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Abstract: Arising from cryogenic electron microscopy image analysis, “Einstein

from noise” is a phenomenon of significant statistical interest because spurious

patterns could easily emerge by averaging a large number of white-noise images

aligned to a reference image through rotation and translation. While this phe-

nomenon is often attributed to model bias, quantitative studies on such a bias

are lacking. Here, we introduce a simple framework under which an image of p

pixels is treated as a vector of dimension p and a white-noise image is a random

vector uniformly sampled from the (p − 1)-dimensional unit sphere. Moreover,

we adopt the cross correlation of two images which is a similarity measure based

on the dot product of image pixels. This framework geometrically explains how

the bias results from averaging a properly chosen set of white-noise images that

are most highly cross-correlated with the reference image. We quantify the bias

in terms of three parameters: the number of white-noise images (n), the image

dimension (p), and the size of the selection set (m). Under the conditions that

n, p and m are all large and (lnn)2/p and m/n are both small, we show that the

bias is approximately
√

2γ
1+2γ

where γ = m
p

ln
(
n
m

)
.
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1. Introduction

The terminology of the phenomenon of “Einstein from noise” comes from2

the literature of cryogenic electron microscopy (cryo-EM). It refers to an

artefact of model bias that arises from averaging a large number of cryo-EM4

images aligned to a reference (model) image. This artefact of model bias is

strongly associated with the noisy nature of cryo-EM images.6

Developed for imaging biological macromolecules preserved at a frozen-

hydrated state, cryo-EM has become a major tool for high-resolution struc-8

ture determination of molecules because of its recent breakthroughs in res-

olution. In contrast to X-ray crystallography, cryo-EM does not need crys-10

tals, and thereby is amenable to structure determination of proteins that

are refractory to crystallization, including, in particular, membrane pro-12

teins (Liao et al., 2013) and molecular complexes that exhibit dynamic

conformation behaviors (Yan et al., 2015). To recognize its great success14

with far-reaching applications, the Nobel Prize in Chemistry in 2017 was

awarded to J. Dubochet, J. Frank and R. Henderson for their pioneering16
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contributions to the development of cryo-EM.

A technical difficulty encountered by the cryo-EM technique is that dur-18

ing the experiment of imaging molecules, the orientation of each molecule is

not recorded which needs to be estimated at the post-imaging stage. How-20

ever, to mitigate radiation damages, only a minimal dose of electron can be

used for acquiring the projection images of individual molecules (called 2D22

particle images). The resulting cryo-EM images are extremely noisy with

the signal-to-noise ratio less than 0.1. A typical cryo-EM experiment tends24

to collect a large number of particle images in hope of compensating the

noise contamination by averaging, where the dimension of a particle image is26

extremely high (larger than one hundred by one hundred). Hence, the data

characters of cryo-EM images, including strong noise contamination, huge28

dimension and large sample size, make its processing and statistical analysis

very challenging. Henderson (2013) further pointed out how spurious pat-30

terns could easily emerge by averaging a large number of white-noise images

aligned to a reference image through rotation and translation. Specifically,32

he referred to the work of Stewart and Grigorieff (2004) in which an exper-

iment was conducted by generating 1000 white-noise images and aligning34

each of them to Einstein’s facial image through rotation and translation.

A blurred Einstein’s face emerged from averaging the 1000 aligned images,36
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which Henderson (2013) dubbed “Einstein from noise” and used it to give

unwary cryo-EM users a warning that an incorrect 3D density map could38

be constructed if data are blindly fitted to a reference model.

In a recent review paper, Lai et al. (2020) discussed the “Einstein from40

noise” phenomenon from a statistical perspective. To avoid the technical

issue of how rotating an image may destroy the pixel format, they consid-42

ered a simple mathematical framework under which an image of p pixels

is treated as a vector of dimension p and a white-noise image is a random44

vector uniformly distributed on the (p − 1)-dimensional unit sphere. The

cross correlation of two images is adopted which is a similarity measure46

based on the dot product of image pixels and is widely used in image pro-

cessing. Under this framework, we present in Section 2 a simulation study48

with n = 2× 106 white-noise images with the pixel number p = 120× 120.

Among the 2 × 106 white-noise images, the largest cross correlation value50

with Einstein’s facial image (the reference) is merely 0.039, while the cross

correlation increases dramatically to 0.650 after averaging the m = 800 im-52

ages that have the largest cross correlation values with Einstein’s facial im-

age. This illustrates the essence of the “Einstein from noise” phenomenon.54

The objective of the present paper is to provide a thorough study of the

“Einstein from noise” phenomenon based on the statistical perspective laid56
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out in Lai et al. (2020). A main task is to approximate the distribution

of the cross correlation between the (normalized) average of the m selected58

images and the reference, which is referred to the (image selection) bias.

While the bias depends on the three parameters n, p, and m in a convoluted60

manner, under the conditions that n, p and m are all large and (lnn)2/p

and m/n are both small, we show that the bias is approximately
√

2γ
1+2γ

62

where γ = m
p

ln
(
n
m

)
.

The rest of this paper is organized as follows. Section 2 introduces64

notation, terminology and the statistical model as well as demonstrates the

phenomenon of “Einstein from noise”. Section 3 consists of two parts: (i)66

presenting an extreme value theory for the distribution of the largest cross

correlation value as n and p both tend to infinity and (ii) stating asymptotic68

results on the bias as n, p, and m all tend to infinity. The theoretical results

in part (ii) are validated via simulation as presented in Section 4. Section 570

contains concluding remarks. Proofs of the asymptotic results in Section 3

are relegated to the Appendix. The online supplementary material contains72

the proofs of auxiliary lemmas.
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2. Statistical Model74

2.1 Notation, terminology, and model

Let R be the reference matrix (the digital version of the reference image)76

of dimension d1 × d2. We assume that ‖R‖ = 1 where ‖ · ‖ denotes the

Frobenius norm of a matrix or Euclidean norm of a vector. We generate n78

independent and identically distributed (iid) white-noise images as follows.

Let Z1, . . . ,Zn be iid d1 × d2 random matrices such that the d1d2 compo-80

nents of each Zi are iid standard normal. We refer to Zi/‖Zi‖, i = 1, . . . , n

(the normalized version of Zi) as n iid white-noise images.82

Let r = vec(R), the p-dimensional column vector which is the vec-

torized version of R, where p = d1d2. The fact that ‖r‖ = 1 implies84

r ∈ Sp−1 (the (p − 1)-dimensional unit sphere). Let X i = vec(Zi)/‖Zi‖.

Thus, X1, . . . ,Xn are iid uniformly distributed on Sp−1. We refer to both86

Zi/‖Zi‖ and X i as the i-th white-noise image. With r> denoting the

transpose of r, the cross correlation of X i and r (or equivalently Zi/‖Zi‖88

and R) is defined as r>X i, the inner product (dot product) of X i and r,

which is a similarity measure of two images. Note that r>X i = cos Θi,90

where Θi is the angle between r and X i.

The n white-noise images are ordered (and denoted by X(1), . . . ,X(n))92

6

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.2 Demonstration of the “Einstein from noise” phenomenon

according to their cross correlation values with r. In other words, (X(1), . . . ,X(n))

is a permutation of (X1, . . . ,Xn) such that r>X(1) ≥ r>X(2) ≥ · · · ≥ r>X(n).94

Let Θ1:n ≤ Θ2:n ≤ · · · ≤ Θn:n be the order statistics of the angles (Θ1, · · · ,Θn),

so that cos Θi:n = r>X(i), i = 1, . . . , n. Let Xm = m−1
∑m

i=1X
(i). Then96

Xm/‖Xm‖ ∈ Sp−1 is the normalized average of the m white-noise images

that are most highly cross-correlated with the reference image. Our goal is98

to find a good approximation of the distribution of ρn,p,m = r>Xm/‖Xm‖

when n, p, andm are large. Note that form = 1, ρn,p,1 = r>X(1) = cos Θ1:n,100

is the largest cross correlation value. Note also that the distribution of

ρn,p,m does not depend on r which is due to the fact that if X is uniformly102

distributed on Sp−1, then the distribution of r>X is independent of r.

2.2 Demonstration of the “Einstein from noise” phenomenon104

We now present two figures summarizing the simulation study described

in Section 1, where n = 2 × 106, p = d1 × d2 = 120 × 120 = 14400, and106

m = 1, 200, 400, 800. In Figure 1, the leftmost (reference) image is Ein-

stein’s face, and the other 4 images correspond to Xm/‖Xm‖ for m =108

1, 200, 400, 800. The second image from the left corresponds to X(1), whose

cross correlation (CC) value with Einstein’s facial image is 0.039 (which is110

the largest among the 2× 106 white-noise images generated in the simula-
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2.2 Demonstration of the “Einstein from noise” phenomenon

tion). While this image is rather noisy, Einstein’s face emerges in the other112

3 images with different degrees of blurring, corresponding to CC values

0.426, 0.536, and 0.650.114

Figure 1: Example with Einstein’s face as the reference image.
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2.2 Demonstration of the “Einstein from noise” phenomenon

Figure 2: The phenomenon of “Einstein from noise” is shown across various

reference images.
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Figure 2 shows similar results with four different reference images of a

simple chessboard, digits of 2020, a leopard cat and Statistics Building of116

Academia Sinica, indicating that the phenomenon of “Einstein from noise”

is robust across various reference images. The cross correlation values in118

Figure 2 are about the same across different reference images, which can

be explained by the previously mentioned fact that if X is uniformly dis-120

tributed on Sp−1, then the distribution of r>X is independent of r.

122

3. Asymptotic theory

3.1 Extreme value theory for the largest cross correlation124

Recall that cos Θ1:n is the largest cross correlation. The following theorem

provides an approximation to the distribution of cos Θ1:n when n and p are126

large.

Theorem 1. Let128

Kn,p = − lnn+
1

2
ln lnn− 1

2
ln

 2 lnn
p

1− exp
(
−2 lnn

p

)
+

1

2
ln(4π). (1)

We have

(p− 1) ln(sin Θ1:n)−Kn,p
d−→ G uniformly as n ∧ p→∞, (2)

10
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3.1 Extreme value theory for the largest cross correlation

where n ∧ p = min{n, p}, d→ denotes convergence in distribution, and the130

cumulative distribution function of G is given by G(t) = 1 − e−et, t ∈ R,

which is known as the extreme value distribution of Gumbel type.132

Based on (2), for 0 < α < 1, the approximate 100α-th quantile of the

distribution of cos Θ1:n is

Mn,p(α) =
√

1− exp{2(Kn,p + ln ln α−1)/(p− 1)}.

Recall that cos Θ1:n = 0.039 in the simulation study summarized in Figure

1, where n = 2× 106 and p = 120× 120. This observed value is compatible134

with the approximate 10th quantile Mn,p(0.1) = 0.039.

Figure 3 plots Mn,p(α) versus log10 n for n ≤ 10100 with p = 120× 120136

and α = .05, .5, .95. Note that the three quantile curves are very close to

each other, indicating that cos Θ1:n has a small standard deviation. Figure138

3 suggests that for P(cos Θ1:n ≥ 0.1) to be at least 0.05, n is required to

be greater than 1030, and for P(cos Θ1:n ≥ 0.15) to be at least 0.05, n is140

required to be greater than 1070. In other words, it is unlikely for any of

n iid white-noise images of dimension 120× 120 to have a cross correlation142

value with Einstein’s face greater than 0.15 unless n is astronomically large.
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3.2 Asymptotic results on ρn,p,m

Figure 3: The approximate 100α-th quantile of the distribution of cos Θ1:n

(Mn,p(α)) versus log10 n with p = 120× 120, α = .05, .5, .95.

3.2 Asymptotic results on ρn,p,m144

When p = pn and m = mn both grow with n, asymptotic expansions for the

distribution of ρn,p,m are more involved. Our analysis requires the condition

(lnn)2/p = o(1) (which is stronger than (ln n)/p = o(1)), so that terms such

as (ln n)(ln ln n)/p become negligible. Let

βn,p,m =
m

p

{
2 ln

n

m
− ln ln

n

m
− ln(4π) + 2

}
,

which is a model bias index. While the quantity ρn,p,m plays an impor-

tant role in our asymptotic results below, we are unaware of any heuristic146

interpretation of this quantity.
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3.2 Asymptotic results on ρn,p,m

Theorem 2. Let p = pn → ∞ satisfy (lnn)2/p = o(1) and m = mn → ∞148

satisfy m/n = o(1). Then

ρ2n,p,m =
βn,p,m

1 + βn,p,m
(1 + op(1)) .

Consequently, ρ2n,p,m −
βn,p,m

1 + βn,p,m
→ 0 in probability.150

Theorem 3. Let p = pn → ∞ satisfy (lnn)2/p = o(1) and m = mn → ∞

satisfy m(ln lnn)4/(lnn)2 = o(1). Then152

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d−→ N(0, 1),

where αn,p,m = p
(
8m+ 2p β2

n,p,m

)−1/2
(1 + βn,p,m)2 and N(0, 1) denotes the

standard normal distribution.154

Corollary 1. Let p = pn →∞ and m = mn →∞.

(i) If (lnn)2/p = o(1) and m/n = o(1), then

ρn,p,m√
βn,p,m/(1 + βn,p,m)

= 1 + op(1).

Consequently,

ρn,p,m =

√
βn,p,m

1 + βn,p,m
+ op(1) and E(ρn,p,m) =

√
βn,p,m

1 + βn,p,m
+ o(1).

(ii) In additional to the conditions specified in (i), if m (ln ln n)4/(ln n)2 = o(1),

then156

α̃n,p,m

(
ρn,p,m −

√
βn,p,m

1 + βn,p,m

)
d−→ N(0, 1),

13
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3.2 Asymptotic results on ρn,p,m

where α̃n,p,m = 2αn,p,m
√
βn,p,m/(1 + βn,p,m).

Remark 1. On top of the condition (lnn)2/p = o(1), Theorem 2 only158

requires the mild condition m/n = o(1). Let γn,p,m = m
p

ln n
m

. Since

βn,p,m = 2γn,p,m(1+o(1)) (i.e. 2γn,p,m is the leading term of βn,p,m), Theorem160

2 implies

ρ2n,p,m =
2γn,p,m

1 + 2γn,p,m
+ op(1).

Consequently,162

ρn,p,m =
√

2γn,p,m
1+2γn,p,m

+ op(1) and E(ρn,p,m) =
√

2γn,p,m
1+2γn,p,m

+ o(1). (3)

Remark 2. To establish asymptotic normality of ρ2n,p,m (and ρn,p,m), Theo-

rem 3 (and Corollary 1) requires the stringent conditionm(ln ln n)4/(ln n)2 =164

o(1). It is unclear whether asymptotic normality still holds when m grows at

a rate faster than (ln n)2/(ln ln n)4. It should also be remarked that under166

the conditions as in Theorem 3, it is not true that αn,p,m

(
ρ2n,p,m −

2γn,p,m
1+2γn,p,m

)
d−→ N(0, 1). This shows that while 2γn,p,m is the leading term of βn,p,m, the168

remaining terms also play a non-negligible role in the proof of asymptotic

normality.170

Remark 3. Fan et al. (2018) developed an asymptotic theory to approx-

imate the distribution of the maximum spurious correlation of a response172

variable Y with the best m linear combinations of p covariates X based

14
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on an iid sample of size n when X and Y are independent. See also Fan174

et al. (2012) for related results. In our setting, the quantity ρn,p,m may

be referred to as the spurious cross correlation of the reference with the176

normalized average of the m white-noise images that are most highly cross-

correlated with the reference. Indeed, with the roles of n and p reversed,178

ρn,p,m corresponds to another spurious correlation of the response variable

Y with the the average of the m (standardized) covariates in X that are180

most highly correlated with Y when the p covariates in X and Y are all

mutually independent.182

4. Simulation Results on ρn,p,m

By Corollary 1(i), if m is small compared to n and (ln n)2 is small compared184

to p, then E(ρn,p,m) is expected to be close to
√

βn,p,m
1+βn,p,m

while the standard

deviation (s.d.) of ρn,p,m is expected to be small. We conducted a simulation186

study of the distribution of ρn,p,m for various combinations of (n, p,m) with

n = 104, 105, p = 104, 4 × 104, and m = 100, 200, 400, 600. The results are188

reported in Tables 1 and 2 where E(ρn,p,m) and s.d.(ρn,p,m) were estimated

based on 1000 replications for each case. While
√

βn,p,m
1+βn,p,m

approximates190

E(ρn,p,m) well, it slightly overestimates E(ρn,p,m), more notably for n = 104.

Clearly, E(ρn,p,m) increases as n or m increases or p decreases. On the192
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other hand, s.d.(ρn,p,m) is small (< .005) in all cases. Besides, s.d.(ρn,p,m)

decreases as n or p increases, and is about the same as m varies from 100 to194

600. Also included in Tables 1 and 2 are α̃−1n,p,m and the empirical probability

(denoted as Prob.) that196 ∣∣∣∣∣ρn,p,m −
√

βn,p,m
1 + βn,p,m

∣∣∣∣∣ < 1.96 α̃−1n,p,m.

It is clear from the tables that α̃−1n,p,m approximates s.d.(ρn,p,m) reasonably

well in all cases. By Corollary 1(ii), the Prob. value is expected to be198

close to .95 if the normal approximation is accurate. By Theorem 3 and

Corollary 1, αn,p,m

(
ρ2n,p,m −

βn,p,m
1+βn,p,m

)
and α̃n,p,m

(
ρn,p,m −

√
βn,p,m

1+βn,p,m

)
are200

approximately standard normal under somewhat stringent conditions on

the growth rates of m and p as n → ∞. While none of the combinations202

of (n, p,m) with n = 104, 105, p = 104, 4 × 104 and m = 100, 200, 400, 600

seems to satisfy the condition that m (ln ln n)4/(ln n)2 be small, the normal204

approximation appears to be acceptable for n = 105 but less satisfactory

for n = 104.206
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Table 1: p = 104.

n = 104 n = 105

m 100 200 400 600 100 200 400 600

E(ρn,p,m) 0.257 0.323 0.395 0.437 0.318 0.408 0.509 0.570√
βn,p,m

1+βn,p,m
0.258 0.325 0.399 0.442 0.319 0.409 0.510 0.571

s.d.(ρn,p,m) 0.0043 0.0045 0.0046 0.0048 0.0039 0.0039 0.0040 0.0037

α̃−1n,p,m 0.0051 0.0053 0.0055 0.0057 0.0041 0.0042 0.0040 0.0039

Prob. 0.974 0.967 0.942 0.870 0.967 0.959 0.947 0.953

Table 2: p = 4× 104.

n = 104 n = 105

m 100 200 400 600 100 200 400 600

E(ρn,p,m) 0.132 0.168 0.210 0.236 0.165 0.218 0.283 0.327√
βn,p,m

1+βn,p,m
0.132 0.169 0.212 0.239 0.166 0.219 0.284 0.328

s.d.(ρn,p,m) 0.0022 0.0024 0.0026 0.0027 0.0019 0.0020 0.0021 0.0022

α̃−1n,p,m 0.0026 0.0028 0.0031 0.0033 0.0021 0.0022 0.0023 0.0023

Prob. 0.977 0.978 0.946 0.871 0.968 0.967 0.955 0.953
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Figure 4: Empirical cdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed

curves) and standard normal cdf (solid curves): n = 104, p = 104.
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Figure 5: Empirical cdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed

curves) and standard normal cdf (solid curves): n = 105, p = 104.
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Figure 6: Empirical cdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed

curves) and standard normal cdf (solid curves): n = 104, p = 4× 104.
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Figure 7: Empirical cdf of α̃n,p,m(ρn,p,m −
√
βn,p,m/(1 + βn,p,m)) (dashed

curves) and standard normal cdf (solid curves): n = 105, p = 4× 104.
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To get a more complete picture of the quality of the normal approxi-

mation in Corollary 1(ii), in Figures 4-7, we plot the empirical cumulative208

distribution function (cdf) of α̃n,p,m

(
ρn,p,m −

√
βn,p,m

1+βn,p,m

)
(based on 1000

replications), along with the standard normal cdf for each combination of210

(n, p,m). (The value of Dks is the Kolmogorov-Smirnov distance between

the two cdfs.) Figures 4-7 are the cdf under four different scenarios, de-212

pending on the values of n = 104, 105 and p = 104, 4 × 104. In each figure,

it includes four plots, depending on the values of m = 100, 200, 400, 600.214

The empirical cdf is shifted to the left of the standard normal cdf (more

notably for n = 104 in Figures 4 and 6), indicating that the mean of216

ρn,p,m −
√

βn,p,m
1+βn,p,m

is negative. This is consistent with the results in Tables

1 and 2 where
√

βn,p,m
1+βn,p,m

(slightly) overestimates E(ρn,p,m) (more notably218

for n = 104).

5. Concluding Remarks220

This paper studied a simple statistical model in order to quantitatively ex-

amine the phenomenon of “Einstein from noise”. Specifically, for a given222

reference image of dimension p and a set Sn of n iid white-noise images

(with the common uniform distribution on Sp−1), we derived the asymp-224

totic behavior of the cross correlation ρn,p,m between the reference and the
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normalized average of the m “most biased” members in Sn in the sense226

that they have the largest cross correlation values with the reference. Our

theoretical results indicate that for m = 1 and p = 120×120, unless n is far228

beyond the practical range (> 1070), ρn,p,1 is small (< 0.15) with high prob-

ability, implying that none of n white-noise images even remotely resembles230

the reference. On the other hand, for m moderately large (≥ 400), ρn,p,m

exceeds 0.5 with high probability if n = 2 × 106, in which case a blurred232

version of the reference emerges from the normalized average of the m most

biased members in Sn.234

Given a set Sn of n iid white-noise images, Cai et al. (2013) derived the

asymptotic distribution of the maximum of all pairwise cross correlations236

in Sn. See also Cai and Jiang (2011, 2012) and references therein. In

the absence of a reference image, their results may be applied to test the238

null hypothesis that Sn consists of n iid white-noise images. On the other

hand, given a reference image, our results can be used to test such a null240

hypothesis against the alternative that some of the n images in Sn are biased

towards the reference by checking whether ρn,p,m exceeds a threshold (which242

is determined by the null distribution of ρn,p,m).

Our approach can be directly generalized to tackle a special case of244

multiple references. Let r(1), . . . , r(k) be k given references of dimension
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p. Given a set Sn of n iid white-noise images, for i = 1, . . . , k, let ρ
(i)
n,p,m246

(i = 1, . . . , k) denote the cross correlation between r(i) and the normal-

ized average of those m members in Sn having the largest cross correlation248

values with r(i). It would be of interest to derive the asymptotic distri-

bution of max{ρ(i)n,p,m : i = 1, . . . , k}. If r(1), . . . , r(k) are orthogonal (i.e.250

the pairwise cross correlations are all equal to 0), then it can be argued

that ρ
(1)
n,p,m, . . . , ρ

(k)
n,p,m are asymptotically independent, so that the asymp-252

totic distribution of max{ρ(i)n,p,m : i = 1, . . . , k} can be readily derived by

Corollary 1. However, it seems difficult to find the asymptotic distribution254

of max{ρ(i)n,p,m : i = 1, . . . , k} when r(1), . . . , r(k) are not orthogonal.

The phenomenon of “Einstein from noise” originally arose in the con-256

text of cryo-EM image analysis where a key component is image alignment

(including rotation and translation). While to address this more compli-258

cated problem is beyond the scope of the present paper, it is worth noting

that the geometric shape of the reference is likely to play a significant role260

in the asymptotic theory yet to be developed. As an example, consider a

rotationally invariant reference, e.g. an image of a centered wheel. Because262

of rotational symmetry of the reference, a data image cannot fit the refer-

ence any better by rotation. We leave this challenging problem for future264

work.
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Supplementary Material266

The online Supplementary Material contains the proofs of Lemmas A6-

A8 stated in the Appendix.268
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A. Appendix

The Appendix consists of three sections. Section A.1 states some auxiliary274

lemmas, Section A.2 contains the proof of Theorem 1, and Section A.3

provides the proofs of Theorems 2 and 3 and Corollary 1. For easy reference,276

a complete list of notations is given in Supplementary Material. Note that

if X is uniformly distributed on Sp−1, then the distribution of r>X is278

the same for all r ∈ Sp−1. Without loss of generality, we assume r =

(1, 0, . . . , 0)> ∈ Sp−1 in what follows.280
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A.1. Auxiliary lemmas

Lemma A1. (Lemma 6.2 of Cai and Jiang (2012)) For t ∈ (0, 1), we have282

(
1 +

1

pt2

)−1
1

(p+ 2)t
(1− t2)(p+2)/2 ≤

∫ 1

t

(1− u2)p/2du ≤ 1

(p+ 2)t
(1− t2)(p+2)/2.

Since X i, i = 1, . . . , n are iid uniformly distributed on Sp−1 and Θi

denotes the angle between X i and r = (1, 0, . . . , 0)>, we have (cf. Eq (5)284

of Cai et al. (2013)) that Θi, i = 1, . . . , n are iid with the common cdf

Fp(θ) =

∫ θ

0

1√
π

Γ(p/2)

Γ((p− 1)/2)
(sinx)p−2dx

=

∫ 1

cos θ

1√
π

Γ(p/2)

Γ((p− 1)/2)
(1− u2)

p−3
2 du, θ ∈ [0, π]. (A.1)

Let286

F p(θ) =
1√
π

Γ(p/2)

Γ((p− 1)/2)

sinp−1 θ

(p− 1)| cos θ|
. (A.2)

The following lemma is a consequence of Lemma A1.

Lemma A2. For θ ∈ (0, π/2) and p > 3, we have

(
1 +

1

(p− 3) cos2 θ

)−1
F p(θ) ≤ Fp(θ) ≤ F p(θ).

Let U1, U2, . . . be iid uniform (0,1) random variables and let U1:n ≤288

· · · ≤ Un,n denote the order statistics of U1, . . . , Un. Let S0 = 0, and

Si = ξ1 + · · ·+ ξi, i = 1, 2, . . . , where ξ1, ξ2, . . . are iid exponential random290
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variables with mean 1. The next lemma is well known; see e.g. Karlin and

Taylor (1975). We write X
d
= Y if random vectors X and Y are equal in292

distribution.

Lemma A3. (i) (U1:n, . . . , Un:n)
d
= (S1, . . . , Sn)/Sn+1. (ii) (S1, . . . , Sn)/Sn+1294

is independent of Sn+1.

Recall that (X(1), . . . ,X(n)) is a permutation of (X1, . . . ,Xn) such296

that X
(1)
1 ≤ · · · ≤ X

(n)
1 , where X

(i)
1 = r>X(i) (the first component of

X(i)). Let V i and V (i) be defined by X i = (Xi1, (1 − X2
i1)

1/2V >i )> and298

X(i) = (X
(i)
1 , νiV

(i)>)>, where νi = (1−X(i)2
1 )1/2. In other words, V i (V (i),

respectively) ∈ Sp−2 is the normalized subvector of X i (X(i), respectively)300

with the first component deleted.

Lemma A4.302

(i) Xi1 and V i, i = 1, . . . , n are all independent.

(ii) Xi1, i = 1, . . . , n are iid.304

(iii) V i, i = 1, . . . , n are iid with the uniform distribution on Sp−2.

(iv) (V (1), . . . ,V (n)) is independent of (X11, . . . , Xn1) and hence indepen-306

dent of (X
(1)
1 , . . . , X

(n)
1 ).

(v) V (i), i = 1, . . . , n are iid with the uniform distribution on Sp−2.308

To show Lemma A4, let Zij, i = 1, . . . , n, j = 1, . . . , p, be iid standard
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normal, and let310

X∗
i = (Zi1, . . . , Zip)

>/

√√√√ p∑
j=1

Z2
ij = (Zi1/

√√√√ p∑
j=1

Z2
ij, ν

∗
i V
∗
i )
>, i = 1, . . . , n,

where ν∗i =

√√√√ p∑
j=2

Z2
ij/

√√√√ p∑
j=1

Z2
ij and V ∗i = (Zi2, . . . , Zip)

>/

√√√√ p∑
j=2

Z2
ij.

It is readily seen that X∗
i is uniformly distributed on Sp−1 and independent312

of
∑p

j=1 Z
2
ij, and that V ∗i is uniformly distributed on Sp−2 and indepen-

dent of Zi1 and
∑p

j=2 Z
2
ij (hence independent of Zi1/

√∑p
j=1 Z

2
ij). Since314

(X1, . . . ,Xn)
d
= (X∗

1, . . . ,X
∗
n) and (V 1, . . . ,V n)

d
= (V ∗1, . . . ,V

∗
n), Lemma

A4 follows.316

Recall that

Xm =
1

m

m∑
i=1

X(i) = (m−1
m∑
i=1

X
(i)
1 ,m−1

m∑
i=1

νiV
(i)>)>

and that318

ρ2n,p,m =

(
r>

Xm

‖Xm‖

)2

=

(
1
m

∑m
i=1X

(i)
1

)2
(

1
m

∑m
i=1X

(i)
1

)2
+
∥∥∥ 1
m

∑m
i=1 νiV

(i)
∥∥∥2 .

Let V ′i, i = 1, . . . , n be iid uniformly distributed on Sp−2 and independent

of X1, · · · ,Xn. Then the following lemma is a consequence of Lemma A4.320
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Lemma A5.

ρ2n,p,m
d
=

(
m−1

∑m
i=1X

(i)
1

)2
(
m−1

∑m
i=1X

(i)
1

)2
+ ‖m−1

∑m
i=1 νiV

′

i‖2

=
An,p,m

An,p,m + Vn,p,m
, (A.3)

where

An,p,m =

(
1

m

m∑
i=1

X
(i)
1

)2

and Vn,p,m =

∥∥∥∥∥ 1

m

m∑
i=1

νiV
′
i

∥∥∥∥∥
2

. (A.4)

The long proofs of Lemmas A6-A8 below are given in Supplementary322

Material.

Lemma A6. Let m = mn → ∞ satisfy m/n = o(1) and p = pn → ∞324

satisfy (lnn)2/p = O(1). Then

(i)

max
1≤i≤m

∣∣∣∣p ln(sin Θi:n) + ln
n

i
− 1

2
ln ln

n

i

∣∣∣∣ = Op(1),

(ii)

max
1≤i≤m

∣∣∣∣−p2 cos2 Θi:n + ln
n

i
− 1

2
ln ln

n

i

∣∣∣∣ = Op(1),

where Θ1:n ≤ Θ2:n ≤ · · · ≤ Θn:n are the order statistics of Θ1, . . . ,Θn.326

Lemma A7. Suppose that p = pn →∞ satisfies (lnn)2/p = O(1).

(i) If m = mn →∞ satisfies m/n→ 0, then

−pAn,p,m + 2 ln
n

m
− ln ln

n

m
= Op(1).
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(ii) If m = mn →∞ satisfies (lnm)3/(lnn)2 → 0, then328

−pAn,p,m + 2 ln
n

m
− ln ln

n

m
− ln(4π) + 2− 2

p

(
ln
n

m

)2
= op(1).

(iii) If m = mn →∞ satisfies m(ln lnn)4/(lnn)2 → 0, then

(m
8

)1/2{
−pAn,p,m + 2 ln

n

m
− ln ln

n

m
− ln(4π) + 2− 2

p

(
ln
n

m

)2} d−→ N(0, 1).

Lemma A8. Let W 1, . . . ,W n be iid uniformly distributed on Sp−1. Then330 √
p

2n2

∑
1≤i6=`≤n

〈W i,W `〉
d−→ N(0, 1) uniformly as n ∧ p→∞,

where 〈W i,W `〉 denotes the inner product of W i and W `.

A.2. Proof of Theorem 1332

Theorem 1 is a special case of Theorem A1 below for m = 1.

Theorem A1. Let334

Tn,p = (p− 1) ln(sin Θm:n)−Kn,p,

where Kn,p is defined as in (1). Let G∗m(t) = Gm(et), t ∈ R, where Gm

denotes the gamma distribution with shape parameter m and scale parameter336

1. Then for fixed m = 1, 2, . . . , Tn,p
d−→ G∗m uniformly as n ∧ p→∞.

Proof. We claim that

Tn`,p`
d−→ G∗m (A.5)
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for any increasing sequences {n`} and {p`} satisfying n` →∞, p` →∞ and

(lnn`)/p` → α ∈ [0,∞] as ` → ∞. Assume for now that the claim (A.5)

holds. To show that Tn,p
d−→ G∗m uniformly as n ∧ p → ∞, suppose to

the contrary that lim supn∧p→∞ supt∈R |P(Tn,p ≤ t) − G∗m(t)| > 0. Then

there exist an ε > 0 and a sequence {(n`, p`) : ` = 1, 2, . . . } such that

lim`→∞ n` ∧ p` =∞ and

sup
t∈R
|P(Tn`,p` ≤ t)−G∗m(t)| > ε for ` = 1, 2, . . . . (A.6)

There exists a subsequence {(n`k , p`k) : k = 1, 2, . . . } such that (lnn`k)/p`k338

converges to some value α ∈ [0,∞]. Then (A.6) contradicts (A.5), implying

that Tn,p
d−→ G∗m uniformly as n ∧ p→∞.340

We now prove (A.5). For notational simplicity, we will deal only with

the special case where n` = `, ` = 1, 2, . . . . The general case can be treated342

similarly. Specifically, we show that if p = pn →∞ satisfies (lnn)/p→ α ∈

[0,∞], then Tn,p = Tn,pn
d→ G∗m.344

Suppose p = pn → ∞ satisfies limn→∞(lnn)/p = α ∈ [0,∞]. For fixed

m, since Fp(Θm:n)
d
= Um:n, we have by Lemma A3

P(nFp(Θm:n) ≤ et) = P
(
nUm:n ≤ et

)
= P

(
n
Sm
Sn+1

≤ et
)

−→ P(Sm ≤ et) = Gm

(
et
)

= G∗m(t). (A.7)
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For fixed t > 0, let tn ∈ [0, 1) be such that

p− 1

2
ln(1− t2n) = min{Kn,p + t, 0}.

Noting that

Kn,p = Kn,pn = −(lnn)(1 + o(1)) as n→∞, (A.8)

we have for large n346

p− 1

2
ln(1− t2n) = Kn,p + t < 0. (A.9)

By Lemma A2,(
1 +

1

(p− 3)t2n

)−1
F p(cos−1 tn) ≤ Fp(cos−1 tn) ≤ F p(cos−1 tn),

implying that

P(nFp(Θm:n) ≤ nF p(cos−1 tn)) ≥ P(nFp(Θm:n) ≤ nFp(cos−1 tn))

≥ P

(
nFp(Θm:n) ≤

(
1 +

1

(p− 3)t2n

)−1
nF p(cos−1 tn)

)
.

(A.10)

Recalling α = limn→∞(lnn)/p, we claim that for every α ∈ [0,∞], as348

n→∞

nF p(cos−1 tn) = et + o(1), (A.11)

p t2n →∞, (A.12)

P(cos Θm:n ≤ −tn)→ 0. (A.13)

30

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



By (A.7), (A.10), (A.11) and (A.12),

P(cos Θm:n ≥ tn) = P
(
nFp(Θm:n) ≤ nFp(cos−1 tn)

)
→ G∗m(t). (A.14)

Furthermore,

P(Tn,p ≤ t) = P

(
p− 1

2
ln(1− cos2 Θm:n)−Kn,p ≤ t

)
= P(cos2 Θm:n ≥ t2n) (by (A.9))

= P(cos Θm:n ≥ tn) + P(cos Θm:n ≤ −tn)

→ G∗m(t) (by (A.13) and (A.14)).

It remains to establish (A.11)-(A.13). Note that by Sterling’s formula (see

e.g. Tricomi and Erdélyi (1951)),

Γ(p/2)

Γ((p− 1)/2)
=

√
p

2

(
1 +O

(
1

p

))
as p→∞. (A.15)

We have

ln
(
nF p(cos−1 tn)

)
= ln

{
n√
π

Γ(p/2)

Γ((p− 1)/2)

(
(1− t2n)p−1

(p− 1)2t2n

)1/2
}

(by (A.2))

= ln

{
n

(
(1− t2n)p−1

2πpt2n

)1/2
}

+O

(
1

p

)
(by (A.15))

=
p− 1

2
ln(1− t2n) + lnn− 1

2
ln(pt2n)− 1

2
ln(2π) +O

(
1

p

)
= Kn,p + t+ lnn− 1

2
ln(pt2n)− 1

2
ln(2π) +O

(
1

p

)
(by (A.9)).

(A.16)
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By (A.8) and (A.9),

ln(1− t2n) = −2 lnn

p
(1 + o(1)), (A.17)

implying that

tn →
(
1− e−2α

)1/2
, (A.18)

where limn→∞(lnn)/p = α ∈ [0,∞] and e−∞ := 0.350

If α = 0, we have tn → 0+, so that by (A.17)

t2n =
2 lnn

p
(1 + o(1)), (A.19)

from which it follows that ln(pt2n) = ln(2 lnn) + o(1). By the definition of

Kn,p, we have Kn,p = − lnn+ (ln lnn)/2 + ln(4π)/2 + o(1), so that Kn,p +

lnn − ln(pt2n)/2 − ln(2π)/2 = o(1), which together with (A.16) establishes

(A.11) for α = 0. If 0 < α <∞, we have t2n = 1− e−2α + o(1) (by (A.18))

and ln(pt2n) = ln lnn − lnα + ln (1− e−2α) + o(1), so that Kn,p + lnn −

ln(pt2n)/2− ln(2π)/2 = o(1), which together with (A.16) establishes (A.11)

for 0 < α < ∞. If α = ∞, we have tn → 1−, so that by the definition of

Kn,p,

Kn,p + lnn− 1

2
ln(pt2n)− 1

2
ln(2π)

= − lnn+
1

2
ln lnn− 1

2
ln

(
2 lnn

p

)
+

1

2
ln(4π) + lnn− 1

2
ln p− 1

2
ln(2π) + o(1)

= o(1),
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which together with (A.16) establishes (A.11) for α =∞.

352

Next, (A.19) holds for α = 0, which implies (A.12). For 0 < α ≤ ∞, it

follows from (A.18) that tn → (1− e−2α)1/2 > 0, which implies (A.12).354

Finally, to prove (A.13), note that

P(cos Θm:n ≤ −tn) ≤ P(Θm:n ≥ π/2) = P(B(n, 1/2) < m)→ 0,

where B(n, 1/2) denotes a binomial random variable with parameters n and356

1/2 (success probability). This establishes (A.13) and completes the proof

of Theorem A1.358

A.3. Proofs of Theorems 2-3 and Corollary 1

We first show that if m = mn → ∞ satisfies m/n → 0 and p = pn → ∞360

satisfies (ln n)2/p→ 0, then

m

√
p

2

(
Vn,p,m −

1

m

)
d−→ N(0, 1), (A.20)

where Vn,p,m = ‖ 1
m

∑m
i=1 νiV

′
i‖2 with ν2i = 1 − cos2 Θi:n, and V ′1, . . . ,V

′
m362

are iid uniformly distributed on Sp−2, and (V ′1, . . . ,V
′
m) is independent of

(ν1, . . . , νm).364
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We have

Vn,p,m =
1

m2

m∑
i=1

ν2i ‖V
′

i‖2 +
1

m2

∑
1≤i6=`≤m

νiν`〈V ′i,V ′`〉

=
1

m
+

1

m2

m∑
i=1

(ν2i − 1) +
1

m2

∑
1≤i6=`≤m

{1 + (νiν` − 1)}〈V ′i,V ′`〉

=
1

m
+ V ′1,n + V ′2,n + V ′3,n, (A.21)

where

V ′1,n =
1

m2

m∑
i=1

(ν2i − 1) = − 1

m2

m∑
i=1

cos2 Θi:n,

V ′2,n =
1

m2

∑
1≤i6=`≤m

〈V ′i,V ′`〉,

V ′3,n =
1

m2

∑
1≤i6=`≤m

(νiν` − 1)〈V ′i,V ′`〉.

By Lemma A8, we have

m

√
p

2
V ′2,n

d−→ N(0, 1). (A.22)

It remains to prove366

mp1/2V ′i,n = op(1), i = 1, 3. (A.23)

By Lemma A6(ii),

max
1≤i≤m

cos2 Θi:n = Op

(
ln n

p

)
,

implying that mp1/2V ′1,n = Op

(
ln n
p1/2

)
= op(1). To show mp1/2V ′3,n = op(1),368

note that (ν1, . . . , νm) is independent of (V ′1, . . . ,V
′
m) and E[〈V ′i,V ′`〉〈V ′i′ ,V ′`′〉] =
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0 if i 6= `, i′ 6= `′ and {i, `} 6= {i′, `′}. Also, for i 6= `, E〈V ′i,V ′`〉2 =370 ∫ π
0

cos2(θ)dFp−1(θ) = 1
p−1 , where Fp is defined as in (A.1). We have

EV
′2
3,n =

2

m4

∑
1≤i6=`≤m

E[(νiν` − 1)2]E〈V ′i,V ′`〉2

=
2

m4

∑
1≤i6=`≤m

E[(νiν` − 1)2]
1

p− 1

= o

(
1

m2p

)
, (A.24)

since |νi| ≤ 1 and νiν` − 1 → 0 in probability uniformly in 1 ≤ i 6= ` ≤ m.372

It follows from (A.24) that mp1/2V ′3,n = op(1). This proves (A.23) and

completes the proof of (A.20).374

Proof of Theorem 2. Since by (A.3) ρ2n,p,m
d
= An,p,m

An,p,m+Vn,p,m
, we have

ρ2n,p,m −
βn,p,m

1 + βn,p,m

d
=

An,p,m − βn,p,m/m
(An,p,m + Vn,p,m)(1 + βn,p,m)

+
(1/m− Vn,p,m)βn,p,m

(An,p,m + Vn,p,m)(1 + βn,p,m)
.

(A.25)

Since βn,p,m = m
p

{
2 ln n

m
− ln ln n

m
− ln(4π) + 2

}
, it follows from Lemma

A7(i) and (A.20) that376

p(An,p,m −
1

m
βn,p,m) = Op(1), mVn,p,m = 1 + op(1), pβn,p,mVn,p,m = (2 + op(1)) ln

( n
m

)
.

Thus,

An,p,m − βn,p,m/m
(An,p,m + Vn,p,m)(1 + βn,p,m)

=
p(An,p,m − βn,p,m/m)

(pβn,p,mAn,p,m + pβn,p,mVn,p,m)

βn,p,m
(1 + βn,p,m)

= op(1)
βn,p,m

(1 + βn,p,m)
,

378

(1/m− Vn,p,m)βn,p,m
(An,p,m + Vn,p,m)(1 + βn,p,m)

=
(1−mVn,p,m)

(mAn,p,m +mVn,p,m)

βn,p,m
(1 + βn,p,m)

= op(1)
βn,p,m

(1 + βn,p,m)
.
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We have by (A.25),

ρ2n,p,m =
βn,p,m

1 + βn,p,m
(1 + op(1)).

The proof is complete.

380

Proof of Theorem 3. By (A.21)-(A.23),

m

√
p

2

(
Vn,p,m −

1

m

)
= m

√
p

2

(
V ′1,n + V ′2,n + V ′3,n

)
= m

√
p

2
V ′2,n + op(1). (A.26)

Let382

Z1,n = p

√
m

8

(
An,p,m −

1

m
βn,p,m +

2

p2

(
ln
n

m

)2)
,

Z2,n = m

√
p

2
V ′2,n,

γn = (An,p,m + Vn,p,m)(1 + βn,p,m).

We have by (A.25) and (A.26)

ρ2n,p,m −
βn,p,m

1 + βn,p,m

d
= γ−1n

{
1

p
√
m/8

Z1,n −
βn,p,m

m
√
p/2

m

√
p

2

(
Vn,p,m −

1

m

)}
− γ−1n

2

p2

(
ln
n

m

)2
= γ−1n

{√
8

mp2
Z1,n −

√
2

m2p
βn,p,m(Z2,n + op(1))

}
− γ−1n

2

p2

(
ln
n

m

)2
= γ−1n

(
8

mp2
+

2

m2p
β2
n,p,m

)1/2

{c1,nZ1,n + c2,n(Z2,n + op(1))} − γ−1n
2

p2

(
ln
n

m

)2
,

(A.27)
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where384

c1,n =

√
8

mp2

(
8

mp2
+

2

m2p
β2
n,p,m

)−1/2
,

c2,n = −
√

2

m2p
βn,p,m

(
8

mp2
+

2

m2p
β2
n,p,m

)−1/2
.

Since ρ2n,p,m
d
= An,p,m/(An,p,m + Vn,p,m), we have by Theorem 2

An,p,m
An,p,m + Vn,p,m

=
βn,p,m

1 + βn,p,m
(1 + op(1)). (A.28)

It follows from Lemma A7(i) and (p/m)βn,p,m = 2 ln n
m

(1 + o(1)) that386

mAn,p,m
βn,p,m

=
pAn,p,m

(p/m)βn,p,m
= 1 + op(1). (A.29)

So we have

γn

(
8

mp2
+

2

m2p
β2
n,p,m

)−1/2
=

pm√
8m+ 2pβ2

n,p,m

(An,p,m + Vn,p,m)(1 + βn,p,m)

=
pmAn,p,m√

8m+ 2pβ2
n,p,m

An,p,m + Vn,p,m
An,p,m

(1 + βn,p,m)

=
pmAn,p,m/βn,p,m√

8m+ 2pβ2
n,p,m

(1 + βn,p,m)2(1 + op(1)) (by(A.28))

=
p√

8m+ 2pβ2
n,p,m

(1 + βn,p,m)2(1 + op(1)) (by (A.29))

= αn,p,m(1 + op(1)), (A.30)

where αn,p,m = p
(
8m+ 2p β2

n,p,m

)−1/2
(1 + βn,p,m)2 .388
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Also,

0 <
2

p2

(
ln
n

m

)2( 8

mp2
+

2

m2p
β2
n,p,m

)−1/2
≤ 2

p2

(
ln
n

m

)2( 2

m2p
β2
n,p,m

)−1/2
=

2

p2

(
ln
n

m

)2{ 2

p3

( p
m
βn,p,m

)2}−1/2
=

√
2

p

(
ln
n

m

)2 (
2 ln

n

m
(1 + o(1))

)−1
=

1√
2p

ln
n

m
(1 + o(1)) = o(1),

which together with (A.30) implies that390

αn,p,m
γn

2

p2

(
ln

n

m

)2
=

{
αn,p,m
γn

(
8

mp2
+

2

m2p
β2
n,p,m

)1/2
}{

2

p2

(
ln

n

m

)2( 8

mp2
+

2

m2p
β2
n,p,m

)−1/2}
= (1 + op(1))o(1) = op(1). (A.31)

It follows from (A.27), (A.30), and (A.31) that

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d
=

αn,p,m
γn

(
8

mp2
+

2

m2p
β2
n,p,m

)1/2

{c1,nZ1,n + c2,nZ2,n(1 + op(1))} − αn,p,m
γn

2

p2

(
ln

n

m

)2
= (1 + op(1)) {c1,nZ1,n + c2,nZ2,n(1 + op(1))}+ op(1). (A.32)

Note that c1,n and c2,n are constants (depending on n, pn,mn), which satisfy392

c21,n + c22,n = 1. By Lemma A7(iii),

−Z1,n =

√
m

8

{
−pAn,p,m + 2 ln

n

m
− ln ln

n

m
− ln (4π) + 2− 2

p

(
ln

n

m

)2} d−→ N(0, 1).
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By (A.22), Z2,n
d−→ N(0, 1). Note that Z1,n and Z2,n are independent (since394

An,p,m and V ′2,n are independent). We have

c1,nZ1,n + c2,nZ2,n
d−→ N(0, 1),

which together with (A.32) implies that396

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d−→ N(0, 1).

The proof is complete.

Proof of Corollary 1. Part (i) follows immediately from Theorem 2. To398

prove part (ii), we have by part (i) and Theorem 3 that

2αn,p,m

√
βn,p,m

1 + βn,p,m

(
ρn,p,m −

√
βn,p,m

1 + βn,p,m

)

=
2
√

βn,p,m
1+βn,p,m

ρn,p,m +
√

βn,p,m
1+βn,p,m

αn,p,m

(
ρ2n,p,m −

βn,p,m
1 + βn,p,m

)
d−→ N(0, 1),

completing the proof.400
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