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Asymptotic optimality of Cp-type criteria

in high-dimensional multivariate linear regression models

Shinpei Imori

Hiroshima University

Abstract: We study the asymptotic optimality of Cp-type criteria from the per-

spective of prediction in high-dimensional multivariate linear regression models,

where the dimension of a response matrix is large but does not exceed the sam-

ple size. We derive conditions in order that the generalized Cp (GCp) exhibits

asymptotic loss efficiency (ALE) and asymptotic mean efficiency (AME) in such

high-dimensional data. Moreover, we clarify that one of the conditions is neces-

sary for GCp to exhibit both ALE and AME. As a result, it is shown that the

modified Cp can claim both ALE and AME but the original Cp cannot in high-

dimensional data. The finite sample performance of GCp with several tuning

parameters is compared through a simulation study.

Key words and phrases: Asymptotic theory; High-dimensional statistical infer-

ence; Model selection/variable selection.

1. Introduction

Variable selection problems are crucial in statistical fields to improve

prediction accuracy and/or interpretability of a resultant model. There is
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a burgeoning literature which has attempted to solve the variable selection

problem, and many selection procedures and their theoretical properties

have been studied.

For example, Mallows’ Cp criterion (Mallows, 1973) and Akaike infor-

mation criterion (AIC) (Akaike, 1974) are known as useful selection meth-

ods from a predictive point of view because these procedures are optimal in

some predictive sense (see Shibata, 1981, 1983; Li, 1987; Shao, 1997). On

the other hand, Bayesian information criterion (BIC) proposed by Schwarz

(1978) is consistent (Nishii, 1984) under appropriate conditions; that is, the

probability that a model selected by BIC coincides with the true model con-

verges to 1 as the sample size n tends to infinity. In this sense, BIC would

be a feasible method from the perspective of interpretability. However, Cp

and AIC are inconsistent (Nishii, 1984) under the same condition. Details

of properties of selection procedures are well studied in Shao (1997) in the

context of univariate linear regression models. However, here, our target is

multivariate linear regression models.

Recently, high-dimensional data are often encountered where the di-

mension of a response matrix in multivariate linear regression models pn

is large, whereas pn does not exceed the sample size n. Considering such

high-dimensional multivariate linear regression models, one may presume
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that the properties of selection methods such as optimality and consistency

are inherited from univariate models. However, interestingly, properties de-

rived when pn is fixed can be altered in high-dimensional situations. For

example, Yanagihara, Wakaki and Fujikoshi (2015) showed that AIC ac-

quires the consistency property and that BIC loses its consistency in high-

dimensional data. Similar results for Cp-type criteria were reported by

Fujikoshi, Sakurai and Yanagihara (2014). The reason why this inversion

arises may be that a difference in risks between two over-specified models

(i.e., models including the true model) diverges with n and pn tending to in-

finity, and thus penalty terms of Cp and AIC are moderate but that of BIC

is too strong. In addition to these studies, model selection criteria in high-

dimensional data contexts and their consistency properties have been vigor-

ously studied in various models and situations (e.g., Katayama and Imori,

2014; Imori and von Rosen, 2015; Yanagihara, 2015; Fujikoshi and Sakurai,

2016; Bai, Choi and Fujikoshi, 2018).

Compared with the consistency property, asymptotic optimality for

prediction in high-dimensional data contexts is under-researched. Con-

ventional results derived from univariate models are no longer reliable in

high-dimensional data contexts, and extension to such cases is not math-

ematically trivial. In the present paper, we focus on asymptotic loss effi-
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ciency (ALE) (Li, 1987; Shao, 1997) and asymptotic mean efficiency (AME)

(Shibata, 1983) as criteria for the asymptotic optimality of variable selec-

tion. We derive sufficient conditions in order that a generalization of Cp

(GCp) exhibits ALE and AME in high-dimensional data. We also show

that one of the sufficient conditions is necessary for GCp to exhibit both of

these efficiencies. As a result, we can observe that the modified Cp (MCp)

introduced by Fujikoshi and Satoh (1997) exhibits ALE and AME assum-

ing moderate conditions although the original Cp does not under the same

conditions.

Recently, Yanagihara (2020) also studied ALE and AME ofGCp in high-

dimensional multivariate linear regression models although its conditions

and results are based on the consistency property. For example, Yanagihara

(2020) supposes that the true model is included in a set of candidate models,

which is not assumed in the present paper. It is worth mentioning that

previous studies of variable selection in multivariate linear regression models

use a common regression model among response variables. We mitigate this

limitation and allow each response variable to have different models in order

to consider more practical situations such as response variables have a group

structure.

The remainder of this paper is composed as follows. In Section 2, we
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clarify the variable selection framework used in this paper. In Section 3,

the sufficient conditions for ALE and AME of GCp are given. In Section

4, we study the asymptotic inefficiency of GCp. Section 5 illustrates the

finite sample performances of some Cp-type criteria. Finally, conclusions

are offered in Section 6.

2. Model Selection Framework

2.1 True and candidate models

Let Y be an n×pn response variable matrix andX be an n×kn explanatory

variable matrix, where n is the sample size, pn is the dimension of response

and kn is the number of explanatory variables. We assume X to be of full

rank and non-stochastic. We allow kn and pn to diverge to infinity with n

tending to infinity, although neither kn nor pn exceeds n. Specific conditions

for n, kn, and pn are given later.

The true distribution of Y = (y1, . . . ,ypn) is given by

Y = Γ∗ + EΣ1/2
∗ ,

where Γ∗ = (γ∗
1 , . . . ,γ

∗
pn) = E(Y ), E is an n× pn error matrix, of which all

entries are independent and identically distributed as the standard normal
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distribution N(0, 1) and Σ∗ is the true covariance matrix of each row of Y .

The relationship between Y and X is represented by a multivariate linear

regression model as follows:

Y = XB + EΣ1/2,

where B is a kn × pn matrix of unknown regression coefficients and Σ is

a pn × pn unknown covariance matrix. Here, we distinguish the covariance

parameter Σ from the true one Σ∗. Let M = (M1, . . . ,Mpn), where ∅ ̸=

Mj ⊂ MF = {1, . . . , kn} is a candidate model for the jth response variable

yj, that is, we assume yj is relevant to XMj
that is an n× kMj

sub-matrix

of X corresponding to Mj, and kMj
is the cardinality of Mj. This setting

can take account of a group structure of response variables. For example, if

we have two groups {1, . . . ,m} and {m+1, . . . , pn} with some integer m, a

restriction M1 = . . . = Mm and Mm+1 = . . . = Mpn will be imposed. Using

only one regression model for response variables, i.e., M1 = . . . = Mpn ,

we have a simple variable selection problem often considered in previous

studies. Then, a candidate modelM implies a multivariate linear regression
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model defined as follows:

yj = XMj
βMj

+ εj, j = 1, . . . , pn,

where βMj
is a kMj

-dimensional vector of unknown regression coefficients

and εj is the jth column of EΣ1/2
∗ , i.e., EΣ1/2

∗ = (ε1, . . . , εpn). Thus, a set

of candidate models is denoted by Mn that is a subset of a comprehensive

set {M = (M1, . . . ,Mpn)|Mj ⊂ MF , j = 1, . . . , pn}. Note that Mn does not

have to include the full model, i.e., M = (MF , . . . ,MF ).

2.2 Loss and risk functions

Herein, the goodness of fit of a candidate model M is measured by a

quadratic loss function Ln given by

Ln(M) = tr{(Γ∗ − Γ̂(M))Σ−1
∗ (Γ∗ − Γ̂(M))⊤}, (2.1)

where each column of Γ̂(M) is obtained based on a least squares estimator,

i.e.,

Γ̂(M) = (PM1y1, . . . ,PMpn
ypn), (2.2)
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and PMj
= XMj

(X⊤
Mj

XMj
)−1X⊤

Mj
. By substituting (2.2) into (2.1), we

have

Ln(M) = tr{∆(M)} − 2tr{Σ−1
∗ (Γ∗ − Γ∗(M))⊤E(M)}

+ tr{Σ−1
∗ E(M)⊤E(M)} (2.3)

where∆(M) = Σ
−1/2
∗ (Γ∗−Γ∗(M))⊤(Γ∗−Γ∗(M))Σ

−1/2
∗ , Γ∗(M) = (PM1γ

∗
1 , . . . ,PMpn

γ∗
pn)

and E(M) = (PM1ε1, . . . ,PMpn
εpn). Then, a risk function Rn is obtained

as

Rn(M) = E(Ln(M)) = tr{∆(M)}+ tr{A(M)⊤A(M)}, (2.4)

where A(M) = (Σ
−1/2
∗ ⊗ In)P (M)(Σ

1/2
∗ ⊗ In), a symbol ⊗ denotes a Kro-

necker product and P (M) = diag{PM1 , . . . ,PMpn
}. It is worth mentioning

thatA(M) is an idempotent matrix. Thus, from Householder and Carpenter

(1963), σj(A(M)) ≤ σj(A(M))2 for all j = 1, . . . , pn, where σj(·) denotes

the jth largest singular value. This and Theorem 3.3.13 in Horn and Jornson

(1994) indicate that

tr{A(M)⊤A(M)} =

pn∑
j=1

σj(A(M))2 ≥
pn∑
j=1

σj(A(M)) ≥ tr{A(M)}.
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This implies that Rn(M) ≥ pn because tr{A(M)} =
∑pn

j=1 kMj
.

The best models with respect to the loss and risk functions are denoted

by M∗
L and M∗

R, which minimize (2.1) and (2.4) among Mn, respectively,

i.e.,

M∗
L = arg min

M∈Mn

Ln(M), M∗
R = arg min

M∈Mn

Rn(M).

Note that M∗
L is a random variable, M∗

R is non-stochastic, and both of them

depend on n although they are suppressed for brevity.

2.3 Selection method and asymptotic efficiency

To select the best model among Mn, we use GCp defined by

GCp(M ;αn) = nαntr{Σ̂(M)S−1}+ 2

pn∑
j=1

kMj
. (2.5)

where αn is a positive sequence, Σ̂(M) = (Y − Γ̂(M))⊤(Y − Γ̂(M))/n,

S = Y ⊤P⊥
MF

Y /(n − kn) and P⊥
MF

= In − PMF
. For theoretical purposes,

we use αn satisfying

lim
n→∞

αn = a ∈ [0,∞).
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When αn = 1 and pn = 1, GCp indicates Cp proposed by Mallows (1973).

When αn = 1− (pn +1)/(n− kn) and M1 = · · · = Mpn , selection results by

GCp coincide with the modified Cp (called MCp) by Fujikoshi and Satoh

(1997). If the full model includes the true model and we set M1 = · · · =

Mpn , then MCp is an unbiased estimator (Fujikoshi and Satoh, 1997). Note

that Atkinson (1980) introduced a criterion equivalent to GCp for univariate

data, and Nagai, Yanagihara and Satoh (2012) proposed for multivariate

generalized ridge regression models although they assumed M1 = · · · =

Mpn .

The best model selected by minimizing GCp among Mn is denoted by

M̂n, i.e.,

M̂n = arg min
M∈Mn

GCp(M ;αn).

Then, we state that GCp exhibits ALE (Li, 1987; Shao, 1997) if

Ln(M̂n)

Ln(M∗
L)

p→ 1, n → ∞, (2.6)
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and exhibits AME (Shibata, 1983) if

lim
n→∞

E(Ln(M̂n))

Rn(M∗
R)

= 1. (2.7)

Note that Ln(M̂n) and E(Ln(M̂n)) are respectively referred to as loss and

risk functions of the best model selected by GCp.

3. Asymptotic Efficiency of GCp

In this section, we present ALE and AME of GCp(M ;αn). Hereafter,

we may omit symbol “n → ∞” for simplifying expressions.

Firstly, we assume the following conditions for ALE:

(C1) limn→∞ kn/n = ck ∈ [0, 1), limn→∞ pn/n = cp ∈ [0, 1), 1− ck − cp > 0

and n− kn − pn > 0.

(C2) σ1(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ ) = o(n).

(C3) There exists a constant CA ≥ 1 such that for allM ∈ Mn, σ1(A(M)) ≤

CA.

(C4) For all δ ∈ (0, 1), limn→∞
∑

M∈Mn
δRn(M) = 0.

(C5) Let #(Mn) be the cardinality of Mn, i.e., the number of candidate

models. Then, log#(Mn) = o(n).
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The first part of condition (C1) is weaker than a condition assumed in

Shibata (1981, 1983) if the full model (MF , . . . ,MF ) is included in the set

of candidate models Mn. The second part of (C1) constructs our high-

dimensional framework, which is also considered in previous studies (see

e.g., Fujikoshi, Sakurai and Yanagihara, 2014; Yanagihara, Wakaki and Fujikoshi,

2015). The third part is used for evaluating the lowest singular values of

a high-dimensional Gaussian random matrix. The final part of (C1) is

required to guarantee regularity of S, which can be satisfied asymptoti-

cally from the previous three conditions. Condition (C2) is used to ignore

an effect of σ1(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ ), which is satisfied when Γ∗ is well

approximated by a linear regression model XB although a set of candi-

date models does not need to include the true model. When pn = 1,

(C2) corresponds to an assumption in Shao (1997). Condition (C3) is

only considered when we do not use a common model for response vari-

ables. Actually, M = (M1, . . . ,M1) with some M1 ⊂ MF indicates that

A(M) = Ipn ⊗ PM1 , and thus (C3) holds. If there exists λ ≥ 1 such that

λ−1 ≤ λmin(Σ∗) ≤ λmax(Σ∗) ≤ λ, where λmin(·) and λmax(·) denote the

minimum and maximum eigenvalues, then (C3) holds for any Mn because
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for all x ∈ Rnpn ,

x⊤A(M)⊤A(M)x ≤ λmax(Σ∗)

λmin(Σ∗)
x⊤x.

On the other hand, conditions (C4) and (C5) control the number of can-

didate models. When pn = 1, (C4) corresponds to a condition in Shibata

(1981, 1983). Let G be a positive constant integer. Suppose that response

variables has G groups and each group consists of at least gn response vari-

ables, where gn satisfies pn = O(gn). Then, when pn → ∞, log kn = o(pn)

is a sufficient condition for (C4) because this indicates that log kn = o(gn)

and

∑
M∈Mn

δRn(M) ≤

{
kn∑
j=1

(
kn
j

)
δjgn

}G

≤

{
kn∑
j=1

(knδ
gn)j

}G

≤
(

knδ
gn

1− knδgn

)G

.

Hence, this may suggest that as pn grows, the upper bound the number of

candidate models (or the number of explanatory variables) for satisfying

(C4) becomes large. Note that when cp > 0, (C4) always holds due to (C5).

Condition (C5) would be satisfied in actual use because violation of (C5)

induces a huge computational burden.

Then, we can derive sufficient conditions for ALE of GCp as the follow-

ing theorem, of which a proof is given in Supplementary Materials.
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Theorem 1. Suppose that conditions (C1)–(C5) hold. If αn → a = 1 −

cp/(1− ck) as n → ∞, then GCp(M ;αn) exhibits ALE, i.e.,

Ln(M̂n)

Ln(M∗
L)

p→ 1, n → ∞.

Next, we show AME of GCp. Besides conditions (C1)–(C5), we assume

the following condition:

(C6) There exists γ0 ∈ (0, 1) such that

max
M∈Mn

Rn(M)

Rn(M∗
R)

= O(exp(nγ0)).

Condition (C6) sets an upper bound of the risk ratioRn(M)/Rn(M
∗
R), which

prevents the maximum risk from being too large. Let us show that if there

exist constants C ≥ 1 and γ ∈ [0, 1) such that λmin(Σ∗) ≥ C exp(−nγ) > 0

and (Γ∗)
2
ij ≤ C for all 1 ≤ i ≤ n and 1 ≤ j ≤ pn, then (C6) holds under
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(C1) and (C3). Conditions (C1) and (C3) indicates that

Rn(M) = tr{∆(M)}+ tr{A(M)⊤A(M)}

≤ vec(Γ∗)
⊤(Inpn − P (M))(Σ−1

∗ ⊗ In)(Inpn − P (M))vec(Γ∗) + C2
Anpn

≤ npn{λmin(Σ∗)
−1max{(Γ∗)

2
ij|1 ≤ i ≤ n, 1 ≤ j ≤ pn}+ C2

A}

= O(n2 exp(nγ)).

We have shown that for allM ∈ Mn, Rn(M) ≥ pn and especially, Rn(M
∗
R) ≥

pn. Thus, by setting γ0 = (1 + γ)/2, (C6) is satisfied.

Assuming (C1)–(C6), we have the following theorem:

Theorem 2. Suppose that conditions (C1)–(C6) hold. If αn → a = 1 −

cp/(1− ck) as n → ∞, then GCp(M ;αn) exhibits AME, i.e.,

lim
n→∞

E(Ln(M̂n))

Rn(M∗
R)

= 1.

A proof of this theorem is provided in Supplementary Materials. For

both ALE and AME of GCp, we assume αn → a = 1− cp/(1− ck). Unless

cp = 0, this condition does not hold when αn = 1 (i.e., the original Cp). On

the other hand, this condition is satisfied for all ck ∈ [0, 1) and cp ∈ [0, 1)

as long as 1 − ck − cp > 0, when αn = 1 − (pn + 1)/(n − kn) (i.e., MCp).
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Hence, MCp is more reasonable for variable selection in high-dimensional

data contexts from the perspective of prediction.

4. Asymptotic Inefficiency of GCp

As noted in the previous section, αn → a = 1 − cp/(1 − ck) is a key

condition for GCp to acquire ALE and AME. In this section, we show that

this is a necessary condition. Namely, when αn → a ̸= 1−cp/(1−ck), there

is a situation such that

lim
n→∞

Pr

(
Ln(M̂n)

Ln(M∗
L)

> 1

)
= 1,

lim
n→∞

E(Ln(M̂n))

Rn(M∗
R)

> 1

even under conditions (C1)–(C6).

For expository purposes, let X = (x1,x2), i.e., kn = 2 such that

X⊤X = I2, Γ∗ =
√
nx2β

⊤, where β ∈ Rpn , Σ∗ = Ipn , and Mn =

{{1}pn , {1, 2}pn}. Note that M = {1}pn means M1 = · · ·Mpn = {1}

and M = {1, 2}pn is similarly defined. For brevity, we write {1} and

{1, 2} instead of {1}pn and {1, 2}pn , respectively. Suppose that cp ∈ (0, 1)

and β satisfies ∥β∥2 → b ∈ (0,∞), where ∥ · ∥ is the Euclidean norm.

Then, because σ1(Σ
−1/2
∗ Γ⊤

∗ P
⊥
MF

Γ∗Σ
−1/2
∗ ) = 0, Rn({1}) = n∥β∥2 + pn, and

Rn({1, 2}) = 2pn, conditions (C1)–(C6) are satisfied for sufficiently large n.
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Note that ck = 0 in this situation because kn is fixed.

From the definition of GCp,

GCp({1, 2};αn)−GCp({1};αn)

= nαntr{(Σ̂({1, 2})− Σ̂({1}))S−1}+ 2pn

= −(n− 2)αnx
⊤
2 Y Y ⊤x2

x⊤
2 Y {Y ⊤(In − x1x

⊤
1 − x2x

⊤
2 )Y }−1Y ⊤x2

x⊤
2 Y Y ⊤x2

+ 2pn.

It follows from Theorem 3.2.12 in Muirhead (1982) that

(
x⊤
2 Y {Y ⊤(In − x1x

⊤
1 − x2x

⊤
2 )Y }−1Y ⊤x2

x⊤
2 Y Y ⊤x2

)−1

∼ χ2
n−pn−1.

On the other hand, because Y ⊤x2 =
√
nβ + E⊤x2 ∼ Npn(

√
nβ, Ipn),

x⊤
2 Y Y ⊤x2 ∼ χ2

pn(n∥β∥
2), which denotes a non-central chi-square dis-

tribution with non-centrality parameter n∥β∥2. Note that χ2
n−pn−1/n =

1− cp + op(1) and χ2
pn(n∥β∥

2)/n = cp + b+ op(1). Hence, it holds that

GCp({1, 2};αn)−GCp({1};αn)

n
= −a(cp + b)

1− cp
+ 2cp + op(1). (4.1)
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Meanwhile, loss functions of models {1} and {1, 2} are given as

Ln({1}) = n∥β∥2 + x⊤
1 EE⊤x1,

Ln({1, 2}) = x⊤
1 EE⊤x1 + x⊤

2 EE⊤x2.

Because x⊤
i EE⊤xi ∼ χ2

pn (i = 1, 2), it follows that

Ln({1})
Ln({1, 2})

p→ cp + b

2cp
∈ (0,∞), (4.2)

lim
n→∞

Rn({1})
Rn({1, 2})

=
cp + b

2cp
∈ (0,∞). (4.3)

First, we consider a situation where a > 0. Let b = cp(1 − cp)/a. It

follows from (4.1) and (4.2) that

GCp({1, 2};αn)−GCp({1};αn)

n

p→ cp(1− cp − a)

1− cp
,

Ln({1})
Ln({1, 2})

p→ a+ 1− cp
2a

= 1 +
1− cp − a

2a
.

Hence, we have

Ln(M̂n)

Ln(M∗
L)

p→


(a+ 1− cp)/(2a) > 1, a < 1− cp,

(2a)/(a+ 1− cp) > 1, a > 1− cp.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Asymptotic optimality of Cp 19

This implies that GCp does not exhibit ALE when 0 < a < 1 − cp or

a > 1− cp.

On the other hand, (4.3) yields M∗
R = {1, 2} (resp. {1}) for sufficiently

large n when a < 1−cp (resp. a > 1−cp). Thus, by using M∗∗
R = Mn \M∗

R,

we can see that

E(Ln(M̂n))

Rn(M∗
R)

=
E(Ln(M

∗
R)I(M̂n = M∗

R))

Rn(M∗
R)

+
E(Ln(M

∗∗
R )I(M̂n = M∗∗

R ))

Rn(M∗
R)

=
Rn(M

∗∗
R )

Rn(M∗
R)

− E({Ln(M
∗∗
R )− Ln(M

∗
R)}I(M̂n = M∗

R))

Rn(M∗
R)

≥ Rn(M
∗∗
R )

Rn(M∗
R)

−
√

E({Ln({1})− Ln({1, 2})}2)
Rn(M∗

R)

√
Pr(M̂n = M∗

R),

where I(·) is an indicator function and the last inequality follows from the

Cauchy-Schwarz inequality. Note that

√
E({Ln({1, 2})− Ln({1})}2)

Rn(M∗
R)

=
√

E((χ2
pn − n∥β∥2)2)max

{
1

2pn
,

1

pn + n∥β∥2

}
=
√

2pn + (pn − n∥β∥2)2max

{
1

2pn
,

1

pn + n∥β∥2

}
→ |a− (1− cp)|max

{
1

2a
,

1

a+ 1− cp

}
< ∞.

Because limn→∞ Pr(M̂n = M∗
R) = 0 and Rn(M

∗∗
R )/Rn(M

∗
R) > 1, GCp does

not exhibit AME when 0 < a < 1− cp or 1− cp < a.

Next, we consider a situation where a = 0. Then, (4.1) implies that
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Pr(M̂n = {1}) → 1. However, when b > cp, (4.2) and (4.3) yield Pr(M∗
L =

{1, 2}) → 1 and M∗
R = {1, 2} for sufficiently large n, respectively. Hence,

in the same manner as the argument when a > 0, we can appreciate that

GCp does not exhibit ALE or AME when a = 0.

Therefore, αn → a = 1 − cp/(1 − ck) is a necessary and sufficient

condition for ALE and AME of GCp under conditions (C1)–(C6).

5. Simulation Study

This section provides details of a simulation study to compare GCp

among several αn, where the goodness of criteria is measured by the loss

function of the best model selected by each criterion. We prepare three

parameters for αn, that is, αn = 1 (i.e., Cp), αn = 1− (pn+1)/(n−kn) (i.e.,

MCp) and αn = 2/ log n (i.e., BIC-type Cp, say BCp). Because 2/ log n ≤

1 − (pn + 1)/(n − kn) ≤ 1 in our settings described below, the number of

dimensions of the model selected by Cp (resp. BCp) is larger (resp. smaller)

than or equal to that by MCp. Generally speaking, this inequality always

holds for sufficiently large n.

Hereafter, we explain the simulation settings. Let the first column

of X be a vector of ones in Rn and the other entries be independently

generated from a uniform distribution U(0, 1). For all 1 ≤ i ≤ kn and

1 ≤ j ≤ pn, let (B∗)ij = uijdi, where uij are independently generated
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from U(0, 1/2) and di = 5
√
kn − i+ 1/kn. For comparative purposes, we

examine a situation where Γ∗ = XB∗, which implies that the full model

is the true model. Suppose that Σ∗ = (0.7|i−j|)ij for 1 ≤ i, j ≤ pn. We

also suppose that there are two subsets M (1),M (2) ⊂ {1, . . . , pn} such that

M1 = · · · = Mpn/2 = M (1) and Mpn/2+1 = · · · = Mpn = M (2), which implies

that there are two groups of response variables. To reduce computational

burden, we adopt a nested model set, i.e., we select M (1) and M (2) among

{{1}, . . . , {1, . . . , kn}}. It should be noted that the true (full) model is not

always the best model from the perspective of prediction in our simulation

study, because some coefficients are very small, so variable selection makes

sense in this situation. This supposition is confirmed below.

We prepared two cases for pn as high- and fixed-dimensional cases,

where pn = n/5 for the high-dimensional case, whereas pn = 10 for the

fixed case. The sample size n varies from 100 to 800, and we set kn = n/10.

Then, we generate Y and select the best subset of explanatory variables

by each Cp-type criterion. After variable selection, we calculate the loss

functions for each best model.

Table 1 provides average values of Ln(M̂n)/Ln(M
∗
L) and Ln(M̂n)/Rn(M

∗
R)

of Cp, MCp and BCp based on 1,000 repetitions for each (n, pn, kn). Note

that Ln(M̂n)/Ln(M
∗
L) and Ln(M̂n)/Rn(M

∗
R) are criteria for ALE and AME,
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Table 1: Average values of Ln(M̂n)/Ln(M
∗
L) and Ln(M̂n)/Rn(M

∗
R) of Cp,

MCp and BCp among 1,000 repetitions for each (n, pn, kn). Standard

deviations are shown in parentheses. Best values for Ln(M̂n)/Ln(M
∗
L)

and Ln(M̂n)/Rn(M
∗
R) are emboldened for each (n, pn, kn). All values are

rounded to 3 decimal places.

Ln(M̂n)/Ln(M
∗
L) Ln(M̂n)/Rn(M

∗
R)

n pn kn Cp MCp BCp Cp MCp BCp

100 20 10 1.262 1.143 1.115 1.198 1.085 1.056
(0.185) (0.108) (0.069) (0.193) (0.116) (0.056)

200 40 20 1.139 1.065 1.169 1.125 1.052 1.153
(0.079) (0.048) (0.046) (0.089) (0.059) (0.016)

400 80 40 1.129 1.027 1.191 1.125 1.023 1.187
(0.057) (0.020) (0.025) (0.060) (0.028) (0.006)

800 160 80 1.117 1.010 1.182 1.114 1.007 1.178
(0.033) (0.007) (0.012) (0.035) (0.012) (0.002)

100 10 10 1.290 1.229 1.153 1.219 1.160 1.085
(0.259) (0.220) (0.094) (0.272) (0.225) (0.091)

200 10 20 1.167 1.163 1.191 1.110 1.106 1.127
(0.116) (0.110) (0.088) (0.131) (0.119) (0.033)

400 10 40 1.107 1.107 1.174 1.060 1.060 1.121
(0.063) (0.061) (0.069) (0.074) (0.070) (0.017)

800 10 80 1.065 1.064 1.233 1.049 1.048 1.213
(0.045) (0.043) (0.050) (0.057) (0.054) (0.009)

respectively, and smaller is better. From this table, we can confirm that

MCp exhibits good performance regardless of pn, and Cp works well when

pn = 10 but it does not work well when pn is large. On the other hand,

BCp has higher values of Ln(M̂n)/Ln(M
∗
L) and Ln(M̂n)/Rn(M

∗
R) except

when the sample size is small. These results concur with our theoretical

exposition regarding efficiency and inefficiency.
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Table 2: Average dimensions of selected models by Cp, MCp, and BCp

and loss minimizing models among 1,000 repetitions for each (n, pn, kn).
Standard deviations are shown in parentheses. All values are rounded to 3
decimal places.

n pn kn Cp MCp BCp Loss

100 20 10 5.754 3.154 1.127 3.277
(1.848) (1.507) (0.314) (1.145)

200 40 20 13.015 7.545 1.010 7.590
(2.066) (2.161) (0.083) (1.222)

400 80 40 24.146 13.617 1.000 13.505
(2.803) (2.185) (0.000) (1.171)

800 160 80 50.018 27.035 1.000 27.188
(3.448) (2.811) (0.000) (1.930)

100 10 10 3.756 2.857 1.107 2.804
(1.959) (1.562) (0.289) (0.900)

200 10 20 8.650 7.396 1.011 7.849
(3.499) (3.444) (0.097) (2.430)

400 10 40 17.203 15.505 1.005 16.927
(6.020) (6.064) (0.071) (5.135)

800 10 80 26.427 25.322 1.010 25.910
(8.229) (8.077) (0.093) (5.655)

Table 2 shows the average dimensions of models, i.e., #(M (1))/2 +

#(M (2))/2 selected by eachGCp and loss minimizing models. This indicates

that the number of dimensions of loss minimizing models varies depending

on the sample size, and the full model is not (always) the best model in spite

of the fact that the full model is true. Based on our simulation settings, BCp

tends to select much smaller models in comparison with models that have

the smallest loss function while Cp often selects larger models when pn is
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large. The average number of dimensions of models selected byMCp is close

to that of the loss minimizing models in both high- and fixed-dimensional

situations. This implies that αn substantially affects the dimensions of

selected models as well as efficiency.

Hence, these results indicate that MCp is a useful variable selection

method regardless of pn, and thus we recommend its use from the perspec-

tive of robust prediction.

6. Conclusions

We have derived sufficient conditions for ALE and AME of GCp in

high-dimensional multivariate linear regression models. It is shown that

MCp exhibits ALE and AME in high-dimensional data, while the origi-

nal Cp, known as an asymptotically efficient criterion in univariate cases,

does not exhibit ALE or AME under the same conditions. This is be-

cause a non-trivial bias term is omitted in the original Cp as an estimator

of the risk function; this term plays an important role for adaptation to

high-dimensional frameworks. Indeed, if the tuning parameter of GCp, αn,

converges to a ̸= 1− cp/(1− ck) like in the case of Cp and BCp, we showed

that GCp is asymptotically inefficient. Through a simulation study, the

finite sample performances of Cp-type criteria are compared, and MCp is

better than Cp and BCp in high-dimensional data.
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Note that when pn is large, MCp works well even under the parametric

scenario, where the true model is included in a set of candidate models. Un-

like a univariate case, the risk of the true model always goes to infinity with

pn → ∞. Thus, under the parametric scenario, it is possible that condi-

tions (C1)–(C6) are satisfied, and then, the asymptotic efficiencies of MCp

hold. Moreover, assuming response variables to have a common model, i.e.,

M1 = · · · = Mpn , MCp has the consistency property as well under moderate

conditions (Fujikoshi, Sakurai and Yanagihara, 2014). Hence, MCp can be

regarded as a feasible method for variable selection from the perspective

of both prediction and interpretability when pn is large. This attractive

property is only seen in high-dimensional situations, i.e., pn → ∞.

When pn is greater than n, we cannot directly calculate S−1 and thus

GCp. Therefore, we need different approaches to estimate a covariance ma-

trixΣ such as sparse or ridge estimation (e.g., Yamamura, Yanagihara and Srivastava,

2010; Katayama and Imori, 2014; Fujikoshi and Sakurai, 2016). If we can

estimate Σ accurately via these procedures, ALE and AME can be estab-

lished by using it in place of S. It should also be noted that our proof

depends on the assumption that the response matrix follows a Gaussian

distribution. Because we use some properties of the Gaussian distribu-

tion, this is not a trivial limitation from the perspective of generalizing the
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results. Another extension of this paper is to relax condition (C4) (see,

Yang, 1999). In Section 3, we gave a sufficient condition for (C4), that is,

log kn = o(pn) assuming some group structure of response variables. Under

this condition, even when the number of candidate models are exponen-

tially large, i.e., #(Mn) = 2kn , (C4) holds. Although this condition is not

restricted, when considering a situation where each response variable uses

different models, it is still important to mitigate (C4). Yang (1999) pro-

posed a criterion by using an additional penalty term, which can be used for

model selection without the constraint on the number of candidate models.

It may be possible to apply this idea to our setting. How best to navigate

these issues represent fruitful terrain for future research.

Supplementary Materials

Supplementary Materials provide the proofs of Theorems 1 and 2.
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