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Hong Kong University of Science and Technology
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Abstract: This article develops a method to construct the optimal sequential test for monitoring the

changes in the distribution of finite observation sequences with a general dependence structure. This

method allows us to prove that different optimal sequential tests can be constructed for different

performance measures of detection delay times. A formula is presented to calculate the value of

the generalized out-of-control average run length for every optimal sequential test. Moreover, we

show that there is an equivalent optimal control limit which does not depend on the test statistic

directly when the post-change conditional densities (probabilities) of the observation sequences do

not depend on the change time. The detecting performance of six sequential tests, including two

optimal sequential tests, are illustrated through the numerical simulations and a real-data example.

Key words and phrases: Optimal sequential test, Change-point detection , Dependent observation

sequence.

1. Introduction

One of the basic problems in statistical process control (SPC) is designing an effective
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Optimal Sequential Test 2

sequential test (or a control chart), as proposed by Shewhart (1931), to detect possible

changes at some instant (change-point) in the behavior of a series of sequential obser-

vations. The objective is to raise an alarm as soon as a change occurs, while keeping

the rate of false alarms to an acceptable level. Detecting abrupt changes in a stochastic

system quickly without exceeding a specified false alarm rate is an important issue not

only in industrial quality and process control applications, but also in non-industrial pro-

cesses (Bersimis et al. 2018), biology (Siegmund 2013), clinical trials and public-health

(Woodall 2006, Chen and Baron 2014, Rigdon and Fricker 2015) , econometrics and fi-

nancial surveillance (Frisén 2009), graph and network data ( Akoglu et al. 2015, Woodall

et al. 2017, Hosseini and Noorossana 2018), etc.

A great variety of sequential tests have been proposed, developed and applied to detect

changes in the distribution of sequential observations quickly in various fields; see, for

example, Siegmund (1985), Basseville and Nikiforov (1993), Lai (1995, 2001), Stoumbos

et al. (2000), Chakraborti et al. (2001), Bersimis et al. (2007), Montgomery (2009), Poor

and Hadjiliadis (2009), Woodall and Montgomery (2014), Qiu (2014) and Tartakovsky et

al. (2015). This raises two questions: What is the optimal sequential test? How do we

design or construct an optimal sequential test?

First, we recall the main results of the known optimal sequential tests. A sequential

test T ∗ is called to be optimal for detecting changes in the distribution if the average

value of some detection delay time (T − k + 1)+ of T ∗ for all possible change time k ≥ 1

is the smallest of all of the sequential tests T with a given probability of false alarm that
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Optimal Sequential Test 3

is no greater than a preset level ( or with a given false alarm rate that is no less than

a given value), where x+ = max{0, x}. In the literature, there are four main kinds of

optimal sequential tests: the Shiryaev (1963, 1978, P.193-200) test TS(c1), two SLR (sum

of the log likelihood ratio) tests TSLR1(c2) (Chow, Robbins and Siegmund 1971, P.108)

and TSLR2(c3) (Frisén 2003), the CUSUM test TC(c4) (Page 1954, Moustakides 1986)

and the Shiryaev-Roberts test T r
SR(c5) (Polunchenko and Tartakovsky 2010), where the

five positive numbers ci > 0, 1 ≤ i ≤ 5, denote the five constant control limits or the

threshold limits. It can be seen that to prove the optimality of the tests above we need

the assumption that there is an infinite independent or Markov observation sequences

(Han, Tsung and Xian 2017).

In fact, it is not realistic for us to have an infinite observation sequences, that is,

people can only obtain finite observation sequences in reality. For example, consider a

production line that produces one product per minute. If the production line works eight

hours a day, then the number of products or observations per day is N = 480. Our

task is to design or construct an effect test for detecting whether the 480 observations

(usually not independent) are abnormal in real-time. However, when we only have N

finite independent observation sequences {Xn, 1 ≤ n ≤ N} (N ≥ 2), all the five optimal

sequential tests mentioned above will become no longer optimal.

In this paper, based on Chow-Robbins-Siegmund’s work (1971, Chaper 3) we develop

a method to construct various optimal sequential tests under different performance mea-

sures of detection delay times for detecting the change in probability distribution of finite
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observation sequences. Moreover, we find a formula to calculate the value of the gener-

alized out-of-control average run length for each optimal test and obtain an equivalent

optimal control limit which may not depend on the test statistic directly.

The rest of this paper is organized as follows. Section 2.1 presents a generalized

Shiryaev’s measure to evaluate how well a sequential test performs to detect changes

in the distribution of finite observation sequences. Section 2.2 constructs the optimal

sequential test and gives the formula for calculating the generalized out-of-control average

run length. The equivalent optimal control limit is presented and proved in Section 3.

The detection performance of two optimal tests is illustrated by comparison and analysis

of the numerical simulations for 60 observations in Section 4. Section 5 provides a real

example. The four performance measures and the proofs of three theorems are given in

the Appendixe 1 and the online Supplementary Materials respectively.

2. Optimal sequential tests for finite observations

In this section, we first present the performance measure and optimization criterion, then

construct the optimal sequential tests.

Consider finite observations, X0, X1, X2, ..., XN . Without loss of generality, we as-

sume N ≥ 2. Let τ = k (1 ≤ k ≤ N) be the change-point. Let p0(x0, x1, ..., xN) and

pk(x0, x1, ..., xN) be the pre-change and post-change joint probability densities respective-

ly. Denote the post-change joint probability distribution and the expectation by Pk and

Ek respectively for 1 ≤ k ≤ N . When τ > N , i.e., a change never occurs in N obser-

4
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vations X1, X2, ..., XN , the probability distribution and the expectation are denoted by

P0 and E0 respectively for all observations X0, X1, X2, ..., XN with the pre-change joint

probability density p0(x0, x1, ..., xN). Moreover, when the observations, Xn, 0 ≤ n ≤ N,

are the discrete random variables, the above joint probability densities and the condition-

al probability densities will be considered as the joint probabilities and the conditional

probabilities, respectively.

In order to construct the optimal sequential tests in Section 2.2, we assume that

the following likelihood ratio of the post-change conditional probability density to the

pre-change conditional probability density, Λ
(k)
j , satisfies

Λ
(k)
j =

p
(k)
1j (Xj|Xj−1, ..., X0)

p0j(Xj|Xj−1, ..., X0)
< ∞ (a.s.P0) (2.1)

and has no atoms with respect toP0 for 1 ≤ k ≤ N and k ≤ j ≤ N , where p0j(xj|xj−1, ..., x0)

for 1 ≤ j ≤ N and p
(k)
1j (xj|xj−1, ..., x0) for 1 ≤ k ≤ N , k ≤ j ≤ N, denote the pre-change

and post-change conditional probability densities, respectively, and the notation (k) in

p
(k)
1j denotes that the post-change conditional probability densities p

(k)
1j rely on the change-

point k for k ≤ j ≤ N . If Λ
(k)
j = Λj for 1 ≤ k ≤ j ≤ N , it means that the post-change

conditional densities (probabilities) of the observation sequence do not depend on the

change-point.

2.1 Performance measures of sequential tests

Let T ∈ TN be a sequential test, where TN is a set of all the sequential tests satisfying

1 ≤ T ≤ N+1 and {T ≤ n} ∈ Fn = σ{Xj, 0 ≤ j ≤ n} for 1 ≤ n ≤ N , where {T = N+1}

5
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denotes the random event {T > N} which means that the change point occurs after N

observation samples. It means that {T = N + 1} ∈ FN .

Let W = {wj, 1 ≤ j ≤ N + 1} and V = {vj, 1 ≤ j ≤ N + 1} be two series of

nonnegative random variables satisfying wk, vk ∈ Fk−1 for 1 ≤ k ≤ N + 1. Denote the

indicator function by I(.). We may regard the two non-negative random variables wk and

vk as two random weights of the detection delay (T−k)+ and the event I(T ≥ k) such that

the time of false alarm is greater than or equal to the change-point k, respectively. Here,

wk, vk ∈ Fk−1 means that both weights wk and vk can be determined by the observation

information before the time k for 1 ≤ k ≤ N . Using the concept of the randomization

probability of the change-point and the definition describing the average detection delay

proposed by Moustakides (2008), we can define a performance measure JM,N(.) for every

given weighted pair M = (W,V ) to evaluate the detection performance of each sequential

test T ∈ TN in the following

JM,N(T ) =

∑N+1
k=1 Ek(wk(T − k)+)∑N+1
j=1 E0(vjI(T ≥ j))

=

∑N
k=1Ek(wk(T − k)+)

E0(
∑T

j=1 vj)
. (2.2)

Here, the denominator comes from T ≤ N +1 and
∑N+1

j=1 E0(vjI(T ≥ j)) = E0(
∑T

j=1 vj).

As we only consider the detection delay after the change-point τ = k ≥ 1, the commonly-

used detection delay (T − k+ 1)+ is replaced by (T − k)+ hereafter. Note that W and V

may not be the randomization probability of the change-point.

According to the definition of JM,N(T ), the smaller JM,N(T ), the better the detection

performance of the test T satisfying
∑N+1

j=1 E0(vjI(T ≥ j)) ≥ γ for some given positive

constant γ.

6
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Remark 1. The numerator and denominator of JM,N(T ) can be regarded as a gen-

eralized out-of-control average run length ( ARL1) and a generalized in-control ARL0,

respectively. Moreover, the measure JM,N(.) can be considered as a generalization of the

following Shiryaev’s measure

JS(T ) =

∑∞
k=1 ρkEk((T − k)+)∑∞
j=1 ρjE0(I(T ≥ j))

= E(T − τ |T ≥ τ).

for T ≤ N + 1, where ρk = P(τ = k) for k ≥ 1.

It is clear that taking various weighted pairs M = (W,V ), we can get various measures

JM,N(.). Next we list four known measures in the following by taking the appropriate

weighted pairs, Mi = (Wi, Vi), 1 ≤ i ≤ 4.

JM1,N(T ) =

∑N+1
k=1 ρkEk(T − k)+∑N+1
j=1 ρjP0(T ≥ j)

, JM2,N(T ) =
E1(T − 1)

P0(T ≥ N + 1)
,

JM3,N(T ) =

∑N
k=1 Ek((1− Zk−1)

+(T − k)+)

E0(T )
,

JM4,N(T ) =
rE1(T − 1) +

∑N
k=1Ek((T − k)+)

r + E0(T )
,

where W1 = V1 = {ρk, 1 ≤ k ≤ N + 1}, ρN+1 := 1−
∑N

k=1 ρk, W2 = {w1 = 1, wk = 0, 2 ≤

k ≤ N + 1}, V2 = {vj = 0, 1 ≤ j ≤ N, vN+1 = 1}, W3 = {wj = vj = (1 − Zj−1)
+, 1 ≤

j ≤ N + 1}, V3 = {vk = 1, 1 ≤ k ≤ N + 1}, W4 = V4 = {w1 = v1 = r, wk = vk =

1, 2 ≤ k ≤ N + 1}, and Zk = max{1, Zk−1}Λk for 1 ≤ k ≤ N , are the statistics of the

CUSUM test with Z0 = 0 (see Moustakides 1986). Another four performance measures

JMj ,N(.), 5 ≤ j ≤ 8, are listed in the APPENDIX 1 of this paper, where JM7,N(.) and

JM8,N(.) are new measures. Since the in-control ARL0, E0(T ), is easier to be calculated
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than the generalized in-control ARL0, E0(
∑T

j=1(1−Zj−1)
+), in JM6,N(T ), so we often use

the measure JM3,N(T ) to replace the measure JM6,N(T ).

Note that when we have an infinite independent observation sequences, the five mea-

sures above JMi,∞ for i = 1, 2, 5, 6, 4 and N = ∞, have been used by Shiryaev (1978, P.

193-200), Chow, Robbins and Siegmund (1971, P.108), Frisén (2003), Moustakides (1986)

and Polunchenko and Tartakovsky (2010) to prove the optimality of the sequential tests,

TS, TSLR1 , TSLR2 , TC and T r
SR, respectively.

2.2 Optimal sequential tests

For a given weighted pair M = (W,V ), we first provide a definition of the optimization

criterion of the sequential tests for N observations.

Definition 1. A sequential test T ∗ ∈ TN with E0(
∑T ∗

k=1 vk) ≥ γ is optimal under

the measure JM,N(T ) if

inf
T∈TN , E0(

∑T
j=1 vj)≥γ

JM,N(T ) = JM,N(T
∗) (2.3)

where γ satisfies E0(v1) < γ < E0(
∑N+1

j=1 vj).

To construct the optimal sequential test under the measure JM,N(T ) in (2.2) with a

given weighted pair M = (W,V ), we need to present a series of nonnegative test statistics,

Yn, 0 ≤ n ≤ N + 1, as follows

Yn =
n∑

k=1

wk

n∏
j=k

Λ
(k)
j (2.4)

for 0 ≤ n ≤ N + 1, where Y0 = 0, YN+1 := YN , W = {wk, 1 ≤ k ≤ N + 1} and Λ
(k)
j

satisfying (2.1). It can be seen that the statistics Yn, 1 ≤ n ≤ N, depend not only on the

8
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likelihood ratio {Λ(k)
j } but also on the weight of the detection delay {wk}. Especially, if

Λ
(k)
j = Λj for 1 ≤ k ≤ j ≤ N , that is, the post-change conditional densities (probabilities)

of the observation sequences do not depend on the change-point, then

Yn =
n∑

k=1

wk

n∏
j=k

Λj = (Yn−1 + wn)Λn (2.5)

for 1 ≤ n ≤ N .

Remark 2. Even if (2.5) holds, the test statistic sequence {Yn, 0 ≤ n ≤ N} is not

necessarily a Markov chain. For example, let both the pre-change observation sequence

X1, ..., Xk−1 and the post-change observation sequence Xk, ...XN , be i.i.d., therefore, (2.5)

holds, it is clear that the statistic {Yn, 0 ≤ n ≤ N} is not a Markov chain when we take

w1 = 1, wn = 1
n−1

∑n−1
j=1 e

Xj for 2 ≤ n ≤ N in (2.5).

Note that (T − k)+ =
∑N+1

m=k+1 I(T ≥ m) for T ∈ TN , I(T ≥ m) ∈ Fm−1 and the

post-change joint probability density pk(x0, x1, ..., xn) for the change-point k (1 ≤ k ≤ N)

can be written as

pk(x0, x1, ..., xn) = p(x0)

(k−1)∧n∏
j=1

p0j(xj|xj−1, ..., x0)
n∏

j=k

p
(k)
1j (xj|xj−1, ..., x0)

for 1 ≤ n ≤ N , where p(x0) is the probability density (or probability) of X0 at initial

time k = 0, (k − 1) ∧ n denotes min{k − 1, n},
∏(k−1)∧n

j=1 = 1 for k = 1 and
∏n

j=k = 1 for

9
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n < k. For the nonnegative test statistics Yn in (2.4), we can get that

N∑
k=1

Ek(wk(T − k)+)

= E0

( N∑
k=1

N+1∑
m=k+1

wkI(T ≥ m)
m−1∏
j=k

Λ
(k)
j

)
= E0

( N∑
m=1

YmI(T ≥ m+ 1)
)
= E0

( T∑
m=1

Ym−1

)
for all T ∈ TN . This equality means that the generalized out-of-control ARL1 (the

numerator of the measure JM,N(T )) is equal to the generalized in-control ARL0, in which

the weight {vm} is replaced by the statistic {Ym−1}. Thus, finding an optimal sequential

test T ∗ under the measure JM,N(T ) in (2.2) is equivalent to constructing an optimal

sequential test T ∗ which satisfies the following equation

inf
T∈TN , E0(

∑T
j=1 vj)≥γ

{E0

( T∑
m=1

Ym−1

)
} = E0

( T ∗∑
m=1

Ym−1

)
(2.6)

for E0(
∑T ∗

j=1 vj) = γ, where γ satisfies E0(v1) < γ < E0(
∑N+1

j=1 vj).

Motivated by Chow-Robbins-Siegmund’s method of backward induction (1971, P.49),

we present a nonnegative random dynamic control limit {ln(c), 0 ≤ n ≤ N + 1} that is

defined by the following recursive equations

lN+1(c) = 0, lN(c) = cvN+1

ln(c) = cvn+1 + E0

(
[ln+1(c)− Yn+1]

+|Fn

)
(2.7)

for 0 ≤ n ≤ N − 1, where c > 0 is a constant and V = {vj, 1 ≤ j ≤ N + 1}. It is clear

that ln(c) ≥ cvn+1 and ln(c) ∈ Fn for 0 ≤ n ≤ N . The positive number c can be regarded

10
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as an adjustment coefficient for the random dynamic control limit, as ln(c) is increasing

on c ≥ 0 with ln(0) = 0 and limc→∞ ln(c) = ∞ for vn+1 > 0.

Now, for a given weighted pair M = (W,V ), we define a sequential test T ∗
M(c,N) by

using the test statistics, Yn, 1 ≤ n ≤ N + 1, and the control limits, ln(c), 1 ≤ n ≤ N + 1,

as follows

T ∗
M(c,N) = min{1 ≤ n ≤ N + 1 : Yn ≥ ln(c)}. (2.8)

It is easy to check that T ∗
M(c,N) ∈ TN .

The following theorem shows that for any given performance measure JM,N in (2.2),

the sequential test T ∗
M(c,N) constructed above is optimal.

Theorem 1. Assume that the ratio Λ
(k)
j satisfies (2.1) for 1 ≤ k ≤ N and k ≤ j ≤ N .

Let γ be a positive number satisfying E0(v1) < γ <
∑N+1

j=1 E0(vj). Then

(i) There exists a positive number cγ such that T ∗
M(cγ, N) is optimal in the sense of (2.2)

(or (2.6)) with E0(
∑T ∗

M (cγ ,N)
j=1 vj) = γ; that is,

inf
T∈TN , E0(

∑T
j=1 vj)≥γ

JM,N(T ) = JM,N(T
∗
M(cγ, N)). (2.9)

(ii) If T ∈ TN satisfies T ̸= T ∗
M(cγ, N), that is, P0(T ̸= T ∗

M(cγ, N)) > 0 and E0(
∑T

j=1 vj) =

γ, then

JM,N(T ) > JM,N(T
∗
M(cγ, N)). (2.10)

(iii) Moreover

JM,N(T
∗
M(cγ, N)) = cγ

(
1− E0(v1)

γ

)
− E0[l1(cγ)− Y1]

+

γ
. (2.11)

11
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Here, the random dynamic control limit {ln(c), 0 ≤ n ≤ N + 1} of the optimal test

T ∗
M(c,N) can be called an optimal dynamic control limit.

It follows from (2.9) and (2.11) that the minimum value of the generalized out-of-

control ARL1 ( the numerator of the measure JM,N(T ) ) for all T ∈ TN can be calculated

using the following formula

inf
T∈TN , E0(

∑T
j=1 vj)≥γ

N∑
k=1

Ek(wk[T − k]+)

=
N∑
k=1

Ek(wk[T
∗
M(cγ, N)− k]+) (2.12)

= cγ(γ − E0(v1))− E0([l1(cγ)− Y1]
+).

As an application of Theorem 1, we have the following corollary.

Corollary 1. The eight sequential tests T ∗
Mi
(c,N), 1 ≤ i ≤ 8, defined in (2.8), which

correspond to the eight weighted pairs Mi, 1 ≤ i ≤ 8, are optimal under the measures

JMi,N for 1 ≤ i ≤ 8, respectively.

Note that the optimality of the two tests T ∗
M4

(c,N) and T ∗
M6

(c,N) with the optimal

dynamic control limits {l(4)n (c), 0 ≤ n ≤ N + 1} and {l(6)n (c), 0 ≤ n ≤ N + 1}, respec-

tively, is not under Lorden’s measure (see Lorden 1971, Moustakides 1986) but under the

corresponding measures JM4,N and JM6,N , respectively.

3. Optimal control limits

It is clear that the optimal control limit {ln(c), 0 ≤ n ≤ N + 1} of the optimal sequential

test T ∗
M(c,N) plays a key role in detecting changes in distribution.

12
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Since E0([ln+1(c)− Yn+1]
+|Fn) and vn+1 are measurable with respect to Fn, it follows

that there are 2N + 1 non-negative functions hn = hn(c, x0, x1, ..., xn), 0 ≤ n ≤ N − 1,

and vn = vn(x0, x1, ..., xn−1), 0 ≤ n ≤ N − 1, such that

hn = hn(c, x0, x1, ..., xn)

= E0([ln+1(c)− Yn+1]
+|Xn = xn, Xn−1 = xn−1, ..., X0 = x0)

for 0 ≤ n ≤ N − 1. Therefore, the optimal control limit ln(c) in (2.7) can be written as

ln(c) = cvn+1(x0, X1, ..., Xn) + hn(c, x0, X1, ..., Xn)

for 0 ≤ n ≤ N , where X0 = x0 is a constant. It can be seen that the optimal control limit

{ln(c), 0 ≤ n ≤ N +1} of the optimal sequential test T ∗
M(c,N) is not easy to calculate for

a general dependence observation sequence {Xn, 0 ≤ n ≤ N}.

To reduce the number of observation variables on which the control limit {ln(c), 0 ≤

n ≤ N} depends, we let the observation sequence {Xn, 0 ≤ n ≤ N} be at most a q-

order Markov process, where q = max{i, j}, 0 ≤ q ≤ N , that is, both the pre-change

observations X1, ..., Xk−1 and the post-change observations Xk, ..., XN are i-order and j-

order Markov processes with transition probability density functions p0n(xn|xn−1, ..., xn−i)

and p
(k)
1m(xm|xm−1, ..., xm−j), respectively, which satisfy the following Markov property

p0n(xn|xn−1, ..., xn−i) = p0n(xn|xn−1, ..., xn−i, ..., x0)

p1m(xm|xm−1, ..., xm−j) = p1m(xm|xm−1, ..., xm−j, ..., x0)

= p
(k)
1m(xm|xm−1, ..., xm−j, ..., x0)

13

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



for n ≥ i, m ≥ j and 1 ≤ k ≤ m ≤ N . The first equality of conditional probability de-

notes that the current situation xn depends only on what happened in the last i periods

for pre-change observations, this is i-order Markov process. Obviously, the second quality

means that the post-change observations sequence is j Markov process. The last equa-

tion above means that the post-change conditional densities of the observation sequences

do not depend on the change-point. Here, a 0-order Markov process means that both

the pre-change observations X1, ..., Xk−1 and the post-change observations Xk, ..., XN are

mutually independent. When q = N , we consider that at least one of the pre-change

observations X1, ..., Xk−1 and the post-change observations Xk, ..., XN is not a Markov

process of any order since we have only N observations. In this case, the test statistic

sequence, {Y0, Y1, ..., YN}, can be considered as not a Markov process of any order.

The following theorem 2 shows that the optimal control limit ln(c)(0 ≤ n ≤ N)

depends on Yn and q observation variables, if the observation sequence {Xn, 0 ≤ n ≤ N}

is at most a q-order Markov process.

Theorem 2. Let the observation sequences be at most a q-order Markov chain for 0 ≤ q ≤

N . Let An,q := {Xn, ..., Xn−q+1} and Bn,0 := {Xn, ..., X0}. Assume that the post-change

conditional densities of the observation sequences do not depend on the change-point and

the weighted pair M = (W,V ) satisfy wn+1 = wn+1(Yn, An,q1) and vn+1 = vn+1(Yn, An,q2)

for 0 ≤ n ≤ N , where 0 ≤ q1, q2 ≤ q, wn+1 = wn+1(Yn) for q1 = 0 and vn+1 = vn+1(Yn)

for q2 = 0. Then

14
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(i) For 1 ≤ q ≤ N , the optimal control limit {ln(c), 0 ≤ n ≤ N} can be written as

ln(c) = cvn+1(Yn, An,q2)

+ E0

(
[ln+1(c)− (Yn + wn+1(Yn, An,q1))Λn+1]

+|Yn, Bn,0

)
for 0 ≤ n ≤ q − 1 and

ln(c) = cvn+1(Yn, An,q2)

+ E0

(
[ln+1(c)− (Yn + wn+1(Yn, An,q1))Λn+1]

+|Yn, An,q

)
for q ≤ n ≤ N , where we will replace Xn−q1+1 or Xn−q2+1 with X0 as long as n−q1+1 < 0

or n− q2 + 1 < 0 respectively.

(ii) For q = 0, we have

ln(c) = cvn+1(Yn) +E0

(
[ln+1(c, Yn+1)− (Yn + wn+1(Yn))Λn+1]

+|Yn

)
for 0 ≤ n ≤ N .

Note that the optimal control limit ln(c) depends not only on An,q but also on the test

statistic Yn for 1 ≤ n ≤ N . Can we find a control limit l̃n(c) that has the same property

as ln(c) but does not directly depend on the test statistic Yn for 1 ≤ n ≤ N ? To answer

this question, we first give a definition of an equivalent control limit.

Definition 2. Let the observation sequence {l̃n(c), 1 ≤ n ≤ N} be a control limit of

a sequential test T̃ ∈ TN , where T̃ = min{1 ≤ n ≤ N + 1 : Yn ≥ l̃n(c)}. If T̃ is equal to

the optimal sequential test T ∗
M(c,N) ( a.s. P0 ), then we call the control limit {l̃n(c)} an

equivalent control limit of the optimal sequential test T ∗
M(c,N).

The following theorem answers the above question.
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Theorem 3. Let the observation sequences and the weighted pair M = (W,V ) satisfy the

conditions of Theorem 2. Let an,q := {xn, ..., xn−q+1} and bn,0 := {xn, ..., x0}. Assuming

that q1 = q2 = q, y + wn+1(y, an,q) and vn+1(y, an,q) are continuous nondecreasing and

non-increasing on y ≥ 0 respectively for given an,q, 0 ≤ n ≤ N . Then

(i) For 1 ≤ q ≤ N , there is an equivalent control limit l̃n(c) of the optimal sequential

test T ∗
M(c,N) which does not depend directly on the statistic Yn for 1 ≤ n ≤ N such that

l̃n(c) = yn(c, Bn,0) for 0 ≤ n ≤ q − 1 and l̃n(c) = yn(c, An,q) for q ≤ n ≤ N , where

the nonnegative functions yn = yn(c, bn,0) for 0 ≤ n ≤ p − 1 and yn = yn(c, an,q) for

q ≤ n ≤ N satisfy the following equations

yn = cvn+1(yn, bn,0)

+ E0

(
[ln+1(c)− (yn + wn+1(yn, bn,0))Λn+1]

+|Yn = yn, Bn,0 = bn,0

)
for 0 ≤ n ≤ q − 1 and

yn = cvn+1(yn, an,q)

+ E0

(
[ln+1(c)− (yn + wn+1(yn, an,q))Λn+1]

+|Yn = yn, An,q = an,q

)
for q ≤ n ≤ N .

(ii) Let q = 0. There is a series of nonnegative non-random numbers, yn, 1 ≤ n ≤ N,

such that the equivalent control limit l̃n(c) = yn and yn satisfies the following equation

yn = cvn+1(yn) +E0

(
[ln+1(c)− (yn + wn+1(yn))Λn+1]

+|Yn = yn

)
(3.13)

for 1 ≤ n ≤ N .

16

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Remark 3. By the similar method of proving Theorem 3, we can prove that the

results of Theorem 3 are still true for 0 ≤ q1, q2 ≤ q ≤ N .

It is clear that the weighted pairs Mi for 1 ≤ i ≤ 6, satisfy the conditions of Theorem

3. As an application of Theorem 3, we have the following corollary.

Corollary 2. Let the observation sequences be at most a q-order Markov chain

for 0 ≤ q ≤ N and the post-change conditional densities of the observation sequences

do not depend on the change-point. Then, the six optimal sequential tests T ∗
Mi
(c,N) for

1 ≤ i ≤ 6, have equivalent control limits. Especially, when q = 0, the equivalent control

limits consist of a series of dynamic non-random numbers.

Since none of the equivalent control limits of optimal sequential tests T ∗
Mi
(c,N) for

1 ≤ i ≤ 5 are constants when q = 0. This means that T ∗
M1

(c,N) ̸= TS,N(c1), T
∗
M2

(c,N) ̸=

TSLR1,N(c2), T
∗
M3

(c,N) ̸= TC,N(c4), T
∗
M4

(c,N) ̸= T r
SR,N(c5) and T ∗

M5
(c,N) ̸= TSLR2,N(c3),

since the control limits, ci, 1 ≤ i ≤ 5, are constants, where TS,N(c1) = min{TS(c1), N+1},

TSLR1,N(c2) = min{TSLR1(c2), N + 1}, TSLR2,N(c3) = min{TSLR2(c3), N + 1}, TC,N(c4) =

min{TC(c4), N + 1} and T r
SR,N(c5) = min{T r

SR(c5), N + 1}.

Thus, from (ii) of Theorem 1, we can get the following corollary

Corollary 3. The optimal sequential tests T ∗
Mi
(c,N) for 1 ≤ i ≤ 5, are strictly

superior to the tests TS,N(c1), TSLR1,N(c2), TC,N(c4), T
r
SR,N(c5) and TSLR2,N(c3) under the

measures JMi,N for 1 ≤ i ≤ 5, respectively, when they all have the same (generalized)

in-control ARL0.

Remark 4. Sections 4.1 and 4.2 illustrate that the CUSUM and Shiryaev-Roberts
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tests with appropriate dynamic control limits can be superior to the CUSUM test TC,N

under Lorden’s measure and the Shiryaev-Roberts test T r
SR,N under Pollak’s measure

(see Pollak 1985) respectively for finite independent observations. Thus, the reason why

the optimal sequential tests mentioned in the Introduction, TS(c1), TSLR1(c2), TSLR2(c3),

TC(c4) and T r
SR(c5) for a sequence of infinite independent observations are no longer

optimal for finite independent observation sequences, is that all of their control limits,

ck, 1 ≤ k ≤ 5, are constants.

Next, we illustrate how to find an equivalent control limit by analyzing the optimal

control limit of the optimal sequential test T ∗
M2

(c,N) in the following example. In partic-

ular, for some special kind of pre-change and post-changes probability densities, we can

get the closed-form optimal control limit.

Example Let {X0, 1 ≤ k ≤ 60} be an i.i.d observation sequence with the pre-change

probability density p0 and the post-change probability density p1, that is, both the pre-

change observations X1, ..., Xk−1 and the post-change observations Xk, ..., XN be i.i.d with

the probability densities p0 and p1 respectively. Take W2 = {w1 = 1, wk = 0, 2 ≤ k ≤

N + 1} and V2 = {vk = 0, 1 ≤ k ≤ N, vN+1 = 1}, we know that {Yn =
∏n

j=1 Λj, 1 ≤ n ≤

N} is a Markov process and Λn = p1(Xn)/p0(Xn) and Yn are mutually independent with

Λn+1 for 0 ≤ n ≤ N − 1. Since q = 0, it follows from (2.7) and (ii) of Theorem 3 that the
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optimal control limit {ln(c, y) : 1 ≤ n ≤ N} of T ∗
M2

(c,N) can be written as

lN+1(c, y) = 0, lN(c, y) = c > 0

ln(c, y) = E0

(
[ln+1(c, Yn+1)− Yn+1]

+|Yn = y
)

= E0

(
[ln+1(c, yΛn+1)− yΛn+1]

+
)

(3.14)

for 1 ≤ n ≤ N − 1, where lN(c, YN) = c. It is clear that the function lN−1(c, y) is

strictly monotonically decreasing on y ≥ 0. Hence, ln(c, y) is also strictly monotonically

decreasing on y ≥ 0 for 1 ≤ n ≤ N − 2. This means that for each n (1 ≤ n ≤ N − 1),

there is a unique positive number yn such that yn = ln(c, yn) for c > 0. Thus, Yn ≥ yn

if and only if Yn ≥ ln(c, Yn) for 1 ≤ n ≤ N − 1. In other words, the equivalent control

limits {l̃n(c), 1 ≤ n ≤ N} of the optimal sequential test T ∗
M2

(c,N) are a series of positive

numbers {yn, 1 ≤ n ≤ N}, that is, l̃n(c) = yn, where yN = c > 0 and yn satisfies

l̃n(c) = yn = ln(c, yn) for 1 ≤ n ≤ N − 1.

Now, we consider the power law distributions which can occur in an extraordinarily

diverse range of phenomena. Let p0(x) = α/x1+α and p1(x) = β/x1+β for x ≥ 1 be the pre-

change and the post-change probability densities respectively, and therefore, the likelihood

ratio satisfy Λn = 1/axr, where β > α > 0, r = β − α and a = α/β. Let a ≥ (N − 1)/N .

Solving the recursive equations in (3.14) above, we can get the optimal control limit

{ln(c, y) : 1 ≤ n ≤ N} of T ∗
M2

(c,N), which has the closed-form: lN(c, y) = c > 0 and

ln(c, y) =


c− (N − n)y if y ≤ ac/(N − n)

c(1− a)
(

ac
(N−n)y

)β/r

if y > ac/(N − n),
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for 1 ≤ n ≤ N − 1. Thus, the equivalent optimal control limits {l̃n(c), 1 ≤ n ≤ N} can

be written as l̃n(c) = cn = c/(N−n+1) for 1 ≤ n ≤ N , where {cn} satisfies cn = ln(c, cn)

and cn ≤ ac/(N − n) for 1 ≤ n ≤ N .

4. Comparison and analysis of simulation results

Consider an observation sequence with N = 60. Let the change time τ be unknown. By

comparing the simulation results respectively in Sections 4.1 and 4.2, we illustrate that

the CUSUM test TC and the Shiryaev-Roberts test T r
SR with a specially designed deter-

ministic initial point r for an exponential model, are no longer optimal under Lorden’s

and Pollak’s measures for 60 finite independent observations, respectively. The detec-

tion performance (the generalized out-of-control ARL1) of six sequential tests, T ∗
M3

(c, 60),

T ∗
M4

(c, 60), TC , TE, T
−1/60
C and T

1/60
C for the independent or dependent observation se-

quence, are compared in Sections 4.3 and 4.4 respectively, where TE denotes the EWMA

( the exponentially weighted moving average ) test introduced by Roberts (1959), which,

like the CUSUM test TC , is very popular in statistical process control (see Han and T-

sung, 2004; Saleh, et al. 2015; Hosseini and Noorossana, 2018). Both T
−1/60
C and T

1/60
C are

defined by replacing the constant control limit of the CUSUM test TC with two straight

lines, c−k = c(1 − k/60) and c+k = c(1 + k/60) for 1 ≤ k ≤ 60, respectively. All the

numerical simulation results in this section were obtained using 105 repetitions.

20

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4.1 Comparison of simulation values of JL(min{T,N + 1})

Let {Xk, 1 ≤ k ≤ 60} be an i.i.d observation sequence with a pre-change normal distribu-

tion of N(0, 1) and a post-change normal distribution of N(0.2, 1). That is, the likelihood

ratio Λk of the pre-change and post-change probability densities p0(x) and p1(x) can be

written as Λk = e0.2(Xk−0.1) for 1 ≤ k ≤ 60. We will compare the performance of the two

CUSUM tests TC(c, 60) and TDC in detecting the mean shift from µ0 = 0 to µ1 = 0.2 under

Lorden’s measure JL(min{T,N+1}) with ARL0=40, where TC(c4, 60) = min{TC(c4), 61}

and

TDC = min{1 ≤ k ≤ N + 1 : Zk ≥ lk},

with the following dynamic control limits

lk =


2.53 if 1 ≤ k ≤ 40

2.53 + 0.506 ∗ (k − 40) if 40 < k ≤ 60,

and l61 = 0, where Z61 := Y60, Zk, 0 ≤ k ≤ 60, are the CUSUM test statistics, that is,

Z0 = 0 and Zk = max{1, Zk−1}Λk for 1 ≤ k ≤ 60. It can be calculated that E0(TDC) =

40.02.

Taking the constant control limit c4 = 2.6601, we have E0(TC(c4, 60)) = 40.01. Note

that

essup{Ek((TC(c4, 60)− k)+|Fk−1)} = Ek((TC(c4, 60)− k)+|Zk−1 ≤ 1)

for 1 ≤ k ≤ 60. Both the simulation values of the detection delay Ek((TC(c4, 60) −

k)+|Zk−1 ≤ 1) andEk((TDC−k)+|Zk−1 ≤ 1) are decreasing for k = 1, 2, ..., 60, that is, both
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can arrive the maximum values at change-point k = 1. Since both E1(TDC − 1) = 22.951

and E1(TC(c, 60)− 1) = 23.425 are the maximum values, it follows that

JL(TDC) = max
1≤k≤60

{Ek((TDC − k)+|Zk−1 ≤ 1)} = E1(TDC − 1)

< JL(TC(c, 60)) = max
1≤k≤60

{Ek((TC(c, 60)− k)+|Zk−1 ≤ 1)} = E1(TC(c, 60)− 1).

This means that the CUSUM chart TC is not optimal under Lorden’s measure JL(min{T,N+

1}) restricted in 60 i.i.d. observation sequence.

4.2 Comparison of simulation values of JP (min{T,N + 1})

Let {Xk, 1 ≤ k ≤ 60} be an i.i.d observation sequence with a pre-change exponen-

tial density of f0(x) = e−xI(x ≥ 0) and a post-change exponential density of f1(x) =

2e−2xI(x ≥ 0). The likelihood ratio is Λk = 2e−Xk for 1 ≤ k ≤ 60. Polunchenko

and Tartakovsky (2010) have proved that the control chart T r
SR(c) with a specially de-

signed deterministic initial point r for an exponential model is optimal under Pollak’s

measure JP (T ) for 1 < γ < 2.2188. Let T r
SR(c5, 60) = min{T r

SR(c5), 61}. Taking

c5 = 1.6645 and r =
√
2.6645 − 1, we have ARL0 = E0(T

r
SR(c5, 60)) = 2. It follows

from JP (min{T,N + 1}) = max1≤k≤60{Ek(T − k)+/P0(T ≥ k)} that

JP (T
r
SR(c5, 60)) = E1(T

r
SR(c5, 60)− 1) = 1.3165

However, if we define a sequential test as T r
SR({lk}, 60) with dynamic control limit lk

lk =


1.238 + 0.1238k if 1 ≤ k ≤ 10

0 if 10 < k ≤ 60,
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we can obtain

JP (T
r
SR({lk}, 60)) = E1(T

r
SR({lk}, 60)− 1) = 1.2743

with ARL0 = E0(T
r
SR({lk}, 60)) = 2.0012. Thus

JP (T
r
SR({lk}, 60)) < JP (T

r
SR(c5, 60)).

This means that the control chart T r
SR(c5) is not optimal under Pollak’s measure JP (min{T,N+

1}) restricted in 60 i.i.d. observations.

4.3 Comparison of the generalized out-of-control ARL1 for independent ob-

servations

Let {Xk, 1 ≤ k ≤ 60} be an i.i.d. observation sequence with a pre-change normal distri-

bution of N(0, 1) and a post-change normal distribution of N(1, 1). The likelihood ratio is

Λk = eXk−1/2 for 1 ≤ k ≤ 60. Let T ∗
3 = T ∗

M3
(c, 60), T ∗

4 = T ∗
M4

(c, 60) and let the smoothing

parameter in the statistics of the EWMA test TE be 0.1. By Corollary 2, we know that

the equivalent control limits of the optimal sequential tests T ∗
3 and T ∗

4 consist of a series

of non-random positive numbers. Fig. 1 shows the constant control limit of TC (black

dots) and the equivalent dynamic control limit of T ∗
3 (white dots).

We use two generalized out-of-control ARL1s, GARL3 and GARL4, to evaluate the
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Figure 1: Control limits for TC and T ∗
3 with ARL0 ≈ 40

detection performance of the sequential tests, where

GARL3(T ) = E0(T )JM3,N(T ) =
N∑
k=1

Ek((1− Yk−1)
+(T − k)+)

GARL4(T ) = E0(T )JM4,N(T ) =
N∑
k=1

Ek((T − k)+),

where r = 0 in JM4,N(T ). Obviously, for any two sequential tests T ′, T ∈ TN with

E0(T
′) = E0(T ), we have GARLj(T

′) ≥ GARLj(T ) if and only if JMj ,N(T
′) ≥ JMj ,N(T )

for j = 3, 4.

The simulation results of GARL3 and GARL4 for the six tests T ∗
3 , T

∗
4 , TC , TE, T

−1/60
C

and T
1/60
C with the same ARL0 ≈ 20, 40, 50, are listed in Table 1, where the values of

ARL0, the constant control limits of TC and TE, and the adjustment coefficients of T ∗
3 ,

T ∗
4 , T

−1/60
C and T

1/60
C are listed in parentheses. Table 1 shows that both T ∗

3 and T ∗
4 have

the best detection performance; that is, T ∗
3 and T ∗

4 have the smallest GARL3 and GARL4

(in bold) respectively in the six tests with the same ARL0 ≈ 20, 40, 50. This is consistent

with the result of Corollary 3: tests T ∗
3 and T ∗

4 are optimal under measures JM3,N(T ) and

24

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



JM4,N(T ) respectively.

Table 1. Simulation values of GARL3 and GARL4 with the same ARL0 for indepen-

dent observations

ARL0 Sequential Tests

T ∗
3 T ∗

4 TC TE T
−1/60
C T

1/60
C

GARL3 17.59 19.62 18.97 19.98 19.28 19.34

GARL4 44.75 42.10 45.13 48.02 46.50 47.57

c (1.3011) (0.12216) (4.4823) (1.2250) (6.3900) (3.629)
20

ARL0 (20.06) (20.01) (20.07) (20.08) (20.08) (20.07)

GARL3 49.26 55.17 54.44 59.97 54.96 55.99

GARL4 145.65 139.18 148.07 164.28 148.76 155.80

c (2.0251) (5.5996) (11.4423) (1.4064) (22.1500) (8.7815)
40

ARL0 (40.06) (40.02) (40.06) (40.04) (40.01) (40.02)

GARL3 80.95 84.27 83.45 95.52 83.85 85.63

GARL4 232.52 229.26 240.52 273.29 238.82 248.57

c (2.9518) (0.2656) (22.8821) (1.5269) (52.2500) (17.2478)
50

ARL0 (50.05) (50.02) (50.04) (50.08) (50.00) (50.05)

4.4 Comparison of the generalized out-of-control ARL1 for a Markov obser-

vation sequence

Let {Xk, 1 ≤ k ≤ 60} be a dependent observation sequence satisfying

Xk =


ρ0Xk−1 + εk if 1 ≤ k ≤ τ,

ρ1Xk−1 + εk if k ≥ τ,
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where X0 = 0, {εk, 1 ≤ k ≤ 60} is i.i.d with a normal distribution, i.e., εk ∼ N(0, 1) for

1 ≤ k ≤ 60, ρ0 = 0.5 and ρ1 = 0.1. That is, the correlation coefficient changes from 0.5

to 0.1. Obviously, {Xk, 1 ≤ k ≤ 60} is a 1-order Markov process. The pre-change and

post-change transition probability densities p0(x, y) and p1(x, y), and the likelihood ratio

Λk, can be written respectively as

p0(x, y) =
1√
2π

e−
(y−ρ0x)

2

2 , p1(x, y) =
1√
2π

e−
(y−ρ1x)

2

2

Λk =
p1(Xk−1, Xk)

p0(Xk−1, Xk)
= exp{[(ρ1 − ρ0)Xk−1][Xk − (ρ1 + ρ0)Xk−1/2]}.

It can be seen that the changes in the variance and covariance of Xk and Xk−1 occur after

the change-point τ = k. Here, the change-point is unknown.

As {Xk, 1 ≤ k ≤ 60} is a 1-order Markov process, it follows from (i) of Theorem 3

that we need to calculate the equivalent control limits l̃k = yk(c,Xk) for 1 ≤ k ≤ 59 to

get the corresponding optimal tests T ∗
3 and T ∗

4 respectively.

We also use the two generalized out-of-control ARL1s, GARL3 and GARL4, to evaluate

the detection performance of the six sequential tests T ∗
3 , T

∗
4 , TC , TE with the smoothing

parameter 0.1, T
−1/60
C and T

1/60
C . The simulation results of GARL3 and GARL4 for the

six tests with the same ARL0=20, 40 and 50, are listed in Table 2. The ARL0 values, the

constant control limits of TC and TE, and the adjustment coefficients of T ∗
3 , T

∗
4 , T

−1/60
C

and T
1/60
C are listed in parentheses. Table 2 shows that tests T ∗

3 and T ∗
4 have the best

detection performance; that is, T ∗
3 and T ∗

4 have the smallest GARL3 and GARL4 values

(in bold) respectively of the six tests with the same ARL0 ≈ 20, 40, 50. This is consistent
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with the result of Corollary 3: sequential tests T ∗
3 and T ∗

4 are optimal under measures

JM3,N(T ) and JM4,N(T ) respectively.

Note that though the monitoring performances of both T ∗
3 and T ∗

4 are better than

all TC , TE, T
−1/60
C and T

1/60
C respectively under the measure JM3,N(T ) and JM4,N(T ), the

constant control limits of TC , TE, T
−1/60
C are easier to determine than that of T ∗

3 and T ∗
4 .

Table 2. Simulation values of GARL3 and GARL4 with the same ARL0 for 1-order Markov

observation sequence

Sequential Tests

ARL0 ARL1 T ∗
3 T ∗

4 TC TE T
−1/60
C T

1/60
C

GARL3 21.55 23.26 22.04 67.46 22.72 23.09

GARL4 135.25 115.43 139.64 551.78 130.92 156.09

c (2.075) (12.016) (2.3482) (0.3150) (3.4500) (1.8901)
20

ARL0 (20.14) (20.05) (19.97) (20.09) (20.01) (20.09)

GARL3 57.86 59.80 59.71 148.09 60.60 60.30

GARL4 467.17 409.76 474.64 1261.20 450.68 490.42

c (3.865) (22.8550) (4.7828) (0.5895) (10.3500) (3.478)
40

ARL0 (40.84) (40.72) (40.76) (40.07) (40.02) (40.03)

GARL3 80.42 84.15 83.32 180.06 87.25 87.57

GARL4 688.52 638.15 705.62 1579.13 722.63 758.57

c (5.575) (32.89) (7.528) (0.755) (23.15) (5.667)
50

ARL0 (49.26) (49.77) (49.28) (49.82) (49.94) (50.04)

Remark 5. We now discuss on how to choose the appropriate performance measures.

If the distribution of the change-point τ is known, ρk = P (τ = k), it is better to use
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the measure JM1,N(T ). If τ = 1, we use the measure JM2,N(T ). If the change-point τ is

unknown, we should use the measures JM3,N(T ) or JM4,N(T ). Since

GARL3(T ) = E0(T )JM3,N(T ) =
N∑
k=1

Ek((1− Yk−1)
+(T − k)+)

≤
N∑
k=1

Ek((T − k)+) = E0(T )JM4,N(T ) = GARL4(T ),

where r = 0 in JM4,N(T ), we recommend using the measure JM3,N(T ) to evaluate the

detection performance when the change-point is unknown.

5. A real-data example

Performance monitoring is important for any industry or enterprise to make appropriate

evaluations of the past operating cycle and plan for the next. The sequential tests, or

control charts, are commonly used in business to monitor different kinds of operating

indicators, such as customer attrition rate, sales margins and order numbers.

Consider a real example. The data set is drawn from an actual process of a new

E-commerce company providing retail service. More information can be found in Yu et

al. (2018). The parameter under monitoring is the daily order quantity in a district in

Shanghai. The data period ranges from July 2008 (i.e. when the site first went online)

to August 2008, including the order date and user ID. In order to develop customers, the

new e-commerce companies have raised attractive discounts from the beginning. However,

they cannot carry out online discounts on a continuous, unlimited, and cost-free basis.

They need to observe whether there has been a change in the order volume after a limited
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period of time. The aim is to detect any upward mean shifts in the mean as they signal

improvements in the operating performance.

Since the change-point is unknown, we will use the measure JM3,N(T ) to evaluate

the detection performance of each sequential test. The detection performances of the

four sequential tests, T ∗
3 , TC , T

1/60
C and T

−1/60
C , based on the measure JM3,N(T ), will be

illustrated through the above real-data example. The data analysis proceeds in several

steps as follows:

• Step 1: Exploratory data analysis.

Fig.2 shows the daily order numbers throughout the observation period. Order

numbers are increasing at about the end of July. The goal here is to detect any

upward shifts.

2017-7-1 2017-7-11 2017-7-21 2017-7-31 2017-8-10 2017-8-20 2017-8-30
Time

0

2

4

6

Or
de

r q
ua

nt
ity

Data from 01/07/2008 to 31/08/2008

Figure 2: Exploratory data analysis

• Step 2: The test of its Markov property

Daily order volume data is somewhat correlated. Firstly, we cluster the order quan-

tities ({Dn, n = 0, 1, · · · , 61}) into three states, which are denoted as Xn ∈ {0, 1, 2},
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as shown in Equation :

Xn =


0, Dn ≤ 1;

1, 2 ≤ Dn ≤ 3;

2, Dn ≥ 4.

(5.15)

The estimations of in-control and out-of-control transition probability matrix are

P0 =


0.8636 0.0909 0.0455

0.4 0.4 0.2

0.3333 0.3333 0.3334

 (5.16)

and

P1 =


0.4667 0.4667 0.0666

0.625 0.125 0.25

0.2857 0.1429 0.5714

 (5.17)

based on the data from previous month and the latter month, respectively. The χ2

statistic are applied to test the Markov property and results show that these two

processes both satisfy it.

• Step 3: Detection

We employ the above four sequential tests with ARL0 = 45 to detect the obser-

vations X1, X2, · · · , X60. The parameter c in the control chart of four tests are as

shown in the Table 3.
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Table 3.Parameter c in the control limit of four sequential tests

Test c ARL0 Change Point

T ∗
6 2.64 45.1168 33

TC 12.90 45.1979 34

T
1/60
C 32.99 45.1326 34

T
−1/60
C 10.40 45.1453 34

Figure 3 illustrates the monitoring process in four different tests and we can find that

the T ∗
3 alerts at 33-rd daily record, while another three tests signal at the 34-th. It can be

seen that the reason that the three tests alert at the same day is that there is a relative

bigger change around 33-th day.

Figure 3: Testing results for Markov observation sequence
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Above all, the proposed T ∗
3 scheme performs more sensitively under the measure

JM3,N(T ).

6. Concluding remarks

By presenting the generalized Shiryaev’s measures of detection delay JM,N(.), the statistic

Yn, 0 ≤ n ≤ N + 1, the control limit ln(c), 0 ≤ n ≤ N + 1, and the sequential test

T ∗
M(c,N) for N finite observations, we obtain the following main results. (i) For different

measures JM,N(.) of detection delay, we can construct different optimal sequential tests

T ∗
M(c,N) under the corresponding measures for a general finite observation sequence. (ii)

A formula is presented to calculate the value of the generalized out-of-control ARL1 for

every optimal test T ∗
M(c,N) which is the minimum value of the generalized out-of-control

ARL1 of all test T ∈ TN . (iii) When the post-change conditional densities (probabilities)

of the observation sequences do not depend on the change-point, there is an equivalent

control limit that does not depend directly on the statistic of the optimal test T ∗
M(c,N)

for q-order Markov process. Specifically, the equivalent control limit can consist of a series

of nonnegative non-random numbers when the observations are mutually independent.

In this paper, both the pre-change and post-change joint probability densities are as-

sumed to be known. In fact, we usually do not know the post-change joint probability

density before it is detected. But the potential change domain (including the size and

form of the boundary) and its probability may be determined by engineering knowledge

and practical experience. In other words, though the actual post-change joint probabil-
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ity density p(θ, k) := pθ,k(x0, x1, ..., xk, ..., xN) is unknown, that is, the parameter θ is

unknown at the change time k, we may assume that there is a known probability distri-

bution Qk(.) for the known parameter set Θk such that the probability of the post-change

joint probability density at change-point k being pθ,k is dQk(θ) for 1 ≤ k ≤ N , where

pθ,k ̸= pθ′,k if and only if θ ̸= θ′. If we have no prior knowledge of the possible parameter θ

(corresponding to a possible post-change probability density pθ,k) at the change-point k,

it is natural to assume that the probability distribution Qk may be an equal probability

distribution or uniform distribution on Θk, that is, Qk(θ = θi) = 1/m (1 ≤ i ≤ m < ∞)

for θi ∈ Θk or dQ(θ)/dθ = 1/M(Θ), where dQ/dθ denotes the probability density and

M(Θ) is the measure (length, area, volume, etc.) of the bounded set Θ. Note that the

parameter θ may not be the characteristic numbers (the mean, variance, etc.) of the

probability distribution. Hence, we can define a new joint probability density

pk := pk(x0, x1, ..., xk, ..., xN)

in the following

pk(x0, x1, ..., xN) =

∫
Θk

pθ,k(x0, x1, ..., xN)dQk(θ)

for 1 ≤ k ≤ N . The density function pk can be considered as a known post-change joint

probability density at the change-point k, 1 ≤ k ≤ N .

7. Supplementary Materials

The proofs of Theorems 1, 2 and 3 are shown in the online Supplementary Materials.
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APPENDIX 1: Four performance measures

It is clear that taking various weighted pairs M = (W,V ), we can get various measures JM,N (.). Take four

weighed pairs Mi = (Wi, Vi), 5 ≤ i ≤ 8, we can get the folowing performance measures

JM5,N (T ) =
E1(T − 1)∑N+1

j=1 ρjP0(T ≥ j)
, JM6,N (T ) =

∑N
k=1 Ek((1− Zk−1)

+(T − k)+)

E0(
∑T

j=1(1− Zj−1)+)
,

JM7,N (T ) =
E1((T − 1)) +

∑N+1
k=2 Ek(e

Xk−1(1 + eXk−1)−1(T − k)+)

1 +E0(
∑T

k=2 e
Xk−1(1 + eXk−1)−1)

,

JM8,N (T ) =
E1((T − 1)) +

∑N
k=2 Ek(

1
k−1

∑k−1
j=1 eXj (T − k)+)

E0(T )
,

where W5 = {w1 = 1, wk = 0, 2 ≤ k ≤ N + 1}, V5 = {vk = ρk, 1 ≤ k ≤ N + 1}, ρN+1 := 1 −
∑N

k=1,

W6 = V6 = {wj = vj = (1−Zj−1)
+, 1 ≤ j ≤ N +1}, and Zk = max{1, Zk−1}Λk for 1 ≤ k ≤ N , are the statistics

of the CUSUM test with Z0 = 0. Here, both W7 = V7 = {wk = vk = eXk−1/(1 + eXk−1), 1 ≤ k ≤ N + 1} and

W8 = V8 = {wk = vk = 1
k−1

∑k−1
j=1 eXj , 1 ≤ k ≤ N + 1} in the two new measures JM7,N (T ) and JM8,N (T ), can

describe some kind of possibility of the changes of the observation values at change-point k − 1 and the average

of the changes of the observation values before the change-point k ≥ 2, respectively.

38

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)




