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Abstract:

During the last decades, a large variety of models have been proposed for count

time series, where the integer-valued autoregressive moving average (ARMA)

and integer-valued generalized autoregressive conditional heteroskedasticity (IN-

GARCH) models are the most popular ones. However, while both models lead

to an ARMA-like autocorrelation function (ACF), the attainable range of ACF

values is much more restricted and negative ACF values are usually not possible.

The existing log-linear INGARCH model allows for negative ACF values, but the

linear conditional mean and the ARMA-like autocorrelation structure are lost.

To resolve this dilemma, a novel family of INGARCH models is proposed, which

uses the softplus function as a response function. The softplus function behaves

approximately linear, but avoids the drawback of not being differentiable in zero.

Stochastic properties of the novel model are derived. The proposed model indeed

exhibits an approximately linear structure, which is confirmed by extensive sim-

ulations, and which makes its model parameters easier to interpret than those of

a log-linear INGARCH model. The asymptotics of the maximum likelihood esti-

mators for the parameters are established, and their finite-sample performance is
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analyzed via simulations. The usefulness of the proposed model is demonstrated

by applying it to three real-data examples.

Key words and phrases: count time series; INGARCH models; maximum likeli-

hood estimation; negative autocorrelation; softplus link

1. Introduction

During the last decades, a large variety of models have been proposed for

count time series, i. e., for quantitative time series, where the range con-

sists of non-negative integers from the set N0 = {0, 1, . . .}; recent surveys

are provided by Weiß (2018, 2021). Many count time series models are

inspired by the traditional autoregressive moving average (ARMA) mod-

els for real-valued time series. Some of these adapt the ARMA recursion

to the integer case by using so-called “thinning operations”; the resulting

models are commonly referred to as the integer-valued ARMA (INARMA)

models. Others use a regression approach to ensure a linear conditional

mean; despite their close relation to ARMA models, these models are of-

ten referred to as the integer-valued generalized autoregressive conditional

heteroskedasticity (INGARCH) models, also see the discussion on p. 74 in

Weiß (2018). However, while both INARMA and INGARCH models lead

to an ARMA-like autocorrelation structure (i. e., their autocorrelation func-
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tion (ACF) satisfies a set of Yule–Walker equations), the attainable range

of ACF values is often much more restricted than for the ordinary ARMA

models, because negative ACF values are usually not possible. The latter is

due to parameter constraints, which, in turn, result from the constraint to

non-negative outcomes (counts) for the process. If negative ACF values are

required, conditional regression models with a log link might be used, but

then the linear conditional mean and thus the ARMA-like ACF are lost.

To resolve this dilemma, we propose a novel family of conditional regres-

sion models for stationary count processes (Xt)Z, which uses the softplus

function to link the conditional mean Mt = E(Xt | Xt−1, . . .) to a linear

expression in past observations Xt−k and past conditional means Mt−l. The

softplus function has been proposed by Dugas et al. (2000), being defined

as s(x) = ln(1 + expx) for all x ∈ R. It has been used in a regression

context by Zhang & Zhou (2018), Zhao et al. (2018), Wiemann & Kneib

(2019). Its increasing popularity is due to the following properties:

• s is a truly positive, continuous and differentiable function on whole R;

• except a region around zero, it closely approximates the rectified linear

unit function, ReLU(x) = max{0, x}.

In contrast to the ReLU function, the softplus function s(x) avoids the
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Figure 1: Plots of response functions (against x): softplus s(x) vs. ReLU(x),

logit−1(x), exp(x) in (a); different softplus functions sc(x) in (b).

drawback of not being differentiable in zero while behaving approximately

linear for x > 0. These properties are illustrated in Figure 1 (a), where

s(x) is compared to ReLU(x), and also to the common response functions

(inverse link functions) logit−1(x) =
(
1 + exp(−x)

)−1
and exp(x). Note

that s′(x) = logit−1(x).

The softplus function can be generalized by introducing an additional

adjustment parameter c > 0, defining sc(x) = c ln
(
1 + exp(x/c)

)
(see Mei

& Eisner, 2017), which controls the deviation between sc(x) and ReLU(x).

We have s1(x) = s(x) (so c = 1 is the default choice) and limc→0 sc(x) =

ReLU(x), as illustrated by Figure 1 (b). Furthermore, it holds that

s′c(x) =
exp(x/c)

1 + exp(x/c)
, s′′c (x) =

1

c

exp(x/c)(
1 + exp(x/c)

)2 . (1.1)

In Section 2, we briefly survey the INGARCH models with their linear
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conditional mean. In Section 3, we propose a new type of INGARCH

model, which uses the softplus function as a response function. Stochastic

properties are derived, and it is shown that the softplus INGARCH model

indeed exhibits an approximately linear structure. In Section 4, we de-

rive the asymptotics of the maximum likelihood estimators for the softplus

INGARCH’s model parameters, and we analyze their finite-sample per-

formances with simulations. Section 5 demonstrates the usefulness of the

novel softplus INGARCH model by applying it to three real-data examples.

Finally, Section 6 concludes and outlines issues for future research.

2. About INGARCH models

The INGARCH(p, q) model with p ≥ 1 and q ≥ 0 requires the conditional

mean Mt = E(Xt | Xt−1, . . .) to be a linear expression in the last p obser-

vations and the last q conditional means (“feedback terms”), i. e.,

Mt = a0 +
∑p

i=1 aiXt−i +
∑q

j=1 bjMt−j. (2.1)

Since the mean of a count random variable is a positive real number, the con-

straints a0 > 0 and a1, . . . , ap, b1, . . . , bq ≥ 0 have to hold. The INGARCH

model is fully specified once the type of the conditional distribution of Xt

given Xt−1, . . . has been fixed.
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The default choice is a conditional Poisson distribution, i. e., Xt, con-

ditioned on Xt−1, . . ., is Poisson distributed according to Poi(Mt). This

model has been discussed by several authors including Ferland et al. (2006),

Fokianos et al. (2009), Weiß (2009). Provided that a• + b• :=
∑p

i=1 ai +∑q
j=1 bj < 1, the (Poisson) INGARCH process exists, is strictly station-

ary with finite first- and second-order moments (Ferland et al., 2006). For

p = q = 1, all moments exist (Ferland et al., 2006), and mixing properties

have been established by Neumann (2011). Because of the linear conditional

mean, the unconditional mean equals

µ =
a0

1−
∑p

i=1 ai −
∑q

j=1 bj
, (2.2)

and variance and autocovariances can be computed by solving a set of Yule–

Walker equations (Weiß, 2009):

γ(0) = µ + γM(0), γM(0) =
p∑
i=1

ai γ(i) +
q∑
j=1

bj γM(j),

γ(k) =
p∑
i=1

ai γ(|k − i|) +
min {k−1,q}∑

j=1

bj γ(k − j) +
q∑
j=k

bj γM(j − k),

γM(k) =
min {k,p}∑
i=1

ai γM(|k − i|) +
p∑

i=k+1

ai γ(i− k) +
q∑
j=1

bj γM(|k − j|),

(2.3)

for k ≥ 1, where γ(h) := Cov(Xt, Xt−h) and γM(h) := Cov(Mt,Mt−h).

Despite the fact that the conditional Poisson distribution is equidispersed

(variance equals the mean), the unconditional distribution exhibits overdis-

persion, i. e., the dispersion ratio σ2/µ > 1. In the purely autoregressive
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case of an INARCH(p) model (i. e., if q = 0), the Yule–Walker equations

(2.3) imply that the ACF ρ(h) := Corr(Xt, Xt−h) satisfies

ρ(k) =
∑p

i=1 ai ρ(|k − i|). (2.4)

So except the restriction to non-negative coefficients ai, Equation (2.4) is

identical to the Yule–Walker equations of an ordinary AR(p) model. Con-

sequently, the model order of an INARCH model can be identified by using

the partial ACF (PACF) ρp(h). Generally, it should be pointed out that

the name “INGARCH” for the models defined by (2.1) is a bit misleading,

also see the discussion on p. 74 in Weiß (2018). In contrast to the ordinary

GARCH models, the INGARCH models are conditionally linear, which also

leads to the Yule–Walker type equations (2.3) and (2.4) for the ACF.

Example 1. For the special case of an INGARCH(1, 1) model, the mean

is given by µ = a0/(1 − a1 − b1), see (2.2). Furthermore, (2.3) implies the

variance σ2 = γ(0) to be equal to

σ2 =
1− (a1 + b1)

2 + a21
1− (a1 + b1)2

· µ,

and the ACF ρ(h) is given by

ρ(k) = (a1 + b1)
k−1 a1

(
1− b1(a1 + b1)

)
1− (a1 + b1)2 + a21

for k ≥ 1,

see Weiß (2009). If b1 = 0 (so if excluding the feedback term Mt−1 from
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the model), we end up with the INARCH(1) model, where µ = a0/(1−a1),

σ2 = µ/(1− a21), and ρ(k) = ak1. Thus, ρp(k) = 0 for k > 1.

Besides the basic Poisson INGARCH model, also several extensions

have been developed in the literature, where another type of conditional

distribution is used for Xt given Xt−1, . . . (see Weiß, 2018). The consid-

ered distributions do not only have a mean parameter (which is used for

connecting to Mt), but also further parameters that allow to control, e. g.,

the extent of overdispersion or zero inflation. For example, Zhu (2011) and

Xu et al. (2012) defined two different types of negative-binomial (NB) IN-

GARCH model, and Zhu (2012a) a generalized-Poisson INGARCH model;

all these models can be embedded into the compound-Poisson INGARCH

family proposed by Gonçalves et al. (2015). Other examples are the zero-

inflated Poisson INGARCH model developed by Zhu (2012b), the COM-

Poisson INGARCH model due to Zhu (2012c), the INGARCH model based

on the one-parameter exponential family by Davis & Liu (2016), and the

mixed Poisson INGARCH model due to Silva & Barreto-Souza (2019).

Example 2. As an illustration of possible extensions, consider the NB-

INGARCH model proposed by Zhu (2011). It is again defined by Equation

(2.1) for the conditional mean Mt, but it has the additional parameter

N > 0 to control the extent of (conditional) overdispersion. More pre-
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cisely, the conditional distribution of Xt

∣∣Xt−1, . . . is the NB-distribution

with parameters N and πt = 1/(1 + Mt/N), where the limit N → ∞

leads to the Poisson INGARCH model. Thus, the aforementioned mean

and ACF properties remain as they are, but the conditional variance is

inflated by the factor 1 + Mt/N . Considering the special cases of Exam-

ple 1, Zhu’s NB-INGARCH(1, 1) model only differs in terms of the uncon-

ditional variance, which is given by σ2 =
1− (a1 + b1)

2 + a21
1− (a1 + b1)2 − a21/N

·µ
(
1 + µ

N

)
.

Thus, Zhu’s NB-INARCH(1) model (where b1 = 0) has the variance σ2 =

µ(1 +µ/N)/(1− a21− a21/N), the remaining properties are as in Example 1.

The Yule–Walker equations in (2.3) are analogous to the Yule–Walker

equations of the ordinary ARMA process, and in the purely autoregressive

case (q = 0), they are actually identical. Nevertheless, the attainable range

of ACF values is much more limited than for traditional ARMA processes

because of the parameter constraints a0 > 0 and a1, . . . , ap, b1, . . . , bq ≥ 0.

These, in turn, are required to ensure that Mt always takes a positive value.

To overcome this limitation, one may use an additional link function like

the logarithmic link. Such a log-linear INGARCH model is suggested by

Fokianos & Tjøstheim (2011), who define lnMt to be a linear function in

ln(Xt−1 + 1), . . . , lnMt−1, . . ., where the linear coefficients a0, a1, . . . , b1, . . .

can now also take negative values. The corresponding response function
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is the exponential function (also see Figure 1 (a)), and it follows that the

conditional mean of such a model is multiplicative:

Mt = ea0 · (Xt−1 + 1)a1 · · ·M b1
t−1 · · · .

However, for real count time series, one commonly observes an additive

structure. Furthermore, analytic expressions for mean, variance, and ACF

of a log-linear INGARCH model are not available, which complicates the

application of the model in practice.

3. Softplus INGARCH models

3.1 Definition and Properties

To overcome the limitations of the ordinary INGARCH model while (ap-

proximately) preserving its additive structure, we propose the novel softplus

Poisson INGARCH model

Xt|Ft−1 : Poi(Mt), (3.1)

where Ft is the σ-field generated by {(Xt,Mt), (Xt−1,Mt−1), . . .}. It relies

on the use of the softplus function sc(x) = c ln
(
1+exp(x/c)

)
as a response

function (also see Figure 1), and it defines the conditional mean Mt =

E(Xt|Ft−1) recursively by the equation

Mt = sc

(
α0 +

∑p
i=1 αiXt−i +

∑q
j=1 βjMt−j

)
with c > 0, (3.2)
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where α0, . . . , αp, β1, . . . , βq ∈ R. The default choice for c is c = 1.

Remark 1. Taking the limit c→ 0, the softplus function sc(x) becomes the

function ReLU(x) = max{0, x}, recall Section 1, and the softplus equation

(3.2) then turns to Mt = max
{

0, α0+
∑p

i=1 αiXt−i+
∑q

j=1 βjMt−j

}
. This

can be understood as a type of dynamic censored regression model (Tobit

model) as discussed in de Jong & Herrera (2011). However, compared

to (3.2), this ReLU INGARCH model has some drawbacks. First, the

ReLU response function is not differentiable in 0. Second, the conditional

mean Mt might become 0 such that we have a degenerate conditional count

distribution with all probability mass in the value 0. This may cause, for

example, problems in likelihood computation (if the tth observation xt is

positive although Mt = 0 is computed). The latter might be circumvented

by using max{δ, ·} with some δ > 0 for model construction, but the choice

of δ is somehow arbitrary, and the function is still not differentiable in

whole R. On the other hand, if the observed counts are rather large (like

in the data examples discussed in Sections 5.2 and 5.3), then the softplus

function is virtually linear such that the softplus and the ReLU model

are not distinguishable in practice. And also for low counts such as in

Section 5.1, the difference between sc(x) and ReLU(x) is often negligible.

Let Zt = (Xt, . . . , Xt−p+1,Mt, . . . ,Mt−q+1), then {Zt}t is a Markov

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



3.1 Definition and Properties12

process. The following theorem discusses the existence and uniqueness of

a stationary distribution as well as the absolute regularity of the softplus

INGARCH process.

Theorem 1. Consider the softplus INGARCH process defined by (3.1).

If
∑p

i=1 max{0, αi}+
∑q

j=1 max{0, βj} < 1 and
∑q

j=1 |βj| < 1, then (i) the

Markov process {Zt}t has a unique stationary distribution; (ii) a stationary

version of the process {Xt}t is absolutely regular with β-mixing coefficients

bounded by Cρ
√
n for some constant C ∈ (0,∞) and some ρ ∈ (0, 1); (iii)

a stationary version of the process {(Xt,Mt)}t is ergodic.

The proofs of all theorems are provided in Supplement S4.

Note that
∑p

i=1 |αi| +
∑q

j=1 |βj| < 1 is a sufficient (but not necessary)

condition for the one in Theorem 1, i. e.,
∑p

i=1 max{0, αi}+
∑q

j=1 max{0, βj} <

1 and
∑q

j=1 |βj| < 1.

Remark 2. The proof of Theorem 1 in Supplement S4 relies on the results

derived by Doukhan & Neumann (2019). Although these authors mainly

focus on the case of a conditional Poisson distribution, like we do in Equa-

tion (3.1), they point out that the involved stability properties also hold for

mixed Poisson and compound Poisson distributions (Doukhan & Neumann,

2019, p. 96). This opens the opportunity to define non-Poisson extensions of

the softplus INGARCH model, in analogy to the extensions of the ordinary
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INGARCH model discussed in Section 2. For example, picking up Exam-

ple 2 again, one may define a softplus NB-INGARCH model in the spirit

of Zhu (2011), by Xt|Ft−1 : NB
(
N, 1/(1 + Mt/N)

)
, with the conditional

mean Mt still satisfying the softplus equation (3.2). A detailed analysis of

such extensions is planned for future research, see Section 6, but further

illustration is presented in context of the data example in Section 5.3.

From now on, we mainly focus on the special case p = q = 1 for

simplicity. The following theorem states that all moments of model (3.1)

are finite, which is analogous to the ordinary INGARCH model in Ferland

et al. (2006), and which is crucial in deriving large-sample properties.

Theorem 2. Consider the softplus INGARCH process defined by (3.1) with

p = q = 1, then the moments are all finite if |α1|+ |β1| < 1.

The result in Theorem 2 can be extended to the case p > 1 and q = 0

using arguments similar to those in Zhu & Wang (2011) and Doukhan et

al. (2012).

3.2 Approximate Moment Calculation

While Theorem 2 ensures the existence of moments, it is not possible to

find exact closed-form formulae for them. But since the softplus function

closely approximates the piecewise linear ReLu function, it suggests itself
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to use the linear INGARCH model’s moment formulae (2.2) and (2.3) as an

approximation to the softplus INGARCH’s true moment properties. More

precisely, the idea is to derive the formulae for mean, variance, and ACF

according to the linear INGARCH’s equations (2.2) and (2.3), and to substi-

tute the involved parameters ai, bj by the softplus INGARCH’s parameters

αi, βj (also if some of them are negative!). Certainly, the quality of such

an approximate moment calculation is not clear in advance. Therefore, we

did a numerical study with diverse model parametrizations, see Tables S1–

S3 in Supplement S1, where we also considered the boundary case c → 0,

i. e., the ReLU INGARCH model discussed in Remark 1. We computed the

true moment values on the one hand (labeled as “sp” in Tables S1–S3 in

Supplement S1), and the approximate “linear” moment values according

to (2.2) and (2.3) on the other hand (labeled as “lin”). More precisely,

since we focus on INARCH(1) and INGARCH(1, 1) processes, we used the

closed-form formulae provided by Example 1 for the approximate moments.

For the true softplus (and ReLU) INGARCH’s moments, in turn, analytic

formulae are not available. Therefore, these values were approximated by

computing the respective sample moments of a “very long” simulated time

series (we used the length 106). The obtained results are summarized in

Tables S1–S3 in Supplement S1.
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Table S1 considers the case of a softplus INARCH(1) model. Comparing

the true moment properties (“sp”) with the linearly approximated ones

(“lin”) for the default choice c = 1, we generally observe a rather good

agreement, also if α1 is negative. So the softplus INARCH(1) model behaves

very similar to a truly linear model. There are only a few exceptions that

require some further discussion. For model #13, true and approximate

mean deviate notably from each other. This can be explained by having

a very small intercept value α0, in the region where the softplus function

deviates from linearity, recall Figure 1 (b). Therefore, in this case, it is not

recommended to use the default choice c = 1 but a somewhat smaller value.

Table S1 also shows the results for c = 0.5, c = 0.25, and c→ 0; regarding

model #13 there, we see a clear improvement of the approximate linearity

with decreasing c. The same phenomenon, but in a much milder form,

occurs for model #7. Notable deviations are also observed for model #16

(mainly in ρp(1) and σ2/µ), where we have a low mean in combination with

a strong degree of negative autocorrelation. Improvement is again achieved

by reducing the value of c. However, even in the boundary case c→ 0 (ReLU

INARCH(1) model), there are still some deviations. This is explained by

the fact that the ReLU function is not strictly linear (as assumed by the

“lin” calculations) but only piecewise linear. So for low mean and strong
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negative autocorrelation, it is impossible to perfectly mimic linearity.

Tables S2–S3 in Supplement S1 refer to softplus INGARCH(1, 1) mod-

els. Since such type of model will probably mainly be applied for counts

with very slowly decaying ACF, we have chosen the model parameters such

that |α1| + |β1| is large, namely |α1| + |β1| = 0.70 (strong dependence,

see Table S2) and |α1| + |β1| = 0.95 (extreme dependence, see Table S3).

Nevertheless, we still observe a rather good agreement in most cases. One

exception is model #13 with c = 1 in Tables S2–S3 (and clearly mitigated

also models #1, #16), where we again have a very low intercept value α0

such that c should be chosen < 1 here, e. g., c = 0.25. Furthermore, also

models #22, #23 with c = 1 (and clearly mitigated also model #10 in

Table S3) have to be mentioned, with deviations mainly in the ACF and

dispersion ratio. Here, both dependence parameters are negative (so strong

or even extreme extent of negative dependence), and we observe a clear

improvement with decreasing c. In particular, there is hardly any differ-

ence between the cases c = 0.25 and c→ 0, i. e., the softplus function with

c = 0.25 is sufficiently close to the ReLU function. However, at least for

models #22, #23 in Tables S2–S3, we never get a perfect agreement with

the linear approximations. The reason is the same as for the INARCH(1)

model #16 discussed before: neither softplus nor ReLU function are strictly
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linear, which is problematic for a low mean in combination with strong neg-

ative dependence.

To sum up, provided that the marginal mean (especially the inter-

cept α0) is not too small and that the extent of negative dependence is not

extreme (in these cases, the parameter c should be chosen < 1), the softplus

INGARCH model’s mean, variance, and (P)ACF are well approximated by

formulae (2.2) and (2.3). But in contrast to the ordinary INGARCH model,

also negative ACF values are possible, and also these values are most often

well approximated by (2.2) and (2.3). Because of this approximately linear

behaviour of the softplus INGARCH model, its model parameters are eas-

ier to interpret than those of a log-linear INGARCH model. In addition,

the approximate linearity can also be utilized for computing approximate

moment estimates for αi, βj, which, in turn, can be used as starting values

for a numerical computation of the maximum likelihood (ML) estimates.

4. Maximum Likelihood Estimation

In this section, we discuss the ML estimator (MLE) for the softplus IN-

GARCH(1, 1)’s model parameters. For the model’s identification, c in the

softplus function should be specified before estimating the parameter (de-

fault choice c = 1).
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4.1 Asymptotic Properties18

4.1 Asymptotic Properties

Let θ = (θ1, θ2, θ3)
> = (α0, α1, β1)

> be the parameter of interest. Its pa-

rameter space is Θ and its true value is θ0. For θ ∈ Θ, define the sta-

tionary and ergodic process Mt = Mt(θ) = sc(λt), where λt = λt(θ) =

α0 +α1Xt−1 +β1Mt−1(θ). Then, the log-likelihood function is given by, up

to a constant,

Ln(θ) =
n∑
t=1

lt(θ) =
n∑
t=1

(
Xt lnMt(θ)−Mt(θ)

)
. (4.1)

For computing Ln(θ) in practice, the initial value M0(θ) has to be specified;

a possible solution is to choose M0(θ) = α0.

The score function is defined by

Sn(θ) =
∂Ln(θ)

∂θ
=

n∑
t=1

∂lt(θ)

∂θ
=

n∑
t=1

(
Xt

Mt(θ)
− 1

)
∂Mt(θ)

∂θ
,

where the components of
∂Mt(θ)

∂θ
are given by

∂Mt(θ)

∂α0

=
exp(λt(θ)/c)

1 + exp(λt(θ)/c)

(
1 + β1

∂Mt−1(θ)

∂α0

)
,

∂Mt(θ)

∂α1

=
exp(λt(θ)/c)

1 + exp(λt(θ)/c)

(
Xt−1 + β1

∂Mt−1(θ)

∂α1

)
,

∂Mt(θ)

∂β1
=

exp(λt(θ)/c)

1 + exp(λt(θ)/c)

(
Mt−1(θ) + β1

∂Mt−1(θ)

∂β1

)
.

The Hessian matrix is obtained by further differentiation of the score equa-
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tions, i. e.,

Hn(θ) = −
n∑
t=1

∂2lt(θ)

∂θ∂θ>

=
n∑
t=1

Xt

M2
t (θ)

∂Mt(θ)

∂θ

∂Mt(θ)

∂θ>
−

n∑
t=1

(
Xt

Mt(θ)
− 1

)
∂2Mt(θ)

∂θ∂θ>
,

where the expression for
∂2Mt(θ)

∂θ∂θ>
is given in the proof (Supplement S4) of

the following Theorem 3. According to Ferland et al. (2006) and Ahmad &

Francq (2016), we have the information matrix equality I = J, where

I = E

(
∂lt(θ)

∂θ

∂lt(θ)

∂θ>

)
= E

(
1

Mt(θ)

∂Mt(θ)

∂θ

∂Mt(θ)

∂θ>

)
, (4.2)

J = −E
(
∂2lt(θ)

∂θ∂θ>

)
.

Define M̃t as a proxy for Mt by M̃t = M̃t(θ) = sc(λ̃t), for t ≥ 1, with

unknown initial values X0 and M̃0. The initial values can either be fixed

values, or values depending on θ, or values depending on the observations.

The MLE is defined as any measurable solution of

θ̂n = arg maxθ∈Θ L̃n(θ), L̃n(θ) =
n∑
t=1

l̃t(θ), (4.3)

where l̃t(θ) = Xt ln M̃t − M̃t. To show the consistency and asymptotic

normality of θ̂n, the following assumptions are made.

Assumption 1. θ0 ∈ Θ and Θ is compact.

Assumption 2. Mt and M̃t takes values on (ω,+∞) for some ω > 0.
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The lower bound ω in Assumption 2 is only needed for technical reasons

in the proof (see Supplement S4) of the following theorem. In practice, we

can select it to be very close to 0, for example, ω = 0.00001.

Theorem 3. Consider model (3.1) with p = q = 1 and suppose that As-

sumptions 1 and 2 hold. Then, the MLE θ̂n defined by (4.3) is strongly

consistent. In addition, if θ0 lies in the interior of Θ, then as n→∞,

√
n
(
θ̂n − θ0

) d→ N(0, I−1),

where the matrix I is given in (4.2).

Remark 3. The asymptotic covariance matrix I−1 can be consistently es-

timated by the robust sandwich matrix Ĵ
−1

Î Ĵ
−1

, where

Î =
1

n

n∑
t=1

(
Xt

M̃t(θ̂n)
− 1

)2
∂M̃t(θ̂n)

∂θ

∂M̃t(θ̂n)

∂θ>
,

Ĵ =
1

n

n∑
t=1

1

M̃t(θ̂n)

∂M̃t(θ̂n)

∂θ

∂M̃t(θ̂n)

∂θ>
.

In practice, the ML estimates are computed by numerically maximiz-

ing the log-likelihood function (4.1). As recommended in Section 3.2, one

may use the approximate moment estimates as the initial values for the

numerical optimization routine.

Remark 4. The asymptotic theory for the MLE can be extended to the

case p > 1 and q > 1 in terms of techniques in Cui & Wu (2016).
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4.2 Simulation Study

To analyze the finite-sample performance of ML estimation, we did a sim-

ulation study with diverse model parametrizations and with sample sizes

n = 100, 250, 500. For each scenario, the number of replications was 104.

Besides the actual ML estimates, we also computed approximate standard

errors (s. e.) from the inverse Hessian of the maximized log-likelihood func-

tion. So we did not only check the performance of the estimates, but also

that of the approximate s. e. The full simulation results are presented in

Tables S4–S8 in Supplement S2.

Table S4 presents results for the case of a softplus INARCH(1) model,

where the parameter values are chosen such that the marginal mean is

approximately equal to either 2, 5, or 15 (also see the data examples in

Sections 5.1 and 5.3). Furthermore, we are concerned with a medium level of

autocorrelation (either positive or negative). Since the softplus INARCH(1)

process is just a Markov chain (i. e., its memory is only of length 1), we also

included the very low sample size n = 50 in this case. From Table S4, it can

be seen that both the bias and s. e. are quickly reduced if the sample size n

increases. For the negative α1, the estimates are nearly unbiased already

for n = 50, and they generally exhibit slightly less bias and s. e. than for

the positive α1. In the latter case, the bias appears negligible if the sample
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size n becomes larger than 100. Table S4 also considers the effect of the

softplus parameter c, where the default choice c = 1 is compared to c = 0.5.

Except that the s. e. are slightly smaller for c = 0.5 and µ = 2, 5, the effect

of c is generally rather small (for µ = 15, we have very large counts such

that both s1(x) and s0.5(x) are virtually identical). Furthermore, in any

case, the mean of the approximate s. e. is very close to the simulated value

of the s. e. So the approximate s. e. performs quite well in practice.

Tables S5–S6 in Supplement S2 refer to the softplus INGARCH(1, 1)

model, with either |α1| + |β1| = 0.70 (strong dependence, see Table S5)

or |α1| + |β1| = 0.95 (extreme dependence, see Table S6). Except for the

low-mean case µ = 2, the parameter c has again only little effect on the

estimation performance. Compared to the INARCH(1) case, we are now

concerned with a more complex dependence structure (controlled by the

parameter β1). Because of this (and because of the additional parameter to

be estimated), bias and s. e. are generally much larger this time. Neverthe-

less, they clearly improve with increasing n as before. It can be seen that

the estimation performance is worse if |β1| is large than if |α1| is large. In

this case, the current observation is mainly determined by the unobservable

past mean (feedback term), whereas it is connected to the last observation

if |α1| is large. Actually, the respective worst case in Tables S5–S6 is model
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#1, where both α1, β1 are positive and β1 is largest. The estimation perfor-

mance is particularly bad for model #1 in Table S6, where α1 + β1 = 0.95

is close to 1 (“unit-root problem”). Comparing the simulated s. e. with

the mean of the approximate s. e., there are large discrepancies for models

#1 and #4 with n = 100, whereas these values approach each other for

n ≥ 250. So generally, it is recommend to collect n ≥ 250 data values if

being concerned with such strongly dependent data, to ensure a reasonable

estimation performance.

Finally, we analyzed the effect of a mis-specified c on the estimation per-

formance. The results for some softplus INARCH(1) and INGARCH(1, 1)

scenarios are summarized in Tables S7 and S8, respectively. There, a model

with c = 1 was fitted to the data, although the true DGP has c = 2 (so

fitted c to small) or c = 0.5 (so fitted c to large). While there is only little

effect on the s. e. of the estimators, the effect on the bias is a bit more

pronounced, especially for c = 2 where the non-linearity is stronger than

assumed by the model. Thus, to avoid an inappropriate choice for c, it is

recommended to accompany any model fitting with a careful model selec-

tion and adequacy checks, as also done in the subsequent data examples.
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5. Real-Data Examples

Let us now present a couple of data examples to demonstrate the usefulness

of the novel softplus INGARCH model.

5.1 Strikes Counts Data

As our first example, we pick up a count time series, which was successfully

modeled by an ordinary INGARCH model in the past. More precisely, we

analyze the strikes count data (originally published by the U. S. Bureau of

Labor Statistics, http://www.bls.gov/wsp/), where Weiß (2010) showed

that a Poisson INARCH(1) model constitutes an excellent fit; also see the

discussion in Weiß (2018). The data consist of n = 108 monthly counts of

“work stoppages” (strikes and lock-outs by ≥ 1 000 workers), see the plot in

Figure 2. The data have an AR(1)-like sample (P)ACF with ρ̂(1) ≈ 0.573.

The sample mean is ≈ 4.944, and the dispersion ratio ≈ 1.587 shows a

notable degree of overdispersion. Since the INARCH(1)’s estimated model

parameters in Table 1 are positive, the model is identical to the ReLU model

discussed in Remark 1.

From our analysis of Table S1 in Supplement S1, recall Section 3.2, we

know that a softplus INARCH(1) model with mean close to 5 and lag-1 ACF

close to 0.5 behaves very similar to a truly linear model. Hence, this model
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Figure 2: Plot of strikes counts x1, . . . , x108 (the grey dots refer to the con-

ditional means of the fitted softplus-INARCH(1) model) and their sample

PACF ρ̂p(k), see Section 5.1.

Table 1: ML estimation for strikes counts data: estimates and approximate
standard errors, maximized log-likelihood.

Model c α̂0 or â0 s. e. α̂1 or â1 s. e. max. L

softplus-INARCH(1) 1 1.728 (0.416) 0.650 (0.085) -230.16
0.75 1.778 (0.401) 0.642 (0.083) -230.13
0.5 1.804 (0.390) 0.638 (0.081) -230.14

INARCH(1) — 1.811 (0.386) 0.636 (0.081) -230.15

appears to be a reasonable alternative to the ordinary INARCH(1) model.

Therefore, we also fitted the softplus INARCH(1) model to the data, using

the (conditional) ML approach for parameter estimation. The results are

summarized in Table 1. It can be seen that the parameter estimates as well

as the corresponding approximate standard errors (s. e.) of the softplus

INARCH(1) model are very close to those of the ordinary INARCH(1)

model, which is not surprising in view of the softplus INARCH(1) model
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being nearly linear. Although not necessary from a practical point of view,

we also experimented with values c < 1. It can be seen that the tabulated

values approach those of the ordinary INARCH(1) model for c → 0. If

considering the maximized log-likelihood (column “max. L”) as the criterion

for model selection (since all candidate models in Table 1 have the same

number of parameters, the model selection based on “max. L” leads to an

identical decision as if common information criteria would be used), there

is a tiny preference for the softplus INARCH(1) model with c = 0.75. But

actually, all models in Table 1 perform nearly equally well. If computing

the standardized Pearson residuals for checking the model adequacy (Weiß,

2018, Section 2.4), then we always obtain a mean value about 0.002 (very

close to the target value 0), a variance about 0.986 (close to the target

value 1), and none of their ACF values is significantly different from 0

(the conditional means, as used for computing the Pearson residuals, are

also plotted in Figure 2 as grey dots). Also the acceptance envelope for

the sample PACF in Supplement S3.1 confirms the model adequacy. So

as the main message, we recognize that the softplus INARCH(1) model

can be taken as a substitute of the (truly linear) ordinary INARCH(1)

model without concern. But in contrast to the ordinary INARCH(1) model,

the softplus INARCH(1) model also allows for negative parameter values,
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i. e., it has much more comprehensive modeling abilities than the ordinary

INARCH(1) model. This advantage will be crucial for the next examples.

5.2 Chemical Process Data

In the previous example, the ACF consisted of only positive values such that

the ordinary INARCH(1) model could be applied to these data. Our second

data example is chosen such that also negative ACF values are observed.

We consider the series of n = 70 consecutive yields from a batch chemical

process printed as “Time series 4.1” in Appendix A.3 of O’Donovan (1983),

see the plot in Figure 3. For such batch data, negative ACF values are

commonly observed, because a high-yielding batch often causes residues

that reduce the yield of the subsequent batch (and vice versa). In view of

the negative ACF values, the ordinary INGARCH models cannot be used

for the data. Since the sample PACF in Figure 3 is significant only at lag 1,

we again conclude on an AR(1)-like autocorrelation structure and, thus,

consider the softplus INARCH(1) model for these data (for completeness,

we also fitted the log-linear INARCH(1) model). The sample mean, taking

the value ≈ 49.69, is very large. So there is no reason to deviate from the

default choice c = 1, since the softplus function s1(x) is virtually linear for

such large values of x (recall Figure 1). In fact, the obtained ML estimates
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Figure 3: Plot of process yields x1, . . . , x70 (the grey dots refer to the con-

ditional means of the fitted softplus-INARCH(1) model) and their sample

PACF ρ̂p(k), see Section 5.2.

Table 2: ML estimation for process yields data: estimates and approximate
standard errors, maximized log-likelihood.

Model c α̂0 or â0 s. e. α̂1 or â1 s. e. max. L

softplus-INARCH(1) 1 79.783 (4.820) -0.603 (0.094) -238.0
log-INARCH(1) — 5.681 (0.296) -0.455 (0.076) -242.0

in Table 2 (standard errors in parentheses) are identical to those if we would

have used the ReLU INARCH(1) model instead (recall Remark 1).

The softplus INARCH(1)’s estimate α̂1 ≈ −0.603 is very close to the

actually observed ACF value ρ̂(1) ≈ −0.588, so the fitted model mimics the

autocorrelation structure rather well (also see the acceptance envelope for

the PACF in Supplement S3.1). Furthermore, the fitted model’s dispersion

ratio equals ≈ 1.571 (recall Example 1) and is thus close to the sample

value of ≈ 1.706. So the fitted softplus INARCH(1) model is well able to
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deal with these overdispersed data. The model adequacy is confirmed by an

analysis of the Pearson residuals, leading to the mean ≈ 0.000 close to 0, to

the variance ≈ 1.142 close to 1, and to no significant ACF values. Finally,

it is worth mentioning that the fitted log-linear INARCH(1) model does

clearly worse in terms of the maximized log-likelihood, and also its Pearson

residuals show stronger deviations from the respective target values (mean

≈ −0.001, variance ≈ 1.242). In particular, its parameter values in Table 2

do not have such a simple interpretation as those of the softplus INARCH(1)

model, because the latter directly express essential moment properties.

5.3 Crash Counts Data

We pick up the data example of daily crash counts on the major roads of

Utrecht in 2001 (length n = 365), which was discussed by Zhu & Wang

(2015). The data have a sample mean of ≈ 12.82 and a dispersion ratio of

≈ 1.712; their plot is provided by Figure 4. The previously discussed data

examples had an AR(1)-like sample (P)ACF such that INARCH(1)-type

models were sufficient to describe these data. But our final data exam-

ple exhibits a more complex autocorrelation structure. Therefore, despite

not being consistent with Figures 2 and 3, this time, we show the ordi-

nary sample ACF in Figure 4. The plotted ACF values are only moderate
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but slowly decaying. For this reason, Zhu & Wang (2015) fitted a Pois-

son INGARCH(1, 1) model to the data, having the additional feedback

term Mt−1 for an increased process memory. However, it turned out that

the estimate of the parameter b1 falls on the lower bound of the bounding

box, which was chosen as 0.001. Therefore, Zhu & Wang (2015) also tried

a log-linear Poisson INGARCH(1, 1) model (i. e., with a log-link instead of

the linear one), which allows a negative estimate for b1 at the price of a

non-linear conditional mean. However, the failure of the ordinary Poisson

INGARCH(1, 1) model does not necessarily imply that a linear model is not

appropriate for the data, it would just have been necessary that some model

parameters may become negative. To solve this dilemma, we shall now fit

types of softplus INGARCH(1, 1) model to the data, and we conjecture to

obtain a negative estimate for β1.

Table 3: ML estimation for crash counts data: estimates and approximate
standard errors, maximized log-likelihood.

Model c α̂0 or â0 s. e. α̂1 or â1 s. e. β̂1 or b̂1 s. e. N̂ s. e. max. L
softplus NB-
INGARCH(1, 1) 1 15.411 (2.311) 0.253 (0.053) -0.455 (0.163) 19.935 (3.895) -1065.6
log-linear NB-
INGARCH(1, 1) — 2.739 (0.521) 0.263 (0.052) -0.340 (0.200) 20.282 (4.005) -1064.4

We started with fitting the different types of Poisson INGARCH(1, 1)

model to the data, see Supplement S3.2 for detailed results. However, nei-
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Figure 4: Plot of crash counts x1, . . . , x365 (the grey dots refer to the condi-

tional means of the fitted softplus NB-INARCH(1) model) and their sample

ACF ρ̂(k), see Section 5.3.

ther the log-linear nor the softplus Poisson INGARCH(1, 1) models turned

out to be appropriate for the data, because none of them is able to capture

the large extent of overdispersion (dispersion ratio ≈ 1.712). Therefore,

we repeated the same analyses but using a conditional NB-distribution in-

stead of the Poisson one, see Remark 2 for details. The results of ML

estimation are summarized in Table 3. It can be seen that the softplus NB-

INGARCH(1, 1) model indeed has a significantly negative estimate for β1

(whereas the estimate b̂1 of the log-linear model is not significant). Be-

cause of the large mean, further decreasing the value of c below the default

choice c = 1 is without effect on the estimates (so the softplus model can-

not be distinguished from a ReLU model according to Remark 1 for these
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data). An analysis of the standardized Pearson residuals leads to the means

≈ 0.000 (both models), and to the variances ≈ 0.990 (softplus) and ≈ 0.992

(log-linear), all being close to the respective target values 0 and 1. So the

conditional dispersion structure is well captured by both models. But the

residuals’ ACF shows several significant values for both models, i. e., nei-

ther model is able to explain the serial dependence structure. Thus, it is

not appropriate to model the slowly decaying autocorrelation structure by

including the feedback term Mt−1 into the INGARCH-type models.

Table 4: ML estimation for crash counts data, with daily temperature and
weekdays indicator as covariates: estimates and approximate standard er-
rors, maximized log-likelihood.

Model c α̂0 or â0 s. e. α̂1 or â1 s. e. γ̂1 s. e. γ̂2 s. e. N̂ s. e. max. L
softplus NB-
INARCH(1) 1 8.112 (0.715) 0.182 (0.049) -1.218 (0.227) 3.343 (0.448) 34.705 (9.745) -1035.1
log-linear NB-
INARCH(1) — 1.904 (0.123) 0.170 (0.046) -0.092 (0.018) 0.278 (0.040) 34.503 (9.663) -1036.1

Therefore, we next followed the strategy outlined in Zhu et al. (2015)

and included appropriate covariates into the model instead of a feedback

term. To explain the actual dependence structure, we used the log-linear

and softplus INARCH(1) models having the (standardized) daily temper-

ature and an indicator for weekdays as the covariates. The corresponding

linear coefficients are denoted as γ1 and γ2, respectively. First, we did the

model fitting using a conditional Poisson distribution, see Supplement S3.2
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for the results, but it turned out that these models cannot fully capture

the observed dispersion structure. So in a second step, we again used a

conditional NB-distribution in the way proposed by Zhu (2011), recall Re-

mark 2; the results are summarized in Table 4. Compared to Table 3, the

maximized log-likelihood values have been considerably improved. The re-

spective Pearson residuals have the means ≈ 0.000 (both models), and the

variances ≈ 1.006 (softplus) and ≈ 1.007 (log-linear), all being close to the

respective target values 0 and 1. Furthermore, their ACF has a slightly

significant value only at lag 3 (≈ 0.161 for softplus, ≈ 0.160 for log-linear,

where the approximate standard error equals n−1/2 ≈ 0.052), i. e., both

models do rather well in explaining the actual serial dependence structure.

So we conclude that both types of NB-INARCH(1) regression models are

adequate for the crash counts data, but with the softplus one having an

advantage in terms of the maximized log-likelihood value (see Table 4).

6. Conclusions

We proposed a novel INGARCH model based on the softplus function,

which has a flexible range of ACF values. The new model exhibits an

approximately linear structure, which makes its model parameters easier to

interpret than those of a log-linear INGARCH model. The MLE is used to
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estimate the model parameters, and its large-sample properties have been

derived. Extensive simulation studies and three real-data examples showed

the usefulness of the proposed model.

Some suggestions for future research are given as follows. First, picking

up the discussion in Remark 2 and Section 5.3, our novel softplus INGARCH

model should be extended to non-Poisson conditional distributions, in anal-

ogy to the INGARCH extensions by Zhu (2011), Xu et al. (2012), Gonçalves

et al. (2015), and others addressed in Section 2. From Doukhan & Neu-

mann (2019), we know that the stability properties in Theorem 1 also hold

for mixed Poisson and compound Poisson distributions, which removes the-

oretical barriers for establishing consistency and asymptotic normality of

estimators for unknown parameters. Second, diagnostic tests for uncover-

ing deviations from a conditional Poisson distribution should be developed,

e. g., in analogy to the tests in Weiß et al. (2017). Third, let us recall that

the log-linear INGARCH model has been applied to many fields. For exam-

ple, Chen et al. (2018) investigated the causal relationship between human

influenza cases and air pollution, and Hall et al. (2019) used it to learn the

impact of the network structure on the time series evolution. This suggests

that related problems should also be studied based on the novel softplus

INGARCH model.
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Supplementary Materials

The online supplementary materials provide: the detailed results for the

approximate moment calculations of Section 3.2, see Supplement S1; the detailed

results for the simulation study of Section 4.2, see Supplement S2; additional

results for the real-data examples discussed in Section 5, see Supplement S3; the

proofs for Theorems 1–3, see Supplement S4.

Acknowledgements

The authors thank the associate editor and the two referees for their useful

comments on an earlier draft of this article. Zhu’s work is supported by Na-

tional Natural Science Foundation of China (Nos. 11871027, 11731015), and the

Fundamental Research Funds for the Central Universities.

References

Ahmad, A., Francq, C. (2016) Poisson QMLE of count time series models. Jour-

nal of Time Series Analysis 37, 291–314.

Chen, C.W.S., Hsieh, Y., Su, H., Wu, J.J. (2018) Causality test of ambient fine

particles and human influenza in Taiwan: Age group-specific disparity and

geographic heterogeneity. Environment International 111, 354–361.

Cui, Y., Wu, R. (2016) On conditional maximum likelihood estimation for

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES36

INGARCH(p, q) models. Statistics and Probability Letters 118, 1–7.

Davis, R.A., Liu, H. (2016) Theory and inference for a class of nonlinear models

with application to time series of counts. Statistica Sinica 26, 1673–1707.

de Jong, R., Herrera, A.M. (2011) Dynamic censored regression and the open

market desk reaction function. Journal of Business & Economic Statistics 29,

228–237.

Doukhan, P., Fokianos, K., Tjøstheim, D. (2012) On weak dependence conditions

for Poisson autoregressions. Statistics and Probability Letters 82, 942–948.

Correction, ibid, 83, 1926–1927.

Doukhan, P., Neumann, M.H. (2019) Absolute regularity of semi-contractive

GARCH-type processes. Journal of Applied Probability 56, 91–115.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., Garcia, R. (2000) Incorporating

second-order functional knowledge for better option pricing. In Leen et al.

(eds): Proceedings of the 13th International Conference on Neural Information

Processing Systems (NIPS’00), MIT Press, Cambridge, 451–457.

Ferland, R., Latour, A., Oraichi, D. (2006) Integer-valued GARCH processes.

Journal of Time Series Analysis 27, 923–942.

Fokianos, K., Rahbek, A., Tjøstheim, D. (2009) Poisson autoregression. Journal

of the American Statistical Association 104, 1430–1439.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



REFERENCES37

Fokianos, K., Tjøstheim, D. (2011) Log-linear Poisson autoregression. Journal of

Multivariate Analysis 102, 563–578.
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