCM ′

)
, (2.2)

where CM = |M | log (e · p∗/|M |) + 2 log (|M |+ 2) and ψ > 0 is a constant.

For ease of notation, let wi , wMi
for Mi ∈ M. Given the candidate

models M and a weighting w = {wi, i = 1, ..., N}, we define weight con-

centration index (WCI) as WCI(w) =
∑N

i=1wi|Mi∇M0|, where ∇ denotes

the symmetric difference of two sets. Clearly, when WCI is close to zero,

the weights of the candidate models are concentrated well around the true

model. Based on WCI(w), we give the definition of consistency and weak

consistency as follows.

Definition 1. The weighting w is consistent if

WCI(w)
P−→ 0, as n→∞
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and the weighting is weakly consistent if

WCI(w)

|M0|
P−→ 0, as n→∞.

For the theorems below,M is assumed to contain the true model and it

can be up to the collection of all subset models. The following Conditions

1−3 are required for consistency.

Condition 1. All levels of each categorical variable are observed and the

ratio of the most frequent levels to the least frequent levels is bounded by

some constant.

Condition 2. mini∈{1,...,p}{‖βI0i ‖
2
2 : I0i 6= ∅} ≥ c1 (|M0| log (p∗)/n)κ, where

c1 > 0, κ = 1− ε and ε is an arbitrarily small positive constant.

Condition 3. Let λmin(·) and λmax(·) denote the smallest and the largest

eigenvalues, respectively. Then for all M such that |M | ≤ k|M0|,

0 < cmin ≤ λmin

(
1

n
XT
MXM

)
≤ λmax

(
1

n
XT
MXM

)
≤ cmax <∞,

for some fixed k > 1.

Condition 1 excludes the case of an extremely unbalanced design ma-

trix. Condition 2 requires that the minimum of the l2-norms of the coeffi-
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cients of both the grouped dummy variables and the continuous variables

in the true model are not too small. It should be noted that we impose

a restriction on the ith group effect of βI0i rather than the individual con-

tribution of βi,j, j = 1, . . . , Ji − 1. Therefore, for the true grouped dummy

variables, some or even most individual effects can be very small. Condi-

tion 3 is the sparse Riesz condition, which is a commonly used regularity

condition for p� n (see Zhang and Huang (2008); Lai et al. (2015)).

Theorem 1. Under Conditions 1−3, log (|M0|)/ log p∗ ≤ δ < α and log n

/ log p∗ ≤ η for some positive constants δ, α and η, if ψ > (2C(k− 1)((α∧

η)− 1))−1k log(1− 4C(1+(α ∧ η))) + (k/(k − 1)− (α ∧ η)/2)/(1− (α ∧ η))

for some C ∈ (0, 1/(4(1 + (α ∧ η)))), we have

max
M∈M,M 6=M0

wM
wM0

P−→ 0, as n→∞. (2.3)

Furthermore, the weighting is consistent, i.e.,

WCI(w)
P−→ 0, as n→∞. (2.4)

Note that the lower bound on ψ in Theorem 1 is always a positive

constant, since α ∈ (0, 1) and C ∈ (0, 1/(4(1 + (α∧ η)))). Theorem 1 states
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that the weight wM0 of the true model will tend to one as n→∞.

Typically there may be some relatively small coefficients in the true (or

best) model that violate Condition 2. For i = 1, . . . , p and given arbitrary

constant c2 > 0, we define

ISi
def
=

{
I0i if I0i 6= ∅ and ‖βI0i ‖

2
2/|I0i | < c2|M0| log (p∗)/n,

∅ otherwise.

Let MS
0

def
=
⋃p
i=1 ISi denote the set with indices of smaller coefficients. Note

that we allow the l2-norms of the coefficients of the variables in the set MS
0

to be arbitrarily small, but the number of these variables should be limited.

Thus, a condition required for the weak consistency of BIC-p weighting is

stated as follows:

Condition 4. |MS
0 |/|M0| ≤ ξn, where {ξn} is a nonnegative sequence con-

verging to zero as n→∞.

Theorem 2. Under Conditions 1 and 3−4, log (|M0|)/ log p∗ ≤ δ < α and

log n/ log p∗ ≤ η for some positive constants δ, α and η, if ψ > (2C(k −

1)((α∧η)−1))−1k log(1−4C(1+(α∧η)))+(k/(k−1)−(α∧η)/2)/(1−(α∧η))
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for some C ∈ (0, 1/(4(1 + (α ∧ η)))), then w is weakly consistent, i.e.,

WCI(w)

|M0|
P−→ 0, as n→∞. (2.5)

Not surprisingly, the weak consistency requires milder conditions that are

much more realistic in applications.

Supplementary Material

The proofs of Theorems 1 and Theorem 2 are provided in the Supplementary

Material document.
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