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Abstract: Large-scale data are commonly encountered nowadays where the sam-

ple size n is large, and the data are often stored on k different local machines.

Distributed statistical learning is an efficient way to deal with this type of data.

In this paper, we consider the binary classification problem for massive data based

on the linear discriminant analysis (LDA) in the frame of distributed learning.

The classical centralized LDA requires the transmission of some p by p summary

matrices to the hub, where p is the dimension of variates under consideration.

This can be a burden when p is large or the communication costs between nodes

are expensive. We consider two distributed LDA estimators, named two-round

and one-shot estimator respectively, which are communication-efficient without

transmitting p by p matrices. We study the asymptotic relative efficiency of dis-

tributed LDA estimators compared to centralized LDA using the random matrix

theory under different settings of k. It is shown that when k is in a suitable range

such as k = o(n/p), these two distributed estimators achieve the same efficiency

*Corresponding author. (Email: zhaojunlong928@126.com)
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as that of the centralized estimator under mild conditions. Moreover, the two-

round estimator can relax the restriction on k allowing kp/n → c ∈ [0, 1) under

some conditions. Simulations confirm the theoretical results.

Key words and phrases: Deterministic equivalent, distributed learning, linear

discriminant analysis (LDA), random matrix, relative efficiency.

1. Introduction

With the rapid development of information technology, modern statisti-

cal inference often needs to deal with massive data. In many cases, the

size of data is too large to be conveniently handled by a single data hub.

Moreover, individual agents (e.g. local governments, hospitals, research

labs) collect data independently and have constraints in communication

due to the issues of costs, privacy, ownership, security, etc. Consequently,

data has to be stored and also processed on many local computers con-

nected to a central server, thus forming a distributed system. In this way,

we are able to break a large-scale computation problem into many small

pieces, then solve them with divide-and-conquer procedures and communi-

cate only certain summary statistics. In recent years, distributed statistical

inference has received considerable attention, covering a wide range of topics

including M-estimation (Chen and Xie, 2014; Rosenblatt and Nadler, 2016;
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Lee et al., 2017; Battey et al., 2018; Shi, Lu, and Song, 2018; Jordan et al.,

2018; Banerjee, Durot, and Sen, 2019; Fan, Guo, and Wang, 2019), hypoth-

esis test (Lalitha, Sarwate, and Javidi, 2014; Battey et al., 2018), confi-

dence intervals (Jordan, Lee, and Yang, 2018; Chen, Liu, and Zhang, 2018;

Dobriban and Sheng, 2018; Wang et al., 2019), principal component analy-

sis (Garber, Shamir, and Srebro, 2017; Fan et al., 2019), nonparametric re-

gression (Zhang, Duchi, and Wainwright, 2015; Chang, Lin, and Zhou, 2017;

Shang and Cheng, 2017; Han et al., 2018; Szabó and Van Zanten, 2019),

Bayesian methods (Xu et al., 2014; Jordan et al., 2018), quantile regression

(Volgushev, Chao, and Cheng, 2019; Chen, Liu, and Zhang, 2019), boot-

strap inference (Kleiner et al., 2014; Han and Liu, 2016), and so on.

Linear Discriminant Analysis (LDA) is a classical method for classi-

fication in statistics, and how to implement LDA in the distributed sys-

tem has attracted the attention of some researchers recently. Suppose that

{(X i, Ci), 1 ≤ i ≤ n} are i.i.d. observations, where X i = (Xi1, · · · , Xip)
⊤ is

the p-dimensional covariate and Ci is the label. For ease of description, the

classical LDA estimator is referred to as centralized LDA. In distributed sys-

tems, data are stored on k local machines, and for simplicity, we assume that

the size of subsample for each machine is the same, denoted as n(l) ≡ n/k

for l = 1, · · · , k. For a distributed LDA estimator, one can consider its
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relative efficiency by comparing its classification accuracy with that of cen-

tralized LDA. Macua, Belanovic, and Zazo (2011) developed a distributed

algorithm for LDA on a single-hop network in the classical regime with

fixed dimension p, but the relative efficiency of their algorithm is unknown.

Tian and Gu (2017) proposed a communication-efficient distributed sparse

LDA estimator in the high dimensional regime, where the dimension p can

be much larger than the sample size n. To ensure their distributed estima-

tor attaining the same efficiency as the centralized one, the authors showed

that k has the order k = O(
√
n/ log p/max(s, s′)), where s and s′ represent

the sparsity of some parameters.

In this paper, we focus on distributed LDA for binary classification, un-

der the setting of p/n→ 0 without the sparsity assumption on parameters.

When p/n → 0, we show that the centralized LDA can still be effective

under mild conditions in Section 3. However, centralized LDA needs the

transmission of local summary matrices of size p by p, which can be a bur-

den when p is large or the communication costs between nodes are expen-

sive. In response to this problem, we propose two communication-efficient

distributed LDA estimators, named two-round estimator and one-shot one

respectively according to their communication costs, without transmitting

p by p summary matrices. We study the relative efficiency of these two
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estimators. It is shown that both estimators achieve the same efficiency

as the centralized one when k is in a suitable range such as k = o(n/p).

Moreover, under some conditions, the two-round estimator can relax the

restriction on k, allowing kp/n → c ∈ [0, 1). When c > 0, the sample

covariance matrix constructed with only data on the local machine is not a

consistent estimator of the true covariance matrix, which brings challenges

for the theoretical analysis. We successfully establish the efficiency of two-

round estimator using the tools from random matrix theory. Interestingly,

when the prior probabilities of two classes are equal (i.e. both are 1/2),

the two-round estimator still has the same efficiency as the centralized one

even if c > 0.

The rest of this paper is organized as follows. In Section 2, we give the

distributed LDA estimators and calculate corresponding classification accu-

racy. Section 3 studies the relative efficiency and derives their asymptotic

properties. Section 4 provides numerical experiments to back up the devel-

oped theory. In Section 5, we discuss our results together with potential

future directions.

Here we summarize notations to be used throughout the paper. We

adopt the common convention of using boldface letters for vectors only,

while regular font is used for both scalars and matrices. For a vector
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x = (x1, · · · , xp)
⊤ ∈ R

p, and 0 < q < ∞, define the ℓq norm by ‖x‖q =

(
∑p

i=1 |xi|
q)1/q. For a symmetric matrix M ∈ R

p×p, tr(M) denotes the

trace of M , and λmax(M), λmin(M) represent the maximal eigenvalue and

the minimal eigenvalue respectively. For a matrix M ∈ R
n×p, the nuclear

norm is defined by ‖M‖∗ = tr[(M⊤M)1/2] =
∑min{n,p}

i=1 σi(M), and the ma-

trix ℓ2 norm is defined as ‖M‖2 =
√
λmax(M⊤M) = σ1(M), where σi(M)

represents the i-th largest singular value. Besides, for two sequences of real

numbers {an} and {bn}, write an = O(bn) if there exists a constant C such

that |an| ≤ C|bn| for all n ≥ 1, and write an = o(bn) if limn→∞ an/bn = 0.

For two sequences of random variables {Xn}, {Yn}, and a random variable

X, write Xn →a.s. X if {Xn} converges to X almost surely, and Xn →p X

if {Xn} converges to X in probability. In addition, write Xn = Op(Yn) if

Xn/Yn is bounded in probability.

2. Communication-Efficient Distributed Linear Discriminant Anal-

ysis

2.1 Centralized linear discriminant analysis in the distributed

system

In this paper, we focus on binary classification problems, assuming that the

two classes are of normal distributions with the same covariance matrix,
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2.1 Centralized linear discriminant analysis in the distributed system

specifically, Np(µ1,Σ) for class 1 and Np(µ2,Σ) for class 2, where µ1,µ2

are p-dimensional mean vectors and the covariance matrix Σ ∈ R
p×p is a

positive symmetrical matrix. Denote µa = (µ1 +µ2)/2, µd = µ1 −µ2 and

Θ = Σ−1 being the precision matrix (a.k.a. the inverse covariance matrix).

For a new observation H ∈ R
p with prior probabilities π1 and π2 from class

1 and class 2 respectively, the Fisher’s linear discriminant rule takes the

form

ψ(H) = 1
{
(H − µa)

⊤Θµd > log(π2/π1)
}
, (2.1)

where 1(·) represents the indicator function. A new observation H is clas-

sified into class 1 if ψ(H) = 1, and class 2 otherwise. Clearly, there are two

types of errors. Specifically, H is from class 1 but is classified into class 2,

and vice versa, with their probabilities denoted as follows

p21 = P (ψ(H) = 0 | H ∈ class 1) , p12 = P (ψ(H) = 1 | H ∈ class 2) .

Then the efficiency of the LDA rule measured by classification accuracy is

defined as

Acen = 1− π1p21 − π2p12.

When H ∼ Np(µ1,Σ), it holds that (H − µa)
⊤Θµd ∼ N(δ2/2, δ2), where

δ2 = µ⊤
d Θµd is the squared Mahalanobis distance between two populations.
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2.1 Centralized linear discriminant analysis in the distributed system

Thus

p21 = Φ

(
−
δ

2
+

log(π2/π1)

δ

)
, p12 = Φ

(
−
δ

2
−

log(π2/π1)

δ

)
,

where Φ(·) is the cumulative distribution function of standard normal. Then

it follows that

Acen = π1Φ

(
δ

2
−

log(π2/π1)

δ

)
+ π2Φ

(
δ

2
+

log(π2/π1)

δ

)
. (2.2)

Particularly, when π1 = π2 = 1/2, we have p21 = p12 = Φ(−δ/2), and then

Acen = Φ(δ/2).

In practice, µ1, µ2, Σ and π1, π2 are unknown and can be estimated

from data. Suppose {X i : 1 ≤ i ≤ n1} and {Y i : 1 ≤ i ≤ n2} are

independent and identically distributed observations from Np(µ1,Σ) and

Np(µ2,Σ), respectively, where n1 + n2 = n. In this paper, we do not

impose sparsity assumptions on the parameters. The centralized estimators

of µ1,µ2 and Θ are

µ̂1 =
1

n1

n1∑

i=1

X i, µ̂2 =
1

n2

n2∑

i=1

Y i, Θ̂ = Σ̂−1, (2.3)

respectively, where

Σ̂ =
1

n

[
n1∑

i=1

(X i − µ̂1)(X i − µ̂1)
⊤ +

n2∑

i=1

(Y i − µ̂2)(Y i − µ̂2)
⊤

]

is the pooled sample covariance matrix with n = n1 +n2. π1 and π2 can be

simply estimated by π̂1 = n1/n and π̂2 = n2/n. Plugging these estimators
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2.1 Centralized linear discriminant analysis in the distributed system

into (2.1) gives rise to the empirical version of ψ(H) as follows

ψ̂(H) = 1

{
(H − µ̂a)

⊤Θ̂µ̂d > log(n2/n1)
}
, (2.4)

where µ̂a = (µ̂1 + µ̂2)/2, µ̂d = µ̂1 − µ̂2. For H ∼ Np(µj,Σ), j = 1, 2, it

holds that

(H − µ̂a)
⊤Θ̂µ̂d ∼ N

(
(µj − µ̂a)

⊤Θ̂µ̂d, (Θ̂µ̂d)
⊤ΣΘ̂µ̂d

)
.

Then given the samples {X i} and {Y i}, the conditional misclassification

rates of (2.4) are as follows (Cai and Liu, 2011)

p̂12 =1− Φ


(µ̂a − µ2)

⊤Θ̂µ̂d + log(n2/n1)√
(Θ̂µ̂d)

⊤ΣΘ̂µ̂d


 ,

p̂21 =1− Φ


−

(µ̂a − µ1)
⊤Θ̂µ̂d + log(n2/n1)√
(Θ̂µ̂d)

⊤ΣΘ̂µ̂d


 .

Thus the classification accuracy of centralized LDA is given by

Âcen =1− π̂1p̂21 − π̂2p̂12

=
n1

n
Φ


−

(µ̂a − µ1)
⊤Θ̂µ̂d + log(n2/n1)√
(Θ̂µ̂d)

⊤ΣΘ̂µ̂d




+
n2

n
Φ


(µ̂a − µ2)

⊤Θ̂µ̂d + log(n2/n1)√
(Θ̂µ̂d)

⊤ΣΘ̂µ̂d


 .

(2.5)

When the data are stored on k machines, the implementation of cen-

tralized LDA is still feasible with the price of considerable communication
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2.1 Centralized linear discriminant analysis in the distributed system

costs. Let X(l) be the data from class 1 stored on the l-th local machine (i.e.

the collection of X i’s that are stored on the l-th machine), and similarly,

let Y(l) be the data from class 2 stored on the l-th machine, l = 1, · · · , k.

For clarity, we denote

X
(l) = {X

(l)
i , i = 1, · · · , n1l}, Y

(l) = {Y
(l)
i , i = 1, · · · , n2l}, l = 1, · · · , k,

(2.6)

where n1l > 0 and n2l > 0 are the cardinalities of X(l) and Y
(l), respectively.

Thus, the l-th machine (or worker) has access to only a subset of n(l) =

n1l + n2l observations out of the total n observations. Obviously, it holds

that

n =
k∑

l=1

n(l) = n1 + n2, nj =
k∑

l=1

njl, j = 1, 2. (2.7)

Denote Bx =
∑n1

i=1(X i−µ̂1)(X i−µ̂1)
⊤ and By =

∑n2

i=1(Y i−µ̂2)(Y i−µ̂2)
⊤.

Then Σ̂ = n−1(Bx+By). Let B
(l)
x =

∑n(l)

i=1 X
(l)
i X

(l)
i , and µ̂

(l)
1 be the sample

mean obtained with data X
(l). It is easy to see that

µ̂1 =
1

n1

k∑

l=1

n1lµ̂
(l)
1 , Bx =

n1∑

i=1

X iX
⊤
i − n1µ̂1µ̂

⊤
1 =

k∑

l=1

B(l)
x − n1µ̂1µ̂

⊤
1 ,

Since both B
(l)
x and µ̂

(l)
1 are computed locally with data on the l-th machine,

we see that Bx can be obtained by transmitting some summary matrices

and vectors (i.e. B
(l)
x ’s and µ̂

(l)
1 ’s) to the hub. Computing By similarly,

one can obtain Σ̂ and consequently Θ̂. µ̂a and µ̂d can be computed in a
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2.2 Distributed linear discriminant analysis by averaging

similar fashion by transmitting µ̂
(l)
j ’s, j = 1, 2. However, the centralized

estimator requires the transmission of p-dimensional mean vectors µ̂
(l)
1 , µ̂

(l)
2

and p by p matrices B
(l)
x , B

(l)
y , where l = 1, · · · , k. When p and k are large,

transmitting these p by p matrices to the central hub can be a burden

in communication, while transmitting p-dimensional mean vectors is much

easier. In the following Section 2.2, we propose two distributed estimators

without transmitting these p by p matrices.

2.2 Distributed linear discriminant analysis by averaging

In this subsection, we considered the communication-efficient LDA esti-

mators. Recall that X
(l) = {X

(l)
i , i = 1, · · · , n1l} and Y

(l) = {Y
(l)
i , i =

1, · · · , n2l} are the data on the l-th local machine, where njl’s satisfy (2.7),

j = 1, 2 and l = 1, · · · , k. Suppose that {X
(l)
i , i = 1, · · · , n1l, l = 1, · · · , k}

are i.i.d. observations from Np(µ1,Σ), and that {Y
(l)
i , i = 1, · · · , n2l, l =

1, · · · , k} are i.i.d. observations from Np(µ2,Σ). Assume that njl ≥ 2, j =

1, 2 for all l. Denote the estimators of µ1 and µ2 using data on the l-th

machine as follows

µ̂
(l)
1 =

1

n1l

n1l∑

i=1

X
(l)
i , µ̂

(l)
2 =

1

n2l

n2l∑

i=1

Y
(l)
i .

As argued at the end of Section 2.1, we prefer an estimator without trans-

mitting the p by p matrices. We consider two types of distributed LDA
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2.2 Distributed linear discriminant analysis by averaging

estimators. The first one is named two-round distributed LDA estimator,

which estimates the mean vectors using full data with two rounds of com-

munication. And the second one is called one-shot estimator that estimates

the means based on the local data with just one round of communication.

(1) We introduce the two-round distributed LDA estimator. By aggre-

gating the local estimators, we estimate µ1,µ2 and Θ as follows

µ̂1 =
1

n1

k∑

l=1

n1lµ̂
(l)
1 , µ̂2 =

1

n2

k∑

l=1

n2lµ̂
(l)
2 , Θ̄ =

1

n

k∑

l=1

n(l)Θ̂
(l)
two, (2.8)

where Θ̂
(l)
two = (Σ̂

(l)
two)

−1, and

Σ̂
(l)
two =

1

n(l)

[
n1l∑

i=1

(X
(l)
i − µ̂1)(X

(l)
i − µ̂1)

⊤ +

n2l∑

i=1

(Y
(l)
i − µ̂2)(Y

(l)
i − µ̂2)

⊤

]
.

It is easy to see that Θ̂
(l)
two can be obtained using data on the l-th machine

after giving µ̂1 and µ̂2. Recall that µ̂a = (µ̂1 + µ̂2)/2 and µ̂d = µ̂1 − µ̂2.

Then we define the discriminant rule of two-round distributed LDA as

ψ̄two(H) = 1
{
(H − µ̂a)

⊤Θ̄µ̂d > log(n2/n1)
}
. (2.9)

As shown in the following Algorithm 1, ψ̄two(H) can be computed in a

communication-efficient way with only the p-dimensional mean vectors be-

ing transmitted for two rounds. Comparing ψ̄two(H) with its centralized

counterpart ψ̂(H), one can see that the only difference between these two

estimators lies in the different estimation of Θ. For the centralized estima-
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2.2 Distributed linear discriminant analysis by averaging

tor, Θ is estimated by Θ̂ = Σ̂−1 with Σ̂ being obtained by transmitting p

by p matrices B
(l)
x ’s and B

(l)
y ’s to the hub.

Algorithm 1 Two-Round Distributed LDA

Input: Observation H and data matrices X
(l),Y(l) on the l-th machine,

l ∈ {1, · · · , k}, do the following steps.

1: Compute local sample means µ̂
(l)
1 , µ̂

(l)
2 on local machines, and then

transmit them to the hub.

2: Compute on the hub the estimator µ̂j by (2.8), j ∈ {1, 2}, and then

compute µ̂a and µ̂d.

3: Broadcast µ̂1, µ̂2, µ̂d and µ̂a to each local machine. Compute Θ̂
(l)
two by

(2.8), and obtain Vl = µ̂⊤
a Θ̂

(l)
twoµ̂d and U l = Θ̂

(l)
twoµ̂d with data on the

l-th machine, l ∈ {1, · · · , k}.

4: Send Vl’s and U l’s to the hub, and compute their averages Ū =

n−1
∑k

l=1 n
(l)U l and V̄ = n−1

∑k
l=1 n

(l)Vl. Then define the distributed

LDA estimator ψ̄two(H) = H⊤Ū − V̄ .

5: return Classification result ψ̄two(H)

There are two rounds of communication in Algorithm 1. First, the local

estimators µ̂
(l)
1 ’s and µ̂

(l)
2 ’s are transmitted to the hub to compute µ̂1, µ̂2,

µ̂a and µ̂d, and then broadcast the vector (µ̂⊤
1 , µ̂

⊤
2 , µ̂

⊤
a , µ̂

⊤
d )

⊤ ∈ R
4p to each

13
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2.2 Distributed linear discriminant analysis by averaging

local node. The second round is to send U l’s and Vl’s to the central hub.

Note that in each round, we only transmit vectors with dimension no more

than 4p, avoiding the transmission of p by p matrices in the centralized

estimator. Thus the estimator is computationally efficient.

Similar to the centralized estimator, we define the conditional misclas-

sification rates of two-round distributed LDA. Let

p̄12 =1− Φ


(µ̂a − µ2)

⊤Θ̄µ̂d + log(n2/n1)√(
Θ̄µ̂d

)⊤
ΣΘ̄µ̂d


 ,

p̄21 =1− Φ


−

(µ̂a − µ1)
⊤Θ̄µ̂d + log(n2/n1)√(
Θ̄µ̂d

)⊤
ΣΘ̄µ̂d


 ,

which are the counterparts of p̂12 and p̂21, respectively. Hence, the classifi-

cation accuracy of two-round estimator is equal to

Âtwo =1− π̂1p̄21 − π̂2p̄12

=
n1

n
Φ


−

(µ̂a − µ1)
⊤Θ̄µ̂d + log(n2/n1)√(
Θ̄µ̂d

)⊤
ΣΘ̄µ̂d




+
n2

n
Φ


(µ̂a − µ2)

⊤Θ̄µ̂d + log(n2/n1)√(
Θ̄µ̂d

)⊤
ΣΘ̄µ̂d


 .

(2.10)

Define the relative efficiency of two-round estimator as R̂two = Âtwo/Âcen.

(2) When communication between nodes is prohibitively expensive, we

consider the one-shot estimator, where only one round of communication is

14

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.2 Distributed linear discriminant analysis by averaging

required. Denote the estimator of Θ with data on the l-th machine as

Θ̂(l) = (Σ̂(l))−1,

where

Σ̂(l) =
1

n(l)

[
n1l∑

i=1

(X
(l)
i − µ̂

(l)
1 )(X

(l)
i − µ̂

(l)
1 )⊤ +

n2l∑

i=1

(Y
(l)
i − µ̂

(l)
2 )(Y

(l)
i − µ̂

(l)
2 )⊤

]
.

Different from Σ̂
(l)
two that estimates the means by µ̂1 and µ̂2, Σ̂

(l) here uses

estimators µ̂
(l)
1 and µ̂

(l)
2 . The discriminant rule of the one-shot estimator is

defined as follows

ψ̄one(H) = 1

{
1

n

k∑

l=1

n(l)
(
H − µ̂(l)

a

)⊤
Θ̂(l)µ̂

(l)
d > log(n2/n1)

}
, (2.11)

where µ̂(l)
a = (µ̂

(l)
1 + µ̂

(l)
2 )/2, µ̂

(l)
d = µ̂

(l)
1 − µ̂

(l)
2 . Note that

1

n

k∑

l=1

n(l)
(
H − µ̂(l)

a

)⊤
Θ̂(l)µ̂

(l)
d

=H

(
1

n

k∑

l=1

n(l)Θ̂(l)µ̂
(l)
d

)
−

1

n

k∑

l=1

n(l)µ̂(l)⊤
a Θ̂(l)µ̂

(l)
d

and that the p-dimensional vector Θ̂(l)µ̂
(l)
d and the scalar µ̂(l)⊤

a Θ̂(l)µ̂
(l)
d can

be computed directly using data on the l-th machine. Thus, we only need

to transmit vectors of dimension p + 1 to the hub in just one-round com-

munication. For H ∼ Np(µj,Σ), j = 1, 2, it holds that n−1
∑k

l=1 n
(l)(H −

µ̂(l)
a )⊤Θ̂(l)µ̂

(l)
d follows a normal distribution with mean n−1

∑k
l=1 n

(l)(µj −

µ̂(l)
a )⊤Θ̂(l)µ̂

(l)
d and variance

(
k∑

l=1

n(l)

n
Θ̂(l)µ̂

(l)
d

)⊤

Σ

(
k∑

l=1

n(l)

n
Θ̂(l)µ̂

(l)
d

)
.
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Thus the corresponding classification accuracy of one-shot distributed LDA

equals

Âone =
n1

n
Φ


−

n−1
∑k

l=1 n
(l)(µ̂(l)

a − µ1)
⊤Θ̂(l)µ̂

(l)
d + log(n2/n1)√

(n−1
∑k

l=1 n
(l)Θ̂(l)µ̂

(l)
d )⊤Σ(n−1

∑k
l=1 n

(l)Θ̂(l)µ̂
(l)
d )




+
n2

n
Φ


 n−1

∑k
l=1 n

(l)(µ̂(l)
a − µ2)

⊤Θ̂(l)µ̂
(l)
d + log(n2/n1)√

(n−1
∑k

l=1 n
(l)Θ̂(l)µ̂

(l)
d )⊤Σ(n−1

∑k
l=1 n

(l)Θ̂(l)µ̂
(l)
d )


 .

Define R̂one = Âone/Âcen as the relative efficiency of one-shot estimator. In

the following Section 3, we study the conditions under which the distributed

estimators reach the same efficiency as that of the centralized one. It is

shown that the two-round estimator requires a weaker assumption on k,

compared with the one-shot case.

3. Theoretical Properties

3.1 Deterministic equivalent of the sample covariance matrix

In this section, we compare the efficiency of the distributed and centralized

LDA. Denote γp = p/n, γ
(l)
p = p/n(l), l = 1, · · · , k. For simplicity, we assume

that data are evenly distributed to each machine, that is,

n11 = · · · = n1k = n1/k, n21 = · · · = n2k = n2/k. (3.12)

From (3.12), it follows that n(l) ≡ n/k and γ
(l)
p ≡ kp/n = kγp for all l. Here

the assumption (3.12) is assumed to reduce the complexity of notations.
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3.1 Deterministic equivalent of the sample covariance matrix

The results in this section can be extended without difficulty to the case

where njl’s are different but with the same order, j = 1, 2.

In this paper, we consider the case of γp → 0 but γ
(l)
p → c ∈ [0, 1).

For distributed estimators, when c 6= 0, the sample covariance matrix

constructed with data on the l-th machine will not be a consistent esti-

mator of Σ. Consequently, Θ̂
(l)
two and Θ̂(l) are not consistent estimators

of Θ, which brings challenges for the theoretical analysis. We study the

asymptotic properties of Âtwo, Âone and Âcen based on random matrix the-

ory. Specifically, we will use the technique of deterministic equivalents

(Couillet and Debbah, 2011, Chap. 6) from random matrix theory to ob-

tain limits of some random quantities. The notion of equivalence is defined

as follows.

Definition 1. (Dobriban and Sheng, 2018) The (deterministic or random)

matrix sequences An, Bn of growing dimensions are equivalent, and write

An ≍ Bn if

lim
n→∞

|tr [Cn (An − Bn)]| = 0

almost surely, for any sequence Cn of not necessarily symmetric matrices

with bounded nuclear norm, i.e., such that limn→∞ sup ‖Cn‖∗ <∞.

Dobriban and Sheng (2018) studied the deterministic equivalent of the

sample covariance matrix in elliptical models, which is a consequence of
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3.1 Deterministic equivalent of the sample covariance matrix

generalized Marchenko-Pastur theorem (Rubio and Mestre, 2011). For the

elliptical model, observations take the form {zi = g
1/2
i Σ1/2ui, 1 ≤ i ≤ m},

where ui ∈ R
p is a vector with i.i.d. entries, gi is a datapoint-specific scale

parameter allowing observations having different scales, and Σ ∈ R
p×p is the

covariance matrix of zi. A special case of the elliptical model is zi following

a normal distribution, where we have gi = 1. Arrange the samples as rows

of matrix Z, that has the form

Z = Γ1/2UΣ1/2 ∈ R
m×p, (3.13)

where Γ = diag(g1, · · · , gm) ∈ R
m×m is the diagonal scaling matrix con-

taining the scales gi of samples, and U = (u1, · · · ,um)
⊤ ∈ R

m×p has i.i.d.

entries. Suppose that E(U) = 0 and let Σ̃∗ = m−1Z⊤Z be the sample

covariance matrix. Under some conditions, the random matrix Σ̃−1
∗ has a

deterministic equivalent

Σ̃−1
∗ ≍ epΘ. (3.14)

Here ep = ep(m, p,Γ) > 0 is the unique solution of the fixed-point equation

1 =
1

m
tr
[
epΓ(Im + γpepΓ)

−1
]
. (3.15)

To study our problem, define the following pooled sample covariance
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3.1 Deterministic equivalent of the sample covariance matrix

matrices with known µ1 and µ2

Σ̃ =
1

n

[
n1∑

i=1

(X i − µ1)(X i − µ1)
⊤ +

n2∑

i=1

(Y i − µ2)(Y i − µ2)
⊤

]
,

Σ̃(l) =
1

n(l)

[
n1l∑

i=1

(X
(l)
i − µ1)(X

(l)
i − µ1)

⊤ +

n2l∑

i=1

(Y
(l)
i − µ2)(Y

(l)
i − µ2)

⊤

]
,

where l = 1, · · · , k. To give the deterministic equivalents of Σ̃−1 and

(Σ̃(l))−1, we introduce the following conditions firstly.

(C1) Assume that (i) 0 < c1 < λmin(Σ) ≤ λmax(Σ) < c2 and that (ii)

γp = p/n→ 0, where c1 and c2 are constants independent of p.

(C2) As n→ ∞, k = kn satisfies the following conditions: (i) n(l) ≡ n/k →

∞; (ii) γ
(l)
p ≡ pk/n→ c ∈ [0, 1), l ∈ {1, · · · , k}.

Condition (i) of (C1) is commonly assumed in the literature. Condition

γp → 0 implies that the sample covariance matrix obtained using full data

will be a consistent estimator of Σ (Wainwright, 2019, Chap. 11). So the

inverse sample covariance matrix can be a consistent estimator of Θ, which

guarantees the effectiveness of centralized LDA. But for the distributed

system, as the number k of local machines increases, namely k → ∞, it may

occur that γ
(l)
p = kp/n → c > 0. The local sample covariance matrix Σ̂

(l)
two

and its inverse Θ̂
(l)
two based on data on the l-th machine will be inconsistent

(Bai and Silverstein, 2010, Chap. 3).
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3.2 Relative efficiency

Proposition 1. Under the condition (C1), for the sample covariance ma-

trix Σ̃ with known µ1 and µ2, we have

Σ̃−1 ≍ Θ. (3.16)

Under the condition (i) of (C1) and the condition (C2), for the sample

covariance matrix Σ̃(l) with known µ1 and µ2 on the l-th machine, we have

(Σ̃(l))−1 ≍
1

1− γ
(l)
p

Θ, l = 1, · · · , k. (3.17)

Particularly, if taking c = 0 in (C2), we have (Σ̃(l))−1 ≍ Θ, l = 1, · · · , k.

This important conclusion will serve as the basis of the following theo-

rems.

3.2 Relative efficiency

As defined at the end of Section 2.2, the relative efficiency of distributed

LDA compared to the centralized case is the ratio of their classification

accuracy. Then the relative efficiency of two-round distributed LDA equals

R̂two =
n1Φ

(
− (µ̂a−µ1)

⊤Θ̄µ̂d+log(n2/n1)

∆̄p

)
+ n2Φ

(
(µ̂a−µ2)

⊤Θ̄µ̂d+log(n2/n1)

∆̄p

)

n1Φ
(
− (µ̂a−µ1)

⊤Θ̂µ̂d+log(n2/n1)

∆̂p

)
+ n2Φ

(
(µ̂a−µ2)

⊤Θ̂µ̂d+log(n2/n1)

∆̂p

) ,

(3.18)

where ∆̄2
p = (Θ̄µ̂d)

⊤ΣΘ̄µ̂d, and ∆̂2
p = (Θ̂µ̂d)

⊤ΣΘ̂µ̂d. To study the proper-

ties of R̂two, we define its population version as

Rtwo = Atwo/Acen,
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3.2 Relative efficiency

where Acen is defined in (2.2), and

Atwo = π1Φ

(
δ

2
−

(1− c) log(π2/π1)

δ

)
+ π2Φ

(
δ

2
+

(1− c) log(π2/π1)

δ

)
,

(3.19)

with δ2 = µ⊤
d Θµd. It is easy to see that Rtwo ≤ 1 for any c ∈ [0, 1).

Particularly, we have





Rtwo = 1, c = 0;

Rtwo = 1, c ∈ (0, 1), π1 = 1/2;

Rtwo < 1, c ∈ (0, 1), π1 6= 1/2.

(3.20)

The following Theorem 1 establishes the properties of two-round distributed

LDA.

Theorem 1. Under (C1) and (C2), as n→ ∞, it holds that Âtwo →p Atwo

and Âcen →p Acen. Consequently, R̂two →p Rtwo.

According to (3.20), we discuss Theorem 1 in three cases. (1) c = 0;

(2) c ∈ (0, 1) and π1 = 1/2; (3) c ∈ (0, 1) and π1 6= 1/2. For Case (1),

when c = 0 or equivalently k satisfies k = o(n/p), the two-round estimator

has the same efficiency as the centralized estimator. This coincides with

our expectation, since Σ̂
(l)
two is a good estimator of Σ when k is small. Case

(2) is an interesting result beyond expectation. When c ∈ (0, 1), we see

that k has the order as n/p. By the well known results of random matrix
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3.2 Relative efficiency

(Bai and Silverstein, 2010, Chap. 3), the local sample covariance matrix

Σ̂
(l)
two is not a consistent estimator of Σ. However, Theorem 1 shows that, as

long as π1 = 1/2, the distributed estimator has the same efficiency as the

centralized one, regardless of the value of c. In other words, even if each

local estimator Σ̂
(l)
two of the sample covariance matrix is inconsistent, the

distributed estimator loses no information when π1 = 1/2. For Case (3),

when k has the same order as n/p but π1 6= 1/2, the two-round distributed

LDA will lose efficiency. The following Theorem 2 gives the results on R̂one.

Theorem 2. Suppose that (C1) and (C2) hold but with c = 0 in (C2). As

n → ∞, both Âone and Âcen converge to Acen in probability. Consequently,

R̂one converges to 1 in probability.

Condition c = 0 in (C2) in Theorem 2 implies that k = o(n/p), that

is, when k is small, the one-shot estimator can achieve the same efficiency

as the centralized one. We briefly discuss the difference between the two-

round estimator and the one-shot one. Two-round estimator replaces local

sample means µ̂
(l)
i ’s with global sample means µ̂i’s through an extra round

of communication, which relaxes the restriction on k, allowing k being the

same order as n/p. Particularly, when π1 = 1/2, the two-round estimator

loses no information even if k is exactly the same order of n/p (i.e. c ∈

(0, 1)). However, we do not have similar results for the one-shot estimator.
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In fact, when γ
(l)
p → c ∈ (0, 1), µ̂

(l)
i ’s are no longer consistent estimators of

µi’s in terms of ℓ2 norm. In this case, from the proof of Theorem 2 (see

Section S4 in Supplementary Material), it is easy to see that Âone converges

to the quantity

π1Φ

(
δ2(1 + E1)− 2(1− c) log(π2/π1)

2
√
δ2(1 + E2)

)

+π2Φ

(
δ2(1 + E3) + 2(1− c) log(π2/π1)

2
√
δ2(1 + E2)

)
,

where Ei’s are random variables representing the addition bias caused by

the local estimators µ
(l)
i ’s, satisfying Ei = Op(c), i = 1, 2, 3. When c > 0,

Âone may not have a constant limit as n→ ∞.

4. Simulations

In this section, we illustrate the performance of distributed LDA methods

by comparing it with centralized LDA. To begin with, we introduce the

setup in the simulation study. The training data is generated as follows.

We first withdraw independent and identically distributed observations of

size n from normal distributions Np(µ1,Σ) (class 1) and Np(µ2,Σ) (class

2) with each class having n/2 observations, and then distribute the samples

in each class equally at random on k machines. Moreover, we generate N/2

observations in each class as the testing set. In the following simulation, we
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set N = 1000, µ1 = (0, · · · , 0)⊤ ∈ R
p and µ2 = (0.2, · · · , 0.2)⊤ ∈ R

p. The

covariance matrix Σ ∈ R
p×p is generated as follows.

Example 1. (Toeplitz matrix) Σ = (σij) with σij = (2− |i− j|)+ for

1 ≤ i, j ≤ p.

Example 2. (Approximately sparse matrix) Σ = (σij) with σij =

0.8|i−j| for 1 ≤ i, j ≤ p.

We consider the following four cases.

Case 1a. Σ is from Example 1. Fix k = 5 and set p = ⌈n1/2⌉,

where ⌈a⌉ denotes the integral part of a constant a. It is seen that

γp = p/n→ 0 and γ
(l)
p = pk/n→ 0. Then we set n ∈ {100+ (i− 1)×

103, i = 1, · · · , 11}.

Case 1b. Σ is from Example 1. Set k = ⌈cn3/5⌉ and p = ⌈n2/5⌉, where

c ∈ {0.1, 0.3, 0.6}. It is seen that γp = p/n→ 0 and γ
(l)
p = pk/n→ c.

Then we let n ∈ {100 + (i− 1)× 103, i = 1, · · · , 11}.

Case 2a. Σ is from Example 2. Other settings are the same as Case

1a.

Case 2b. Σ is from Example 2. Other settings are the same as Case

1b.
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For each case, we perform distributed LDA and centralized LDA on

the training set to estimate the classification rule and compute relative

efficiency based on the testing set. Then we repeat the procedure 100 times

to calculate the average value of relative efficiency. In the following Figure

1, we report the average values of R̂two for two-round distributed LDA, and

those of R̂one for one-shot distributed LDA.

For Case 1a and Case 2a where c = 0, as n and p increase, both R̂two

and R̂one converge to 1 quickly, coinciding with theoretical findings, showing

that both distributed estimators perform as well as the centralized one.

Then we turn to Case 1b and Case 2b, where c > 0. When c is small (e.g.

c = 0.1), the values of R̂two and R̂one are very close to 1, even n is small

such as 100, and there is no significant difference between two estimators.

However, when c is large (e.g. c = 0.3 or 0.6), we see that R̂two is still very

close to 1 for large n, but R̂one is much worse than that of R̂two, especially

when c = 0.6. This supports our theoretical findings.

5. Discussion

In this paper, we study the Fisher’s linear discriminant analysis in dis-

tributed systems for binary classification, proposing two communication-

efficient estimators. The classification accuracy is calculated for distributed
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Figure 1: Relative efficiency of distributed LDA, where the red dotted line

is the theoretical limits of relative efficiency for distributed LDA.
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LDA. Using the technique of deterministic equivalents from random matrix

theory, we show the relative efficiency compared to centralized LDA can

reach 1, that is, the proposed distributed methods can achieve the same

classification accuracy as the centralized case under suitable conditions.

The numerical results support the theoretical findings. In the follow-up

work, we could consider multi-class LDA to solve more general classifica-

tion problems. Also, it is possible to relax the normality assumption on

sample distributions. Cai and Liu (2011) considered classification accuracy

for the elliptical distribution (Fang and Anderson, 1990, Chap. 1). Borrow-

ing this idea, one can extend the results of this paper to the case of elliptical

distribution, which will be the work in the future.

Supplementary Materials

The Supplementary Material contains the proofs of theoretical results stated

throughout the main manuscript.
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