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Abstract: An extension of quantile regression is proposed to model zero-inflated

outcomes, which have become increasingly common in biomedical studies. The

method is flexible enough to depict complex and non-linear associations between

covariates and quantiles of the outcome. Theoretical properties of the estimated

quantiles are established, and inference tools for assessment of quantile effects are

developed. Extensive simulation studies indicate that the novel method generally

outperforms the existing zero-inflated approaches and direct quantile regression in

estimation and inference of the heterogeneous effect of covariates. The approach

is applied to the NOrthern MAnhattan Study (NOMAS) data to identify risk

factors for carotid atherosclerosis measured by ultrasound carotid plaque burden.

Key words and phrases: Constrained post-estimation smoothing, Non-normal

asymptotic distribution, Quantile regression, Zero-inflated outcomes.
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1. INTRODUCTION

1. Introduction

Zero-inflated outcomes are common in disease etiology studies. One such

example is carotid plaque (an area of artery wall thickening), which mea-

sures carotid atherosclerosis, a proximate risk factor for stroke and car-

diovascular diseases. Figure 1a shows the frequency histograms of two

carotid plaque features, namely plaque area (plaqarea, in mm2) and plaque

echodensity (plaqden, in mm−3), measured by high-resolution ultrasounds

in 1462 participants of the NOrthern MAnhattan Study (Cheung et al.

2017). Specifically, plaque area measures the size of the plaque, and echoden-

sity indicates the texture of the plaque. When an individual does not have

detectable plaque, both of these variables would be zero. One objective of

the study is to understand how the potential determinants of cardiovascu-

lar risks, including demographics, health behaviors, and medical conditions,

are associated with the natural progress of carotid atherosclerosis.

A typical modeling approach for the zero-inflated outcomes assumes

that the distribution of the outcome is a mixture of a degenerated distri-

bution at zero and another parametric distribution(s), such as zero-inflated

Poisson (ZIP) regression (Lambert 1992) and generalized ZIP (GZIP) mix-

ture regression (Lim et al. 2014). More generally, Jorgensen (1987) con-

sidered a compound Poisson-gamma (CPG) distribution within the gener-
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(a) Frequency histograms of plaque area (plaqarea, left) and echodensity (plaq-

den, right) in carotid plaque data.
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(b) Empirical quantiles of plaque echodensity (plaqden) against systolic blood

pressure. The relationship is non-linear as the proportion of zeros changes with

systolic blood pressure.

Figure 1: Plots of carotid plaque data.
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1. INTRODUCTION

alized linear model framework. However, these parametric methods often

impose strong assumptions on the outcome distributions, which likely leads

to biased results and invalid inference.

The standard quantile regression (Koenker and Bassett 1978), though

more robust by avoiding parametric specifications and more versatile at de-

scribing heterogeneous effects at different quantile levels, is not directly

applicable to model zero-inflated outcomes for two reasons. First, the

feasibility of estimation and the validity of inference of quantile regres-

sion are based on the assumption that the conditional distribution of the

outcome is absolutely continuous, which is violated with the presence of

zero-inflation. Second, direct quantile regression implicitly assumes a con-

stant chance to observe a positive outcome, which is unlikely as the de-

gree of zero-inflation varies across subjects. Further, as the probability

that the outcome takes the value of zero varies according to the covariates,

the quantile function of the outcome depends on the covariates in a non-

linear fashion, which is not readily depicted in a regular quantile regression

model. To illustrate this point, Figure 1b plots the τth empirical quantiles

of echodensity (plaqden) by subgroups based on systolic blood pressure,

where τ = 0.10, 0.25, 0.50, 0.75, 0.90. It shows that individuals with lower

systolic blood pressure are associated with a greater proportion of zeros,
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1. INTRODUCTION

resulting in a non-linear relationship between the quantiles of echodensity

and systolic blood pressure. This characteristic will not be captured by a

linear quantile regression that ignores the point mass at zero.

In this paper, we propose to use a two-part modeling strategy that

uses logistic regression to model the probability of being positive, and lin-

ear quantile regression to model the positive part with the quantile levels

adjusted by subject-specific zero-inflation rates. The model generalizes the

parametric two-part regression approach by Duan et al. (1983) and the hur-

dle regression model by Mullahy (1986). Although conceptually straight-

forward, obtaining valid estimation and inference of the proposed two-part

quantile regression model is challenging for the two following reasons. First,

the neighboring quantile estimation around the change point from zero to

positive may have unbounded variance. The variance of the unadjusted es-

timated quantile process is inverse-proportional to local data density. When

approaching the change point, the local density of positive data could go

to zero, then the variance will be pushed to infinity. Second, estimation

and inference of the quantile covariate effect are complicated. The quantile

effect is a composite from the logistic and quantile regression components,

and it depends on both the value of the covariate of interest and other

covariates in the two-part model.
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1. INTRODUCTION

To address these challenges, we develop an algorithm to achieve a

consistent estimation of the conditional quantiles while circumventing the

unbounded variance at the quantile level where the conditional quantile

changes from zero to positive. The consistency and asymptotic distribu-

tion of the resulting estimated conditional quantile function are established.

To facilitate inferences, we define marginal quantile treatment effects and

develop inference tools to determine their statistical significance. Similar

applications of two-part quantile regression models have been used in Heras

et al. (2018) to estimate actuarial profiles and provide new insights for actu-

arial science. The work, however, does not involve any theoretical validation

and development. To the best of our knowledge, our work in this article

provides the first theoretically valid estimation and inference of two-part

quantile regression models for zero-inflated outcomes.

The rest of the paper is organized as follows. Section 2 provides the

details of our proposed model, the model-based conditional quantile esti-

mation, and its asymptotic properties. The model-based inference tool for

quantile treatment effects and the model-based prediction are discussed in

Section 2.3. We compare the finite sample performance of the proposed

method with uncorrected direct quantile regression and parametric ap-

proaches for zero-inflated outcomes through simulation studies in Section 3.
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2. PROPOSED METHODS

Section 4 presents a real application of the proposed method, studying

the effect of risk factors for carotid atherosclerosis measured by ultrasound

carotid plaque burden, compared with the same set of competing methods.

We close the paper with some concluding remarks in Section 5.

2. Proposed methods

2.1 Model

Suppose Y is a non-negative, zero-inflated outcome, and X is a vector of

covariates that may be associated with the quantiles of Y . Throughout the

paper, we denote QY (τ |X) as the τth conditional quantile of Y given X.

To estimate the distribution of the zero-inflated Y , we decompose its

conditional distribution as

F (Y |X) = P (Y = 0|X) + F (Y |X, Y > 0)P (Y > 0|X),

and then model the two components F (Y |X, Y > 0) and P (Y > 0|X)

separately. We first assume that the probability of observing a positive Y ,

P (Y > 0|X), follows a logistic regression model,

logit{P (Y > 0|X)} = X>γ, (2.1)

where γ is the true coefficient such that P (Y > 0|X) = exp(X>γ)/{1 +

exp(X>γ)}. Next, we assume that for any nominal quantile level τ ∈ (0, 1),
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2. PROPOSED METHODS

the conditional quantile of Y given Y > 0 is a linear function of X,

QY (τ |X, Y > 0) = X>β(τ). (2.2)

The model implies that the conditional quantile function X>β(τ) is non-

negative, while neither the covariate X nor the coefficient function β(τ) is

required to be positive. In addition, we assume that for any X,

lim
τ→0+

QY (τ |X, Y > 0) = 0, (2.3)

which ensures that the quantile function QY (τ |X) is continuous at 0. Note

that different subsets of the covariate profile X can be used as the two

covariates in Models (2.1) and (2.2) in practice.

Under Models (2.1) and (2.2), and Assumption (2.3), the τth condi-

tional quantile of Y given covariates X can be written as

QY (τ |X) = I{τ > 1− π(γ,X)} ·X>β ◦ Γ(τ ;X,γ), (2.4)

where π(γ,X) = P (Y > 0|X) is the probability of observing a positive Y

given the covariates X, while the function Γ(τ ;X,γ) :
(

1−π(γ,X), 1
)
→

(0, 1) maps the target quantile level τ of Y to the nominal quantile level τs

of Y |Y > 0 in Model (2.2). Specifically,

β◦Γ(τ ;X,γ) = β(τs), and τs = Γ(τ ;X,γ) = max

(
τ − {1− π(γ,X)}

π(γ,X)
, 0

)
.

(2.5)
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The equation (2.5) is derived from the fact that, for a τ > 1− π(γ,X),

τ = P{Y ≤ QY (τ |X)|X}

= {1− π(γ,X)}+ π(γ,X)P{Y ≤ QY (τs |X, Y > 0)|X, Y > 0}.

The proposed quantile model for zero-inflated outcome (2.4) is flexible

to accommodate non-linear heterogeneous quantile associations and a wide

range of outcome distributions by linear models only.

Suppose we have i.i.d. random samples {(xi, yi); i = 1, . . . , n} following

the conditional quantile model (2.4). We can estimate the coefficients γ

by logistic regression (i.e., regress I{yi > 0} against xi), and estimate the

quantile coefficient function β(τ) by regressing the positive yi’s against xi

using quantile regression at a sequence of quantile levels. Specifically, γ̂n

and β̂n(τ) are solutions to the objective functions,

γ̂n = argmax
γ

1

n

n∑
i=1

[
I(yi > 0) log

{ π(γ,xi)

1− π(γ,xi)

}
+ log{1− π(γ,xi)}

]
,

β̂n(τ) = argmin
β(τ)

1

n

n∑
i=1

ρτ{yi − x>i β(τ)}I(yi > 0)

= argmin
β(τ)

1

n

n∑
i=1

{yi − x>i β(τ)}{τ − I(yi − x>i β(τ) < 0)}I(yi > 0).

However, due to the change point at τ = 1 − π(γ,x), and the fact that

Var{β̂n(τ)} → ∞ when τ → 0+, it is nontrivial to combine γ̂n and β̂n(τ)

to obtain a consistent estimation of QY (τ |x) with bounded variance around
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the change point. In Section 2.2, we propose a piecewise estimator for the

conditional quantiles and establish its consistency and asymptotic distribu-

tion.

2.2 Estimation of QY (τ |x)

Recall that γ̂n and β̂n(τ) are estimated coefficients from Models (2.1) and

(2.2). The procedure to estimate the conditional quantile function QY (τ |x)

is implemented by the following steps:

Step 1. Estimate the probability of observing a positive Y given the

covariates x,

π(γ̂n,x) = exp(x>γ̂n) / {1 + exp(x>γ̂n)}.

Step 2. Let δ be a constant in (0, 1/2). Divide the support of the target

quantile levels (0, 1) of Y into the following three sub-intervals An, Bn and

Cn, such that (0, 1) = An ∪Bn ∪ Cn, and

An =
{
τ : 0 < τ < 1− π(γ̂n,x)

}
,

Bn =
{
τ : 1− π(γ̂n,x) ≤ τ ≤ 1− π(γ̂n,x) + n−δ

}
,

Cn =
{
τ : 1− π(γ̂n,x) + n−δ < τ < 1

}
.

Step 3. Estimate the quantile coefficients β̂n at the nominal quantile

level Γ(1−π(γ̂n,x)+n−δ;x, γ̂n) and do interpolation if the target quantile
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τ
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Figure 2: piecewise estimator of the conditional quantile function QY (τ |x).

level τ of Y belongs to Bn. While if τ is in Cn, directly estimate β̂n

at Γ(τ ;x, γ̂n). The estimator Q̂Y (τ |x), as shown in Figure 2, is then a

piecewise function defined by

Q̂Y (τ |x) = 0 · I{τ ∈ An}

+ x>β̂n ◦ Γ(1− π(γ̂n,x) + n−δ;x, γ̂n) · τ − {1− π(γ̂n,x)}
n−δ

· I{τ ∈ Bn}

+ x>β̂n ◦ Γ(τ ;x, γ̂n) · I{τ ∈ Cn}. (2.6)

The first and third pieces of the estimator (2.6) correspond to the two

parts in (2.4), while the second piece is a linear interpolation between zero

and the conditional quantile x>β̂n ◦ Γ(1 − π(γ̂n,x) + n−δ;x, γ̂n). The
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2. PROPOSED METHODS

width of the interpolation window, n−δ, is designed to converge slower than

the convergence rate of γ̂n, so that we do not need to estimate at the

problematic change point, 1 − π(γ̂n,x). In Section 2.2.1, we establish the

asymptotic properties of the estimator Q̂Y (τ |x) in (2.6).

2.2.1 Asymptotic properties of Q̂Y (τ |x)

In this subsection, we establish the asymptotic properties of Q̂Y (τ |x), where

x denotes a placeholder. We first make the following assumptions:

Assumption 1. Observations {(xi, yi); i = 1, . . . , n} are i.i.d. from a

joint distribution P , where xi is a p-dimensional vector of covariates.

Assumption 2. The conditional distribution function FY (·|x, Y > 0)

is absolutely continuous with a positive continuous density fY |Y >0(·|x) on

[0,∞).

Assumption 3. The conditional quantile function has the property

lim
τ→0+

QY (τ |x, Y > 0) = 0.

Assumption 4. The quantile coefficient function β(τ) is differentiable

at ∀ τ ∈ (0, 1), with bounded first derivative that supτ∈(0,1) β̇(τ)

= supτ∈(0,1)
dβ(t)

dt
|t=τ<∞.
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Assumption 5. ‖E(XX>)‖∞ <∞.

Assumption 2 is borrowed from Theorem 4.1 of Koenker (2005) to as-

sure the validity of linear quantile regression on the positive part, and it

incorporates Theorem 1 on Page 640 of Shorack and Wellner (1986) to help

establish limiting distribution at the change point. Assumption 3 is the

connectivity constraint stated in (2.3). Assumptions 2 and 3 together en-

sure a non-normal limiting distribution of Q̂Y (τ |x) at the special quantile

level τ = 1 − π(γ,x). Assumption 5 ensures that the following matrices

exist and are positive definite

D1,β(τ) = E
[
π(γ,X)fY |Y >0{X>β(τ) |X}XX>

]
, (2.7)

D0 = E
{
π(γ,X)XX>

}
, (2.8)

D1,γ = E
[
π(γ,X){1− π(γ,X)}XX>

]
. (2.9)

Both Assumptions 4 and 5 impose constraints on the quantities involved in

the theory of Q̂Y (τ |x) for any τ > 1−π(γ,x), ensuring a normal asymptotic

distribution. Then, we can have the following Theorem 1, the proof of which

is provided in the Online Supplementary Materials.

Theorem 1. Under Model (2.4) and Assumptions 1–5, for any given τ ∈

(0, 1), we have
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(i) Q̂Y (τ |x) is a consistency estimator, i.e., as n→∞,

Q̂Y (τ |x)→p QY (τ |x).

(ii) Q̂Y (τ |x) has different limiting distributions given different relation-

ships between τ and π(γ,x):

(a) If τ < 1− π(γ,x), Q̂Y (τ |x) is super-efficient, i.e., as n→∞,

√
n
(
Q̂Y (τ |x)− 0

)
→p 0.

(b) If τ = 1−π(γ,x), denote Q
′
Y (0|x, Y > 0) as the right derivative,

which is well-defined because β(τ) is right differentiable at 0, then

as n→∞,

√
n
(
Q̂Y (τ |x)−0

)
→d {1−π(γ,x)}

√
x>D−1

1,γx Q
′

Y (0|x, Y > 0)Z0I{Z0 > 0},

where D1,γ is defined in (2.9) and Z0 ∼ N(0, 1).

(c) If τ > 1− π(γ,x), as n→∞,

√
n
(
Q̂Y (τ |x)−QY (τ |x)

)
→d N(0, Σ1 + Σ2),

where

Σ1 = Γ(τ ;x,γ)
{

1− Γ(τ ;x,γ)
}
x>D−1

1,β◦Γ(τ ;x,γ)D0D
−1
1,β◦Γ(τ ;x,γ)x,
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Σ2 =
{

1− Γ(τ ;x,γ)
}2{

1− π(γ,x)
}2
x>D−1

1,γx

· x>β̇ ◦ Γ(τ ;x,γ) β̇ ◦ Γ(τ ;x,γ)>x,

and D1,β(τ),D0, and D1,γ are defined in (2.7), (2.8), and (2.9),

respectively.

Note that at the change point τ = 1 − π(γ,x), Q̂Y (τ |x) follows a

zero-inflated half-normal limiting distribution with a variance determined

by the variation from the logistic regression and the right derivative of the

conditional quantile at 0. For τ > 1− π(γ,x), the asymptotic distribution

is normal, while the two components of the asymptotic variance, Σ1 and

Σ2, are composites of variations from the logistic and quantile regressions.

Different from the standard asymptotic results of linear quantile regression,

the Hessian matrix, D1,β(τ) in (2.7), is evaluated on the conditional density

given Y > 0, and adjusted with the individual zero-inflation rate, π(γ,X).

The Jacobian matrix, D0 in (2.8), is also adjusted with the subject-specific

zero-inflation. As only the positive y’s contribute to the quantile regression

model fitting, π(γ,X) can be regarded as a propensity score and adjusts

the contribution of each observation in estimating the covariance matrix.
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2.2.2 Choice of δ

The estimation of the conditional quantile function Q̂Y (τ |x) involves a nui-

sance parameter δ. An inappropriate choice of δ could introduce bias into

the conditional quantile estimation via the linear interpolation on Bn. A

large δ that approaches 1/2 is preferred because a faster convergent inter-

polation area induces a smaller bias. However, a δ that is too large would

inflate the variance of the estimated quantile around the change point, lead-

ing to unstable estimation. Practically, we recommend choosing δ = 0.499.

If predicting future outcome values is of interest, we can do cross-

validation on a grid of potential δ’s to determine the optimal choice. Details

of prediction methods based on the proposed model and the corresponding

measure of prediction quality are discussed in Section 2.3.2.

2.2.3 Constrained post-estimation smoothing

The piecewise estimator outlined in (2.6) guarantees a consistent estima-

tion of the quantile function. The estimated function, however, is non-

smoothing. To achieve a smooth estimation, one can take advantage of the

constrained B-spline smoothing (COBS) introduced by He and Ng (1999).

We propose to estimate the linear quantile model (2.2) on a sequence

of kn evenly spaced quantile levels [1/(kn + 1), kn/(kn + 1)], where kn =
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o(n1/2), slightly finer than n−δ. Then, we construct β̂n(τ) as the linear

spline expanded from the estimated quantile coefficients. As shown by Wei

and Carroll (2009), β̂n(τ) is a uniformly consistent estimator of β(τ). Next,

we apply COBS to the resulting Q̃Y (τ |x, Y > 0) = x>β̂n(τ) and obtain the

smoothed Q̂Y (τ |x, Y > 0). After matching the kn nominal quantile levels

to the target quantile levels based on the estimated probability of observing

a positive Y , we can obtain the final estimate Q̂Y (τ |x).

Asymptotic properties of the smooth estimator are not discussed in

this paper. Its finite sample performance is not inferior to the non-smooth

version, which is shown in the simulation studies in Sections 3 and the real

data application in Sections 4.

2.3 Model-based inference and prediction

2.3.1 Average quantile effect and its estimation

Under the proposed two-part model, the covariates X could influence the

conditional quantiles of Y in two ways: changing the probability of observ-

ing a positive Y , and changing the quantiles of Y |Y > 0. Consequently,

as Model (2.4) shows, the quantile effect of a covariate Xj depends on the

actual value of Xj, and also varies by the levels of other covariates X(−j),

where X(−j) stands for the covariates excluding Xj. Hence we define the
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average quantile effect (AQE) of the covariate Xj by

∆τ (Xj;u, v) = EX(−j)

{
QY (τ |Xj = u,X(−j))−QY (τ |Xj = v,X(−j))

}
.

(2.10)

The AQE, ∆τ (Xj;u, v), is the marginal change of the τth quantile of Y due

to the change of Xj from v to u. When Xj is the treatment assignment,

coded as 1 for treatment and 0 for placebo, we have the average quantile

treatment effect (AQTE),

∆τ (Xj; 1, 0) = EX(−j)

{
QY (τ |Xj = 1,X(−j))−QY (τ |Xj = 0,X(−j))

}
,

(2.11)

which is the expected quantile treatment effect in the target population.

A natural sample estimator of AQE is

∆̂τ (Xj;u, v) =
1

n

n∑
i=1

{
Q̂Y (τ |Xj = u,x

(−j)
i )− Q̂Y (τ |Xj = v,x

(−j)
i )

}
,

(2.12)

where Q̂Y (·) is the estimated conditional quantile function defined in (2.6).

In what follows, we provide the asymptotic properties of ∆̂τ (Xj;u, v). We

first make the following assumption:

Assumption 6. The coefficient functions β◦Γ(τ ;Xj,X
(−j),γ) are smooth

functions of X(−j) with compact supports.
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Then, we have the following Theorem 2, the proof of which is deferred

to the Online Supplementary Materials.

Theorem 2. At a given quantile level τ ∈ (0, 1), ∆̂τ (Xj;u, v) is the estima-

tor constructed in (2.12) for the AQE defined in (2.10). Under Assumptions

1–6, there exists a tight process G(X(−j)) indexed by X(−j) such that

√
n
(

∆̂τ (Xj;u, v)−∆τ (Xj;u, v)
)
→d

∫
G(X(−j))dPX(−j) .

If the distribution PX(−j) ofX(−j) is absolutely continuous w.r.t. the Lebesgue

measure, we have

√
n
(

∆̂τ (Xj;u, v)−∆τ (Xj;u, v)
)
→d

∫
G(X(−j))dPX(−j) = N(0, σ2),

where

σ2 =

∫ ∫
Cov{G(X(−j)), G(X∗(−j))} dPX(−j) dPX∗(−j) ,

with X(−j) and X∗(−j) are i.i.d. under PX(−j).

Although the asymptotic variance, σ2, can be decomposed into tractable

components, estimating it directly is complicated. Practically, we use paired

bootstrap to numerically construct bootstrap percentile interval and then

conduct hypothesis testing for the marginal covariate effect accordingly.
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2.3.2 Prediction

Accurate clinical predictions are of great importance and interest in medical

applications. Due to its percentile interpretation, conditional quantile func-

tion can be conveniently used to construct prediction intervals. Let xnew be

the covariate profile of a new patient. We can construct the (1−α)× 100%

level prediction interval of his/her outcome by

[
Q̂Y (α/2|xnew), Q̂Y (1− α/2|xnew)

]
,

where Q̂Y (·) is the estimated conditional quantile function defined in (2.6).

In addition, we propose to use conditional median,

m̂Y |xnew = Q̂Y (0.5|xnew),

as the predicted value. Conventionally, the predicted value is often defined

as the estimated conditional mean given xnew, which can be estimated by in-

tegrating the conditional quantile function, i.e., µ̂Y |xnew =
∫ 1

0
Q̂Y (τ |xnew) dτ .

However, due to the zero-inflated nature of the outcome, conditional median

would be a better choice. For example, if a subject has over 80% chance

of obtaining a zero outcome given his/her covariate profile, zero (the con-

ditional median) could be a more sensible prediction than the mean-based

one. Consequently, to achieve the optimal prediction, we can use cross-

validations with some chosen measures to select covariates and the nuisance
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parameters δ.

3. Simulation

3.1 Simulation settings

In this section, we present a numerical study to illustrate the finite sample

performance of the proposed methods in comparison with direct quantile

regression and existing parametric models for zero-inflated outcomes. We

generate the simulated data in the context of the carotid plaque data with

echodensity (plaqden) as outcome and male and systolic blood pressure

(systolic) as covariates. For each sample, we first generate the discrete

covariate, male, from Bernoulli(0.5), and the continuous covariate, systolic,

from N(150, 152). We then generate a binary indicator D from a Bernoulli

trial with the success probability

P (D = 1|X) = π(γ,X) =
exp(−1.92 + 0.19 male + 0.02 systolic)

1 + exp(−1.92 + 0.19 male + 0.02 systolic)
,

where X = (male, systolic)>, and the parameters γ = (−1.92, 0.19, 0.02)>

were estimated based on carotid plaque echodensity of the NOMAS data.

For a sample with D = 1, we generate plaqden from the conditional quantile

function

Qplaqden(τ |X, plaqden > 0) = β0(τ) + β1(τ) male + β2(τ) systolic,
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where the true coefficient functions, β(τ), are estimated based on echoden-

sity again and plotted in Figure S1 of Online Supplementary Materials.

Specifically, we randomly draw a variable U from U(0, 1), and then gener-

ate a positive value of plaqden by β0(U) + β1(U) male + β2(U) systolic. For

a sample with D = 1, we assign the value of plaqden to be 0. We generate

n = 500 random samples in one dataset, and repeat the simulation process

1000 times.

We compare the proposed methods to the following existing approaches

— (1) direct quantile regression, (2) zero-inflated Poisson regression (ZIP),

(3) hurdle regression, and (4) compound Poisson-gamma regression (CPG).

Direct quantile regression assumes the outcome to be absolutely continu-

ous. When the data contains a probability mass at zero, the estimation

algorithm often fails to converge. To circumvent this numerical difficulty,

we add a small perturbation (∼ N(0, 10−14)) to the zero-valued outcomes

and apply linear quantile regression to the perturbed data directly. To use

ZIP/hurdle model designed for count data, we round the outcomes to inte-

gers before estimation. Though the semi-continuous setting does not favor

ZIP/hurdle model, we select them as comparisons since they represent the

widely-applied parametric mixture/two-part model, and the rounding won’t

substantially affect their results.
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3.2 Estimation of conditional quantile functions

In this section, we compare the estimation accuracy of conditional quan-

tiles by the various methods. We estimate the quantile functions given

10 covariate profiles, which are formed by male ∈ {0, 1} and systolic ∈

{130.78, 139.88, 150.00, 160.12, 169.22} (the 0.10th, 0.25th, 0.50th, 0.75th,

and 0.90th empirical quantiles of systolic blood pressure in the NOMAS

data). We consider three measures to assess the estimation performance:

RIMSEQ̂ =

∫
E{Q̂Y (τ |X)−QY (τ |X)}2dτ

/∫
QY (τ |X)2dτ ,

RIBias2
Q̂

=

∫
{E Q̂Y (τ |X)−QY (τ |X)}2dτ

/∫
QY (τ |X)2dτ ,

RIVarQ̂ =

∫
E{Q̂Y (τ |X)− E Q̂Y (τ |X)}2dτ

/∫
QY (τ |X)2dτ ;

where RIMSEQ̂ is the relative integrated mean squared error, RIBias2
Q̂

is

the relative integrated bias-squared, and RIVarQ̂ is the relative integrated

variance.

Table 1 reports RIMSEQ̂, RIBias2
Q̂

, and RIVarQ̂ of the estimated condi-

tional quantile functions using the proposed estimation with smoothing,

proposed estimation without smoothing, direct quantile regression, and

competing parametric approaches, based on the 10 sets of covariate val-

ues. Generally, the proposed methods have much smaller biases than direct

quantile regression. The reduction in bias by the non-smooth estimation
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is 0.24% on average across the 10 cases (0.10% vs 0.84%, 0.05% vs 0.33%,

. . ., 0.03% vs 0.33%). By the smooth estimation, the mean reduction of

bias is also 0.24% (0.09% vs 0.84%, 0.04% vs 0.33%, . . ., 0.04% vs 0.33%).

Note that the proposed methods show more noticeable advantages when

systolic is assumed with more extreme values. For example, with (male,

systolic)=(0, 130.78), the bias of the non-smooth proposed estimator is

0.10%, while that of the direct method is 0.84%, then the reduction in

bias is 0.74%. However, with (male, systolic)=(1, 150.00), the reduction

is only 0.08% (0.03% vs 0.11%). Another remark is that while the pro-

posed non-smooth estimation leads to larger variances, the additional post-

estimation smoothing can reduce the variance by approximately 0.08% in

average (1.07% vs. 1.19, 0.64% vs. 0.73%, . . ., 0.44% vs. 0.52%).

We also note that the bias of the direct method is more evident around

the change point, i.e., the very τ where the quantile function QY (τ |X)

changes from 0 to positive. To investigate it in detail, we evaluate RIMSEQ̂,

RIBias2
Q̂

, and RIVarQ̂ in an interval of half-length of 0.1 around the change

point. The results are summarized in Table S1 in the Supplementary Ma-

terials. As shown in the Table S1, the bias in the neighborhood of the

change point is remarkably reduced by the proposed methods compared to

the direct approach, especially for the covariates with more extreme values.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



3. SIMULATION

Table 1: Summary of RIMSE(%), RIBias2(%) and RIVar(%) of the esti-

mated conditional quantile functions of echodensity on the entire QY (τ |X).

Proposed (smooth) Proposed (non-smooth) Direct

( gender, systolic) RIMSE RIBias2 RIVar RIMSE RIBias2 RIVar RIMSE RIBias2 RIVar

(0, 130.78) 1.16 0.09 1.07 1.28 0.10 1.19 1.45 0.84 0.61

(0, 139.88) 0.68 0.04 0.64 0.77 0.05 0.73 0.79 0.33 0.45

(0, 150.00) 0.48 0.03 0.45 0.55 0.03 0.52 0.56 0.18 0.39

(0, 160.12) 0.48 0.03 0.45 0.56 0.03 0.53 0.57 0.14 0.43

(0, 169.22) 0.58 0.04 0.54 0.68 0.04 0.64 0.81 0.27 0.54

(1, 130.78) 0.91 0.07 0.84 0.99 0.07 0.92 0.85 0.28 0.57

(1, 139.88) 0.55 0.04 0.51 0.61 0.04 0.57 0.61 0.21 0.40

(1, 150.00) 0.39 0.03 0.36 0.44 0.03 0.41 0.43 0.11 0.32

(1, 160.12) 0.39 0.03 0.36 0.45 0.03 0.42 0.47 0.12 0.35

(1, 169.22) 0.47 0.04 0.44 0.56 0.03 0.52 0.79 0.33 0.46

ZIP Hurdle CPG

(gender, systolic) RIMSE RIBias2 RIVar RIMSE RIBias2 RIVar RIMSE RIBias2 RIVar

(0, 130.78) 5.94 3.65 2.29 5.94 3.65 2.29 6.21 5.84 0.37

(0, 139.88) 5.43 3.81 1.61 5.43 3.81 1.61 5.59 5.32 0.27

(0, 150.00) 5.18 3.90 1.27 5.18 3.90 1.27 5.16 4.94 0.22

(0, 160.12) 5.09 3.83 1.26 5.09 3.83 1.26 4.97 4.74 0.23

(0, 169.22) 5.11 3.73 1.38 5.11 3.73 1.38 4.99 4.69 0.30

(1, 130.78) 6.88 4.85 2.03 6.88 4.85 2.03 4.59 4.23 0.36

(1, 139.88) 6.49 5.05 1.45 6.49 5.04 1.45 4.10 3.83 0.27

(1, 150.00) 6.31 5.18 1.13 6.31 5.18 1.13 3.77 3.55 0.21

(1, 160.12) 6.25 5.16 1.09 6.25 5.16 1.09 3.63 3.40 0.23

(1, 169.22) 6.26 5.10 1.17 6.26 5.10 1.17 3.71 3.40 0.30

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



3. SIMULATION

The parametric approaches have a generally poor performance, which

is even worse than that of the direct quantile regression (Table 1 and S1).

This is because the performance of parametric methods depends on whether

the model assumptions are satisfied. Neither the mixture (or combination)

of zeros and Poisson distribution nor the compound Poisson-gamma distri-

bution is an appropriate model for echodensity in this simulation.

3.3 Point and interval estimations of AQTE

In this section, we compare the point and interval estimates of the average

quantile treatment effect (AQTE) of being male by the various methods.

With each simulated dataset, the point estimate of AQTE is computed as

stated in (2.12). Next, in each of the 1000 simulation runs, we conduct

500 paired bootstraps and construct the (1 − α) × 100% level bootstrap

percentile confidence interval of the estimated AQTE

[
∆̂(B)
τ (male; 1, 0)α/2, ∆̂

(B)
τ (male; 1, 0)1−α/2

]
,

with the estimated AQTE based on each of the bootstrapped datasets

∆̂(B)
τ (male; 1, 0) (3.13)

=
1

n

n∑
i=1

{Q̂(B)
plaqden(τ |male = 1, systolic

(B)
i )− Q̂(B)

plaqden(τ |male = 0, systolic
(B)
i )}.
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Note that Theorem 2 in Section 2.3.1 guarantees a normal limiting distri-

bution of the estimated AQTE since systolic follows a continuous distribu-

tion. Here, we set α = 0.10 and use a grid of representative quantile levels,

τ = 0.10, 0.25, 0.50, 0.75, 0.90. For the parametric approaches, we can esti-

mate any quantity of the conditional distribution based on the estimated

parameters, together with the instance, (male=0 or 1, systolic
(B)
i ). There-

fore, by ZIP, hurdle, and CPG regression models, we can also estimate the

conditional quantiles and estimate the AQTE as stated in (3.13). We use

three measures to evaluate the inference performance regarding AQTE: (1)

the bias of the average estimate of AQTE, (2) the coverage rate of the 90%

bootstrap percentile confidence interval, and (3) the average length of the

confidence interval.

As Table 2 shows, the proposed methods provide the most accurate

estimates of AQTEs on all of the five quantiles. In addition, their coverage

rates are all close to the nominal level, 90%. Though the direct quantile

regression gives the best estimate, 0, at τ = 0.10, its coverage rate is 0%.

This reflects the fact that the direct method cannot capture the different

levels of zero-inflation between different covariate profiles at lower quantiles

of the outcome. The coverage rates of ZIP and hurdle regression at higher

quantiles are remarkably lower than 90%, which signifies their limitation in
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Table 2: Summary of the average estimate, bias, coverage rate (%) of the

90% bootstrap percentile confidence interval and the average length of the

interval for the AQTE of male on the τth quantile of echodensity.

Proposed Proposed Direct ZIP Hurdle CPG

τ AQTE Measure (smooth) (non-smooth)

Estimate 0.04 0.04 0.00 0.35 0.35 -1.42

0.10 0.0036 Bias 0.04 0.04 0.00 0.35 0.35 -1.42

Coverage 85.80 85.80 0.00 86.70 86.70 86.30

Length 0.67 0.77 0.00 4.36 4.36 15.23

Estimate 6.52 6.51 5.94 13.72 13.72 -0.81

0.25 7.5189 Bias -1.00 -1.01 -1.58 6.20 6.20 -8.33

Coverage 89.10 89.30 89.00 89.80 89.80 34.30

Length 36.34 39.49 39.47 64.37 64.37 8.89

Estimate -6.48 -6.53 -7.00 -4.36 -4.36 -1.19

0.50 -6.6304 Bias 0.15 0.10 -0.37 2.27 2.27 5.44

Coverage 90.60 90.70 91.60 82.10 82.10 62.40

Length 15.86 15.49 14.11 11.16 11.16 13.12

Estimate -3.22 -3.26 -3.23 -5.14 -5.14 -1.57

0.75 -2.9669 Bias -0.25 -0.29 -0.26 -2.17 -2.17 1.40

Coverage 91.60 92.60 93.10 81.10 81.10 83.50

Length 11.73 11.33 11.74 10.58 10.58 16.75

Estimate -1.38 -1.55 -1.57 -5.46 -5.46 -1.88

0.90 -0.9258 Bias -0.45 -0.62 -0.64 -4.53 -4.53 -0.95

Coverage 90.20 93.40 93.80 60.10 60.10 89.20

Length 13.21 16.55 17.03 10.89 10.89 19.86
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describing the extreme tails of outcome distributions. CPG model produces

the worst coverage rates when τ = 0.25, 0.50. Although the coverage of

ZIP and hurdle regression at lower quantiles and that of CPG model at

extreme quantiles are close to the nominal rate, the average lengths of the

intervals are much wider than those of the proposed approaches. Thus, to

make inference based on AQTE, the proposed quantile regression model

outperforms direct quantile regression and existing parametric methods in

all respects.

4. Analysis of the carotid plaque data

In this section, we apply the proposed method to analyzing the motivating

carotid plaque data, NOMAS, presented in Section 1, to examine how var-

ious risk factors affect carotid atherosclerosis. The risk factors considered

include high-density lipoprotein, triglyceride, low-density lipoprotein, race

and ethnicity, diabetes, blood pressure, smoking status, higher education,

body mass index, etc. We present the estimated average quantile effects

of the risk factors in Section 4.1, the model fitness in Section 4.2, and the

prediction performance in Section 4.3.
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4.1 Estimated AQEs

We apply the proposed quantile regression (without smoothing) to study the

carotid plaque echodensity (plaqden) and estimate the risk factors’ AQEs

following (2.12) in Section 2.3.1. The estimated AQEs for individual covari-

ates are plotted in Figure 3. The black solid and red dashed lines represent

the quantile functions of echodensity given two distinctive covariate values

of interest. The gray area indicates the range of quantile levels where the

corresponding AQE reaches the 95% pointwise significance. As shown in

Figure 3, race and ethnicity, diabetes, systolic and diastolic blood pressure,

smoking status, body mass index, and glomerular filtration rate signifi-

cantly impact echodensity across all quantile levels. Moreover, the effects

vary with the quantile level.

For example, although it is well-known that higher systolic blood pres-

sure is associated with a higher value of plaque echodensity, the quantile-

specific effects provide a better understanding of how systolic blood pressure

affects the texture of the plaque. The most considerable difference between

the two levels (120 mmHg vs. 170 mmHg) is around the median. For the

patients whose systolic blood pressures are 120 mmHg, 50% of them have

their echodensity controlled below 20, while 50% of the patients with sys-

tolic blood pressure 170 mmHg have echodensity over 80. Such a difference
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Figure 3: Estimated AQEs of selected covariates by the proposed method

(without smoothing) on all quantiles of echodensity, which are presented

as the differences between the red dashed and black solid lines. Significant

AQEs are highlighted by shaded area.
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becomes smaller as the quantile level increases, suggesting that the risk of

extreme plaque burden is comparable between the two levels. Our analysis

also reveals that the risk of having a positive echodensity is different be-

tween the two levels. Among individuals with systolic blood pressure 170

mmHg, there is a substantial likelihood of having positive plaque, while

20% of those with systolic blood pressure 120 mmHg are expected to have

zero plaque. Direct quantile regression would miss such a difference. To

illustrate it, we plot the estimated AQEs of systolic blood pressures using

the proposed method and the direct quantile method, respectively (Figure

S2 in Supplementary Materials). As expected, the direct quantile method

shows no difference in the risk of positive plaque and consequently under-

estimates the risk of plaque burden among the patients with systolic blood

pressure 170 mmHg. On the other hand, though the parametric methods

distinguish the risk of taking positive plaque, they provide a biased ap-

proximation of the tail events. As presented by Figure S2, ZIP and hurdle

model underestimate the risk of systolic blood pressure for the severe pa-

tients who have plaque accumulated more than 70% individuals in the 120

or 170 mmHg groups, while the CPG model consistently overestimates the

risk. To validate the inference by the proposed method, we check the model

fitness in the next section.
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4.2 Goodness-of-fit

To measure the goodness-of-fit of a model, we simulate the outcomes based

on the estimated model, and compare the simulated outcomes with the

observed ones in data using histograms and Q-Q plots. If a model fits the

data well, we would expect the distributions of the simulated outcomes

and the observed ones to be comparable. Such a visual goodness-of-fit

assessment has been used in Heyman et al. (1992), and it is an effective

way to illustrate the goodness-of-fit of quantile models.

Figure S3a in Supplementary Materials shows that the proposed meth-

ods, with and without smoothing, provide the best fit to the echodensity

data. The distributions of the simulated outcomes under parametric models

are very different from the observed. Although the direct quantile regression

provides a proper fit at the upper tail of the outcome distribution, it misses

the lower tail (where the outcome tends to take the zero value). Interest-

ingly, regarding the plaque area as the outcome (Figure S3b in Supplemen-

tary Materials), direct quantile regression also misses the higher tail. This

difference indicates that the two features, plaque echodensity and plaque

area, have quite different distributions, and that the proposed method is

robust and advantageous regardless of the outcome distributions.
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4.3 Prediction

In this section, we use 5-fold cross-validation to compare the prediction per-

formance of the various methods. As outlined in Section 2.3.2, we predict

an outcome by the estimated conditional median given the covariate profile

and construct the 95% prediction upper bound by the 0.95th conditional

quantile. We use three measures to assess the prediction performance: (1)

the correctly predicted rate for zero outcomes, (2) the coverage rate of 95%

prediction upper bound, and (3) its average length for positive outcomes.

Because of the small perturbation added to the zero values, direct quan-

tile regression may predict negative values. We then treat the negative

predictions as zeros.

As shown by Table S2 in Supplementary Materials, the proposed meth-

ods outperform direct quantile regression in predicting the zero outcomes

of the two plaque burden features. The performance of the parametric ap-

proaches strongly relies on how well the parametric assumptions hold for

the data. Although ZIP and hurdle regression work equally well as the

proposed methods in predicting zeros, their 95% upper bounds have actual

coverages of 82% and 84% for echodensity and plaque area, respectively.

CPG model correctly predicts a majority of the zeros for plaque area (Ta-

ble S2, bottom), but it demonstrates poor performance in predicting the
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zeros for echodensity (Table S2, top). In conclusion, the proposed methods

deliver reasonably good predictions for both zero and positive outcomes of

echodensity and plaque area.

5. Conclusion and discussion

This paper developed a model-based estimation algorithm, proposed a con-

ditional quantile inference tool, and derived the estimation and inference’s

theoretical results for a two-part quantile regression model addressing zero-

inflated outcomes. Though the model has been used in several applications,

this paper provides the first effort to investigate its theoretical properties

and develop valid inference tools.

The piecewise estimation of the conditional quantile proposed in this

paper involves a data-driven interpolation window around the change point

from zero to positive. It is capable of handling features that are either zero

or greater than a certain value. If that threshold T is known by some do-

main knowledge, we can interpolate to connect the endpoint value T and

the estimated quantile x>β̂n◦Γ(1−π(γ̂n,x)+n−δ;x, γ̂n). If T is unknown,

it is robust to regard the value at the left end to be 0 for interpolation, and

the resulting estimator in (2.6) is asymptotic consistent at any fixed quan-

tile level by Theorem 1. When the τ of interest is close to the problematic
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change point where the conditional quantile changes from zero to positive,

the limiting distribution is a zero-inflated half-normal, and the inference

requires special care. If the target τ is beyond the change point, the es-

timated conditional quantile is asymptotically normal, and the inference

can be made in standard ways. While it is not straightforward to make

inference about covariate effects in a two-part model, our average quantile

effect (AQE) provides an effective way to quantify the quantile treatment

effects, conduct corresponding hypothesis testing, and construct confidence

intervals. In addition, we provided tools for model-based prediction.

Through simulation studies and analysis of the carotid plaque data,

we have shown that the proposed methods provide more accurate and ro-

bust estimation, better goodness-of-fit, more accurate prediction, and more

accurate and comprehensive inference, compared with the direct quantile

regression and existing parametric zero-inflated methods.

With a limited sample size, one possible concern is that the estimated

conditional quantile function XTβ(τ) could be negative or non-monotone

for some X values and some quantile levels, especially when they are out-

lying in the covariate space, contradicting the fact that Y is non-negative.

When it occurs, one could follow similar approaches in Chernozhukov et al.

(2010) to rearrange the estimated quantiles to ensure monotonicity and non-
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negativity. Chernozhukov et al. (2010) has shown that, due to the root-n

convergence of quantile estimates, such post-estimation rearrangement does

not affect the asymptotic behaviors of quantile estimations under fairly mild

conditions. In applications where non-negativity must be ensured for allX,

one could assume a linear quantile regression model on log(Y ). However,

the theories need to be carefully re-derived for such transformation quan-

tile regressions. To ensure connectivity between zero and positive quantiles

for any X, β(τ) should go to negative infinity around the change point,

making the inference challenging. In fact, with adequate samples, even

though one does not use post-estimation rearrangement or model log(Y ),

the proposed model ensures that the resulting conditional quantile function

is non-negative almost surely. We have theoretically and numerically shown

that the estimated quantile function will converge to the true value as the

sample size increases.

There are various interesting directions in which to extend the proposed

methods. Although the main focus of this paper is zero-inflated outcomes,

the proposed methods can be easily extended to model outcomes with point

masses at multiple values. In addition, while the inference tools developed

here based on the parametric logistic model and the linear quantile model

for the positive part, it will be of interest to examine inference with the two
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models being replaced with semi-parametric or complete non-parametric

models. Finally, interval estimation in this article is based on pointwise

inference, while simultaneous inference is possible by incorporating a mini-

mum p-value procedure (Lee et al. 2012), which determines statistical sig-

nificance based on the smallest p-value across all the quantile levels, and

uses a resampling procedure to derive the threshold. One can also construct

a joint χ2 test statistics to test whether the logistic coefficients and quantile

coefficients at multiple quantile levels equal to zero simultaneously.

Supplementary Materials

The Online Supplementary Materials contain the proofs of Theorems 1

and 2, and additional figures and tables.
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