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Abstract: We propose a general index model for survival data, which general-

izes many commonly used semiparametric survival models and belongs to the

framework of dimension reduction. Using a combination of geometric approach

in semiparametrics and martingale treatment in survival data analysis, we devise

estimation procedures that are feasible and do not require covariate-independent

censoring as assumed in many dimension reduction methods for censored sur-

vival data. We establish the root-n consistency and asymptotic normality of the

proposed estimators and derive the most efficient estimator in this class for the

general index model. Numerical experiments are carried out to demonstrate the

empirical performance of the proposed estimators and an application to an AIDS

data further illustrates the usefulness of the work.

Key words and phrases: Dimension reduction, General index model, Kernel esti-

mation, Semiparametric theory, Survival analysis.
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1. Introduction

Cox proportional hazards model (Cox, 1972) is probably the most widely

used semiparametric model for analyzing survival data. In the Cox model,

covariate effect is described by a single linear combination of the covari-

ates in an exponential function and is multiplicative in modeling the haz-

ard function. Although this special way of modeling the hazard function

permits a convenient estimation procedure, such as the maximum partial

likelihood estimation (Cox, 1975), it has its limitations. As widely studied

in the literature, there are many situations where the Cox model may not

be proper. Due to the limitations of the Cox model, many other semipara-

metric survival models have been proposed in the literature, such as the ac-

celerated failure time model (Buckley and James, 1979), proportional odds

model (McCullagh, 1980) and linear transformation model (Dabrowska and

Doksum, 1988), etc. Despite of all these efforts, the link between the sum-

marized covariate effect, typically in the form of a linear combination of

the covariates, and the possibly transformed event time remains to have a

predetermined form and hence can be restrictive sometimes.

The single index feature of the above mentioned semiparametric sur-

vival models is appealing since the covariates effect has a nice interpretation.

It also naturally achieves dimension reduction when there is a large number
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of covariates. However, the specific model form to link the covariate index

to the event time may be restrictive, and it is often difficult to check the

goodness-of-fit of the specific link function form. To achieve a model that

is flexible yet is feasible in practice, we borrow and extend the idea of linear

summary of the covariate effects, while free up the specific functional rela-

tion between the event time and the linear summaries. Thus, we propose

the following general index model

pr(T ≤ t | X) = pr(T ≤ t | βT
0 X), t > 0 (1.1)

where T is the survival time of interest, X is the p-dimensional covariates,

and β0 ∈ Rp×d is the regression coefficient matrix, with p > d. Several

properties of model (1.1) is worth mentioning. 1) First of all, instead of

a single linear summary, we allow d linear summaries described by the d

columns of β0. This increases the flexibility of how the covariate effects

are combined. We can view this as a generalization from single index to

multi index covariate summary. Imagine an extreme case when d = p, this

model degenerates to the restriction free case where the dependence of T

on X is arbitrary. Of course, in practice, when d is large, the estimation

will encounter difficulties and it is not feasible to carry out the analysis.

However conceptually this provides a way of appreciating the flexibility of

the model. In addition, we will see that in practice, when d is often smaller
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than p, this model framework allows us to find and incorporate the suitable

number of indices d. 2) Second, we do not specify any functional form of

the conditional probability. Thus, the conditional probability in (1.1) is

simply a function of both t and βT
0 X. This relaxes both the exponential

form of the covariate relation and the multiplicative form of the hazard

function in the Cox model and is also much more flexible than other pop-

ular semiparametric survival models, such as the accelerated failure time

and linear transformation models. Despite of the flexibility of the model in

(1.1), we show that through properly incorporating semiparametric treat-

ment and martingale techniques, estimation and inference is still possible.

3) In addition, the analysis can be carried out under the usual conditional

independent censoring assumption, where the censoring time is allowed to

depend on the covariates. It is common to have competing events that

share partial risk factors as the event of interest, hence relaxing the restric-

tive covariate-independent censoring assumption allows us to work on the

original censoring distribution assumption (Tsiatis, 1975; Li et al., 1999; Lu

and Li, 2011; Lopez et al., 2013) and is valuable in practice.

The proposed general index model and associated semiparametric es-

timation method naturally provide a dimension reduction tool for survival

data. It has a few advantages over existing dimension reduction methods
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for survival data. 1) First, many existing dimension reduction methods for

survival data require a stronger assumption on the censoring time, such

as the covariate-independent censoring assumption (Li et al., 1999; Lu and

Li, 2011), or require nonparametric estimation of the conditional survival

function of censored survival times (Xia et al., 2010) or censoring times (Li

et al., 1999) given all the covariates, which may suffer from the curse of

dimensionality. All these drawbacks are avoided here. 2) Second, most of

existing methods (Xia et al., 2010; Li et al., 1999) are constructed based

on general inverse probability weighted estimation techniques in one way

or another, and are thus not efficient. In contrast, our proposed method is

built on the semiparametric theory (Tsiatis, 2006) and achieves the optimal

semiparametric efficiency.

The rest of the paper is organized as the following. In Section 2, we

develop the estimation procedures for both the index parameters in β and

functional relation between event time and multiple indices. In Section 3,

we establish the large sample properties to enable inference. We perform

extensive numerical experiments in Section 4, where both simulation and

analysis of an AIDS data are included. We conclude the paper with a dis-

cussion in Section 5, while relegate all the technical details in an Appendix.
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2. Methodology Development

2.1 Semiparametric Analysis

We first define some notations. Define Z = min(T,C) and ∆ = I(T ≤ C),

where C is the censoring time. Assume C T | X and the relation between

T and X follows the model in (1.1), where stands for independence. The

observed data consist of (Xi, Zi,∆i), i = 1, . . . , n, which are independent

copies of (X, Z,∆). Note that even without censoring, β0 in (1.1) is not

identifiable because for any d × d full rank matrix A, β0 and β0A suit

model (1.1) equally well. Thus, we fix a parameterization of β0 by assuming

the upper d × d block of β0 to be the identity matrix Id, and the first d

components of X to be continuous. This ensures the unique identification

of β0 except some pathological cases (Ichimura, 1993). Here we consider

a fixed d, and our focus will be in estimating the lower block of β0, which

has dimension (p − d) × d. In the event that the first d component of

X happens to contain covariates that are irrelevant, numerical issues will

arise and one should rearrange the covariates in X. We then proceed to

estimate the conditional distribution function in (1.1). For convenience,

write X = (XT
u ,X

T
l )T, where Xu ∈ Rd and Xl ∈ Rp−d. Note that under
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2.1 Semiparametric Analysis

the assumption of C T | X and (1.1), we can easily obtain

E{f1(C)f2(T ) | βT
0 X} = E{f1(C) | βT

0 X}E{f2(T ) | βT
0 X}

for any functions f1, f2, hence C T | βT
0 X. This turns out to be an

important property in the subsequent technical derivations.

Next, we derive the pdf of the model in (1.1). Write Sc(z,x) = pr(C ≥

z | X = x), Λc(z,x) = −logSc(z,x), λc(z,x) = ∂Λc(z,x)/∂z and fc(z,x) =

−∂Sc(z,x)/∂z. Let τ <∞ be the maximum follow-up time. Here, λc(z,x)

and fc(z,x) are absolutely continuous on both (0, τ) and (τ,∞) while they

have a discontinuity point at τ . Specifically, let p(x) ≡ pr(C = τ | x),

then λc(τ,x) = p(x)Sc(τ−,x) and fc(τ,x) = p(x). The maximum follow-

up time τ indicates that all surviving subjects are censored at the end

of the study τ . This naturally leads to a point mass at τ . Our analysis

below is adapted to the discontinuity of the censoring process, making use

of the fact that the discontinuity at τ does not destroy the martingale

structure (Fleming and Harrington, 1991; Prentice and Kalbfleisch, 2003).

Similarly, to describe the event process, for any parameter matrix β, define

S(z,βTx) = pr(T ≥ z | βTX = βTx), f(z,βTx) = −∂S(z,βTx)/∂z,

Λ(z,βTx) = −logS(z,βTx) and λ(z,βTx) = ∂Λ(z,βTx)/∂z. Using these
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2.1 Semiparametric Analysis

notation, the pdf of the model in (1.1) is

fX,Z,∆(x, z, δ,β, λ, λc, fX) = fX(x)λ(z,βTx)δe−
∫ z
0 λ(s,βTx)ds

×λc(z,x)1−δe−
∫ z
0 λc(s,x)ds,

(2.2)

where fX(x) is the pdf of X. Here for convenience, we assume the exis-

tence of the conditional pdfs of T,C given X and the marginal pdf fX(x),

although the existence of fX(x) is not essential and our subsequent deriva-

tions will still go through with suitable modifications. We assume the true

data generation process is based on fX,Z,∆(x, z, δ,β0, λ0, λc0, fX0).

We now view (2.2) as a semiparametric model, where β is a finite di-

mensional parameter of interest and all the remaining unknown components

of the model are treated as infinite dimensional nuisance parameters, and

use a geometric approach to derive the efficient score based on (2.2). In

survival analysis, the most popular approaches to estimation are martin-

gale based estimators (Fleming and Harrington, 1991) and nonparametric

maximum likelihood estimators (NPMLE) (Zeng and Lin, 2007). Here we

find that NPMLE does not suit well without adaption due to the insepa-

rable relation between the hazard function and the covariates. Martingale

approach may enable us to obtain one specific estimator for β, while we aim
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2.1 Semiparametric Analysis

at obtaining a more comprehensive understanding of the estimation of β.

The geometrical treatment in semiparametrics allows us to take advantage

of the efficient score, whose variance attains the semiparametric efficiency

bound. The efficient score is the projection of the score vector with respect

to β onto the orthogonal complement of the nuisance tangent space. In

order to obtain the efficient score, we project the score vector onto the nui-

sance tangent space and calculate its residual. Here, the nuisance tangent

space is the mean squared closure of all nuisance score functions of any

parametric submodel of the semiparametric model that we are studying.

Following the geometric approach, we first characterize the nuisance

tangent space as described in Proposition 1. The proof utilizes properties

of martingale integration and the details are given in the Appendix. Define

the filtration Fn(t) ≡ σ{Xi, I(Zi ≤ u,∆i = 1), I(Zi ≤ u,∆i = 0), 0 ≤

u ≤ t, i = 1, . . . , n}. Define Mi(t,β
T
0 Xi) ≡ Ni(t) −

∫ t
0
Yi(s)λ0(s,βT

0 Xi)ds

and Mic(t,Xi) ≡ Nic(t) −
∫ t

0
Yi(s)λc(s,Xi)ds, where Ni(t) = ∆iI(Zi ≤ t),

Nic(t) = (1 − ∆i)I(Zi ≤ t) and Yi(t) = I(Zi ≥ t). Then Mi(t,β
T
0 Xi) and

Mic(t,Xi) are mean-zero martingale processes with respect to the filtration

Fn(t). In the following, we eliminate the subindex i whenever it does not

cause confusion.
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2.1 Semiparametric Analysis

Proposition 1. The nuisance tangent space Γ = Γ1 ⊕ Γ2 ⊕ Γ3, where

Γ1 =
[
a(X) : E{a(X)} = 0, a(X) ∈ R(p−d)d

]
,

Γ2 =

{∫ ∞
0

h(s,βT
0 X)dM(s,βT

0 X) : ∀h(Z,βT
0 X) ∈ R(p−d)d

}
,

Γ3 =

{∫ ∞
0

h(s,X)dMc(s,X) : ∀h(Z,X) ∈ R(p−d)d

}

and “⊕” denotes the direct sum. Here, M(s,βT
0 X) and Mc(s,X) are

Mi(s,β
T
0 Xi), Mic(s,Xi) with the subindex i omitted.

Having found the nuisance tangent space, we can now proceed to iden-

tify the efficient score function through projecting the score function onto Γ

and calculating the residual. The score function is defined as Sβ(∆, Z,X) ≡

∂logfX,Z,∆(x, z, δ,β, λ, λc, fX)/∂β. Let λ1(s,βTX) ≡ ∂λ(s,βTX)/∂(βTX)

be the partial derivative of λ(s,v) with respect to the vector v evaluated at

v = βTX, and λ10(s,βT
0 X) ≡ ∂λ0(s,βT

0 X)/∂(βT
0 X) be the partial deriva-

tive of λ0(s,v) with respect to the vector v evaluated at v = βT
0 X. Straight-

forward calculation yields

Sβ(∆, Z,X) =

∫ ∞
0

λ10(s,βT
0 X)

λ0(s,βT
0 X)

⊗XldM(s,βT
0 X) (2.3)

where “⊗” denotes the matrix Kronecker product. Based on the score

function, the efficient score is derived in Proposition 2. The proof is given

in the Appendix.
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2.2 Estimation Procedure

Proposition 2. Let the score function at the observation (X, Z,∆) be

given in (2.3) and the nuisance tangent space be given in Proposition 1.

Then the efficient score is

Seff(∆, Z,X) =

∫ ∞
0

λ10(s,βT
0 X)

λ0(s,βT
0 X)

⊗

[
Xl −

E
{
XlSc(s,X) | βT

0 X
}

E
{
Sc(s,X) | βT

0 X
} ]

×dM(s,βT
0 X). (2.4)

We further perform a simplification of the efficient score before con-

structing the corresponding efficient estimating equation. We can verify

that

E

∫ ∞
0

λ10(s,βT
0 X)

λ0(s,βT
0 X)

⊗

[
Xl −

E
{
XlSc(s,X) | βT

0 X
}

E
{
Sc(s,X) | βT

0 X
} ]

Y (s)λ0(s,βT
0 X)ds = 0.

As a consequence, writing dM(s,βT
0 X) = dN(s) − Y (s)λ0(s,βT

0 X)ds in

(2.4), we get

E

∫ ∞
0

λ10(s,βT
0 X)

λ0(s,βT
0 X)

⊗

[
Xl −

E
{
XlSc(s,X) | βT

0 X
}

E
{
Sc(s,X) | βT

0 X
} ]

dN(s) = 0.

2.2 Estimation Procedure

Based on the above analysis, we propose to obtain the efficient estimator

from solving

n∑
i=1

∆i
λ̂1(Zi,β

TXi,β)

λ̂(Zi,β
TXi,β)

⊗

[
Xli −

Ê
{
XliYi(Zi) | βTXi,β

}
Ê
{
Yi(Zi) | βTXi,β

} ]
= 0, (2.5)
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2.2 Estimation Procedure

which is simpler than directly using the efficient score. To emphasize that

the function estimation of λ, λ1 and E(·) relies on the parameter β through

the data βTXj’s, we include the last parameter β. We use this more precise

notation below whenever it helps to avoid ambiguity.

In forming (2.5), several nonparametric estimators are used. Specif-

ically, the hazard function and its derivative are estimated via the local

Nelson-Aalen estimator, i.e.

λ̂(Zi,β
TXi,β) =

∫ ∞
0

Kb(t− Zi)dΛ̂(t|βTXi,β)

=
n∑
j=1

Kb(Zj − Zi)
∆jKh(β

TXj − βTXi)∑n
k=1 I(Zk ≥ Zj)Kh(β

TXk − βTXi)
,

(2.6)

and

λ̂1(Zi,β
TXi,β) = ∂λ̂(Zi,β

TXi,β)/∂(βTXi)

= −
n∑
j=1

Kb(Zj − Zi)
∆jK

′
h(β

TXj − βTXi)∑n
k=1 I(Zk ≥ Zj)Kh(β

TXk − βTXi)

+
n∑
j=1

Kb(Zj − Zi)∆jKh(β
TXj − βTXi)

×
∑n

k=1 I(Zk ≥ Zj)K
′
h(β

TXk − βTXi)

{
∑n

k=1 I(Zk ≥ Zj)Kh(β
TXk − βTXi)}2

.

(2.7)

In (2.6) and (2.7), K(·) is a kernel function and Kh(·) = K(·/h)/h, K′h(v) =

∂Kh(v)/∂v is the first derivative of Kh with respect to its variables, which
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2.2 Estimation Procedure

is a vector, and h and b are bandwidths. The estimated expectation terms

are

Ê
{
Yi(Zi) | βTXi,β

}
=

∑n
j=1Kh(β

TXj − βTXi)I(Zj ≥ Zi)∑n
j=1Kh(β

TXj − βTXi)
, (2.8)

Ê
{
XliYi(Zi) | βTXi,β

}
=

∑n
j=1Kh(β

TXj − βTXi)XljI(Zj ≥ Zi)∑n
j=1Kh(β

TXj − βTXi)
. (2.9)

We use the Gaussian kernel function throughout the implementation, and

obtain the solution of (2.5) through Powell’s hybrid method which is de-

signed for solving nonlinear equations (Powell, 1965, 1970). The last pa-

rameter in (2.6),(2.7), (2.8) and (2.9) reflects the occurrence of β in βTXj’s

and βTXk’s.

The estimator obtained from (2.5) will be shown to achieve the smallest

possible variability, hence this estimator is efficient and is what we recom-

mend. The efficient estimator will be the focus of our study. We provide

the detailed algorithm of the efficient estimation procedure below.

1. Obtain an initial estimator of β through, for example, hmave (Xia

et al., 2010). Denote the result β̃.

2. Replacing E{Y (Z) | βTX}, E{XlY (Z) | βTX}, λ(Z,βTX,β) and

λ1(Z,βTX,β) with their nonparametric estimated versions given in
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2.2 Estimation Procedure

(2.6), (2.7), (2.8) and (2.9) respectively. Write the resulting estima-

tors as Ê{Y (Z) | βTX,β}, Ê{XlY (Z) | βTX,β}, λ̂(Z,βTX,β) and

λ̂1(Z,βTX,β).

3. Plug Ê{XlY (Z) | βTX,β}, Ê{Y (Z) | βTX,β}, λ̂(Z,βTX,β) and

λ̂1(Z,βTX,β) into (2.5) and solve the estimating equation to obtain

the efficient estimator β̂, using β̃ as starting value.

Here E{Y (Z) | βTX} ≡ E{Y (t) | βTX}|t=Z . Other terms are similarly

defined.

Remark 1. According to the derivation, E{Seff(∆, Z,X) | X} = 0 is

ensured by E{dM(t,βT
0 X) | X} = 0, hence to preserve the mean zero

property, we can replace λ10(s,βT
0 X)/λ0(s,βT

0 X) by any function of s and

βT
0 X, say g(s,βT

0 X), and still obtain

E

∫ ∞
0

g(s,βT
0 X)⊗

[
Xl −

E
{
XlSc(s,X) | βT

0 X
}

E
{
Sc(s,X) | βT

0 X
} ]

dM(s,βT
0 X) = 0.

This implies that if we are only aiming at a consistent estimator, we can

use an arbitrary function g(s,βT
0 X) to replace λ10(s,βT

0 X)/λ0(s,βT
0 X) in

the efficient score to get a more general martingale integration. Hence a

generic estimating equation is given by

n∑
i=1

∆ig(Zi,β
TXi)⊗

[
Xli −

Ê
{
XliYi(Zi) | βTXi,β

}
Ê
{
Yi(Zi) | βTXi,β

} ]
= 0
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2.2 Estimation Procedure

for any g.

Remark 2. We can further generalize the estimating equation form to

n∑
i=1

∆ig(Zi,β
TXi)⊗

[
a(Xli)−

Ê
{
a(Xli)Yi(Zi) | βTXi,β

}
Ê
{
Yi(Zi) | βTXi,β

} ]
= 0

by taking advantage of the fact that

E∆g(Z,βT
0 X)⊗

[
a(Xl)−

E
{
a(Xl)Y (Z) | βT

0 X
}

E
{
Y (Z) | βT

0 X
} ]

= 0

for any a(Xl).

Remark 3. In the algorithm, we used the hmave estimator β̃ as a starting

value to solve our efficient estimating equation. This is a choice out of

convenience. One can use any other estimators as starting value, such as

the Cox model estimator when d = 1, or use any of the estimators described

in Remarks 1 and 2.

Remark 4. When solving the estimating equation (2.5) based on data with

finite sample size, we may be unable to find the solution. If this is the case,

the minimizer of∥∥∥∥∥
n∑
i=1

∆i
λ̂1(Zi,β

TXi,β)

λ̂(Zi,β
TXi,β)

⊗

[
Xli −

Ê
{
XliYi(Zi) | βTXi,β

}
Ê
{
Yi(Zi) | βTXi,β

} ]∥∥∥∥∥
2

with respect to β will be adopted, where ‖ · ‖2 is the l2 norm. The pro-

posed numerical procedure will not be changed because the hybrid method
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2.2 Estimation Procedure

actually solves the estimating equation via minimizing its l2 norm (Powell,

1965, 1970).

Remark 5. In performing the nonparametric estimation, bandwidths need

to be selected. Because the final estimator is insensitive to the bandwidths,

as indicated in Condition C2, Lemma 1, Theorems 1 and 2, where a range of

different bandwidths all lead to the same asymptotic property, we suggest

to select the corresponding bandwidths by taking the sample size n to its

suitable power to satisfy C2, multiplying the standard deviation of the

covariate to adjust the range, and then multiplying a constant to scale it.

For example, when d = 1, we can let h be n−1/3 multiplying the standard

deviation of β̃
T
Xi and a constant, let b be n−1/3 multiplying the standard

deviation of Zi and a constant. Here the constant can be simply 1 or any

other constants typically in the range of [0.1, 10]. The particular selection

of bandwidths in each problem will be discussed in Section 4. In general,

using the above construction, there is not much effect when changing the

constant in estimating (2.6), (2.7), (2.8) and (2.9). Finally, when sample

size is small, a nonparametric estimator may generate a null value in the

denominator. We can either increase the bandwidth or replace it with a

small value (Delecroix et al., 2006) to facilitate the computation.
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3. Asymptotics

We will show that the efficient estimator described in Section 2 is root-n

consistent, asymptotically normally distributed and achieves the optimal

efficiency. Let the parameter space of β be B. We first list some regularity

conditions.

C1 (The kernel function.) The univariate kernel function K(x) is sym-

metric, differentiable, bounded and with bounded derivative. In ad-

dition, K(x) is an order ν kernel (i.e.
∫
xjK(x)dx = 0, for 1 ≤

j < ν, 0 <
∫
xνK(x)dx < ∞), and it satisfies

∫
K2(x)dx < ∞,∫

x2K2(x)dx <∞,
∫
K ′2(x)dx <∞,

∫
x2K ′2(x)dx <∞,

∫
K ′′2(x)dx <

∞,
∫
x2K ′′2(x)dx < ∞. The d-dimension kernel function is a prod-

uct of d univariate kernel functions, that is K(u) =
∏d

j=1K(uj) for

u = (u1, ..., ud)
T. For simplicity, we use the same K for both univari-

ate and multivariate kernel functions.

C2 (The bandwidths.) The bandwidths satisfy h = n−αh , b = n−αb , αh >

0, αb > 0, 1−αh(d+2)−αb > 0, and 1−2αhν < 0, where 2ν > d+1.

C3 (The boundedness.) The parameter space B is bounded and β0 is an

interior point of B.
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C4 (The density of index.) Uniformly for any β in a neighborhood of β0,

the density function of βTX, i.e. fβTX(·), has compact support, is

bounded away from zero and infinity on its support, and its first four

derivatives are bounded.

C5 (The smoothness.) For all X and Z, the absolute value of E{XjI(Zj ≥

Z) | βTXj = βTX, Z}, E{I(Zj ≥ Z) | βTXj = βTX, Z}, and their

first four derivatives are bounded uniformly component wise. The

absolute value of E{XjX
T
j I(Zj ≥ Z) | βTXj = βTX, Z} and its first

two derivatives are bounded uniformly component wise.

C6 (The survival function.) The survival function Sc(τ,X) is bounded

way from zero. In addition, S(t,βTX), Sc(t,X) and f(t,βTX) satisfy

∂i+jS(t,βTX)/∂ti∂(βTX)j, ∂i+jf(t,βTX)/∂ti∂(βTX)j and ∂i+jE{Sc(t,X) |

βTX}/∂ti∂(βTX)j exist and are bounded and bounded away from

zero on [0, τ ], for all i ≥ 0, j ≥ 0, i + j ≤ 4. Here, ∂i+jE{Sc(τ,X) |

βTX}/∂τ i∂(βTX)j is defined as limt→τ− ∂
i+jE{Sc(t,X) | βTX}/∂ti∂(βTX)j.

C7 (The uniqueness.) The equation

E

(
∆
λ1(Z,βTX,β)

λ(Z,βTX,β)
⊗

[
Xl −

E
{
XlY (Z) | βTX

}
E
{
Y (Z) | βTX

} ])
= 0

has a unique solution on B. Because the true parameter β0 satisfies

the equation, hence the unique solution is β0.
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Here, we included β in λ(·) and λ(·) in Condition C7 to emphasize that

the functional forms differ as β changes. These conditions are quite com-

monly imposed in nonparametrics, survival analysis and estimating equa-

tions and are generally mild. Conditions C1 and C2 contain some basic

requirements on the kernel function and the bandwidths, which are com-

mon in kernel related works and can be guaranteed to be satisfied. The

boundedness of the parameter space B in C3 is also satisfied in general.

Condition C4-C6 impose certain boundedness condition on the event time,

censoring time, covariates, their expectations and corresponding derivatives,

which are very mild and usually satisfied (Silverman, 1978; Claeskens et al.,

2003). Indeed, Condition C6 requires both the event and censoring process

survival functions to be bounded away from zero, which is widely required

in the literature to control the tail behavior of survival functions and it im-

plies that at least some subjects are censored at the end of the study. Note

that Sc(t; X) is continuous on t ∈ (0, τ) but has a jump at t = τ . To take

into account this discontinuity, we define the derivative ∂i+jE{Sc(τ,X) |

βTX}/∂τ i∂(βTX)j as limt→τ− ∂
i+jE{Sc(t,X) | βTX}/∂ti∂(βTX)j. In the

proofs, such definitions for the derivatives based on the left limits do not

alter the derivations because all the related integration terms have the in-

tegration limits on (0, τ). Moreover, Condition C4 can be modified to
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C4′ (The density of index, relaxed.) Uniformly for any β in a local neigh-

borhood of β0, the density function of βTX, i.e. fβTX(v), is bounded

and satisfies the following requirement: there exists a constant ε > 0,

so that
∫
{v:f

βTX
(v)≤dn} fβTX(v)dv < n−ε for sufficiently large n. Here

dn → 0 as n → ∞, and n−ε = O(h2 + n−1/2h−1/2), where h satisfies

Condition C2. In addition, the first four derivatives of fβTX(·) are

bounded.

Condition C4′ is a weaker version of Condition C4. It requires the tail of

fβTX to be sufficiently thin so that the near zero values of fβTX(·) do not

affect the overall performance of our estimator. Under Condition C4′, a

trimmed version of nonparametric estimator would be applied to avoid the

zero-denominator issue and it retains the same asymptotic properties. The

trimmed estimators of (2.6), (2.7) and (2.8), (2.9) are

λ̂(Zi,β
TXi,β) =

n∑
j=1

Kb(Zj − Zi)∆jKh(β
TXj − βTXi)∑n

k=1 I(Zk ≥ Zj)Kh(β
TXk − βTXi)

×I

{
1

n

n∑
k=1

I(Zk ≥ Zj)Kh(β
TXk − βTXi) > dn

}
,

(3.10)

λ̂1(Zi,β
TXi,β) = −

n∑
j=1

Kb(Zj − Zi)∆jK
′
h(β

TXj − βTXi)∑n
k=1 I(Zk ≥ Zj)Kh(β

TXk − βTXi)

×I

{
1

n

n∑
k=1

I(Zk ≥ Zj)Kh(β
TXk − βTXi) > dn

}

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



+
n∑
j=1

Kb(Zj − Zi)∆jKh(β
TXj − βTXi)

×
∑n

k=1 I(Zk ≥ Zj)K
′
h(β

TXk − βTXi)

{
∑n

k=1 I(Zk ≥ Zj)Kh(β
TXk − βTXi)}2

×I

{
1

n

n∑
k=1

I(Zk ≥ Zj)Kh(β
TXk − βTXi) > dn

}
,

(3.11)

Ê
{
Yi(Zi) | βTXi,β

}
=

∑n
j=1Kh(β

TXj − βTXi)I(Zj ≥ Zi)∑n
j=1 Kh(β

TXj − βTXi)

×I

{
1

n

n∑
k=1

Kh(β
TXk − βTXi) > dn

}
, (3.12)

Ê
{
XliYi(Zi) | βTXi,β

}
=

∑n
j=1Kh(β

TXj − βTXi)XljI(Zj ≥ Zi)∑n
j=1Kh(β

TXj − βTXi)

×I

{
1

n

n∑
k=1

Kh(β
TXk − βTXi) > dn

}
. (3.13)

Similar estimators were used in Mack and Silverman (1982), Collomb and

Härdle (1986), Härdle and Stoker (1989) and Ichimura and Todd (2007).

The unique solution requirement in Condition C7 is needed to ensure the

convergence of the estimator and can be further relaxed to local uniqueness

if needed.

Before presenting the main results, we summarize several preliminary

results first. These results highlight the theoretical properties of the kernel

based estimators of several conditional expectations, as well as the estima-

tion properties of the hazard function and its derivative, hence are of their
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own interest. These properties also play an important role in the proof of

Theorems 1 and 2.

Lemma 1. Assume the regularity conditions C1-C7 hold. For any Z, X,

Y (Z), and β in the parameter space, the estimators defined in (2.6), (2.7),

(2.8) and (2.9) satisfy the following results uniformly for all β in a local

neighborhood of β0.

Ê
{
Y (Z) | βTX,β

}
= E{Y (Z) | βTX}+Op{(nh)−1/2(logn)1/2 + h2},

(3.14)

Ê
{
XY (Z) | βTX,β

}
= E{XY (Z) | βTX}+Op{(nh)−1/2(logn)1/2 + h2},

(3.15)

∂Ê
{
Y (Z) | βTX,β

}
∂βTX

=
∂E{Y (Z) | βTX}

∂βTX
+Op{(nh3)−1/2(logn)1/2 + h2},

(3.16)

∂Ê
{
XY (Z) | βTX,β

}
∂βTX

=
∂E{XY (Z) | βTX}

∂βTX
+Op{(nh3)−1/2(logn)1/2 + h2},

(3.17)

λ̂(Z,βTX,β) = λ(Z,βTX,β) +Op{(nhb)−1/2(logn)1/2 + h2 + b2},

(3.18)

λ̂1(Z,βTX,β) = λ1(Z,βTX,β) +Op{(nbh3)−1/2(logn)1/2 + h2 + b2}.

(3.19)
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If Condition C4 is replaced by Condition C4′, the trimmed estimators (3.10),

(3.11), (3.12) and (3.13) retain the same results.

The proof of Lemma 1 is given in the Appendix. We note that the

convergence in Lemma 1 holds uniformly with respect to β in a local neigh-

borhood of β0 and for any bandwidth that satisfies Condition C2.

Theorem 1. Assume the regularity conditions C1-C7 hold, or with Con-

dition C4 replaced by Condition C4′. The estimator obtained from solving

(2.5) is consistent, i.e. β̂ − β0 → 0 in probability when n→∞.

Theorem 2. Assume the regularity conditions C1-C7 hold, or with Con-

dition C4 replaced by Condition C4′. The estimator obtained from solving

(2.5) satisfies

√
n(β̂ − β0)→ N(0, [E{S⊗2

eff (∆, Z,X)}]−1)

in distribution when n→∞. Here Seff(∆, Z,X) is the efficient score func-

tion given in (2.4). Thus, the estimator is efficient.

Note that because Seff is a martingale, we have

E{S⊗2
eff (∆, Z,X)}

= E

∫ ∞
0

(
λ10(s,βT

0 X)

λ0(s,βT
0 X)

⊗

[
Xl −

E
{
XlSc(s,X) | βT

0 X
}

E
{
Sc(s,X) | βT

0 X
} ])⊗2

λ(s,βT
0 X)Y (s)ds

= E

∫ ∞
0

(
λ10(s,βT

0 X)

λ0(s,βT
0 X)

⊗

[
Xl −

E
{
XlSc(s,X) | βT

0 X
}

E
{
Sc(s,X) | βT

0 X
} ])⊗2

dN(s).
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Therefore, a natural estimator of the estimation variance is the inverse of

1

n

n∑
i=1

δi

λ̂1(zi, β̂
T
xi, β̂)

λ̂(zi, β̂
T
xi, β̂)

⊗

xil −
Ê
{

XlSc(zi,X) | β̂
T
xi, β̂

}
Ê
{
Sc(zi,X) | β̂

T
xi, β̂

}
⊗2

.

4. Numerical Experiments

4.1 Simulation

To evaluate the finite sample performance of our method, we perform four

simulation studies. In the first study, we generate event times from

T = Φ
[
ε
{

exp
(
βTX

)
+ 1
}
− 3
]
,

where Φ is the cumulative distribution function (cdf) of the standard nor-

mal distribution, ε has an exponential distribution with parameter 1, and

X follows a standard normal distribution independent of ε. We consider d =

1, p = 7 and the true parameter values are taken to be β = (1, 0,−1, 0, 1, 0,−1)T.

We further generate the covariate dependent censoring times using C =

Φ(2X2 +2X3)+U where U denotes a random variable uniformly distributed

on (0, c1), where c1 is a constant controlling censoring proportion.

In the second study, we generate the event times from

T = exp(βTX + ε),

where ε follows a Gumbel distribution with location 0 and rate 5 and each

component in X follows independent uniform distribution on (−0.2, 0.2).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4.1 Simulation

We consider d = 1, p = 7 and set the true parameter value to be β =

(1, 1.3,−1.3, 1,−0.5, 0.5,−0.5)T. We generate the censoring time from a

uniform distribution on (0, c2), where different values of c2 are used to

achieve various censoring rate.

In the third study, we generate the event times from

T = exp
{

1− (1− βTX)2 + ε
}
,

where ε ∼ Normal(0, 1), and each component of X is independently dis-

tributed with uniform distribution on (0, 1). We consider d = 1, p = 10 and

set the true parameter value to be β = (1,−0.6, 0,−0.3,−0.1, 0, 0.1, 0.3, 0, 0.6)T.

The censoring time is generated from C = UβT
c X where βc = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0)T

and U is uniformly distributed on (0, c3), and c3 is a constant controlling

the censoring proportion.

In the last simulation study, we increase d to 2 to further evaluate the

performance of the proposed method. We set the event times

T = exp

{
5− 10

2∑
j=1

(1− βT
j X)2 + ε

}
,

where ε ∼ Normal(0, 1) and each component of X is independently dis-

tributed with uniform distribution on (0, 1), and βj, j = 1, 2, denotes the

jth column of β with p = 6. We set the true parameter value to be

β = {(1, 0, 2.75,−0.75,−1, 2)T; (0, 1,−3.125,−1.125, 1,−2)T}T. The cen-
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4.1 Simulation

soring time is generated from a uniform distribution on (0, c4), where c4

controls the censoring rate.

These studies are designed to resemble and extend the simulation stud-

ies considered in Xia et al. (2010), which proposed hmave, the best method

so far in the literature to achieve dimension reduction for censored data.

The method hmave is obtained through minimizing

n−3

n∑
k=1

n∑
j=1

n∑
i=1

{
λ̂i(Zk)− ajk − dT

jk(β
TXi − βTXj)

}2

wij

with respect to ajk’s, djk’s and β, and extracting β̂. Here, λ̂i(Zk) is a non-

parametric estimator of the conditional hazard function given Xi evaluated

at Zk, ajk ∈ R, djk ∈ Rd, and wij ≡ Kh(β
TXi − βTXj) is a kernel based

weight. We can understand it as a local linear estimator of λ(t,βTX) based

on data {βTXi, λ̂i(t)}, i = 1, . . . , n. The local linear estimator minimizes

n∑
i=1

{
λ̂(t,Xi)− at,X − dT

t,X(βTXi − βTX)
}2

Kh(β
TXi − βTX).

Now selecting the set of t,X values as t = Zk, k = 1, . . . , n and X =

Xj, j = 1, . . . , n and summing them up leads to hmave. Because hmave is

parameterized differently, we reparameterize it through β̂ = β̃A−1, where

β̃ is the raw hmave estimator, A is the upper d× d submatrix of β̃.

We compare our estimation of both parameters and survival functions

with those from hmave, Cox proportional hazard model (Cox), and acceler-
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4.1 Simulation

ated failure time model (AFT). In terms of estimating the survival function,

the semiparametric method calculates Ŝ(t,βTX,β) = exp{−Λ̂(t,βTX,β)}

via a local Nelson-Aalen estimator of Λ(t,βTX,β). In contrast, hmave es-

timates S(t,βTX,β) differently by utilizing a local polynomial regression

(Masry, 1996). Cox and AFT estimate the survival function based on the

corresponding fitted models.

In all the aforementioned studies, we generate 1000 data sets. In the

first study, sample size n = 100 is considered. We set the sample sizes to

n = 200 for all the remaining studies. In all the nonparametric regression

estimators, we set the bandwidths to be n−1/3 times the standard deviation

of the regressors multiplied by a constant c. We find that for the constant

in the range of 0.1 to 10, the final results are similar. The results of the

first simulation study are given in Table S.1 and Figures S.1 and S.2, where

we consider three different censoring rates, 0%, 20% and 40% respectively.

From these results, we can see that the semiparametric method we proposed

generally performs better, sometimes much better, in that it has smaller ab-

solute biases and sample standard errors in estimating β. To compare our

method with hmave, we further compute the estimated projection matrix

P̂ ≡ β̂(β̂
T
β̂)−1β̂

T
and the true projection matrix P ≡ β(βTβ)−1βT, and

provide the largest singular value of P̂ − P, which serves as another cri-
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4.1 Simulation

terion to measure the closeness of β̂ and β. In that both the mean and

variance of the largest singular value of P̂−P are much smaller based on the

semiparametric method than based on hmave. The same results are also

presented in Figure S.1 to provide a quick visual inspection. In Figure S.2,

for each method, we further plot the average of the 1000 estimated survival

functions Ŝ(t, β̂
T
X, β̂) as a function of t, where we fix β̂

T
X at the empiri-

cal mean of the covariate index β̂
T
X. We can see that among all methods,

the semiparametric estimator has the best performance in estimating the

survival function as well. We also report the Harrell’s concordance index

(Harrell et al., 1996) in Table S.2. It is seen that except AFT, all methods

yield very large values.

The results of the second study are presented in Tables S.3 and S.4 and

Figures S.3 and S.4. In this study, AFT performs very well in estimating

both β and S(t,βTX,β), and in terms of Harrell’s index. This is expected

because the data is generated from an AFT model. The semiparamet-

ric method has better performance than hmave and Cox in estimating β

and has competitive performance in estimating S(t,βTX,β). It also yields

better Harrell’s concordance index than Cox. The superiority of the semi-

parametric method to hmave, Cox and AFT is more prominent in the third

study, as reflected in Tables S.5 and S.6, and Figures S.5 and S.6. Here, the
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4.1 Simulation

semiparametric method is substantially more accurate in estimating each

component in β, yielding smaller biases and variances. The largest singular

value of the difference between the estimated and true projection matrices

is also much smaller for the semiparametric method in comparison with

others. The Harrell’s concordance index is also better or competitive.

When we increase d to 2 in the last simulation, the semiparametric

method continues to generate satisfactory results, see Tables S.7 and S.8

and Figures S.7 and S.8. In this case, the performance of hmave is rather

concerning, possibly caused by the difficulties associated with multiple in-

dices. In order to illustrate the performance of the semiparametric method

when the number of indices is misspecified, we perform additional estima-

tion by fixing d = 1 and d = 3 respectively, although the true number of

indices is 2. The results in Table S.9 and Figure S.9 show that the estima-

tion of survival function at d = 3 is similar to that of d = 2, showing that

although including a redundant index is wasteful, it does not cause bias.

In contrast, the survival function is estimated with large bias when d = 1,

due to the model misspecification. In practice, we suggest using the Vali-

dated Information Criterion (VIC) (Ma and Zhang, 2015) to determine the

suitable number of indices, hence to protect from model misspecification.

We also perform an additional experiment to further assess the finite
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4.1 Simulation

sample performance of the asymptotic results established in Section 3. To

this end, we generate covariates X from a standard normal distribution and

event times T from a distribution with hazard function

λ(t|X) = λ0(t)

{
2∑
j=1

exp
(
βT
j X
)}

,

where the baseline hazard λ0(t) = t and the dimension of β is d = 2, p = 6.

We use the parameter values β = {(1, 0, 2.75,−0.75,−1, 2)T; (0, 1,−3.125,−1.125, 1,−2)T}T,

and adopt the same censoring process as in the second study to yield 40%

censoring rate. We carry out 1000 simulations and consider sample sizes

n = 100, 500 and 1000. The estimation results, together with sample

standard errors, average of the estimated standard deviations and cover-

age probabilities of the 95% confidence intervals are given in Table S.10.

These results indicate that the large sample properties of the estimator re-

quire more sample size than 1000. However, the general trend is that when

sample size increases, the results are approaching what we expect based on

the asymptotic results, in that the sample standard errors and their esti-

mated versions are becoming closer to each other, and the 95% coverage

probabilities are getting closer to the nominal level. The phenomenon that

asymptotic result requires very large sample size to illustrate itself is quite

common in survival data analysis and is not unique to our semiparametric

method. Due to the limited sample size in practice, we recommend to use
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4.2 AIDS Application

bootstrap to assess estimation variability.

4.2 AIDS Application

We apply the proposed method to analyze the HIV data from AIDS Clinical

Trials Group Protocol 175 (ACTG175) (Hammer et al. (1996)). In this

study, 2137 HIV-infected subjects are randomized to receive one of four

treatments: zidovudine (ZDV) monotherapy, ZDV plus didanosine, ZDV

plus zalcitabine and ddI monotherapy. As in Geng et al. (2015) and Jiang

et al. (2017), the survival time of interest is chosen as the time to having

a larger than 50% decline in the CD4 count, or progressing to AIDS or

death, whichever comes first. Besides the treatments, there are 12 covariates

included in our study, specifically, patient age in years at baseline (X1),

patient weight in kilograms at baseline (X2), hemophilia indicator (X3),

homosexual activity (X4), history of IV drug use (X5), Karnofsky score on

a scale of 0-100 (X6), race (X7), gender (X8), antiretroviral history (X9),

symptomatic indicator (X10), number of CD4 at baseline (X11), number of

CD8 at baseline (X12), treatment indicator (X13), where we code X13 = 0

for treatment ZDV+ddl and X13 = 1 for treatment ZDV+Zal. As in Jiang

et al. (2017), we only analyze data from the two composite treatments: ZDV

plus didanosine and ZDV plus zalcitabine, which has been shown to have
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4.2 AIDS Application

significantly better survival than the other two treatments (Geng et al.,

2015). This subset of data contains 1046 subjects with the censoring rate

around 75%. In addition, each covariate is standardized respectively with

no obvious outliers and no missing values.

To determine the proper reduced space dimension d, we employ the

Validated Information Criterion (VIC) (Ma and Zhang, 2015). VIC is a

procedure to determine d that is consistent and applies to general dimension

reduction procedure as long as an estimating equation based estimator for

the parameter is available under any candidate dimension, where the d

corresponding to the smallest VIC value is selected. In the example, the VIC

value at d = 1 is 90.38. Further, when d ≥ 2, the VIC values are all greater

than 180.7 which result from the penalty term alone. Hence we choose d = 1

as the final model. Table S.11 contains the estimated coefficient β̂’s under

the selected model, with the corresponding estimation standard errors and

p-values. Here, we implement the semiparametric estimator to obtain these

results due to its superior theoretical and numerical performance.

The results in Table S.11 indicate that in forming the index described

by β̂·,1, all covariates are significant except hemophilia indicator (X3),

gender (X8) and number of CD4 at baseline (X11). The estimated cu-

mulative hazard functions are also reported in Figure S.10, where it is
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4.2 AIDS Application

plotted as a function of time (upper left panel), a function of the co-

variate index βTx (upper right panel) and as a function of both (bot-

tom panel). Specifically, in plotting the cumulative hazard as a function

of time t, we fix the covariate index at three different sets of covariate

values, respectively X1:12 = (40, 60, 1, 0, 0, 80, 0, 0, 0, 1, 200, 800)T, X1:12 =

(20, 70, 1, 0, 0, 80, 0, 1, 0, 1, 200, 800)T, X1:12 = (60, 70, 1, 0, 0, 20, 0, 0, 0, 1, 200, 200)T,

in combination with the treatment indicator of both X13 = 0 and X13 = 1.

Based on the plots, the estimated cumulative hazard of treatment ZDV+ddl

is slightly larger than that of treatment ZDV+Zal in all scenarios. In plot-

ting the estimated cumulative hazard Λ̂ as a function of the index β̂
T
x, we

fix the time at t = 100, 500 and 1000. Finally, we also plot the cumulative

hazard as a function of two variables t and βTx using the contour plot,

where the hazard values are explicitly written out on each contour. We

also implemented hmave, Cox and AFT on the data set for comparison.

Specifically, using each method, we performed the analysis on 80% indi-

viduals and then calculated the predicted survival times for the remaining

20% individuals. The mean residual squares (MSE) of the semiparametric

method is 63,359.4, which is the smallest compared to 109,394.0 for COX,

132,821.8 for AFT and 87,713.9 for hmave. In Figure S.11, we provide the

box plot of the residuals. We repeated the analysis 20 times with different
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80%-20% split of the data, and the MSE of the semiparametric method is

always the smallest.

5. Discussion

We have considered a very general model for analyzing time to event data

subject to censoring. The model allows the event times to link to the covari-

ate indices in an unspecified fashion. Because both the number of indices

and the functional form of the linkage to the indices are data determined,

conceptually the model is maximally flexible. In practice, relatively low

number of indices are expected to avoid curse of dimensionality. The work

is conducted without requiring covariate independent censoring. Instead, it

only requires event independent censoring conditional on covariates, which

is the minimum requirement for identification. We derived a class of estima-

tors which are consistent and asymptotically normal. We also proposed a

procedure to construct the semiparametric efficient estimator that achieves

the optimal estimation variability among all possible consistent estimators.

There are also several limitations fundamentally due to the dimension

reduction modeling. First, to circumvent the general identifiability issue,

we have proposed to fix the upper block of the parameter matrix to be

identity. This is a valid choice if the first d components of the covariates
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are indeed active in the model. On the contrary, if any one of the first

d components happens to be inactive, convergence issue will occur during

the estimation process. This can be used as a way to select the first d

components. In other words, one can permutate the covariates and use any

of the covariate ordering that does not lead to numerical issues. Second, in

practice, when sample size does not exceed hundreds, the method may yield

poor performance when the dimensions p and d are large, say p > 30 and

d > 3. This is the price paid to model flexibility. If indeed this situation

arises, one may consider to either obtain more observations or to impose

additional model assumptions to enrich the model structure.
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