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Abstract: In this paper, we consider a class of partially linear transformation

models with interval-censored competing risks data. Under a semiparametric

generalized odds rate specification for the cause-specific cumulative incidence

function, we obtain optimal estimators of the large number of parametric and

nonparametric model components via maximizing the likelihood function over a

joint B-spline and Bernstein polynomial spanned sieve space. Our specification

considers a relatively simpler finite-dimensional parameter space, approximating

the infinite-dimensional parameter space as n → ∞, thereby allowing us to study

the almost sure consistency, and rate of convergence for all parameters, and the

asymptotic distributions and efficiency of the finite-dimensional components. We

study the finite sample performance of our method through simulation studies
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1. INTRODUCTION

under a variety of scenarios. Furthermore, we illustrate our methodology via

application to a dataset on HIV-infected individuals from sub-Saharan Africa.

Key words and phrases: Bernstein polynomials, Competing risks, Cumulative in-

cidence function, Interval censoring, Partially linear transformation model, Semi-

parametric efficiency.

1. Introduction

In biomedical studies with time-to-event outcomes, there could be several

distinct causes of failure, referred to as competing risks (Crowder, 2001).

For example, when studying 137 bone marrow transplant (BMT) patients

(Klein and Moeschberger, 2006), patients may relapse, or die while in re-

mission during the follow-up period. If we consider relapse to be the event

of interest, then death is a competing risk/event, as it impedes the oc-

currence of leukemia relapse. Competing risks data are often subject to

interval censoring, implying that the event time is not observed precisely,

but the interval in which it lies is known. Another example is our motivat-

ing HIV dataset generated from a large study of HIV care and treatment

programs in sub-Saharan Africa (Egger et al., 2012), and analyzed in this

paper. HIV-infected individuals receiving care in these programs may (a)

die while in care, or (b) become lost to care – the two competing risks under
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1. INTRODUCTION

consideration, with the corresponding time to events available as interval

endpoints. Patients who are lost to care typically do not receive treatment

and, thus, are more likely to die, and to further contribute to the expansion

of the HIV epidemic.

Statistical models under the umbrella of interval-censored competing

risks data (Hudgens et al., 2014) can be broadly classified into the (a)

cause-specific hazards (CSH) modeling framework, or the (b) cumulative

incidence function (CIF) modeling framework. For the later (CIF model-

ing), a number of approaches have been proposed. For example, Li (2016)

considered a sieve maximum likelihood approach (sieve-ML) for the Fine–

Gray model (Fine and Gray, 1999) under interval censoring and possible

left-truncation, while Mao et al. (2017) proposed a broad class of semi-

parametric regression models accommodating both proportional and non-

proportional sub-distribution hazards, and devised a fast and stable EM-

type estimation framework. Recently, Bakoyannis et al. (2017) considered a

class of semiparametric generalized odds rate (GOR) transformation models

(Scharfstein et al., 1998) via the sieve-ML approach based on B-splines, and

showed that estimator for the (finite-dimensional) regression parameter is

semiparametrically efficient. In all these work, the covariates were assumed

to be related linearly to the time-to-event responses, which precludes as-
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1. INTRODUCTION

sessment of potential non-linear and nonparametric patterns. This linearity

assumption would be too ideal to apply in many situations, thereby mak-

ing the aforementioned methods inconsistent. For example, in HIV studies

(such as our motivating dataset), age is usually considered an important

predictor of the HIV-1 disease progression, and the progress to AIDS (Ac-

quired Immunodeficiency Syndrome), a chronic, potentially life-threatening

condition, is rapid in the elderly than younger patients, with a higher mor-

tality among the older patients developing AIDS-defining illness (Nguyen

and Holodniy, 2008; Pirrone et al., 2013). Hence, a partially linear model

(Lu and Song, 2015) for the patients age seems more plausible to fit the

data.

From the context of HIV data modeling, we set forward with a semipara-

metric partially linear transformation model, with a GOR specification for

the CIF function. Our partially linear transformation model includes some

commonly used models as special cases, such as the linear transformation

model, and nonparametric additive models. We obtain optimal estimators

of the large number of parametric and nonparametric model components

via maximizing the likelihood function over a joint B-spline and Bernstein

polynomial, henceforth BP (Lorentz, 1986) spanned sieve space. The BP

approach, which we employ to estimate the unknown nonparametric risk
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1. INTRODUCTION

functions, enjoys several merits from the perspective of implementation; it

often requires only a few parameters for a decent approximation, and is free

from pre-specification of the interior knots as in B-splines (Eilers and Marx,

1996). Our specification transfers the setup consisting of both finite- and

infinite-dimensional parameters into a relatively simpler finite-dimensional

framework, which approximates the infinite-dimensional parameter space

as n → ∞, thereby allowing us to study the almost sure consistency and

rate of convergence for all parameters, and the asymptotic distributions and

efficiency of the finite-dimensional components.

The rest of the paper proceeds as follows. In Section 2, we describe the

statistical framework of our partially linear transformation GOR model.

The associated sieve-ML estimation method, related large sample results,

and the implementation is presented in Section 3. In Section 4, we study

the finite sample performance of our proposal through simulation studies

under a variety of scenarios via synthetic data. Furthermore, we illustrate

our methodology via application to the motivating HIV dataset in Section

5. Finally, Section 6 presents some concluding remarks. Detailed derivation

and proofs of the theoretical results presented in Section 3 and the tables

and figures showing all the simulation results in Section 4 are relegated to

the Supplementary Materials.
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2. STATISTICAL MODEL

2. Statistical Model

We assume that there are a finite number k of competing risks, with the

cause of failure and the (true) failure time denoted by C and T , respec-

tively. The two covariate vectors Z = (Z1, . . . , Zd)
> ∈ Rd and W =

(W1, . . . ,Wq)
> ∈ Rq have potential effects on the survival probability of

T , where the effects of Z are modelled parametrically, the effects of W are

modelled non-parametrically, and both the parametric and non-parametric

components are of interest. For the competing risks data, the cause-specific

CIF is defined as

Fj(t; z, w) = Pr(T ≤ t, C = j)|Z = z,W = w), j = 1, . . . , k.

Then, for modeling Fj, we propose the following partially linear transfor-

mation model:

gj[Fj(t; z, w)] = φj(t) + β>j z +

q∑
e=1

ψje(we), j = 1, . . . , k, (2.1)

where gj is a known increasing cause-specific link function, φj is an unspec-

ified, strictly increasing and invertible function of time t, βj is a vector of

parameters for parametric components, z is a d-dimensional covariate vector

and ψje are unknown smooth regression functions of we, with e = 1, . . . , q.

We will consider a special subset of the class of partially linear transfor-

mation models, specifically, the class of partially linear GOR transformation
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2. STATISTICAL MODEL

models, with link functions given by:

gj (Fj;αj) =


log
[

(1−Fj)−αj−1

αj

]
if 0 < αj <∞,

log [− log(1− Fj)] if αj = 0

for j = 1, . . . , k. This class of models includes the linear GOR transfor-

mation models (Dabrowska and Doksum, 1988; Scharfstein et al., 1998;

Fine, 2001; Jeong and Fine, 2006) as their special cases, including the pro-

portional odds (PO) model, and the proportional subdistribution hazards

model (Fine, 1999), with αj = 1 and αj = 0, respectively (Jeong and Fine,

2006). Note, the link functions are allowed to vary with varying causes

of failure. These authors assumed that the true link functions are known

(Scharfstein et al., 1998; Fine and Gray, 1999; Fine, 2001; Mao and Wang,

2010; Bakoyannis et al., 2017), which we also adopt. This assumption fa-

cilitates our estimation, given that estimation of α = (α1, . . . , αk)
> may be

hindered by identifiability concerns, as in the non-competing-risk setting

(Zeng et al., 2006).

In practice, the observation times (such as, time to clinic visits, labo-

ratory tests, etc) could be interval-censored. Let (U1, . . . , Um) denote the

m ∈ (0,∞) distinct observation times, which may vary from subject to

subject. Let V ∈ {0, U1, . . . , Um} correspond to the last observation time
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prior to the failure, and U ∈ {U1, . . . , Um,∞} the first observation time

after the failure, then the observed interval is (V, U). Using this notation, a

left-censored observation will correspond to (V, U) = (0, U1), while a right-

censored observation to (V, U) = (Um,∞). For j = 1, . . . , k, if a subject

fails from the j-th cause of failure before the first observation time U1 (i.e.,

it is left-censored), we observe δ1
j = 1. If the subject fails between V > U1

and U ≤ Um, we observe δj = 1. But if the subject is right-censored (i.e.,

T > Um), then we observe δ =
∑k

j=1(δj + δ1
j ) = 0. We assume the obser-

vation interval to be [a, b], that is a = U1 < Um = b. Including the two

covariate vectors Z and W , the observed data are {U , V , Z, W , {δj}kj=1

and {δ1
j}kj=1. We further assume the following two fundamental conditions:

A1. The observation times (U1, . . . , Um) are independent of (T,C),

conditional on (Z,W ).

A2. The distribution of (U1, . . . , Um) does not contain the parame-

ters that govern the distribution of (T,C) (non-informative interval

censoring).

Given the two assumptions above and the observed data

D = {vi, ui, zi, wi, {δij}kj=1, {δ1
ij}kj=1, δi =

k∑
j=1

(δij + δ1
ij), i = 1, . . . , n},

the likelihood function in terms of the cause-specific CIFs is
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2. STATISTICAL MODEL

L(θ;D) ∝
n∏
i=1

{
k∏
j=1

[Fj(ui; zi, wi, θj)− Fj(vi; zi, wi, θj)]δij
}

{
k∏
j=1

[Fj(ui; zi, wi, θj)]
δ1ij

}

×

[
1−

k∑
j=1

Fj(vi; zi, wi, θj)

]1−δi

, (2.2)

where θ = (θ>1 , . . . , θ
>
k )> is a parameter that includes, in our case, regression

coefficients for the effect of the covariate vector Z on each cause-specific

CIF, and unspecified functions of time, after adjusting a nonlinear effect of

the covariate W .

In our model, there are two sets of nonparametric components, the first

set consists of {φj, 1 ≤ j ≤ k}, and the second set consists of {ψje, 1 ≤ j ≤

k, 1 ≤ e ≤ q}. We choose to use B-splines to model all the nonparametric

φj functions in the first set, and Bernstein polynomials (BPs) to model all

the nonparametric components ψje in the second set, respectively. One may

also use B-splines to model the nonparametric functions in the second set.

The motivation of using two different series is that one can easily rely on the

R package intccr (Park et al., 2019) to implement the B-spline modeling of

the φj functions, naturally preserving the nonnegativity and monotonicity.

On the other hand, the BPs possesses the optimal shape preserving prop-

erty among all approximation polynomials (Carnicer and Peña, 1993), thus
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providing a flexible estimation strategy free of knot specifications for the ψje

functions, which represent the nonparametric effect. BPs have been proved

to be an effective approach in modelling the nonparametric components in

various semiparametric models, for example, see Zhou et al. (2017).

Our main contributions in this paper are as follows. First, we present

a class of partially linear GOR transformation models for interval-censored

competing risk data, which extends the linear GOR transformation models

(Mao et al., 2017; Bakoyannis et al., 2017) and the nonparametric additive

transformation models. Second, our sieve-ML proposal is a pragmatic com-

promise between a purely B-spline approach with a faster convergence rate

under the same smoothness conditions for different nonparametric functions

and a purely Bernstein polynomial approach with better computability and

shape preserving property. Finally, regarding theoretical contributions, our

proofs of almost sure consistency, rate of convergence and asymptotic nor-

mality utilizes the theory of empirical processes and functional analysis, and

are established using new techniques, such as the symmetrization inequal-

ity (Panchenko, 2003), Hoeffding’s inequality and the Riesz representation

theorem (Goodrich, 1970). These are more challenging than the techniques

used for the linear transformation model used in Mao et al. (2017) and

Bakoyannis et al. (2017).
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3. ESTIMATION AND IMPLEMENTATION

3. Estimation and Implementation

3.1 Sieve Maximum Likelihood Estimation

As in Hu and Xiang (2016), Zhang et al. (2010), Lu and Song (2015), Li

(2016), we avoid imposing parametric assumptions on φj and ψj in (2.1)

and thus the likelihood involves (q+ 1)k infinite-dimensional, or functional

parameters. In general, maximization of the likelihood function with an

infinite-dimensional parameter θ ∈ Θ over Θ may lead to inconsistent max-

imum likelihood estimates (Shen and Wong, 1994). One approach to over-

come this problem is to use sieve-ML estimation. A sieve (Shen and Wong,

1994) is a sequence {Θn}n≥1 of parameter spaces that approximate (in a

certain sense) the original parameter space Θ, with the approximation error

tending to zero as n → ∞. A sieve-ML estimate is the estimate obtained

by maximizing the likelihood function over Θn. Another practical advan-

tage of using the sieve-ML approach is that it reduces the dimensionality

of the optimization problem, and, thus, the computational burden, com-

pared to a fully semiparametric likelihood approach (Zhang et al., 2010).

This is because the dimension of Θn is significantly smaller (i.e., it involves

fewer number of parameters to be estimated), compared to that of the full

parameter space Θ in finite samples. The computational advantage of the
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sieve-ML approach compared to a fully semiparametric maximum likeli-

hood approach for interval-censored survival data has been shown in the

simulation study by Zhang et al. (2010). Denote β = (β>1 , . . . , β
>
k )>, we

define the sieve space as

Θn =
{
θ = (β, φ1n, . . . , φkn, ψ(11)n, . . . , ψ(1q)n, . . . , ψ(k1)n . . . , ψ(kq)n)

∈ B ⊗M1
n ⊗ · · · ⊗Mk

n ⊗W(11)
n ⊗ · · · ⊗W(1q)

n ⊗ · · · ⊗W(k1)
n ⊗ · · · ⊗W(kq)

n

}
.

In our case, the sequence of approximating functional parameter spaces

for {φj, 1 ≤ j ≤ k} is chosen to be spaces of monotone (due to the mono-

tonicity of the CIF) B-spline functions, which are, for j = 1, . . . , k, defined

by,

Mj
n =

{
φjn(t) =

m∑
s=1

γjsBs(t,m, a, b) : max
0≤s≤m

|γjs| ≤Mn, 0 ≤ γj0 ≤ γj1 ≤ · · · ≤ γjm

}
.

On the other hand, the sequence of approximating functional parameter

spaces for {ψje, 1 ≤ j ≤ k, 1 ≤ e ≤ q} is chosen to be spaces of BPs

without constraints of monotonicity, which are, for each combination (j, e),

1 ≤ j ≤ k and 0 ≤ e ≤ q, defined by

W(je)
n =

{
ψ(je)n(we) =

mw∑
s=0

α(je)s{Be
s(we,mw, a

e
w, b

e
w)−Be

s(a
e
w,mw, a

e
w, b

e
w)} : max

0≤s≤mw
|α(je)s| ≤Mn

}
,

where for each e = 1, . . . , q, {Be
s(we,mw, a

e
w, b

e
w)}mws=0 are Bernstein basis
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3. ESTIMATION AND IMPLEMENTATION

polynomials defined as

Be
s(we,mw, a

e
w, b

e
w) =

(
mw

s

){
we − aew
bew − awe

)s
×
{

1− we − aew
bew − aew

)mw−s
, s = 0, . . . ,mw,

with the degree mw = o(nν) for some ν ∈ (0, 1). Here, we use the

same degree mw for each ψje. For the reason of identifiability, we assume

ψ(je)n(we) = 0 when we = aew, i.e., ψ(je)n(aew) = 0, this is why we subtract a

term Be
s(a

e
w,mw, a

e
w, b

e
w) from each summand.

A major computational advantage of using the BP for ψje is that the

sieve space defined byW(je)
n takes the simplest form to satisfy the identifia-

bility condition ψje(a
e
w) = 0, since for all s = 1, . . . ,mw, the Bernstein basis

polynomials automatically satisfy Be
s(we,mw, a

e
w, b

e
w)|we=aew = 0. One can

show that the size of the sieve spaces defined above can be controlled by

Mn = O(nµ), with µ being a positive constant (Lorentz, 1986; Shen et al.,

1997). During the likelihood maximization we impose the monotonicity

constraints γjs ≤ γj(s+1), for every s = 0, . . . , (m − 1) and j = 1, . . . , k.

Additionally, the constraint

max
z,w

{
k∑
j=1

Fj(t; z, w, θj)

}
< 1 (3.3)

is needed to ensure that the sum of the estimated CIFs at the maximum

follow-up time t is bounded above by 1, where the maximum is over all the

observed covariate patterns.
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Let the true parameter values be denoted by θ0 = (β>0 , φ
>
0 , ψ

>
0 )>,

where β0 = (β>1,0, . . . , β
>
k,0)>, φ0 = (φ1,0, . . . , φk,0)>, ψ0 =

(ψ1q,0, . . . , ψ1q,0, . . . , ψk1,0, , . . . , ψkq,0)>, and the corresponding sieve-ML es-

timator by θ̂n = (β̂>n , φ̂
>
n , ψ̂

>
n )>, where β̂n = (β̂>1,n, . . . , β̂

>
k,n)>, φ̂n =

(φ̂1,n, . . . , φ̂k,n)>, and ψ̂n = (ψ̂11,n, . . . , ψ̂1q,n, . . . , ψ̂k1,n, . . . , ψ̂kq,n)>. Also,

define the L2-metric for the distance between two parameters θ1 =

(β(1)>, φ(1)>, ψ(1)>)> and θ2 = (β(2)>, φ(2)>, ψ(2)>)> as

d(θ1, θ2) =

(
k∑
j=1

∥∥β(1)
j − β

(2)
j

∥∥2
+

k∑
j=1

∥∥φ(1)
j − φ

(2)
j

∥∥2

Φ
+

k∑
j=1

∥∥ψ(1)
j − ψ

(2)
j

∥∥2

Ψ

) 1
2

,

where

∥∥φ(1)
j −φ

(2)
j

∥∥2

Φ
= E

[
φ

(1)
j (V )− φ(2)

j (V )
]2

+E
[
φ

(1)
j (U)− φ(2)

j (U)
]2

, j = 1, . . . , k

and

∥∥ψ(1)
j −ψ

(2)
j

∥∥2

Ψ
=

q∑
e=1

∥∥ψ(1)
je −ψ

(2)
je

∥∥2

Ψ
=

q∑
e=1

E
[
ψ

(1)
je (We)− ψ(2)

je (We)
]2

, j = 1, . . . , k,

and ‖·‖ denotes the Euclidean norm. Under the conditions given in the Sup-

plementary Material, we obtain the following theorems about the asymp-

totic properties of the proposed estimators.

Theorem 1. Assume the Conditions (C1)-(C6) given in the Supplementary

Material hold, then

d(θ̂n, θ0)
a.s.−→ 0,
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3. ESTIMATION AND IMPLEMENTATION

therefore, the combined B-spline and BP-based sieve-ML estimator is

strongly consistent.

Theorem 2. Assume the Conditions (C1)-(C7) given in the Supplementary

Material hold, then

d(θ̂n, θ0) = Op

{
n−min[νσ,(1−ν)/2]

}
,

where ν ∈ (0, 1) such that m = O(nν) and mw = O(nν) , and σ =

min(p, r/2), p and r are defined in Condition (C4).

This theorem implies that the convergence rate of the estimator for the

functional parameters is slower than the usual
√
n rate. This estimator

achieves the optimal convergence rate for nonparametric regression estima-

tors, which is n−σ/(1+2σ) when one chooses ν = 1/(1 + 2σ). We also notice

that when p ≥ r/2, we obtain σ = r/2, and the convergence rate becomes

n−r/{2(1+r)}, a similar result obtained by Zhou et al. (2017) for the estima-

tion of the unknown functions using BPs, only in the regression analysis

of bivariate interval-censored failure time data. In our case, since we used

both B-splines and BPs, the convergence rate is dominated by the smooth-

ness level of the regression risk functions ψje which are modelled by BPs. In

fact, if we used B-splines to model φj and ψje simultaneously, then, under

the same smoothness level p = r for φj and ψje, we would obtain a faster
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convergence rate n−r/{1+2r}, as that obtained by Lu and Song (2015) for the

partially linear additive hazards model with current status data. Although

a purely B-spline based estimator has some better theoretical large sample

properties under the same smooth conditions, we choose BPs for modelling

the nonparametric risk functions, because the resultant estimator has some

superior finite properties as discussed in Section 2. On the other hand,

if p ≤ r/2 or r ≥ 2p, the convergence rate becomes n−p/{1+2p}, and we

still obtain an optimal convergence rate as that of purely B-spline based

estimator.

Theorem 3. Assume the Conditions (C1)-(C8) given in the Supplementary

Material hold, then

√
n(β̂n − β0)

d→ N [0, I−1(β0)],

which implies that the convergence rate of the estimator for the Euclidean

parameter β0 is
√
n. This also points to the efficiency of this estimator

as the corresponding variance matrix attains the semiparametric efficiency

bound I(β0).

The detailed proofs of the theorems, utilizing necessary regularity con-

ditions (Zhang et al., 2010; Zhou et al., 2017), are relegated to Section SM1

of the accompanying Supplementary Material. The definition of the infor-
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3. ESTIMATION AND IMPLEMENTATION

mation matrix I(β0) is also provided there. Since finding I(β0) involves

solving an integral equation with no explicit solution, estimation of I(β0)

by I(β̂n) is not straightforward (Zhang et al., 2010; Li, 2016). Consequently,

one could either use the least squares method by Zhang et al. (2010) and Li

(2016) for standard error estimation, or rely on the computationally sim-

pler nonparametric bootstrap method. The validity of the bootstrap for

the Euclidean parameter estimates in general semiparametric M-estimation

problems has been verified by Cheng et al. (2010).

3.2 Implementation

The proposed methodology can be easily implemented using the function

ciregic, available in the R package intccr (Park et al., 2019). The BP

uses fixed knots, once the degree mw and the interval [aew, b
e
w], the support

of We, are determined. This nice property of BP allows bypassing the knot

selection procedure during estimation. In practice, we can set mw = [n1/3],

or use BIC (shown in the data analysis) to select mw.

In practice, the true link functions are usually unknown. Hence, select-

ing the link function parameters is necessary. We proceed via a grid search

over a plausible combination of α1, . . . , αk, and select the combination of α,

and the degrees m and mw of B-splines and Bernstein polynomials, using
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BIC. The final step is to obtain the parameter estimates of the model by

maximizing the likelihood function (2.2) through a constrained optimiza-

tion algorithm. The R package alabama provides a useful set of functions

for optimization under both linear and nonlinear inequality constraints.

The ciregic function utilizes this package to imposes the monotonicity,

and boundedness constraints automatically. We implement this routine in

our subsequent data analysis. Associated R code for data application are

available in the GitHub link: https://github.com/bandyopd/PLTM-ICCR.

4. Simulation study

In order to evaluate the finite sample performance of our method, we per-

form simulation studies generating synthetic data under three scenarios. In

scenario 1, under correct model specification, we compare the performance

of the estimation procedure when the non-linear regression functions are

approximated by Bernstein polynomials and B-splines, respectively. In the

2nd, we evaluate the effect of covariate confounding and model misspec-

ification. Finally, in the 3rd, we assess model performance under a more

complex nonparametric regression function, as compared to Scenarios 1 and

2. Scenarios 2 and 3, the tables and figures summarizing the results from

the three scenarios are presented in Section SM2 of the Supplementary
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Materials.

Scenario 1: We considered two causes of failure, and three covariates in the

model. The first two covariates Z = (Z1, Z2)> have linear effects, while the

third covariate W has a non-linear effect, where Z1 ∼ Bernoulli(p = 0.4),

Z2 ∼ N(0, 1), and W ∼ Unif(0, 2π) respectively. The CIFs for causes 1 and

2 have a proportional odds (PO) form, given by:

Fj(t) =
exp

[
φj(t) + β>j Z + ψj(W )

]
1 + exp

[
φj(t) + β>j Z + ψj(W )

] , j = 1, 2,

where, exp [φ1(t)] = 0.4 [1− exp(−0.6t)] /0.6 and exp [φ2(t)] =

0.75 [1− exp(−0.5t)] /0.5 following a baseline cumulative subdistribution

hazard function from a Gompertz distribution (Jeong and Fine, 2007). Un-

der this setting, the true non-linear regression functions corresponding to

the first and second causes of failure are ψ1(W ) = sin(W ), and ψ2(W ) =

− sin(W ), respectively. The true values for the regression parameters are

β1 = (β11, β12)> = (0.5,−0.3) and β2 = (β21, β22)> = (−0.5, 0.3). The pa-

rameters and functions were chosen, such that limt→∞{CIF1(t)+CIF2(t)} =

1. Based on this model, we simulated the failure times, and causes of fail-

ure. The first observation time U1i (e.g, clinic visit) was simulated from an

Exponential(3). The following observation times were placed at times V

apart from the previous observation, with V ∼ Exponential(3), with an up-
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per bound of 3 years. This choice led to an average time of 4 months between

two consecutive observations. The baseline cumulative incidence function-

als φj(t) were approximated by B-spline functions, while the non-linear

regression functions ψj(w) were approximated by BP functions, denoted

as “B-spline+Bernstein polynomials”. As suggested by an anonymous ref-

eree, we further considered comparing the “B-spline+B-spline” approach,

i.e., where the non-linear regression functions ψj(w) were approximated by

B-splines as well.

For implementation, we set k = 1 in the R function ciregic. This im-

plies cubic B-splines with [N1/3] internal knots were used for the approxi-

mation of φj(t), where [N1/3] is the largest integer up to and including N1/3,

and N is the total number of distinct time points Vi and Ui for the non-

right-censored subjects, plus the number of right-censored subjects. For

the “B-spline+Bernstein polynomials” approach, we use BPs with m = 5

degrees for the approximation of ψj(w) (i.e., 6 basis functions). For the

“B-spline+B-spline” approach, we use 6 cubic B-spline basis functions. We

consider two sample sizes, 100 and 500, with the number of simulated data

sets for each scenario being 200. For estimating the standard error of β̂,

ciregic has two options: nboot=0, or nboot=a positive integer, where

nboot indicates the number of bootstrap samples for estimating variances
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and covariances of the estimated regression coefficients. When nboot = 0,

the least-squares (LS) method is used. Pilot simulation studies revealed

that although the LS method is significantly faster, it leads to biased vari-

ance estimates. Hence, we used the bootstrap method with nboot = 500

bootstrap samples in our simulation studies.

The simulation results, which reported AEST (Average estimates of

β), MCSD (Monte Carlo standard deviation of estimates), ASE (Aver-

age estimated standard errors of estimates), and ECP (Empirical coverage

probability), are presented in Table S1. For the “B-spline+Bernstein poly-

nomials” approach, we observe the MCSDs mostly agree with the ASEs,

while ECPs remain very close to the nominal 95% level, implying the boot-

strap method to be working well. Figures S1 and S2 display the histograms

of the estimates of β for n = 100 and 500, respectively, while Figures S3 and

S4 present the plots of true and estimated baseline CIFs, and non-linear re-

gression functions, also for the sample sizes 100 and 500, respectively. The

histograms reveal satisfactory visual display of asymptotic normality of the

estimator of β, even for relatively smaller sample sizes. The differences be-

tween the true and estimated functions are quite small, and decrease with

increasing sample size. Furthermore, the biases of the estimates of β are

also small, revealing satisfactory performance of the approximations to the
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unknown non-linear regression functions by the BPs.

Table S1 also presents the corresponding statistics for the “B-spline+B-

spline” approach, while Figures S5 – S8 present the histograms of corre-

sponding β estimates, and plots of true and estimated baseline CIFs and

non-linear regression functions, also for sample sizes 100 and 500. We ob-

serve the “B-spline+B-spline” approach yields overestimated coverage prob-

abilities and larger bias for the non-linear regression function estimates,

compared to the “B-spline+Bernstein polynomials” approach. This indi-

cates that the BPs possess better shape preserving property than the B-

splines, and also provides improved estimation of the coverage probability.

5. Application: HIV Data

In light of the HIV dataset (Bakoyannis et al., 2017), our goal is to em-

ploy the partially linear GOR transformation model to evaluate factors

potentially associated with the cumulative incidence of being lost to care,

and of death while in care (i.e., under continuous HIV care coverage and

prior to becoming lost to care) – the two competing risk endpoints that are

interval-censored. The former outcome (lost to care) is associated with non-

retention in care, which can lead to increased mortality for the patient, by

virtue of not receiving antiretroviral treatment (ART). The data involving

22

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



5. APPLICATION: HIV DATA

3053 patients came from the East Africa IeDEA (International Epidemio-

logic Databases to Evaluate AIDS) Regional Consortium (Zaniewski et al.,

2018), which involves HIV care and treatment programs in Kenya, Uganda

and Tanzania. Loss to care is defined by the clinicians as having no clinic

visits for a 3-month period. This cutoff was chosen, because, patients with-

out care for three months are expected to have run out of ART supplies for

at least one month. Such a treatment interruption is clinically significant

as it is associated with increased viremia.

Table 1: HIV data analysis: Results from fitting the FGPO model, when

α = (0, 1) with a new term Age2

A. Loss to care B. Death while in care

Covariate mRR1/β̂ (p-value) mRR1/β̂ (p-value)

Age at ART initiation

per 10 years 0.6892/-0.373 (<0.001) 2.0403/0.713 (<0.001)

Age2 at ART initiation

per 100 years 1.0222/0.022 (<0.001) 0.9473/-0.055 (<0.001)

Gender

Male vs Female 1.1752/0.161 (0.087) 1.4933/0.401 (0.003)

CD4 at ART initiation

per 100 cells/µl 1.0322/0.031 (0.264) 0.6163/-0.484 (0.003)

1 Measure of relative risk 2 Subdistribution hazard ratio 3 Odds ratio
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To motivate our partially linear GOR (PLGOR) transformation model,

we add a new covariate term Age2 to the model that assumes the popular

Fine-Gray proportional subdistribution hazards model for the loss to care

outcome, and the PO model for death while in care outcome. This model

is obtained by setting α = (0, 1), and henceforth will be referred as the

FGPO model. The results are shown in Table 1. We observe that both

Age and Age2 are statistically significant in the model, which indicates a

possible non-linear effect of Age on the cause-specific cumulative incidence

function (CIF). Hence, a partially linear model, accommodating non-linear

effect of Age, is preferred.

Now, to fit the PLGOR model, we employ BPs to model a nonparamet-

ric function of Age. The CIFs are fitted by cubic B-splines, with the number

of knots controlled by the argument k = 1 in the R function ciregic. This

results to a total of 19 B-spline basis functions for each CIF. The knots are

placed at the corresponding percentiles of the distribution of the observed

times (Vi, Ui). Variance estimation of the regression parameters were con-

ducted via the bootstrap method with 500 replications. For practical im-

plementation, we need to select the parameters α = (α1, α2) indexing the

link functions for the competing events, and the degree mw of the Bernstein
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polynomial. To do so, we utilized the following grid-search BIC, defined as:

BIC(α,mw) = −2`n(θ̂;α) + log(n){4 + 2(mw + 1)}.

We performed a grid search over all possible combinations of α1 ∈

{0, 0.5, . . . , 4} and α2 ∈ {0, 0.5, . . . , 4}. The minimum BIC value (6666.91)

was achieved at mw = 2, with α = (2, 0), and the corresponding maximum

log-likelihood value for the fitted PLGOR model was -3140.88. Despite

two additional parameters, this provides a better fit than the optimal lin-

ear transformation model (LTM) of Bakoyannis et al. (2017), where the

maximum log-likelihood (-3144.47) was achieved at α = (2, 1.2). For this

comparison, we chose the argument k = 1 within the ciregic function,

keeping the control on the number of knots in the B-spline structure un-

changed. Our model also outperforms the popular Fine-Gray proportional

subdistribution hazards model for both competing risks (FGFG, hence-

forth), that corresponds to α = (0, 0), with the maximized log-likelihood

value = -3147.05, and the FGPO model with the maximized log-likelihood

value = -3146.91.
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Table 2: Comparison between the proposed model with α = (2, 0) and

the Fine-Gray - proportional odds model (FGPO) with α = (0, 1) and the

linear transformation model with α = (2, 1.2)

FGPO: α = (0, 1) α = (2, 1.2) α = (2, 0)

Outcome Covariate mRR1 / β̂ (p-value) β̂ (p-value) β̂ (p-value)

A. Loss Age

to care per 10 years 0.7832 / -0.244 (<0.001) -0.348 (<0.001) ψ1(Age)


B1(Age) 1.353(< 0.001)

B2(Age) −0.992(0.117)

B3(Age) 0.185(0.683)

Gender

Male vs Female 1.1702 / 0.157 (0.031) 0.273 (0.005) 0.282 (0.022)

CD4

per 100 cells/µl 1.0022 / 0.002 (0.947) 0.001 (0.976) < 0.001 (0.940)

B. Death Age

per 10 years 1.3603 / 0.308 (<0.001) 0.329 (<0.001) ψ2(Age)


B1(Age) −1.038(0.005)

B2(Age) 1.417(0.100)

B3(Age) 0.168(0.808)

Gender

Male vs Female 1.7583 / 0.564 (0.008) 0.567 (0.008) 1.6772 / 0.517 (0.004)

CD4

per 100 cells/µl 0.6993 / -0.358 (0.003) -0.346 (0.006) 0.9972 / -0.0034 (0.026)

1 Measure of relative risk 2 Subdistribution hazard ratio 3 Odds ratio

The resultant parameter estimates (and p-values) obtained from fitting

the FGPO model, the LTM of Bakoyannis et al. (2017) with α = (2, 1.2),
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and our proposed PLGOR model with α = (2, 0) (the best-fitting model)

are presented in Table 2. We observe that for both outcomes, males have

a significantly higher CIF compared to females from all models. Although

there is no evidence for an association between CD4 cell count at ART

initiation and the CIF of loss to care (from all models), lower CD4 counts

are significantly associated with increased CIF of death while in care, as re-

vealed by the appropriate summary quantities (odds, and relative risks) for

the models. This is in tune to previous studies (Lawn et al., 2009) explor-

ing the effect of low CD4 cell counts on mortality risks. Finally, exploring

the association of Age with the two competing risks revealed interesting

findings. For proper interpretation, we plot the two fitted nonparametric

risk functions in Figure 1. We observe that a lower age (<63 years) at

ART initiation is associated with a decreased CIF of loss to care, and an

increased CIF of death while in care. However, for Age ≥ 63, the respective

directions of the association are reversed, i.e., increased CIF for loss to care,

and decreased CIF of death while in care. These new findings quantifying

time-varying effects of age were not revealed from the FGPO and LTM fits.
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Figure 1: Estimated nonparametric risk functions of age at ART initiation,

derived from fitting the PLGOR model to the HIV data. The solid and

dashed lines represent the loss to care and death in care, respectively.
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6. Conclusion

The central contribution in this paper is to introduce covariate non-linearity

in GOR transformation models for interval-censored competing risk data.

This general class includes many other semiparametric models as special

cases, such as the PO (Jeong and Fine, 2006; Shi et al., 2013), and the

proportional subdistribution hazards models (Fine and Gray, 1999). Our

method comprises a purely B-spline approach with a faster convergence rate

under the same smoothness conditions for different nonparametric func-

tions, and a purely Bernstein polynomial approach to enhance computa-

tional scalability, enforcing optimal shape preserving property among all

approximating polynomials (Carnicer and Peña, 1993). Unlike other meth-

ods (Li, 2016), our proposal explicitly incorporates the boundedness of the

cause-specific CIF constraint into the optimization. Regarding theoretical

contributions, the sieve MLE for the regression (Euclidean) parameter based

on the combined B-spline and Bernstein polynomial sieves were shown to

be consistent, semiparametrically efficient, and asymptotically normal, uti-

lizing newer techniques, such as the symmetrization inequality, Hoeffding’s

inequality and the Riesz representation theorem. It was also shown that the

estimators for the functional parameters (baseline CIFs and nonparametric

risk functions) are consistent, almost surely in an L2-metric and converges
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at the optimal rate for nonparametric regressions. We also provide easy

implementation of our model utilizing the R function ciregic.

A practical issue during our model implementation is to decide between

parametric versus nonparametric choices for our covariates, or equivalently,

how to determine q representing the number of unknown smooth regression

functions. To the best of our knowledge, a literature search doesn’t seem

to suggest any theoretical investigation in this regard, within the interval-

censored competing risks framework. However, for the ordinary additive

partially linear regressions models, Zhang et al. (2011) developed a method

to distinguish linear and nonlinear terms for partially linear models, au-

tomatically and consistently. Their ideas can be adopted to our model,

although, a thorough investigation on this issue is beyond the scope of the

current paper. Hence, we suggest two pragmatic strategies in applications.

One is simply to put discrete covariates in the linear part and continuous

ones in the nonlinear part. Another more reasonable approach is called

the screening method, which involves conducting an initial preliminary uni-

variate analysis, and then separating the continuous covariates based on

the shape of the estimated nonparametric functions. Specifically, one can

include all the categorical covariates in the linear part, and then add each

continuous covariate sequentially to construct a partially linear model. If
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the univariate, continuous covariate, partially linear model indicates a non-

linearity, we can assign this covariate to a nonlinear function; otherwise, we

assign it to the linear part, and eventually determine q. This is actually

what we did in the HIV data analysis.

There are a number of future directions to pursue. For example, the

methodology proposed is applicable to the case of current-status data (Groene-

boom et al., 2008b,a), which represents more severe form of interval-censoring

(Zhang et al., 2010). It is also straightforward to show that our results also

hold for other general class of partially linear semiparametric transforma-

tion models, such as the Box-Cox transformation models (Ji et al., 2017)

for survival outcomes. Furthermore, throughout this paper, we assumed

that the true link functions are known, as in Scharfstein et al. (1998); Fine

(1999, 2001); Mao and Wang (2010). In practical applications, there can be

violations to this assumption. Another practical issue is the selection of the

degree of the BP. To this end, and following Mao and Wang (2010), we per-

formed grid search over a plausible set of combinations of (α1, . . . , αk) and

a range of mw values, and determine the combination using BIC. However,

the issues related to investigating additional variability due to this type of

model selection continues to remain an open problem in semiparametric

modeling, and require further investigation.
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Supplementary Materials

The Supplementary Materials consist of two sections. While Section SM1

contains detailed derivation and proofs of the theoretical results presented

in Section 3; Scenarios 2 and 3, tables and figures summarizing all the

simulation results in Section 4 constitute Section SM2.
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