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Abstract: Arc-sin transformation has long been used as a variance-stabilizer for

the binomial sample proportion arising out of binary data. The natural back-

transformed function is useful for making an estimate back to the original scale

of the parameter of interest. However, it is known that such a transformation

leads to bias when estimating the original parameter of interest. In this study,

we find explicit asymptotic bias-adjusted empirical Bayes (EB) estimators for

binomial sample proportions in the context of small area estimation. We obtain

explicit second-order correct approximation of mean squared errors (MSE’s) of

such estimators also second-order correct estimators of these MSE’s. Moreover,

the proposed empirical Bayes estimators and the corresponding MSE estima-

tors have superior performance in comparison with their competitors in terms of

bias and variance as demonstrated in a simulation study. We further apply our

methodology to real data associated with Coronavirus Disease 2019 (COVID-19)

for each prefecture in Japan.

Key words and phrases: Area Level Model; COVID-19; Linear Mixed Model;

Mean Squared Error Estimation
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1. Introduction

Small area estimation is receiving increasing attention in recent years both

from the public and private sectors. One highly important example of

the day is small area estimation of poverty and income undertaken by the

United States Bureau of the Census. Federal agencies are often mandated

to produce reliable estimates for small areas such as counties, census tracts

and school districts. Of equal importance is to provide reliable small domain

estimates cross-classified by age, sex, race and ethnicity. For more details

on small area estimation, one may refer to the review articles of Ghosh and

Rao (1994), Pfeffermann (2002, 2013) and the more recent book of Rao and

Molina (2015).

Small area estimation can either be at the area level or at the unit level.

The former is more popular than the latter since in most instances unit level

data are not available to secondary users of survey data. The classic area

level model is due to Fay–Herriot (1979) which is essentially a mixed effects

normal linear model with the area level effect being the random effect.

There are two variance components, the sampling error variance and the

random effect variance. Due to non-availability of microdata, in order to

avoid non-identifiability, the sampling error variance is often assumed to be

known, whereas in reality, it is only an estimate.
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In this paper, we are interested in the analysis of binomial sample pro-

portions. Then the normality assumption of the original data can only be

justified when sample size within an area is very large. The sampling vari-

ance in a binomial model is a function of the unknown sample mean, and

can hardly be assumed to be known.

The arc-sin transformation (Anscombe, 1952; Efron and Morris, 1975)

is a classical transformation which achieves the dual purpose of closer ap-

proximation to normality of the transformed data as well as a known vari-

ance.

In small area estimation, it is also important to consider situations

when sample size within an area is quite small. Such situation may often

occur in several research fields. For example, survey studies at early stage

of pandemic in epidemiology. Even in such situations, the arc-sin transfor-

mation can very often justify the assumption of known sampling variance.

Casas-Cordero, Encina and Lahiri (2015) also use this transformation for

poverty mapping.

We therefore focus on this transformation and use the Fay–Herriot

model for this transformed data. However, it is important to transform

back properly to the original scale to arrive at the final conclusion. The

natural back transformation could produce a severe bias especially when
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sample size within an area is not large enough.

The arc-sin transformation, a variance stabilizing transformation, is

a special case of general variable transformation. A very popular one is

the log-transformation of skewed data, resulting in closer to symmetry of

the transformed data, and readily implementable procedure based on the

log-normal distribution. Slud and Maiti (2006), Ghosh, Kubokawa and

Kawakubo (2015), and Molina and Martin (2018) took this approach, pro-

viding results for the back-transformed original parameters. In contrast,

Sugasawa and Kubokawa (2017) focused on a more general dual power one

to one transformation of the original data, originally proposed in Sugasawa

and Kubokawa (2015).

Once the back transformation is made, Slud and Maiti (2006) pro-

posed a multiplicative method towards this bias correction. Sugasawa and

Kubokawa (2017) suggested a non-explicit empirical Bayes estimator and

performed an analysis based on the general dual power transformation both

in terms of bias and mean squared error.

In this paper, for arc-sin transformed data, we find an explicit empirical

Bayes estimator which is also geared towards bias correction, but is more

optimal in the present context than the multiplicative approach proposed

by Slud and Maiti (2006) from the mean squared error (MSE) point of
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view. Moreover, for evaluation of the empirical Bayes estimator, we obtain

explicit second-order approximation of MSE and its second-order unbiased

estimator, maintaining strict positivity.

The outline of the remaining sections is as follows. In Section 2 of this

paper, we introduce empirical Bayes estimators for untransformed data and

then find an explicit empirical Bayes estimator of the original parameters of

interest for arc-sin transformed data. In Section 3, we analytically obtain

the second-order mean squared error approximation and its explicit second-

order unbiased estimator for a large number of small areas. We evaluate

our method numerically in Section 4, by comparing it with other existing

methods. In Section 5, we illustrate one example in predicting the positive

rate in Polymerase Chain Reaction (PCR) testing for Coronavirus Disease

2019 (COVID-19) for each prefecture in Japan. All technical proofs are

separately given in the supplemental file.

2. Empirical Bayes Estimation for Arc-sin Transformation

The Fay–Herriot model (1979) is a well-known area level model for small-

area estimation, and it is given as follows:
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For i = 1, . . . ,m,

Level 1 : g(yi)|θi ∼ind. N(θi, Di),

Level 2 : θi ∼ind. N(x′
iβ,A), (2.1)

where g(·) is a smoothed monotone function of the original data y =

(y1, . . . , ym)
′ with m number of small areas. In small area estimation, yi

is referred to as the direct estimate which is obtained from data only for

the i-th area. In the level 1 model, θi and Di denote the true mean and the

sampling variance of g(yi) respectively for each area i. The area-specific

auxiliary variables xi = (xi1, . . . , xip)
′ can be linked to θi for each area i,

where xi are p-dimensional vectors with p < m. The unknown parameters

are the coefficient vector β ∈ Rp and the model variance parameter A. The

sampling variance Di is assumed to be known in the Fay–Herriot model

(2.1) to avoid non-identifiability.

In this section, we first recall some well-known results for untransformed

data, that is, g(yi) = yi. We obtain Bayes estimator θ̂Bi of θi, that minimizes

the mean squared error (MSE) E[(θ̂i − θi)
2], among all predictors θ̂i, where

the expectation E is defined with respect to the joint distribution of y and

θ = (θ1, . . . , θm)
′:

θ̂Bi ≡ θ̂Bi (β,A) = (1−Bi)yi +Bix
′
iβ,
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where the shrinkage factor Bi = Di/A+Di shrinks yi towards x
′
iβ. Instead

of θ̂Bi , Empirical Bayes estimator (EB) of θi is used in practice, which re-

places the unknown parameters β andA in θ̂Bi by β̂(Â) = (X ′V̂ −1X)−1X ′V̂ −1y

and some consistent estimators of A for large m. Here X = (x1, . . . , xm)
′

and V = diag{A+D1, . . . , A+Dm}:

θ̂EB
i ≡ θ̂EB

i (Â, β̂) = (1− B̂i)yi + B̂ix
′
iβ̂.

One can adopt the iterative moment based approach of Fay and Her-

riot (1979) or an explicit method of moment estimator of A as suggested

in Prasad and Rao (1990). Other options are maximum likelihood (ML),

residual maximum likelihood (REML) estimator of Datta and Lahiri (2000).

Also, some adjusted likelihood (AL) estimators (Li and Lahiri, 2010; Yoshi-

mori and Lahiri, 2014; Hirose and Lahiri, 2018) can be adopted. In this

study, for establishing some theoretical results, we consider an estimator Â

of A such that

i) Â ≡ Â(g(y)) is an even and translation invariant for arbitrary g(y) and

Xβ as in Kacker and Harville (1981, 1984).

ii) Â(g(y)+µ) = Â(g(y))+r(g(y), µ) where r(g(y), µ) is such that E[r(g(y), µ)2] =

O(m−2).

iii) E[Â− A] = O(m−1) and E[(Â− A)8] = O(m−4) for large m.
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where g(y) = (g(y1), . . . , g(ym))
′.

These conditions hold for the estimators mentioned above under certain

regularity conditions.

Second-order unbiased MSE estimation has been developed by Prasad

and Rao (1990), Datta and Lahiri (2000), Datta, Rao and Smith (2005) and

others. For instance, Prasad and Rao (1990) obtained that the second-order

approximation of MSE of θ̂EB
i and its second-order unbiased estimator in

using the explicit moment estimator of A, namely ÂPR as follows:

E[(θ̂EB
i (ÂPR)− θi)

2] = g1i(A) + g2i(A) + gPR
3i (A) + o(m−1), (2.2)

E[g1i(ÂPR) + g2i(ÂPR) + 2gPR
3i (ÂPR)] = E[(θ̂EB

i (Â)− θi)
2] + o(m−1),

where g1i(A) = Di(1 − Bi), g2i(A) = B2
i x

′
i(X

′V 1X)−1xi and gPR
3i (A) =

B2
i V

PR
A /(A+Di) with V PR

A = 2
∑

i(A+Di)
2/m2.

The residual maximum likelihood estimator of A, namely ÂRE, also has

been widely used in practice. Datta and Lahiri (2000) and Das, Jiang and

Rao (2004) obtained the second-order approximation of MSE of θ̂EB
i in

using ÂRE and its second-order unbiased estimator as follows:

E[(θ̂EB
i (ÂRE)− θi)

2] = g1i(A) + g2i(A) + gDL
3i (A) + o(m−1), (2.3)

E[g1i(ÂRE) + g2i(ÂRE) + 2gDL
3i (ÂRE)] = E[(θ̂EB

i (ÂRE)− θi)
2] + o(m−1),

where gDL
3i (A) = B2

i V
DL
A /(A+Di) with V DL

A = 2/tr[V −2].
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We are now back to the present scenario, where responses y1 . . . , ym

from m local areas are modeled as

yi|pi ∼ind. Bin(ni, pi), (i = 1, . . . ,m).

The arc-sin transformation is given by zi ≡ g(yi) = sin−1(2yi − 1) with the

corresponding parameters θi = sin−1(2pi−1). This transformation has been

employed as a variance stabilizing transformation for the direct proportion

estimates as in Efron and Morris (1975).

Our interest lies in estimation of the proportion pi. We also consider

the Fay-Herriot model for the transformed data zi, namely

zi|θi ∼ind. N(θi, Di),

θi ∼ind. N(x′
iβ,A). (2.4)

where Di = 1/(4ni).

We now state one basic lemma and its corollary.

Lemma 1. Let some n dimensional random vector Wn ∼ N(0,Σ) with

non-singular matrix Σ and let f(Wn) be some integrable function such that

f(Wn) ∈ R. Then

(i)E[cos(c′Wn)f(Wn)] =
1

2
exp(−c′Σc/2){E[f(Wn + iuΣc)] + E[f(Wn − iuΣc)]},

(ii)E[sin(c′Wn)f(Wn)] =
1

2iu
exp(−c′Σc/2){E[f(Wn + iuΣc)]− E[f(Wn − iuΣc)]},
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where c denotes some n-dimensional vectors of which components are all

constants and iu =
√
−1 denote some constant vectors and the imaginary

unit, respectively.

The above lemma is proved in Section S1.1 of the supplemental file. And

it provides immediately the following corollary.

Corollary 1. Let the n dimensional random vector Wn ∼ N(µ,Σ) with

non-singular matrix Σ. Then we have,

(i)E[cos(c′Wn)] = exp(−c′Σc/2) cos(c′µ),

(ii)E[sin(c′Wn)] = exp(−c′Σc/2) sin(c′µ).

Using the model based approach, we have the posterior

θi|zi ∼ind. N((1−Bi)zi +Bix
′
iβ, (4ni)

−1(1−Bi)), (2.5)

where Bi = (4ni)
−1/{(4ni)

−1 + A}.

For notational convenience, henceforth we write θ̂Bi = (1 − Bi)zi + Bix
′
iβ.

The Bayes estimator of pi is then given by

p̂Bi = E[pi|zi] =
1

2
(1 + E[sin θi|zi]), (i = 1, . . . ,m).

By (2.5) and Corollary 1, one gets

p̂Bi =
1

2

[
1 + exp(−g1i(A)/2) sin(θ̂

B
i )

]
. (2.6)
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To find an empirical Bayes (EB) estimator of pi, we continue to consider

the estimator of model variance parameter A mentioned in the previous

section. We now propose the explicit EB estimator of pi as follows:

p̂EB
i =

1

2

[
1 + exp(−g1i(Â)/2) sin(θ̂

EB
i )

]
, (2.7)

where θ̂EB
i = (1−B̂i)zi+B̂ix

′
iβ̂ with Z = (z1, . . . , zm)

′ and β̂ = (X ′V̂ −1X)−1X ′V̂ −1Z.

Hereafter, we further assume the following regularity conditions:

R1 rank(X) = p is fixed for large m;

R2 supi≥1 hii = O(m−1) for large m, where hii = x′
i(X

′X)−1xi;

R3 0 < infi≥1 ni ≤ supi≥1 ni < ∞, 0 < A < ∞.

One may consider using the following empirical natural back trans-

formed predictor p̂N of pi:

p̂Ni (θ̂
EB
i ) =

1

2
[1 + sin(θ̂EB

i )], (i = 1, . . . ,m). (2.8)

However, it still does not take into account of bias under the above regularity

conditions. For this model, the bias corrected empirical predictor p̂SMi can

also be obtained explicitly with the definition λ = (A, x′
iβ), as suggested in

Slud and Maiti (2006):

p̂SMi = ρ(λ̂)p̂Ni (θ̂
EB
i ), (i = 1, . . . ,m), (2.9)
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where

ρ(λ) =
E[p̂Ni (θi)]

E[p̂Ni (θ̂
B
i )]

=
1 + sin(x′

iβ) exp(−A/2)

1 + sin(x′
iβ) exp{−A2/(2(A+Di))}

.

For obtaining ρ, we use Corollary 1. However, this approach, unlike the

lognormal case as in Slud and Maiti (2006), does not provide an optimal

estimator from the MSE consideration.

3. Bias and MSE evaluations of Empirical Bayes estimator for

Arc-Sin Transformation

3.1 Bias and MSE approximations of p̂EB
i

Our next objective is to evaluate asymptotic bias and obtain the second-

order approximation of mean squared error (MSE) of p̂EB
i .

Here we establish first theorem for asymptotic bias and MSE of p̂EB
i .

Theorem 1. Under the regularity conditions R1-R3, we have, for large m,

(i) E(p̂EB
i − pi) = O(m−1),

(ii) E[(p̂EB
i − pi)

2] = Mi(λ) + o(m−1),

where Mi(λ) = M1i(λ) +M2i(λ) with
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3.1 Bias and MSE approximations of p̂EB
i

M1i(λ) =
1

8
(1− exp(−g1i(A)))(1 + exp(−2A+ g1i(A)) cos(2x

′
iβ));

M2i(λ) =
1

8
exp(−g1i(A))

{
g2i(A) + g3i(A) +

B4
i

4
VA

}
+
1

8
cos(2x′

iβ) exp(−2A+ g1i(A))

{
g2i(A) + g3i(A)−

B2
i (Bi − 2)2

4
VA

}

In the above, λ = (A, x′
iβ) and E[(Â − A)2] = VA + o(m−1). These proofs

are given in Section S2.1 of the supplemental file. It may be noted that

supi Mi tends to zero when infi ni as well as m tend to infinity.

The above result leads to the following corollaries.

Corollary 2. (a) If we estimate A by ÂPR, then, a second-order approx-

imation of MSE of p̂EB(ÂPR) (i.e. correct up to order O(m−1)) is

obtained by replacing V (A) and g3i(A) in Mi(λ) with V PR
A (A) and

gPR
3i (A) respectively. We may recall that V PR

A (A) and gPR
3i (A) are de-

fined in (2.2).

(b) If we estimate A by ÂRE, then, V (A) and g3i(A) in the second-order

approximation Mi is replaced by V DL
A (A) and gDL

3i (A), respectively.

Also we recall that V DL
A (A) and gDL

3i (A) are defined in (2.3).
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3.2 MSE estimation

3.2 MSE estimation

Next, we find an explicit form of second-order MSE estimator of p̂EB(Â).

Next theorem would be a helps to construct an explicit second-order unbi-

ased MSE estimator.

Theorem 2. We have, for large m, under regularity conditions R1-R3,

(i) E[M1i(λ̂)−M1i(λ)] = bM(λ) + o(m−1),

(ii) E[M1i(λ̂)− bM(λ̂) +M2i(λ̂)] = Mi(λ) + o(m−1),

provided max(|M̂1i|, |bM(λ̂)|, |M2i(λ̂)|) < Cms with 0 < s < 1. Otherwise,

we need condition similar to Das et al. (2004; p831) as given after the

equation (4.7). In the above, note that

λ =(A, β), E(Â− A) = bA + o(m−1), E[(Â− A)2] = VA + o(m−1);

and

bM(λ) = −1

8
exp(−g1i(A))

(
g3i(A)− bAB

2
i +

B4
i

2
VA

)
− 1

8
exp(−2A+ g1i(A)) cos(2x

′
iβ)

{
2g2i(A)

B2
i

+ g3i(A)− bA(B
2
i − 2)− (B2

i − 2)2

2
VA

}
− 1

8
exp(−2A) cos(2x′

iβ)

(
2VA − 2bA − 2g2i(A)

B2
i

)
. (3.10)

These proofs are deferred to Section S2.2 of the supplemental file. Also note

that the regularity conditions R1-R3 are quite standard. See for example,

Prasad and Rao (1990) and Datta and Lahiri (2000).
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3.2 MSE estimation

Let

M̂0
i (λ̂) =Mi(λ̂)− bM(λ̂), (3.11)

where M̂i(λ) and bM(λ) are given in Theorem 1 and (3.10) respectively.

Theorem 2 ensures M̂0
i (λ̂) is second-order unbiased.

The estimator Â can be replaced with other estimators as mentioned

in Section 2. From the above theorem, we prove the following corollary.

Corollary 3. (a) If A is estimated by ÂPR given in Prasad and Rao (1990),

the explicit form of MSE estimator M̂0
i (λ̂) is obtained with Â = ÂPR,

bA = 0, VA = V PR
A and g3i(A) = gPR

3i (A), respectively.

(b) If A is estimated by the residual maximum likelihood estimator ÂRE,

given in Datta and Lahiri (2000), then the explicit form of the MSE

estimator M̂0
i (λ̂) is obtained with Â = ÂRE, bA = 0, VA = V DL

A and

g3i(A) = gDL
3i (A).

(c) One may use the adjusted residual maximum likelihood for maintaining

a strict positivity of A given in Yoshimori and Lahiri (2014), denoted

by ÂY L hereafter. This form of MSE estimator is the same while using

ÂRE, except Â = ÂY L.

Alternative adjusted residual maximum likelihood estimator may change

the form of the MSE estimator. For example, if we let ÂHL as
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3.2 MSE estimation

the estimator as suggested in Hirose and Lahiri (2018), the explicit

form of M̂0
i has a similar form as ÂRE, except that Â = ÂHL and

bA = 2/{tr[V −2](A+Di)}.

All these MSE estimators may result in negative estimates. To circum-

vent such problem, M̂0
i is also replaced with arbitrary strictly positive value

or some strictly positive estimate M̂∗
i when M̂0

i gets negative estimates. As

mentioned in Das, Jiang and Rao (2004), even for theoretical considera-

tions, one can use M̂∗
i instead when the condition |M̂0

i | < Cms does not

hold with some general positive constant values C and small positive value

s. For example, M1i(λ̂) could be adapted as M∗
i because of the fact that

0 < M̂1i(λ̂) < 1/4 < ∞ holds almost surely while either ÂY L or ÂHL.

To maintain strict positivity of MSE, we finally suggest the MSE esti-

mator M̂i such that

M̂i(λ̂) =


M̂0

i (λ̂) (0 < M̂0
i (λ̂) < Cms)

M̂∗
i (otherwise).

(3.12)

where s is such that 0 < s < 3/5.

The following theorem ensures that our estimator attains two desired prop-

erties in terms of MSE estimation, which are the second-order unbiasedness

for large m and strict positivity.
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Theorem 3. Under the regularity conditions, we have for large m,

(i) E[M̂i −Mi] = o(m−1),

(ii) M̂i > 0 with probability one,

provided |M̂i(λ̂)| < Cms with 0 < s < 3/5 and generic constant C, where

Mi = E[(p̂EB
i − pi)

2] + o(m−1).

The proof of Part (i) is given in Section S2.3 of the supplemental file. Proof

of part (ii) is trivial.

4. Simulation Study

In this section, we implement two finite sample simulation studies in order

to evaluate the performance of several back transformed empirical Bayes

estimators through Monte Carlo simulation under the Fay–Herriot model

(2.4).

To assess effects of the number of small areas and the sample size n

within small areas, with A = 0.125, we set the simulation setting such

that m = 15 and 50 and the following three patterns of sampling variances

Ds1-Ds3.

(Ds1) Di = 1/(4n) for all i with n = 2;

(Ds2) Di = 1/(4n) for all i with n = 4;
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4.1 Bias and MSE

(Ds3) Di = 1/(4n) for all i with n = 8.

We also considered three patterns of the regression coefficients β ∈ {−0.5, 0, 0.5}

for each case with fixed x1i = 1. This setting comes from the fact that the

natural back transformed empirical predictor (2.7) has bias even for a large

number of small areasm when x′
iβ ̸= 0. For that reason, it is also important

to investigate an effect on bias from x′
iβ by changing β with x1i fixed at 1.

4.1 Bias and MSE

We first compare bias and uncertainty of the following six back transformed

estimators of pi for each combination of (m,β,Ds) where Ds indicates one

of three patterns of sampling variances:

1) Natural Back Transformed empirical Bayes estimator p̂N.RE
i defined in

(2.8) when ÂRE estimates A (denoted by “NBT.RE”);

2) Natural Back Transformed empirical Bayes estimator p̂N.Y L
i defined in

(2.8) when ÂY L estimates A (denoted by “NBT.YL”);

3) Slud-Maiti-type Bias corrected estimator p̂SM.RE
i defined in (2.9) when

ÂRE estimates A. (denoted by “SM.RE”);

4) Slud-Maiti-type Bias corrected estimator p̂SM.Y L
i defined in (2.9) when

ÂY L estimates A ( denoted by“SM.YL”);
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4.1 Bias and MSE

5) Bias Adjusted Empirical Bayes estimator p̂EB.RE
i suggested in (2.7) when

ÂRE estimates A (denoted by “EB.RE”);

6) Bias Adjusted Empirical Bayes estimator p̂EB.Y L
i suggested in (2.7) when

ÂY L estimates A (denoted by “EB.YL”);

Recall that the REML estimator ÂRE can produce zero estimates. On the

other hand, ÂY L maintains strict positivity as given in Yoshimori and Lahiri

(2014). In this simulation study, when REML solution being negative, we

let REML estimates zero.

We evaluate the following simulated biases (SB) and MSEs (SMSE)

using R = 105 replications. We define SB and SMSE as follows:

SB ≡ 1

mR

m∑
i=1

R∑
r=1

(p̂
(r)
i − p

(r)
i ),

SMSE ≡ 1

mR

m∑
i=1

R∑
r=1

(p̂
(r)
i − p

(r)
i )2,

where p
(r)
i = (1+sin(θ

(r)
i ))/2 is constructed using the r-th replication under

the model (2.4). Furthermore, p̂
(r)
i denotes one of the above six estimators

based on the r-th replication.

We display the results of the simulated biases (SB) in Figures 1 and 2

in the case m = 15 and 50, respectively. Each figure is consisting of three

sub-figures for each sampling variance patterns Ds1-Ds3 and each x axis in-

dicates β. These figures show that all six estimators have good performance
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4.1 Bias and MSE

in terms of bias in the setting β = 0 since these simulated biases are all very

close to zero. These results are reasonable because all six estimators are

unbiased when β = 0. In contrast, for the other setting of β ∈ {−0.5, 0.5},

these figures also suggest that the natural back transformed empirical pre-

dictors p̂Ni have relatively larger biases than others. Although the left side

of Figure 1 illustrates similar performances in terms of simulated absolute

bias, the decreasing simulated biases of the bias corrected estimators 3)–6)

are shown as larger sample size ni or the number of areas m from the other

figures. The findings also imply that the empirical best unbiased predictors

p̂EB
i and Slud-Maiti-type of bias corrected estimators p̂SMi outperform the

natural back transformed empirical predictors in terms of bias.

Respective Figures 3 and 4 provide the simulated MSEs (SMSE) against

the combinations of β and the sampling variance patterns Ds in the simula-

tion setting m = 15 and 50. We can see that these MSEs are getting smaller

as sample size n getting larger in all situations, agreeing with one’s intuition.

The left sub-figure in Figure 3 indicates the result in the case with smallest

sizes of n and m in this simulation setting. And it demonstrates superiority

of the empirical Bayes estimator (especially p̂EB.Y L
i ) against others in terms

of the MSE, whereas other cases yeild very similar performances of the six

estimators.
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4.1 Bias and MSE

Figure 1: Simulated biases (SB) of six empirical predictors in the case

m = 15; each sub-figure shows the results for the three sampling variance

patterns Ds1(Left), Ds2(Center), Ds3(Right) with each x-axis indicating

β ∈ {−0.5, 0, 0.5}

In summary, it seems from those simulation results that the back trans-

formed empirical Bayes estimators p̂EB
i seem to have best performance

among all candidates in terms of bias and MSE. This is especially evident

p̂EB.Y L
i based on ÂY L outperforms than p̂EB.RE

i using the REML method in

terms of MSE.
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4.2 Assessment of MSE estimation

Figure 2: Simulated biases (SB) of six empirical predictors in the case

m = 50; each sub-figure shows the results for the three sampling variance

patterns Ds1(Left), Ds2(Center), Ds3(Right) with each x-axis indicating

β ∈ {−0.5, 0, 0.5}

4.2 Assessment of MSE estimation

Next, we evaluate the efficiencies of several MSE estimators of MSE of the

empirical Bayes estimators p̂EB.Y L
i .

We set the same nine simulation settings of (β,Ds) for eachm = 15 and

50 as in Section 4.1 and reconsider the following six estimators of MSE’s of
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4.2 Assessment of MSE estimation

Figure 3: Simulated MSEs (SMSE) of six empirical predictors in the case

m = 15; each sub-figure shows the results for the three sampling variance

patterns Ds1(Left), Ds2(Center), Ds3(Right) with each x-axis indicating

β ∈ {−0.5, 0, 0.5}

our estimator p̂EB.Y L
i :

1) Second-order unbiased MSE estimator for untransformed data, based

on ÂRE estimator: M̂NBT.RE
i ≡ g1i(ÂRE) + g2i(ÂRE) + 2g3i(ÂRE)

mentioned in (2.3) (denoted by “NBT.RE”);

2) Second-order unbiased MSE estimator for untransformed data, based on
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4.2 Assessment of MSE estimation

Figure 4: Simulated MSEs (SMSE) of six empirical predictors in the case

m = 50; each sub-figure shows the results for the three sampling variance

patterns Ds1(Left), Ds2(Center), Ds3(Right) with each x-axis indicating

β ∈ {−0.5, 0, 0.5}

ÂY L estimator: M̂NBT.RE
i ≡ g1i(ÂRE) + g2i(ÂRE) + 2g3i(ÂY L) men-

tioned in (2.3) (denoted by “NBT.YL”);

3) First-order unbiased MSE estimator M̂RE
1i ≡ M1i(λ̂) when adopting

ÂRE, where M1i(λ) is given in Theorem 1 (denoted by “M1.RE”);

4) First-order unbiased MSE estimator M̂Y L
1i ≡ M1i(λ̂) using ÂY L, where
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4.2 Assessment of MSE estimation

M1i(λ) is given in Theorem 1 (denoted by “M1.YL”);

5) Second-order unbiased MSE estimator M̂RE
i ≡ M̂i(λ̂) when using ÂRE,

defined in (3.12) (denoted by “Ms.RE”);

6) Second-order unbiased MSE estimator M̂Y L
i ≡ M̂i(λ̂) using ÂY L, defined

in (3.12) (denoted by “Ms.YL”);

For evaluation of these MSE estimators, we calculated percentages of

relative bias (PRB) and the percentages of relative RMSE (PRRMSE) es-

timators with replication number R = 105. The PRB and PRRMSE are

defined as

PRB =
1

mR

m∑
i=1

R∑
r=1

M̂
(r)
i −Mi

Mi

× 100,

PRRMSE =
1

m

m∑
i=1

√
1
R

∑R
r=1(M̂

(r)
i −Mi)2

Mi

× 100,

where M̂
(r)
i is one of the MSE estimators in the above using the r-th repli-

cation and Mi denotes SMSEi of p̂
EB based on ÂY L.

We report PRB and PRRMSE in Figures 5–8 for comparing MSE es-

timators (M1.RE,M1.YL,Ms.RE,Ms.YL), whereas two untransformed MSE

estimators (NBT.RE,NBT.YL) were not appearing in these figures, due to

their considerable large values (over 300) for all situations. From these re-

sults, in terms of the relative bias and the relative RMSE, it is seems that
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4.2 Assessment of MSE estimation

our proposed MSE estimators M̂i(λ̂) are performing better than others.

Figure 5: Percentage of relative bias (PRB) of six MSE estimators for

MSE of empirical bayes estimator p̂EB.Y L
i in the case m = 15; each sub-

figure shows the results in the three sampling variance patterns Ds1(Left),

Ds2(Center), Ds3(Right) with each x-axis indicating β ∈ {−0.5, 0, 0.5}

In this simulation, there were no occurrence of negative estimates of

MSE, but only M̂RE
1i produced zero estimates. And both of our second-

order unbiased MSE estimates always used M̂0
i in (3.12). Finally, we report

in Table 1 for the percentage of occurrence of zero estimates in using M̂RE
1i .

The result were exactly the same as the simulated probability of REML
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Figure 6: Percentage of relative bias (PRB) of six MSE estimators for

MSE of empirical bayes estimator p̂EB.Y L
i in the case m = 50; each sub-

figure shows the results in the three sampling variance patterns Ds1(Left),

Ds2(Center), Ds3(Right) with each x-axis indicating β ∈ {−0.5, 0, 0.5}

being zero estimates. As a summary, it implies the estimator M̂RE
1i may

bring unrealistic estimates of MSE.

5. Data Analysis

COVID-19 has become a global pandemic since 2020. It is particular of

interest to provide some results related to COVID-19. In this study, we

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Figure 7: Percentatage of relative RMSE (PRRMSE) of six MSE estimators

for MSE of empirical bayes estimator p̂EB.Y L
i in the case m = 15; each sub-

figure shows the results in the three sampling variance patterns Ds1(Left),

Ds2(Center), Ds3(Right) with each x-axis indicating β ∈ {−0.5, 0, 0.5}

illustrate our methodology to COVID-19 real data. The purpose of this

study is, as one example, to predict the positive rate in PCR testing for

each 47 prefectures in Japan.

For this purpose, we use real data having “the number of positive cases”,

“the number of people who have taken the PCR test” for each prefecture at

date of April 21st in 2021. The data are obtained from website of Ministry of
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Figure 8: Percentatage of relative RMSE (PRRMSE) of six MSE estimators

for MSE of empirical bayes estimator p̂EB.Y L
i in the case m = 50; each sub-

figure shows the results in the three sampling variance patterns Ds1(Left),

Ds2(Center), Ds3(Right) with each x-axis indicating β ∈ {−0.5, 0, 0.5}

Health, Labour and Welfare （https://www.mhlw.go.jp/stf/covid-19/

open-data.html）.

In this study, we assumed the model (2.4) and applied our methodology

to this real data. Now let yi and ni be direct positive rate of those who took

PCR test and the number of PCR test conducted for the i-th prefecture

in Japan with i ∈ {1, . . . , 47}. And also, the real auxiliary variable xi =
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Table 1: Percentage (%) of occurrence of zero estimates when M̂RE
1i using

in each combination case of (m,β,Ds)

Ds Ds1 Ds2 Ds3

β -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

m 15 19.12 18.89 19.01 6.49 6.58 6.42 0.99 0.99 1.02

50 3.53 3.49 3.65 0.11 0.15 0.14 0 0 0

(1, x2i)
′ is used, where x1i = 1 represents a dummy variable for the intercept

term, while xi2 denotes Ni × 10−6 with population size Ni. We let Ni the

population size in Japanese Census at 2015 which is the latest open census

data. These are obtained from the website (https://www.e-stat.go.jp/).

From the model assumption, the sampling variances Di are assumed to

be 1/(4 × ni) for the i-th prefectures. We call the pattern D1 hereafter.

Moreover, we considered not only such real situation, but also tried one

more hypothetical setting of sample size n∗
i = ⌈ni × 10−4⌉ while the real

data (yi, x2i) used, where ⌈n⌉ indicates the smallest integer greater than or

equal to the value of n. Here, let D2: Di = 1/(4× n∗
i ) be the hypothetical

pattern of the sampling variance for all 47 prefectures in Japan. In this

case, the range of n∗
i become from 1 to 194. We believe the situation is also

important for prediction at early stages of the pandemic.
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5.1 Predict Positive Rate in PCR testing

5.1 Predict Positive Rate in PCR testing

We first compare the six empirical Bayes estimates of pi, introduced in

Section 4.1, with direct proportion estimates (Direct). Figure 9 showed

the result in each case of two sampling variance patterns D1(the left sub-

figure) and D2(the right sub-figure). In each sub-figure, the x-axis and

y-axis indicate 47 prefectures in Japan and each predict, respectively. And

the resulting predicts are arranged in ascending order of the size ni.

This left sub-figure indicates no large differences among all estimates in the

real present situation. On the other hand, there seems to be considerable

differences between direct estimates and other empirical Bayes estimates

when sample sizes are small, as seen from the right figure. This may be due

to the small sample size at early stage of the pandemic.

5.2 Estimates of Coefficients of Variation

Next, in order to more investigate the effect of MSE estimates based on

several empirical Bayes estimators, we compare the following six estimators

of the coefficient variation (CV):

1) CV NBT.RE ≡
√
M̂NBT.RE

i /p̂NBT.RE
i × 100, constructed by the natural

back transformed estimator p̂NBT.RE
i and untransformed MSE esti-

mator M̂NBT.RE
i , (denoted by “NBT.RE”) ;
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5.2 Estimates of Coefficients of Variation

Figure 9: Seven predicted values of positive rates in PCR testing with two

sampling variance patterns D1 : Di = 1/(4 × ni) (Left) and D2 : Di =

1/(4× n∗
i ) (Right)

2) CV NBT.Y L ≡
√

M̂NBT.Y L
i /p̂NBT.Y L

i × 100, constructed by the natural

back transformed estimator p̂NBT.Y L
i and untransformed MSE esti-

mator M̂NBT.Y L
i , (denoted by “NBT.YL”);

3) CV EB.RE.1 ≡
√

M̂RE
1i /p̂EB.RE

i × 100, constructed by the bias adjusted

empirical Bayes estimator p̂EB.RE
i and the first-order unbiased MSE

estimator M̂RE
1i , (denoted by “EB.RE.1”);
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5.2 Estimates of Coefficients of Variation

4) CV EB.Y L.1 ≡
√

M̂Y L
1i /p̂EB.Y L

i × 100, constructed by the bias adjusted

empirical Bayes estimator p̂EB.Y L
i and the first-order unbiased MSE

estimator M̂Y L
1i , (denoted by “EB.YL.1”);

5) CV EB.RE.2 ≡
√

M̂RE
i /p̂EB.RE

i × 100, constructed by the bias adjusted

empirical Bayes estimator p̂EB.RE
i and the second-order unbiased MSE

estimator M̂RE
i , (denoted by “EB.RE.2”);

6) CV EB.Y L.2 ≡
√

M̂Y L
i /p̂EB.Y L

i × 100, constructed by the bias adjusted

empirical Bayes estimator p̂EB.Y L
i and the second-order unbiased MSE

estimator M̂Y L
i , (denoted by “EB.YL.2”).

For the estimators CV EB.RE.2 and CV EB.Y L.2, we note that M̂RE
1i and M̂Y L

1i

are used as M̂∗
i in (3.12), respectively.

Figure 10 consists of four sub-figures to show the six CV estimates

for all prefectures in two sampling variance patterns D1(the left two sub-

figures) and D2 (the right two sub-figures). The x-axis and y-axis indicate

47 prefectures and each CV estimate, respectively. Each top and bottom

sub-figure are all same except the scale changing in y-axis. The resulting

estimates are arranged in ascending order of ni as well as Figure 9.

The top left sub-figure in the sampling variance pattern D1, our result

demonstrates that the overall differences of CV estimates 3)–6) from two
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5.2 Estimates of Coefficients of Variation

Figure 10: Six estimates of coefficient of variation (CV) of positive rate in

PCR testing with two sampling variance patterns D1 : Di = 1/(4 × ni)

(Left two figures) and D2 : Di = 1/(4 × n∗
i ) (Right two figures); Each top

and bottom sub-figure are all same except the scale changing in y-axis.

naive CV estimates 1)–2) are getting smaller as the sample size ni increases.

Among CV estimates 3)–6), we cannot see large differences in the sub-figure.

We also reported the result for alternative situation with the pattern

D2 in the top right sub-figure in Figure 10. The figure demonstrates that

two naive CV estimates, CV NBT.RE and CV NBT.Y L, are much larger than

others. In contrast, the estimates CV EB.RE.1 and CV EB.Y L.1 provide much
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5.2 Estimates of Coefficients of Variation

smaller estimates than others for all prefectures. Nevertheless, these CV

estimates need to be examined carefully due to small sample size. There are

two reasons: first, each MSE estimator in four CV estimators 1)–4) does not

have the second-order unbiasedness, and second, 2) CV EB.RE.1 produced

exactly zero CV estimates for all prefectures, as seen from the bottom of

right sub-figure, in this data analysis. Incidentally, the latter unrealistic

phenomenon is caused by REML estimate being zero. Also, the bottom

of right sub-figure showed the CV EB.RE.2 also provided zero estimates of

CV for few prefectures although it is constructed with the second-order

unbiased estimator of MSE. Note that it is not based on our final suggested

MSE estimator in (3.12) since M∗
i = MRE

1i may not be strictly positive.

On the other hand, it does not report zero estimates of CV EB.Y L.2 in the

bottom two figures of Figure 10. That is, in the calculation of CV EB.Y L.2

for all prefectures in this real data analysis, we used M̂0
i as given in (3.12).

From the view of both theoretical and simulation results, we believe

that CV EB.Y L.2 provide relatively precise and realistic CV estimates as

compared to others.
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6. Summary and Conclusion

In this study, we focus on arc-sin transformation for binomial sample pro-

portions in the context of small area estimation. This specific variance

stabilizing transformation avoids one important assumption of known sam-

ple variances as in the Fay–Herriot small area model. We find an explicit

empirical Bayes estimator for such transformed data and then evaluate the

asymptotic-order of its bias. Also, we obtain an explicit form of the second-

order unbiased MSE estimator for large m based on arc-sin transformed

data when supi ni is bounded for large m. Moreover, we propose an ex-

plicit second-order unbiased MSE estimator which maintains strict positiv-

ity. Simulation study demonstrated the superiority of our proposed method

over other methods in terms of efficiency. Furthermore, our methodology is

potentially applicable to other research areas such as epidemiology, meta-

analysis and others. As an example, we applied our methodology to predict

the positive rate in PCR testing for each 47 prefectures in Japan. Although

this is just one example to illustrate, our methodology, it may also con-

tribute to quick studies at an early stage since the model does not require

personal information in micro-data, and the estimates of the sampling vari-

ances, due to its aggregated model and variance stabilization, respectively.

Nevertheless, we may also consider another general model to treat com-
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plex COVID-19 data. In the future, we intend to study further EB estima-

tion under more general transformation models.

Supplementary Materials

All technical proofs are separetely given in the supplemental file.
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