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Abstract: The distribution of the incubation period of the novel coronavirus

disease that emerged in 2019 (COVID-19) has crucial clinical implications for

understanding this disease and devising effective disease-control measures. Qin

et al. (2020) designed a cross-sectional and forward follow-up study to collect

the duration times between a specific observation time and the onset of COVID-

19 symptoms for a number of individuals. They further proposed a mixture

forward–incubation-time epidemic model, which is a mixture of an incubation-

period distribution and a forward time distribution, to model the collected dura-

tion times and to estimate the incubation-period distribution of COVID-19. In

this paper, we provide sufficient conditions for the identifiability of the unknown

parameters in the mixture forward–incubation-time epidemic model when the

incubation period follows a two-parameter distribution. Under the same setup,
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we propose a likelihood ratio test (LRT) for testing the null hypothesis that the

mixture forward–incubation-time epidemic model is a homogeneous exponential

distribution. The testing problem is non-regular because a nuisance parameter is

present only under the alternative. We establish the limiting distribution of the

LRT and identify an explicit representation for it. The limiting distribution of

the LRT under a sequence of local alternatives is also obtained. Our simulation

results indicate that the LRT has desirable type-I errors and powers, and we

analyze a COVID-19 outbreak dataset from China to illustrate the usefulness of

the LRT.

Key words and phrases: Identifiability; Likelihood ratio test; Non-regularity

1. Introduction

As the novel coronavirus disease that emerged in 2019 (COVID-19) spread

rapidly worldwide, the World Health Organization (WHO) declared the

COVID-19 outbreak a global pandemic on March 10, 2020. Currently,

COVID-19 is still spreading around the world, posing a huge threat to

global public health and having a huge impact on global economics and

social development. As of January 7, 2022, the WHO had identified over

300 million confirmed cases of COVID-19 and observed more than 5 million

deaths. Countries around the world have made great efforts to fight this

pandemic by imposing various measures, such as isolation policies, trav-
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el restrictions, lockdowns, and social distancing. Among these measures,

quarantining people who may have been exposed to COVID-19 seems to be

the most effective way of preventing further disease transmission.

The incubation period of an infectious disease is the time between ex-

posure to it and the first appearance of symptoms. Accurate estimation

of the incubation-period distribution, or incubation distribution, is crucial

(especially in regions where the epidemic is severe) for determining the

length of appropriate quarantine periods for suspected individuals. In the

literature, estimating incubation distributions has attracted much atten-

tion (Sartwell, 1950; Kalbfleisch and Lawless, 1989; Struthers and Farewell,

1989; Kalbfleisch and Lawless, 1991; Farewell et al., 2005; Wilkening, 2008),

while studies for COVID-19 are still ongoing; see Backer et al. (2020), Guan

et al. (2020), Lauer et al. (2020), Li et al. (2020), Linton et al. (2020), Liu

et al. (2021), Qin et al. (2020), Rahman et al. (2020), Wang et al. (2020b),

and Liu et al. (2022), among others. The current results are based mostly

on clinical experience or empirical statistical analysis of contact-tracing da-

ta, but such data may be inaccurate because of the patient’s recall bias or

the interviewer’s personal judgment on the possible date of exposure rather

than the actual date. More discussions can be found in Qin et al. (2020).

The lockdown of Wuhan, the capital city of Hubei province in China,
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provided an opportunity to estimate accurately the incubation distribution

of COVID-19. Qin et al. (2020) designed a new cross-sectional and for-

ward follow-up study and collected the duration times between departing

Wuhan and the onset of symptoms for 1211 confirmed cases in people who

left Wuhan before the lockdown with no symptom of COVID-19 and then

developed symptoms outside Wuhan; more details of the study and data

collection can be found in Section 5. By utilizing the theory of renewal pro-

cesses, they proposed a mixture forward–incubation-time epidemic model

to model the 1211 observed duration times and to estimate the incubation

distribution. This mixture model overcomes the issues of biased sampling

and accounts for the possibility that some patients may have been exposed

to COVID-19 on their way out of Wuhan.

Herein, we follow the approach and model setup of Qin et al. (2020).

Let Y be the incubation period with probability density function (pdf)

f(t). Consider a specific observation time that is either (i) the time of

exposure to the disease or (ii) some time thereafter but before the onset

of symptoms, but whether the situation pertains to (i) or (ii) is unknown.

For example, Qin et al. (2020) chose the observation time of an individual

to be their departure time from Wuhan. Furthermore, let A be the time

between the exposure time and the departure time, and V be the forward
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time calculated from the departure time to the symptom-onset time given

that the departure time is after the exposure time but before the symptom-

onset time, namely Y > A. Treating this as a renewal process that reaches

equilibrium, it can be shown that the conditional pdf of V given Y > A is

given approximately by

g(t) =

∫∞
t
f(y)dy∫∞

0
yf(y)dy

for t > 0

(Linton et al., 2020; Qin, 2017, Chapter 2). See Section S1 of the supplement

for a derivation of the form of g(t). As Qin et al. (2020) pointed out, the

study cohort may contain heterogeneous subpopulations: individuals who

left Wuhan by train, bus, or plane were likely to have come into contact

with COVID-19 because they were in a crowded environment with possible

human-to-human transmission of the virus. A similar argument pertains to

the COVID-19 outbreak that occurred from late January to early February

in 2020 onboard the Diamond Princess cruise ship (Verity et al., 2020).

In the following, we use the duration-time data from Wuhan in Qin

et al. (2020) as an illustration to introduce the mixture forward–incubation-

time epidemic model, in which the observation time of an individual is their

departure time from Wuhan. Let T be the duration time between departure

from Wuhan and the onset of symptoms. We consider two cases, i.e.,

A = 0 and A > 0; the variable T satisfies T = Y if A = 0 and T = V if
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A > 0. Assuming that A and Y are independent, the conditional pdf of

T given A = 0 is the pdf f(x) of Y . Notice that A > 0 is equivalent to

T = V = Y − A > 0, and thus the conditional pdf of T given A > 0 is the

conditional pdf of V given Y > A or g(t). Furthermore, denote p as the

proportion of individuals who contracted COVID-19 as they left Wuhan,

i.e., p = P (A = 0). Because we have no idea who contracted the disease

before departure (A > 0) and who did so while departing (A = 0), T follows

the mixture forward–incubation-time epidemic model (Qin et al., 2020)

h(t) = pf(t) + (1− p)g(t), t > 0. (1.1)

Note that we can observe only T and not Y or V . Let t1, . . . , tn be n

observed duration times that are independent and identically distributed

(iid) copies of T .

We should point out that there may exist a third portion of individuals

who were infected outside Wuhan after departure. In this paper, we assume

that this portion of individuals does not exist for two reasons. First, it is

theoretically challenging to derive the pdf of duration time for this portion

of individuals ; some additional work is required, and the results developed

under model (1.1) can serve as a starting point for further research. Second,

the goodness-of-fit test in Section S2 of the supplement seems to suggest

that model (1.1) provides an adequate fit to the duration-time data from
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Wuhan.

Throughout this paper, we focus on model (1.1) with f(t) = f(t;λ, α),

the pdf of a general two-parameter distribution. Then the pdf of T becomes

h(t;λ, α, p) = pf(t;λ, α) + (1− p)g(t;λ, α), t > 0, (1.2)

and t1, . . . , tn are n iid observations from h(t;λ, α, p). Under the mixture

model (1.2), Deng et al. (2021) discussed the asymptotic properties of the

maximum likelihood estimators (MLEs) and the likelihood ratio statistic

of unknown parameters (λ, α, p) under the assumption that (λ, α, p) are

identifiable. However, this assumption does not always hold. A counter

example is the Weibull pdf f(t;λ, α) = λα(tλ)α−1 exp{−(λt)α}I(t > 0).

It can be verified that f(t;λ, α) = g(t;λ, α) when α = 1. This implies

that p is not identifiable in (1.2) when f(t;λ, α) is a Weibull pdf with

α = 1. Due to this, the asymptotic results in Deng et al. (2021) are

not applicable in such a situation. A similar conclusion also holds when

f(t;λ, α) = {Γ(α)}−1λαtα−1 exp(−λt)I(t > 0), a Gamma pdf.

In this paper, we complement Deng et al. (2021) in two ways. First,

we provide sufficient conditions for the identifiability of (λ, α, p), and our

results indicate the following: (i) (λ, α, p) is identifiable when f(t;λ, α) is a

lognormal pdf, and when f(t;λ, α) is a Weibull or Gamma pdf but not an
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exponential pdf; (ii) (λ, α) is identifiable but p is not when f(t;λ, α) is an

exponential pdf. Second, we propose a likelihood ratio test (LRT) to test

the null hypothesis that f(t;λ, α) is an exponential pdf. Under this null

hypothesis, h(t;λ, α, p) also becomes an exponential pdf, so the proposed

LRT also tests the homogeneity in model (1.2). Note that the nuisance

parameter p disappears under the null model and is only identified under

the alternative hypothesis.

The problem of a nuisance parameter unidentified under the null hy-

pothesis has long been recognized in the literature as a non-regular problem

(Davies, 1977, 1987). Because of the partial identifiability of the nuisance

parameter, classical inference methods such as the LRT may lose their usual

statistical properties. The limiting distribution of the LRT often involves

complex stochastic processes (Liu et al., 2020a). The homogeneity testing

problem under a two-component mixture model has been studied exten-

sively in the literature; for example, see Liu and Shao (2003), Chen and Li

(2009), and Chen et al. (2020) and the references therein. To the best of

our knowledge, these papers assume that the two components come from

the same distribution family and do not share any underlying parameter-

s. However, under model (1.2), the two components are not from the same

distribution family and share the common parameters (λ, α), so the existing
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results cannot be applied to the testing problem under model (1.2).

Despite the aforementioned challenges, in this article we obtain the

limiting distribution of the LRT for the non-regular testing problem, i.e.,

testing the null hypothesis that h(t;λ, α, p) is the pdf of a homogeneous

exponential distribution. We show that the asymptotic null distribution of

the LRT is the supremum of a chi-square process, and further we identify

an explicit representation of the limiting distribution that can be used for

rapid numerical calculation of the asymptotic critical values or p-values of

the proposed LRT. By finite-sample simulations, we find that the proposed

LRT has tight control of type-I error rates and appreciable powers in gener-

al. The proposed LRT is then used to analyze COVID-19 data from China

for illustration. Following Qin et al. (2020), we choose f(t;λ, α) to be a

Weibull pdf, and the analysis results indicate that the mixture forward–

incubation-time model produces a better fit than that with a homogeneous

exponential distribution.

Note that all the results herein are based on parametric model (1.2),

and violation of this model assumption may lead to invalid subsequent

analysis results. This raises the goodness-of-fit test problem of model (1.2)

in applications. We suggest using the goodness-of-fit test in Deng et al.

(2021) to check the validity of model (1.2) based on t1, . . . , tn, and this test
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is reviewed briefly in the supplement for presentational completeness.

The rest of this paper is organized as follows. In Section 2, we discuss

sufficient conditions for the identifiability of (λ, α, p) in model (1.2), and

we apply the results to the case where f(t;λ, α) is a Weibull, Gamma, or

lognormal pdf. In Section 3, we establish the non-regular asymptotic dis-

tribution of the LRT for testing the null hypothesis that h(t;λ, α, p) is a

homogeneous exponential distribution, and we also provide an explicit rep-

resentation of this asymptotic distribution. The asymptotic distribution of

the proposed LRT under a sequence of local alternatives is also derived. We

report our simulation results in Section 4, and in Section 5 we analyze real

COVID-19 outbreak data from China for illustration. Finally, we conclude

the paper with a discussion in Section 6. For convenience of presentation,

all proofs are given in the supplement.

2. Identifiability of (λ, α, p)

Identifiability is an important issue in the application of the mixture forward–

incubation-time epidemic model in (1.2). If some model parameters are not

identifiable, then their point estimators cannot be consistent, and standard

inferences for other parameters that are identifiable may be questionable.

In this section, we establish the identifiability of (λ, α, p) in model (1.2) un-
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der the following conditions on f(t;λ, α). Let F (t;λ, α) be the cumulative

distribution function corresponding to f(t;λ, α).

A1. Given (λ, α), limt→∞
f(t;λ,α)

1−F (t;λ,α)
exists and is either finite or ∞.

A2. When (λ1, α1) 6= (λ2, α2), limt→∞
f(t;λ1,α1)
f(t;λ2,α2)

exists and is either 0 or∞.

A3. When (λ1, α1) 6= (λ2, α2), both limt→∞
f(t;λ1,α1)

1−F (t;λ2,α2)
and limt→∞

f(t;λ2,α2)
1−F (t;λ1,α1)

exist and are either 0 or ∞.

Theorem 1. Assume model (1.2) and conditions A1–A3. Let

A(λ, α) = lim
t→∞

f(t;λ, α)

1− F (t;λ, α)
.

Suppose h(t;λ1, α1, p1) = h(t;λ2, α2, p2) for all t > 0.

(a) If A(λ1, α1) = 0 or ∞, then (λ1, α1, p1) = (λ2, α2, p2).

(b) If 0 < A(λ1, α1) < ∞, then (λ1, α1) = (λ2, α2). Furthermore, if

f(t;λ1,α1)
1−F (t;λ1,α1)

is not a constant function of t, then p1 = p2; otherwise, p1

and p2 are not necessarily the same.

After some calculus, it can be verified that conditions A1–A3 are satis-

fied by a Weibull, Gamma, or lognormal distribution. We can further verify

that A(λ, α) = 0 for a lognormal distribution, A(λ, α) = λ for a Gamma

distribution, and A(λ, α) = 0 or ∞ if α 6= 1 and A(λ, α) = λ if α = 1
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for a Weibull distribution. Applying the results in Theorem 1 to Weibull,

Gamma, and lognormal distributions, we have the following identifiability

results.

Corollary 1. Under model (1.2),

(a) (p, λ, α) are identifiable when f(t;λ, α) is the pdf of a lognormal dis-

tribution;

(b) (p, λ, α) are identifiable when f(t;λ, α) is the pdf of a Weibull or Gam-

ma distribution but not the pdf of an exponential distribution;

(c) (λ, α) are identifiable but p is not when f(t;λ, α) is the pdf of an

exponential distribution.

Deng et al. (2021) mentioned the identifiability property of (λ, α, p)

but did not give a formal proof. The results in Theorem 1 and Corollary 1

provide formal justifications and further indicate when the results of Deng

et al. (2021) are applicable and when they are not.

3. Testing Whether Incubation Distribution is Exponential

3.1 Likelihood Ratio Test

Corollary 1 indicates that the parameter p is not identifiable when f(t;λ, α)

is the pdf of an exponential distribution under model (1.2). Because of
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this, the asymptotic results in Deng et al. (2021) are not applicable in

such a situation. In this section, we propose an LRT to check whether

f(t;λ, α) is the pdf of an exponential distribution, or equivalently whether

h(t;λ, α, p) is the pdf of a homogeneous exponential distribution, based on

n iid observations t1, . . . , tn from model (1.2).

Throughout this section, we assume that the following condition is sat-

isfied.

C0. There exists a unique α0 such that f(t;λ, α0) = g(t;λ, α0) for all t > 0.

Condition C0 is satisfied by a Weibull or Gamma distribution with α0 = 1

in each case, and it can be shown that condition C0 is satisfied if and only

if f(t;λ, α0) is the pdf of an exponential distribution. Under condition C0,

testing the null hypothesis that f(t;λ, α) is the pdf of an exponential dis-

tribution is equivalent to testing

H0 : α = α0 versus H1 : α 6= α0. (3.1)

Note that under model (1.2), the case of α = α0 indicates that individuals

in the cross-sectional and forward follow-up study are homogeneous, and

the duration time T defined in Section 1 follows an exponential distribu-

tion. When α 6= α0, there are heterogeneous subgroups of individuals in the

cross-sectional and forward follow-up study. In this case, we favor using the
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mixture model (1.2) to model the distribution of T . Theoretically, detecting

the existence of such heterogeneous subpopulations is an important initial

step before applying the mixture model (1.2). If we were to apply model

(1.2) to homogenous duration times, then the MLE of (λ, α, p) would no

longer have asymptotic normality, and consequently the Wald-type confi-

dence intervals for the quantiles of the incubation period may not have the

nominal asymptotic coverage probabilities.

A natural solution to the testing problem (3.1) is one based on like-

lihood. Given the n observations t1, . . . , tn from model (1.2), the log-

likelihood of (λ, α, p) is

`n(λ, α, p) =
n∑
i=1

log {pf(ti;λ, α) + (1− p)g(ti;λ, α)} .

Let (λ̂, α̂, p̂) be the MLE of (λ, α, p) under the full model, and let λ̂0 be the

MLE of λ under the null model, i.e.,

(λ̂, α̂, p̂) = arg max
λ,α,p

`n(λ, α, p), λ̂0 = arg max
λ

`n(λ, α0, 1).

Note that under the null model, p does not appear and λ is the only pa-

rameter to be estimated. We simply set p = 1 under the null model for

convenience of presentation.

The LRT statistic for (3.1) is defined as

Rn = 2

{
sup
λ,α,p

`n(λ, α, p)− sup
λ
`n(λ, α0, 1)

}
= 2

{
`n(λ̂, α̂, p̂)− `n(λ̂0, α0, 1)

}
.
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We reject the null hypothesis H0 in (3.1) if the observed value of Rn ex-

ceeds some critical value determined by its limiting distribution presented

in Section 3.2.

3.2 Asymptotic Null Distribution of Likelihood Ratio Test

We require some notation before presenting the asymptotic results of the

LRT statistic Rn. Let (λ0, α0) be the true values of (λ, α) under the null

model, and define

Xi =
∂f(ti;λ0, α0)/∂λ

f(ti;λ0, α0)
, Yi1 =

∂f(ti;λ0, α0)/∂α

f(ti;λ0, α0)
, Yi2 =

∂g(ti;λ0, α0)/∂α

g(ti;λ0, α0)
.

Note that under condition C0,

f(ti;λ0, α0) = g(ti;λ0, α0) and
∂g(ti;λ0, α0)/∂λ

g(ti;λ0, α0)
= Xi.

Define bi = (Xi, Yi1, Yi2)> and denote the variance-covariance matrix

B = Var(bi) =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 , (3.2)

where the variance is taken with respect to the null model. Furthermore,

define

σ11 = B33 −
B2

13

B11

, σ12 = B23 −B33 −
B12B13

B11

+
B2

13

B11

,

σ22 = B22 +B33 − 2B23 −
B2

12

B11

− B2
13

B11

+
2B12B13

B11

.
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For any p1, p2 ∈ [0, 1], let

σ(p1, p2) = p1p2σ22 + (p1 + p2)σ12 + σ11. (3.3)

Our asymptotic results about Rn rely on conditions C1–C5 given in

Section S3 of the supplement; they are typical regularity conditions in the

literature of finite mixture models.

Theorem 2. Suppose that conditions C0 and C1–C5 in the supplement are

satisfied. Under model (1.2) and the null hypothesis in (3.1), as n→∞,

Rn → R = sup
0≤p≤1

Z2(p)

in distribution, where Z(p) is a Gaussian process with zero mean, unit vari-

ance, and covariance function

Cov
{
Z(p1), Z(p2)

}
=

σ(p1, p2)√
σ(p1, p1)σ(p2, p2)

, 0 ≤ p1, p2 ≤ 1.

Theorem 2 shows that the LRT statistic Rn has a non-regular limiting

distribution that is the supremum of a χ2-process, and in general it does

not have a closed form and is difficult to calculate numerically. Instead, we

derive an equivalent representation of R that is much simpler in form, and

with which it is much more convenient to calculate the distribution function

or quantiles of R by the Monte Carlo method.
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We require some additional notation. Consider the following polar

transformation: (cos θ, sin θ) =
(
c1(p), c2(p)

)
, where

c1(p) =

√
σ11 − σ2

12/σ22√
σ(p, p)

and c2(p) =
(p+ σ12/σ22)

√
σ22√

σ(p, p)
.

To find a simple representation for R, we require the following additional

condition.

C6. There exist ∆1 and ∆2 such that −π/2 < ∆1 < ∆2 < π/2 and

{(
c1(p), c2(p)

)
: 0 ≤ p ≤ 1

}
= {(cos θ, sin θ) : ∆1 ≤ θ ≤ ∆2}.

Under condition C6, we define the three sets

A1 = {η : max
θ∈[∆1,∆2]

cos2(θ − η) = 1},

A2 = {η : max
θ∈[∆1,∆2]

cos2(θ − η) = cos2(η −∆2)},

A3 = {η : max
θ∈[∆1,∆2]

cos2(θ − η) = cos2(η −∆1)}.

If both ∆1 and ∆2 are positive, then these sets have the following explicit

forms:

A1 = [∆1,∆2] ∪ [∆1 − π,∆2 − π],

A2 = [∆2,∆ + π/2] ∪ [∆2 − π,∆− π/2],

A3 = [∆ + π/2, π] ∪ [−π,∆1 − π] ∪ [∆− π/2,∆1], (3.4)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 
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A1

A1

A2

A2

A3

A3

Figure 1: Graphical representation of sets A1, A2, and A3 when f(t;λ, α)

is a Weibull pdf.

where ∆ = (∆1 + ∆2)/2. Figure 1 shows A1–A3 graphically when f(t;λ, α)

is a Weibull pdf.

Theorem 3. Assume the conditions of Theorem 2 and condition C6. Fur-

thermore, suppose that ρ2 and η are two independent random variables that

follow χ2
2 and the uniform distribution on [−π, π], respectively. Then R has

the same distribution as

T (ρ2, η) = ρ2{I(η ∈ A1)+I(η ∈ A2) cos2(η−∆2)+I(η ∈ A3) cos2(η−∆1)}.

Note that ∆1, ∆2, and A1–A3 may depend on λ0. We can estimate λ0

using λ̂0, the MLE of λ under the null model. Based on Theorem 3, we
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3.2 Asymptotic Null Distribution of Likelihood Ratio Test 19

propose the following Monte Carlo procedure for approximating the distri-

bution and quantiles ofR. First, we generate a large number (e.g., M = 108)

of independent copies of (ρ2, η), denoted by (ρ2
i , ηi) (i = 1, . . . ,M). Then,

we take the empirical distribution of {T (ρ2
i , ηi), i = 1, . . . ,M} to approxi-

mate the distribution of R. Accordingly, we can calculate the approximate

p-value of the LRT or the approximate quantiles of R, which may serve as

critical values of the proposed LRT.

The results in Theorems 2 and 3 rely on the forms of σ(·, ·) in (3.3)

and (∆1,∆2) in condition C6. In the following, we identify two examples

satisfying conditions C0–C6 and work out their σ(·, ·) and (∆1,∆2).

Example 1. (Weibull distribution). Recall that the pdf of a Weibull dis-

tribution is given as f(t;λ, α) = λα(tλ)α−1 exp{−(λt)α}I(t > 0). It can be

shown that σ(p1, p2) = p1p2(π2/6− 1) + (p1 + p2)(2− π2/6) + π2/3− 3 and

∆1 = arccos

(√
π4 − 6π2 − 36

2π4 − 30π2 + 108

)
, ∆2 = arccos

(√
π4 − 6π2 − 36

π4 − 6π2

)
.

Because both ∆1 and ∆2 are positive, A1–A3 take the forms in (3.4).

Example 2. (Gamma distribution). Recall that the pdf of a Gamma dis-

tribution is given as f(t;λ, α) = {Γ(α)}−1λαtα−1 exp(−λt)I(t > 0). It can
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be shown that σ(p1, p2) = p1p2

(
π2

6
− 5

4

)
+ (p1 + p2)

(
7
4
− π2

6

)
+ π2

3
− 13

4
and

∆1 = arccos

(√
4π4 − 54π2 + 144

(4π2 − 39)(2π2 − 15)

)
,

∆2 = arccos

(√
4π4 − 54π2 + 144

(2π2 − 12)(2π2 − 15)

)
.

Again, both ∆1 and ∆2 are positive, so A1–A3 again take the forms in (3.4).

As we can see, σ(·, ·) and (∆1,∆2) for a Weibull or Gamma distribu-

tion are independent of λ0, so there is no need to estimate λ0 when using

Theorem 3 for these two distributions.

3.3 Asymptotic Power of Likelihood Ratio Test

In this subsection, we study the asymptotic power of the proposed LRT.

We consider the following sequence of local alternatives that are indexed

by n:

Hn
a : λ = λ0, p = p0, α = α0 + δn−1/2, (3.5)

where δ is a fixed constant independent of n. The following theorem presents

the asymptotic distribution of Rn under Hn
a .

Theorem 4. Assume the conditions of Theorem 2. Under the local alter-

native hypothesis Hn
a in (3.5), as n→∞,

Rn → sup
0≤p≤1

[
{Z(p) + ω(p, p0)}2] (3.6)

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing) 



21

in distribution, where ω(p, p0) = δσ(p, p0)/
√
σ(p, p) and Z(p) is defined in

Theorem 2.

Note that the result in Theorem 4 has two important applications.

First, it is useful for local power analysis for a potential alternative model

with the model parameters (λ, α, p). We can insert this model into the local

sequence and obtain δ = n1/2(α − α0), and the power of Rn for detecting

this alternative model can then be assessed based on the limiting distribu-

tion under the local alternative. Second, the result in Theorem 4 also sheds

light on the power trend under different alternative models; for example,

if f(t;λ, α) is the pdf of a Weibull distribution, then |ω(p, p0)| increases as

δ departs from zero or p0 increases. This implies that the power of Rn in-

creases as α departs from α0 = 1 and/or the value of p under the alternative

model increases. This trend is confirmed in the following simulation study.

4. Simulation s

In this section, we use simulations to check whether the limiting distribution

of Rn provides an accurate approximation to its finite-sample distribution.

We consider four sample sizes: n = 100, 200, 500, and 1000. Following Qin

et al. (2020), we choose f(t;λ, α) to be a Weibull pdf and set the true value

of λ to be 1. Note that under H0 in (3.1), the true value of α is 1 and p
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disappears. The simulated type-I errors of Rn based on 105 repetitions are

summarized in Table 1. The simulation results show that the proposed LRT

has tight control of type-I error rates for all the combinations of sample

size and significance level. Figure 2 shows the quantile–quantile plots of

the LRT. As can be seen, the limiting null distribution of Rn provides

an adequate approximation to its finite-sample distribution even when the

sample size is as small as 100.

Table 1: Type I error rates (in %) of Rn at a significance level of 10%, 5%,

or 1%.

n Significance level

10% 5% 1%

100 10.6 5.4 1.1

200 10.2 5.2 1.1

500 10.1 5.1 1.0

1000 10.1 5.0 1.0

Next, we evaluate the power of the proposed LRT. We consider two

true values of α equal to 1.35 and 1.65 and three true values of p equal to

0.15, 0.40, and 0.65, and the simulated powers based on 104 repetitions are

summarized in Table 2. We observe that the proposed LRT has appreciable

powers in all the cases considered. Furthermore, its power increases as p

or α increases, and this trend agrees with the local power analysis after
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Figure 2: Quantile–quantile plots of Rn for different sample sizes.

Theorem 4.

5. Application to COVID-19 Data

The outbreak of COVID-19 in Wuhan, China in December 2019 attracted

worldwide attention (Li et al., 2020; Wang et al., 2020a; Tu et al., 2020).
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Table 2: Power (in %) of Rn at a significance level of 10%, 5%, or 1%.

n Significance level Significance level

10% 5% 1% 10% 5% 1%

(p, α) = (0.15, 1.35) (p, α) = (0.15, 1.65)

100 58.4 45.3 22.4 89.7 81.9 59.5

200 81.9 72.2 47.5 99.2 98.2 92.5

500 99.2 98.1 92.0 100.0 100.0 100.0

1000 100.0 100.0 99.9 100.0 100.0 100.0

(p, α) = (0.40, 1.35) (p, α) = (0.40, 1.65)

100 76.7 65.3 39.4 97.8 95.4 84.7

200 95.0 90.4 74.0 100.0 100.0 99.5

500 100.0 99.9 99.6 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0

(p, α) = (0.65, 1.35) (p, α) = (0.65, 1.65)

100 90.2 82.7 60.2 99.9 99.7 97.9

200 99.4 98.6 93.0 100.0 100.0 100.0

500 100.0 100.0 100.0 100.0 100.0 100.0

1000 100.0 100.0 100.0 100.0 100.0 100.0

To prevent its spread before being out of control, the Chinese government

decided to lock down Wuhan on January 23, 2020. From public reports,

there were many confirmed cases of people who left Wuhan before the lock-

down with no symptoms of COVID-19 but who then developed symptoms

outside Wuhan.
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Deng et al. (2021) provided data based on confirmed cases of COVID-

19 reported in publicly available sources such as provincial and municipal

health commissions in China and the health authorities in other countries

as of February 15, 2020. The duration time for a patient was recorded as the

time difference between leaving Wuhan and the earliest onset of symptoms

(e.g., fever, cough). Our analysis involves a sample size of 1211 cases and

satisfies the design criteria of the mixture forward–incubation-time epidemic

model (1.2). These criteria include the following. (1) The included cases

were of people who had no COVID-19 symptoms when they left Wuhan

and developed symptoms elsewhere after traveling. Hence, cases of people

whose first symptoms occurred before traveling were not included in the

sample. (2) The date of leaving Wuhan had to be between January 19,

2020 and January 23, 2020 for the following reasons: (2a) before January

19, 2020, the public were as yet unaware of the severity of COVID-19, so

there may have been a chance that a patient was actually infected outside

Wuhan after they left; (2b) after January 23, 2020 (the date of the Wuhan

lockdown), there were not many cases available, and also this enabled us to

have an average follow-up time for symptoms onset of as long as 25 days.

This sample size of 1211 is relatively large compared with other incubation-

period studies of COVID-19.
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Following Qin et al. (2020), we use model (1.2) with f(t;λ, α) being a

Weibull pdf to analyze the 1211 observed duration times. At the begin-

ning of the outbreak, it was more likely to observe someone who had been

infected closer to their departure date as the number of infections grew

exponentially, and this may invalidate the assumptions for deriving the for-

ward time distribution (Qin et al., 2020; Liu et al., 2020b). For this reason,

we may be concerned about the validity of the model assumptions in (1.2)

for the 1211 observed duration times. To address this concern, Deng et al.

(2021) performed a goodness-of-fit test for model (1.2). The asymptotic

p-value of this test is found to be 0.37, which indicates that model (1.2)

with f(t;λ, α) being a Weibull pdf provides a reasonable fit to the 1211

observed duration times; see the supplement for more details. Next, we

test for α = 1, or equivalently, whether the data come from a homogeneous

exponential distribution, by using the proposed LRT when f(t;λ, α) is a

Weibull pdf.

All the observed duration times are integers of between zero and 22

days, and in theory our proposed method may not be directly applicable.

For illustration, we impute the value of observed integer value i by a random

number from U(i, i+ 1), the uniform distribution on (i, i+ 1); for example,

the frequency for zero days is 82, so we generate 82 observations from
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U(0, 1). After that, we apply the proposed testing procedure to the imputed

data set. We repeat the procedure 1000 times and obtain 1000 estimates of

(λ, α, p) and 1000 LRT statistics Rn. Based on these 1000 repetitions, the

average of the estimates for (λ, α, p) is (0.655, 0.135, 1.645). The values of

Rn range from 202.9 to 234.3, and because the p-value of any LRT statistic

in [202.9, 234.3] is almost zero, this provides overwhelming evidence for

rejecting the null hypothesis of α = 1.

We have also analyzed the data after adding 0.5 to each duration time,

i.e., any integer datum i is replaced with the mid-point of the interval

(i, i + 1). The resulting Rn is around 230.7, with a p-value still of almost

zero. From both analyses, we conclude with statistical significance that the

population distribution of the observed duration times cannot be modeled

well enough by an exponential distribution.

The above analysis results indicate that the data contain heterogeneous

subgroups. Unfortunately, we have no idea who in the cohort contracted the

disease before and who did so immediately upon departure, so it is more rea-

sonable to use the mixture forward–incubation-time epidemic model (1.2)

than a homogeneous exponential distribution to model the observed dura-

tion times.
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6. Discussion

In this paper, we have provided sufficient conditions for the identifiability of

the parameters in model (1.2) and applied the results to Weibull, Gamma,

and lognormal distributions. We have also proposed an LRT for testing

the null hypothesis that h(t;λ, α, p) in (1.2) is the pdf of a homogeneous

exponential distribution, and we have derived the limiting distribution of

the LRT under the null model and under a sequence of local alternatives.

Our simulation results and an analysis of COVID-19 outbreak data have

demonstrated the usefulness of the LRT. These results strengthen the epi-

demiological application of the mixture forward–incubation-time epidemic

model and enrich the literature for COVID-19 data analysis.

The proposed method relies on the model assumptions in (1.2). When

analyzing different data sets for COVID-19 or for a new infectious virus,

a goodness-of-fit test for the model assumptions in (1.2) is required be-

fore using the proposed LRT. We may also model the incubation-period

distribution f(t) nonparametrically in (1.1). However, (p, f) may not be

identifiable under this setup. Some reasonable assumptions are required to

ensure model identifiability, and we leave this as a future research topic.
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Supplementary Material

The online supplementary material contains a derivation of the form of

g(t), a goodness-of-fit test of model (1.2), conditions C1–C5, and proofs of

Theorems 1–4.
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