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Abstract: This paper is concerned with a conditional test for the overall signifi-

cance of regression coefficients in ultrahigh dimensional linear models conditional

on a subset of predictors. We first propose a conditional U-statistic test (CUT)

based on an estimated U-statistic for a moderately high dimensional linear regres-

sion model and derive its asymptotic distributions under some mild assumptions.

However, the empirical power of the CUT test is inversely affected by the di-

mensionality of predictors. To this end, we further propose a two-stage CUT

with screening (CUTS) procedure based on random data splitting strategy to

enhance the empirical power . In the first stage, we divide data randomly in-

to two parts and apply the conditional sure independence screening to the first

part to reduce the dimensionality; In the second stage, we apply the CUT test

to the reduced model using the second part of the data. To eliminate the effect

of data splitting randomness and further enhance the empirical power, we also

develop a powerful ensemble CUTSM algorithm based on multiple data splitting

*Wei Zhong is the corresponding author. Email: wzhong@xmu.edu.cn.
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CONDITIONAL TEST WITH SCREENING 2

and prove that the family-wise error rate is asymptotically controlled at a given

significance level. We demonstrate the excellent finite-sample performances of

the proposed conditional tests via Monte Carlo simulations and two real data

analysis examples.

Key words and phrases: Hypothesis testing, linear regression coefficients, random

data splitting, ultrahigh dimensionality, variable screening.

1. Introduction

Linear regression is commonly used to explore the relationship between the

response and many predictors for ultrahigh dimensional data where the

predictor dimension p is much larger than the sample size n. On the one

hand, historical existing studies or researchers’ belief may provide some

prior information that some certain subset of predictors have been known

to be important for the response. On the other hand, feature screening

approaches and the regularization methods could identify some significant

predictors for the response. A natural question is, given the subset of the i-

dentified predictors, whether the remaining ultrahigh dimensional variables

is still able to contribute to the response? If the answer is no, it is ade-

quate to consider the linear model only based on the subset of the identified

predictors. For example, Scheetz, et al. (2006) analyzed the gene expres-

sion microarrays data of 120 twelve-week-old male rats to gain a broad
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perspective of gene regulation in the mammalian eye and detected 22 gene

probes (refer to Table 2 in Scheetz, et al. (2006)) relevant to human eye

disease from 18,976 different gene probes. We consider a linear regression

model of the response gene TRIM32, which was proven to cause retinal

disease Bardet-Biedl syndrome, against the other 18,975 gene probes. It

is interesting to test the overall significance of regression coefficients of the

remaining ultrahigh dimensional gene probes conditioning on the subset of

22 identified gene probes. If the null hypothesis is significantly rejected, we

need to further search important gene probes from the remaining ultrahigh

dimensional candidates. This motivates us to explore a new conditional

test procedure for ultrahigh dimensional linear regression coefficients.

We consider a linear regression model

Yi = α + XT

0iβ0 + XT

1iβ1 + εi, (1.1)

where Yi ∈ R1 is the ith response variable and Xi = (XT
0i,X

T
1i)

T ∈ Rp is

the associated p-dimensional predictor vector for 1 ≤ i ≤ n. Based on

some prior information, we assume that a subset of predictors, denoted by

X0i ∈ Rq, are known in the linear model. X1i ∈ Rp−q represents the vector

of all remaining covariates for the ith observation. Here, α is a nuisance

intercept parameter, β0 ∈ Rq and β1 ∈ Rp−q denote vectors of regression

coefficients corresponding to X0i and X1i, respectively, and εi is the random
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error with mean 0 and finite variance σ2. We assume that p is much greater

than the sample size n and q is smaller than n. Our main goal is to test,

for a given parameter vector β10 ∈ Rp−q,

H0 : β1 = β10 versus H1 : β1 6= β10 (1.2)

In particular, rejecting H0 : β1 = 0 indicates the overall significant effect of

all remaining predictors on the response variable conditional on the subset

of known predictors.

In the literature, the unconditional tests for the overall significance of

linear regression coefficients have been well studied. In the classic multivari-

ate analysis, the conventional F-test is generally used when the predictor

dimension p is fixed and less than the sample size n. However, the power of

F-test has been shown by Zhong and Chen (2011) to be adversely impacted

by an increased dimension even when p < n − 1. Wang and Cui (2013)

generalized F-test for moderately high dimensional linear regression coeffi-

cients but it still fails when p > n due to the singular sample covariance

matrix. Geoman, et al. (2006) proposed an empirical Bayes test for high di-

mensional linear regression. Zhong and Chen (2011) developed a novel test

statistic based on a U-statistic of order four and derived its null asymptotic

distribution under the pseudo-independence assumption to accommodate

high dimensionality. Moreover, Cui, Guo and Zhong (2018) suggested an
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estimated U-statistic of order two and enhance the test power via the r-

efitted cross-validation (RCV) approach. Wang and Cui (2015) proposed

a test for part of regression coefficients in high dimensional linear models

based on the idea of Zhong and Chen (2011). However, when the predictor

dimension is much larger than n in ultrahigh dimensional data, we observe

that the powers of the previously mentioned significance tests for ultrahigh

dimensional sparse linear models might deteriorate remarkably. Here, the

sparsity means that only a small subset of predictors are truly important

to the response. This motivates us to study how to enhance the power of

the conditional significant test under the sparsity assumption.

In this paper, we develop a conditional test procedure based on random

data splitting for testing the overall significance of the remaining ultrahigh

dimensional predictors given a subset of predictors in the linear model. It

has the following three main contributions. First, we propose a conditional

U-statistic test (CUT) based on an estimated U-statistic for a high dimen-

sional linear regression model and show its asymptotic null distribution is

normal, which can directly be used to compute the critical region and the

p-value when n is large enough. Second, in order to handle the ultrahigh

dimensionality, we propose an efficient two-stage testing procedure based

on random data splitting, called Conditional U-statistic Test with Screen-
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ing (CUTS), to enhance the testing power under the sparsity. The data

splitting techniques have been used for various applications in the litera-

ture. Wasserman and Roeder (2009) used the data splitting strategy to

control the family-wise error rate and lead to a powerful variable selec-

tion procedure. Fan, Guo and Hao (2012) proposed a consistent refitted

cross-validation estimator for error variance in ultrahigh dimensional linear

model based on the data splitting technique. Simulations show that the

two-stage testing procedure perform much better for ultrahigh dimensional

sparse linear models. Third, to eliminate the effect of single random data

splitting and further enhance both the empirical power and the algorithm

stability, we also develop a powerful ensemble algorithm CUTSM based on

multiple splitting strategy. Motivated by the idea of Meinshausen, Meier

and Buhlmann (2009), we also demonstrate that the family-wise error rate

of the CUTSM testing procedure is asymptotically controlled at a given

significance level. It is worth noting that random data splitting is crucial to

eliminate the effect of spurious correlations due to ultrahigh dimensionality

and avoid the inflation of the Type-I error.

This work is also partially related to the post-selection inference liter-

atures. Lockhart, et al. (2014) proposed a covariance test for testing the

significance of a variable that enters the active set in the LASSO solu-

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



CONDITIONAL TEST WITH SCREENING 7

tion path (Tibshirani, 1996). Lee, et al. (2016) developed an approach to

construct valid confidence intervals for the selected coefficients after model

selection by the lasso. Moreover, Zhang and Zhang (2014) constructed

confidence intervals for low dimensional parameters in high dimensional

linear models with homoscedastic variance using the low dimensional pro-

jection and regularization methods. Wang, Zhong and Cui (2018) further

proposed empirical likelihood ratio tests for low dimensional parameters

in high dimensional heteroscedastic linear models. Compared with these

existing methods, our proposed CUTS procedure has several different fea-

tures. First, we focus on testing the overall significance of the remaining

ultrahigh dimensional predictors conditional on a given subset of predictors

while the aforementioned methods tend to form valid confidence intervals

for a single coefficient or low-dimensional ones. Second, the conditioning

set in our CUTS procedure is not necessary to be the variable subset s-

elected by model selection like LASSO. It can be a subset of predictors

based on researchers’ historical experiences or brief which are independent

with the current data. Third, we consider the ultrahigh dimensionality in

which spurious correlations play an important and nonignorable role in the

significance test.

The article is organized as follows. In Section 2, we develop the new
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conditional test and study its asymptotic distributions. We introduce the

two-stage conditional test with screening (CUTS) procedure in Section 3.

Section 4 examines the finite-sample performance of the proposed procedure

using Monte Carlo simulations and real data examples. A brief discussion

is given in Section 5. All technical proofs are relegated to the Appendix.

2. A New Conditional Test

2.1 Test Statistic

Let Y = (Y1, Y2, . . . , Yn)T, X0 = (X01, . . . ,X0n)T, X1 = (X11, . . . ,X1n)T

and ε = (ε1, ε2, . . . , εn)T. The linear model (1.1) can be rewritten as

Y = α + X0β0 + X1β1 + ε. (2.1)

To motivate the test statistic, we first assume that β0 is known and α = 0,

the ordinary least squares estimator for β1 is β̂1 = (XT
1X1)

−1XT
1 (Y−X0β0).

We remark that β̂1 is infeasible for high dimensional data where p− q > n

because XT
1X1 is not invertible. For testing H0 : β1 = β10, we naturally

consider the difference between β̂1 and β10. Because β̂1 = β10 implies that

XT
1 (Y−X0β0−X1β10) = 0, we can utilize E‖X1i(Yi−XT

0iβ0−XT
1iβ10)‖2 as

an effective measure of the discrepancy between β1 and β10. By following

the similar idea of Zhong and Chen (2011), we first use a U-statistic with

XT
1iX1j(Yi −XT

0iβ0 −XT
1iβ10)(Yj −XT

0jβ0 −XT
1jβ10) for i 6= j as the kernel

to estimate E‖X1i(Yi−XT
0iβ0−XT

1iβ10)‖2 when α = 0 and the mean of X1i
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is µ1 =0. Then, we remove the effect of nonzero µ1 and α by centralizing

both X1i and Yi −XT
0iβ0 −XT

1iβ10. We define that

∆i,j(X1) = (X1i −X1)
T(X1j −X1) +

‖X1i −X1j‖2

2n
(2.2)

∆i,j(Y
∗) = (Y ∗i − Y

∗
)(Y ∗j − Y

∗
) +
|Y ∗i − Y ∗j |2

2n
, (2.3)

where Y∗ = Y − X0β̂0 − X1β10 and β̂0 is the ordinary least squared

estimator by regressing Y −XT
1β10 against X0 in practice. We remark that

the second terms in (2.2) and (2.3) are proposed to correct biases due to

centralization, which can imply that E[∆i,j(X1)] = 0 and E[∆i,j(Y
∗)] = 0.

Then, we define a new test statistic as

Tn =

(
1− 2

n

)−2(
n

2

)−1 n∑
i=2

i−1∑
j=1

∆i,j(X1)∆i,j(Y
∗). (2.4)

Because the conditional test statistic (2.4) is based on the estimated U-

statistic of order two, we call it the Conditional U-statistic Test (CUT). It

extends Cui, Guo and Zhong (2018) to the conditional testing problem.

2.2 Asymptotic Distributions

We let Σ, Σ00, Σ11 be the covariance matrices of the covariates vectors Xi,

X0i, X1i, respectively, Σ01 = ΣT

10 be the covariance matrix of X0i and X1i.

Next, we study the asymptotic null distribution of the test statistic Tn,p

under some technical assumptions in the following.

(C1) (p− q)→∞ as n→∞; Σ11 > 0, tr(Σ4
11) = o{tr2(Σ2

11)}.
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(C2) Suppose Xi follows a p-dimensional elliptical contoured distribution,

Xi = µ + ΓRiUi, where Γ is a p × p matrix, Ui is a random vector

uniformly distributed on the unit sphere in Rp, andRi is a nonnegative

random variable independent of Ui and E(R2
i ) = p, V ar(R2

i ) = O(p).

We also denote X1i = µ1 + Γ1RiUi and X0i = µ0 + Γ0RiUi.

(C3) q = O(nκ), 0 ≤ κ < 1/3, and the eigenvalues of Σ00 are bounded.

(C4) tr(Σ01Σ11Σ10) = o(n−2κtr(Σ2
11)).

Condition (C1) assumes the dimensionality of X1i, p−q, goes to the infinity

as the sample size increases to the infinity. Thus, it can accommodate the

high (at least moderately high) dimensional problems. The second part of

(C1) assumes the positive definiteness of Σ11 to ensure the identification

of the regression coefficients of X1i. (C1) is similar to Assumption (2.8) in

Zhong and Chen (2011). Elliptical countered distribution in (C2) is widely

assumed in the multivariate statistical analysis. It contains multivariate

normal distribution, multivariate t-distribution as special cases. Condition

(C3) requires that the dimension of the known covariates, q, should be

small or can not increase faster than n1/3. Condition (C4) is a technical

assumption on the dependency between X0i and X1i. Theorem 1 presents

the asymptotic null distribution of the new CUT statistic Tn in (2.4).
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Theorem 1. Assume conditions (C1)-(C4) hold, then under H0 in (1.2),

nTn

σ2
√

2tr(Σ2
11)

D−→ N(0, 1), (2.5)

as n→∞, where
D−→ denotes the convergence in distribution.

The asymptotic null distribution of Tn can be used to compute the

critical region or empirical p-value when the sample size is relatively large.

The null hypothesis H0 : β1 = β10 is rejected at the significance level α if

nTn ≥ σ̂2

√
2 ̂tr(Σ2

11)zα, (2.6)

where zα is the α upper-tailed critical value of the standard normal distri-

bution, σ̂2 and ̂tr(Σ2
11) are the estimators of σ2 and tr(Σ2

11), respectively.

We can also compute the p-value by p-value = P (Z > ntn

/
σ̂2

√
2 ̂tr(Σ2

11)),

where tn is the observed test statistic and Z is a standard normal ran-

dom variable. In practice, σ̂2 can be the sample variance of the response

like Zhong and Chen (2011) or the refitted cross-validation variance es-

timator in Fan, Guo and Hao (2012) and Cui, Guo and Zhong (2018),

̂tr(Σ2
11) can be estimated unbiasedly by S1n − 2S2n + S3n, where S1n =

(n− 2)!(n!)−1
∑
i6=j

(XT
1iX1j)

2, S2n = (n− 3)!(n!)−1
∑

i6=j 6=k
(XT

1iX1jX
T
1jX1k), and

S3n = (n− 4)!(n!)−1
∑

i6=j 6=k 6=l
(XT

1iX1jX
T
1kX1l).

Next, we study the asymptotic distribution of Tn under a class of the

local alternatives (2.7) which prescribe a small discrepancy between β1 and
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β10. The similar local alternatives have been also considered in Zhong and

Chen (2011) and Cui, Guo and Zhong (2018).

(β1 − β10)
TΣ11(β1 − β10) = o

(
n−κ

)
,

(β1 − β10)
TΣ3

11(β1 − β10) = o
{
n−1−κtr(Σ2

11)
}
, (2.7)

(β1 − β10)
TΣ10Σ01(β1 − β10) = o(n−1+κ).

Theorem 2. Assume conditions (C1)-(C4) hold, then under the local al-

ternatives (2.7),

n[Tn − (β1 − β10)
TΣ2

11(β1 − β10)]

σ2
√

2tr(Σ2
11)

D−→ N(0, 1), (2.8)

as n→∞, where
D−→ denotes the convergence in distribution.

Theorem 2 implies that the asymptotic power under the local alterna-

tives (2.7) of the CUT test is

ΨCUT

n = Φ

(
−zα +

n(β1 − β10)
TΣ2

11(β1 − β10)

σ2
√

2tr(Σ2
11)

)
, (2.9)

where Φ(·) denotes the distribution function of the standard normal distri-

bution. If the signal-to-noise ratio (β1 − β10)
TΣ2

11(β1 − β10)/σ
2
√

2tr(Σ2
11)

has a higher order of n−1, the asymptotic power tends to one as the sam-

ple size increases to the infinity and thus the CUT test is consistent. Its

asymptotic power is same as the conditional test in Wang and Cui (2015).

Let λ1 ≤ λ2 ≤ · · · ≤ λp−q be the eigenvalues of Σ11 and suppose all the
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eigenvalues are bounded from zero and the infinity. Similar to Zhong and

Chen (2011), we find that a sufficient condition for ensuring a nontriv-

ial power of the CUT test is ‖β1 − β10‖ = O(n−1/2λ−11 (
∑p−q

j=1 λ
2
j)

1/4) =

O(n−1/2(p − q)1/4). If we further define δβ1
= ‖β1 − β10‖/

√
p− q as the

average “signal strength”, then the previous sufficient condition becomes

δβ1
= O(n−1/2(p− q)−1/4).

3. Conditional Test with Screening

3.1 A Two-Stage Testing Procedure

Although the CUT test is able to accommodate the moderately high

dimensional problems, we observe that it performs unsatisfactorily for ul-

trahigh dimensional sparse linear models. The sparsity assumption means

that only a small subset of predictors are significant to the response. We de-

note the small set of predictors X1 byM1 = {j : β1j 6= 0, j = 1, . . . , p− q},

which are truly relevant to the response. Let s = |M1| be the cardinality

of the significant subset M1. Under the sparsity assumption, we define

δβ1M1

= ‖β1M1
− β10M1

‖/
√
s =

√∑
j∈M1

(β1j − β10j)2/s as the average

“signal strength”, where β1M1
= {βj : j ∈M1}. A sufficient condition for

the CUT test to have a nontrivial power is δβ1M1

= O(n−1/2s−1/2(p−q)1/4).

If p increases faster than O(n2s2), for example, if p = O(exp(na)) for some

a > 0, this sufficient condition is hard to be satisfied.
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To reduce the unfavorable effect of the ultrahigh dimensionality and

enhance the testing power of the CUT test, we propose a two-stage Condi-

tional U-statistic Test with Screening (CUTS) algorithm based on random

data splitting technique under the sparsity assumption. In the first stage,

we split data randomly into two parts S1 and S2, and then apply the con-

ditional sure independence screening (Barut, Fan and Verhasselt, 2016) to

the first part S1 for selecting a submodel. In the second stage, we apply

the proposed CUT test to testing the significance of the selected submodel

conditional on X0 based on the second sample S2. The CUTS algorithm is

summarized in the following Algorithm 1.

In Step 2, the Conditional Sure Independence Screening (CSIS) pro-

posed by Barut, Fan and Verhasselt (2016) is utilized to eliminate the

noisy variables and reduce the ultrahigh dimensionality. The sure screening

property of the CSIS that demonstrates P (M1 ⊂ M̂1)→ 1 as n→∞ can

ensure the power enhancement of the CUTS under the sparsity assump-

tion. When M1 ⊂ M̂1 holds, the original hypothesis (1.2), H0 : β1 =

β10 versus H1 : β1 6= β10, is equivalent to H0 : β1M̂1
= β10M̂1

versus H1 :

β1M̂1
6= β10M̂1

, where β1M̂1
= {β1j : j ∈ M̂1}. Therefore, the first-stage

CSIS helps us to transform an ultrahigh dimensional testing problem to an

asymptotically equivalent low dimensional testing one, which can be tested
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Algorithm 1 Conditional U-statistic Test with Screening (CUTS)

Step 1. (Random Data Splitting) Split the sample {(Yi,X0i,X1i), i =

1, 2, . . . , n} randomly into two parts, S1 with sample size n1 and S2 with

sample size n2. In practice, we can let n1 = [n/2], the integer of n/2.

Step 2. (Conditional Sure Independence Screening) Regress Y against

the union of X0 and each predictor X1j of X1 using S1, i.e. Y = α +

X0β0+β1jX1j+ξ, and obtain the estimators β̂1j for each j = 1, . . . , p−q.

Then, select the submodel M̂1 = {j : |β̂1j| is among the top dn largest

ones}, where dn is a prespecified threshold, e.g., set dn = [n1/log(n1)].

Step 3. (Conditional U-statistic Test) Apply the CUT to test the signif-

icance of X1M̂1
for the response conditional on X0 based on the rejection

rule (2.6) in S2 at the significance level α, where X1M̂1
= {X1j : j ∈ M̂1}.

efficiently by the CUT in the second stage.

Given the submodel M̂1 in the first stage, Theorem 2 implies that the

asymptotic power in terms of n2 under the local alternatives (2.7) of the

CUTS test procedure is

ΨCUTS

n (M̂1) = Φ

−zα +
n2(β1M̂1

− β10M̂1
)TΣ2

11M̂1
(β1M̂1

− β10M̂1
)

σ2
√

2tr(Σ2
11M̂1

)

 ,(3.1)

where Σ2
11M̂1

denotes the covariance matrix of selected predictors indexed

by M̂1. Assume that all the eigenvalues of Σ11 satisfy c < λ1 ≤ λ2 ≤ · · · ≤
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λp−q ≤ C, where c, C are two constants. By Fatou’s lemma, the upper and

lower limits of the mean power function are controlled by

lim inf EΨCUTS

n (M̂1) ≥ E lim inf ΨCUTS

n (M̂1)

≥ lim inf Φ

(
−zα +

n2‖Σ11M1(β1M1
− β10M1

)‖2

σ2
√

2Cdn

)
,

lim supEΨCUTS

n (M̂1) ≤ E lim sup ΨCUTS

n (M̂1)

≤ lim sup Φ

(
−zα +

n2‖Σ11M1(β1M1
− β10M1

)‖2

σ2
√

2cdn

)
,

(3.2)

where the second and the forth inequalities hold because P (M1 ⊂ M̂1)→ 1

as n → ∞. We define δβ1M1

= ‖β1M1
− β10M1

‖/
√
|M1| as the average

“signal strength”, then the sufficient condition for the nontrivial power

becomes δβ1M1

= O(n−1/2s−1/2d
1/4
n ). Furthermore, we can compare the

asymptotic powers of the WC test (Wang and Cui, 2015) and the CUTS

with n2/n = O(1) by comparing their signal-to-noise (SNR) ratios.

SNRCUTS

SNRWC
= O(1)

‖Σ11M1(β1M1
− β10M1

)‖2

‖Σ11(β1 − β10)‖2

√
p− q
dn

= O((p− q)1/2d−1/2n ).

In the mean sense, the asymptotic power of the CUTS is greater than that

of the WC test if dn = o(p− q) and the sure screening property holds.

In addition, we add three remarks on the CUTS as below.

Remark 1: The goal of the first-stage screening is to reduce noisy signals

and then enhance the power of the test in the second-stage under the spar-
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sity assumption. The related noise reduction ideas have been investigated

in the literature on hypothesis testing. For example, Lan, et al. (2016)

introduced a Key conFounder Controlling (KFC) method similar to the

screening idea in Fan and Lv (2008) to first control for predictors that are

highly correlated with the target covariate before testing the significance of

the single regression coefficient in high dimensional linear models. Another

related idea is the thresholding test where the sufficiently small signals are

truncated to zero. Fan (1996) proposed a wavelet thresholding test for

the mean of random vectors. Zhong, Chen and Xu (2013) and Chen, Li

and Zhong (2019) considered testing for an one-sample mean vector and

two-sample mean vectors of high dimensional populations by thresholding

to remove the non-signal bearing dimensions, respectively. Another idea is

to only consider the maximum signal component as the test statistic. For

example, Cai, Liu and Xia (2014) proposed a maximum-norm test statistic

for comparing high dimensional two-sample means with sparsity. However,

both thresholding and maximum-norm tests may also suffer from the size

inflation due to spurious correlations in ultrahigh dimensional data.

Remark 2: The sure screening property is not necessary for the nontriv-

ial power of the CUTS procedure. To ensure the nontrivial power of the

CUTS, we require a less restrictive necessary condition that at least one
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truly relevant predictor is selected, i.e. M1 ∩ M̂1 6= ∅. We suppose

that the eigenvalues of Σ11 are bounded from zero and the infinity. It

can be shown that given M̂1, if ‖β1(M1∩M̂1)
− β10(M1∩M̂1)

‖2 is not less

than O
(√

dn/(p− q)
)
‖β1 − β10‖2, the asymptotic power of the CUTS in

terms of n2 is no less than that of the WC test. In other words, when

H1 is true, once the first-stage screening is able to identify some certain

important predictors, the second-stage test could be statistically significant

to reject H0.

Remark 3: It is worth noting that random data splitting is necessarily useful

to eliminate the effect of spurious correlation due to ultrahigh dimension-

ality and control the type-I error rates. Fan, Guo and Hao (2012) pointed

out that spurious correlations are inherent in ultrahigh dimensional data

analysis. That is, maximum sample correlation between the response and

irrelevant predictors increases as the predictor dimension increases. Some

irrelevant predictors may be detected as significant due to spurious corre-

lations even under H0 : β1 = 0. If we do not split the data, the type-I

error rates of the second-stage testing procedure will be severely inflated

because the submodel M̂1 contains spuriously significant predictors. How-

ever, the random data splitting is able to prevent from inflating the type-I

error rates. To appreciate why, we suppose that the sample correlation be-
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tween an irrelevant predictor and the response is high over the first half of

data and thus this predictor is selected by the screening procedure. Because

the two halves of data are independent, it is unlikely that this predictor is

also highly correlated with the response over the second half of data and

thus gives a negligible influence on the testing result.

3.2 An Ensemble Testing Procedure

Although the random data splitting is useful to avoid the Type-I error

rates, the testing power may be effected by randomness and sample reduc-

tion. As Lockhart, et al. (2014) mentioned, the use of sample splitting can

result in a loss of power in significance testing. To this end, we introduce a

more powerful ensemble CUTS algorithm based on multiple random data

splitting to further enhance both the empirical power and the algorithm

stability. This idea is motivated by Meinshausen, Meier and Buhlmann

(2009) which proposed to aggregate the inference results across multiple

random splits to control both family-wise error and false discovery rate.

The ensemble CUTS algorithm based on multiple random data splitting,

denoted by CUTSM , is summarized in Algorithm 2. We also demonstrate

that the family-wise error rate of the CUTSM is asymptotically controlled

at a given significance level α ∈ (0, 1) in Proposition 1.

Proposition 1. For a significance level α ∈ (0, 1), the family-wise error
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rate of the CUTSM is asymptotically controlled at level α. That is,

lim sup
n→∞

P (Q∗ ≤ α|H0) ≤ α. (3.3)

Algorithm 2 CUTSM Algorithm based on multiple random data splitting

Step 1. (Conditional U-statistic Test with Screening) Split the sample

{(Yi,X0i,X1i), i = 1, 2, . . . , n} randomly into two equal parts, S1 and S2,

and apply Algorithm 1 to obtain a p-value, denoted by p1.

Step 2. (Multiple Data Splitting) Repeat Step 1 m times and obtain m

p-values, denoted by {p1, · · · , pm}.

Step 3. (Compute Adjusted P-value) Compute the adjusted p-value

Q∗ = min

{
1, (1− logγmin) inf

γ∈(γmin,1)
Q(γ)

}
,

where Q(γ) = min [1, qγ({pk/γ; k = 1, · · · ,m})] for a constant γ ∈

(γmin, 1), qγ({pk/γ}) is the γth quantile of {pk/γ; k = 1, · · · ,m}, γmin

is a prespecified constant in (0,1).

Step 4. (Rejection) The null hypothesis H0 (1.2) is rejected at the

significance level α if Q∗ ≤ α.

4. Numerical Studies

4.1 Simulations
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This section investigates the finite-sample performances of the WC test

(Wang and Cui, 2015), the CUTS and CUTSM testing procedures for ultra-

high dimensional linear regression coefficients via Monte Carlo simulations.

In the simulations, we set M = 20 times for the CUTSM .

Example 1. We generate the predictors (X1, X2, · · · , Xp)
T from two differ-

ent distributions: (i) multivariate normal distribution N (0,Σ) or (ii) mul-

tivariate t-distribution
√

1− 2/qtq(0,Σ, q) with q = 5, where Σ = (σij)p×p

with σij = 0.5|i−j|. The regression model is set as

Y = 0.7X1 + 0.8X2 + 0.6X3−X4 + β11X11 + β12X12 + β13X13 + β14X14 + ε,

where the error term ε is independently generated from two distributions:

(i) standard normal distribution N (0, 1) or (ii) standard log-normal distri-

bution (lnorm(0, 1)−e1/2)/
√
e(e− 1). Assume that the known conditional

set is M0 = {1, 2, 3, 4, 5}. We want to test the overall significance of the

remaining regression coefficients given the subsetM0. That is, H0 : β1 = 0

versus H1 : β1 6= 0, where β1 = (β6, . . . , βp)
T. We set βj = c/2, j =

11, . . . , 14, where the signal strength c2 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} and c = 0

corresponds to the null hypothesis H0. The sample size n = 100 and the

predictor dimension p = 1000 or 2000. We run the simulations 500 times

and compare the empirical sizes or powers of three tests, WC, CUTS and

CUTSM , at the significance level α = 0.05. All simulation results are sum-
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marized in Table 1. We can observe that the two-stage testing procedures

enhance the empirical powers substantially based on random data splitting

under the sparsity. Particularly, the CUTSM approach based on multi-

ple splitting strategy is more powerful and algorithmically stable than the

single-splitting CUTS. The family-wise error rate of the CUTSM approach

is also favorably controlled under the significance level α = 0.05.

Example 2. We further consider the power performance for dense signals.

We generate the predictors from the same multivariate normal distribution

as Example 1. Consider the linear regression

Y = 0.7X1 + 0.8X2 + 0.6X3 −X4 + X1β1 + ε,

where β1 = (β6, . . . , βp)
T, βj = c/2 for j = 11, . . . , 20, βj = c/

√
6 for

j = 21, . . . , 30, βj = c/2
√

2 for j = 31, . . . , 40, βj = 0.01 for j = 41, . . . , p/2

and βj = 0 otherwise, where the signal strength c2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

The other settings are same as Example 1. Table 2 display the empirical

powers of different tests at α = 0.05. It shows that the WC test performs

generally well to detect the weak and dense signals. Although the CUTS

with a single data splitting has the nontrivial powers, it performs worse

than the WC test under the dense signal settings. This result is consistent

with Remark 2. However, the ensemble CUTSM procedure with multiple

data splitting can enhance the powers when the signals are not small.
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Table 1: Empirical sizes and powers of WC, CUTS, CUTSM in Example 1

(n, p) c2
ε ∼Normal ε ∼Log-normal

WC CUTS CUTSM WC CUTS CUTSM

(1) Xi ∼ Np(µ,Σ)

(100, 1000) 0.0 0.062 0.058 0.034 0.044 0.028 0.038

0.1 0.172 0.252 0.400 0.242 0.424 0.596

0.2 0.326 0.604 0.844 0.366 0.664 0.836

0.3 0.410 0.838 0.968 0.494 0.836 0.944

0.4 0.550 0.918 0.994 0.580 0.910 0.962

0.5 0.620 0.970 0.996 0.616 0.938 0.988

(100, 2000) 0.0 0.054 0.054 0.046 0.040 0.040 0.038

0.1 0.118 0.168 0.278 0.146 0.308 0.466

0.2 0.196 0.506 0.768 0.256 0.626 0.794

0.3 0.260 0.784 0.946 0.344 0.778 0.884

0.4 0.348 0.892 0.990 0.370 0.884 0.950

0.5 0.412 0.960 0.998 0.388 0.908 0.978

(2) Xi ∼
√

1− 2/qtq(µ,Σ, q)

(100, 1000) 0.0 0.042 0.048 0.024 0.038 0.058 0.030

0.1 0.176 0.168 0.300 0.220 0.296 0.520

0.2 0.278 0.462 0.682 0.368 0.576 0.790

0.3 0.336 0.656 0.892 0.458 0.716 0.884

0.4 0.470 0.832 0.970 0.476 0.818 0.938

0.5 0.508 0.904 0.992 0.522 0.870 0.966

(100, 2000) 0.0 0.038 0.052 0.046 0.054 0.046 0.042

0.1 0.130 0.128 0.250 0.126 0.214 0.378

0.2 0.190 0.346 0.612 0.254 0.524 0.734

0.3 0.260 0.580 0.876 0.296 0.678 0.856

0.4 0.336 0.760 0.950 0.352 0.776 0.918

0.5 0.364 0.852 0.976 0.398 0.846 0.954
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Table 2: Empirical powers of WC, CUTS, CUTSM in Example 2

(n, p) c2
ε ∼Normal ε ∼Log-normal

WC CUTS CUTSM WC CUTS CUTSM

(100, 1000) 0.1 0.880 0.558 0.816 0.856 0.628 0.806

0.2 0.956 0.796 0.954 0.934 0.802 0.926

0.3 0.968 0.862 0.986 0.966 0.892 0.968

0.4 0.984 0.926 0.992 0.982 0.928 0.986

0.5 0.992 0.918 0.996 0.986 0.936 0.990

(100, 2000) 0.1 0.664 0.420 0.658 0.678 0.486 0.656

0.2 0.812 0.628 0.852 0.808 0.612 0.832

0.3 0.854 0.728 0.932 0.860 0.706 0.912

0.4 0.886 0.768 0.950 0.862 0.804 0.940

0.5 0.890 0.826 0.968 0.894 0.858 0.976

Example 3. We consider a linear model similar to Fan and Lv (2008)

Y = k0X1 + k0X2 + k0X3 − 3k0
√
ρX4 + ε,

where each Xj is generated from a standard normal distribution, all Xj’s for

j = 1, 2, 3, 5, . . . , 10 are equally correlated with the correlation coefficient

ρ, while the correlation between X4 and each other predictor Xj for j =

1, 2, 3, 5, . . . , 10 is
√
ρ. All other predictors are independent and ε follows an

independent standard normal distribution. It can be demonstrated that the

marginal correlation between X4 and Y is zero and the sure independence

screening (SIS) can not detect X4. Fan and Lv (2008) proposed the iterative
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SIS (ISIS) to identify X4. In our simulations, we aim to test whether

the overall significance of regression coefficients of the remaining predictors

given a subset of important predictorsM0 = {1, 2, 3} or {1, 2, 3, 4}. When

M0 = {1, 2, 3, 4}, H0 : β1 = 0 is true. We set the sample size n = 200,

the dimension p = 2000 or 5000, the signal strength k0 = 1, 2, 3. Table

3 shows that all tests can retain the nominal size α = 0.05 well when

M0 = {1, 2, 3, 4}. IfM0 = {1, 2, 3} and there is only one important variable

X4 left in the remaining high dimensional variables, both the CUTS and the

CUTSM perform much better to reject H0. Thus, the result demonstrate

that the iterative SIS is necessary to recruit additional important variables.

This example illustrates that the conditional test is useful to check whether

the variable screening procedures adequately identify all important variables

in the selected submodel under the sparsity assumption.

Table 3: Empirical sizes and powers of WC, CUTS, CUTSM in Example 3

M0 k0

p = 2000 p = 5000

WC CUTS CUTSM WC CUTS CUTSM

{1, 2, 3, 4} 3 0.050 0.058 0.044 0.044 0.048 0.038

{1, 2, 3} 1 0.630 0.986 1.000 0.408 0.980 1.000

2 0.658 0.992 1.000 0.416 0.988 1.000

3 0.666 0.998 1.000 0.420 0.994 1.000

4.2 Real Data Analysis
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Example 4. Scheetz, et al. (2006) used expression quantitative trait locus

mapping to gain a broad perspective of gene regulation in the mammalian

eye of 120 twelve-week-old male rats. They identified 22 important gene

probes from 18,976 different gene probes in regulating mammalian eye gene

expression. Among them, seven genes showed evidence of contiguous regula-

tion alone, four had both contiguous and noncontiguous linkages, and eleven

had evidence of only noncontiguous linkages (refer to Table 2 in Scheetz,

et al. (2006)). We consider a linear regression model of the response gene

TRIM32, which relates to retinal disease Bardet-Biedl syndrome, against

the remaining 18,975 probes. A natural question is, whether the remain-

ing ultrahigh dimensional variables still contribute to the response given a

subset of the identified significant genes?

We apply the WC test, the CUTS test with single data splitting and the

CUTSM algorithm with M = 50 to test the overall significance of regression

coefficients of the remaining ultrahigh dimensional gene probes conditional

on various subsets of the 22 identified genes in Scheetz, et al. (2006). We

delete one outlier (the 58th observation) in our analysis and report the p-

values in Table 4. If the conditioning set contains all 22 identified genes

(M0(1 : 22)), all tests are not significant and conclude that the remaining

ultrahigh dimensional genes may not contribute to the response given these
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22 genes. Conditional on the seven genes with only contiguous regulation

(M0(1 : 7)) or the four genes with both contiguous and noncontiguous

linkages (M0(8 : 11)), all three tests are statistically significant at the level

α = 0.01 and imply that there are more important genes for the response in

the remaining ones. However, when the conditioning set includes the first

eleven genes that had contiguous linkages (M0(1 : 11)) or the last eleven

genes with only noncontiguous linkages (M0(12 : 22)), only the CUTSM is

able to reject the null H0. In addition, we also report the adjusted R2 of

linear regressions of the response against various subsets of the 22 genes in

Table 4. The linear model with all 22 genes produces the largest adjusted

R2. This data analysis supports the power enhancement of the CUTSM .

Table 4: P-values of WC, CUTS and CUTSM in Example 4

Conditioning Set M0(1 : 7) M0(8 : 11) M0(1 : 11) M0(12 : 22) M0(1 : 22)

P-value (WC) 0.0011 <0.0001 0.3006 0.0781 0.7016

P-value (CUTS) 0.0046 <0.0001 0.1371 0.1314 0.9410

P-value (CUTSM) <0.0001 <0.0001 0.0002 <0.0001 1

Adjusted R2 0.291 0.231 0.354 0.270 0.417

Notes: M0(1 : 7) denotes the subset of seven genes with only contiguous linkages; M0(8 : 11)

denotes the subset of four genes with both contiguous and noncontiguous linkages; M0(1 : 11) is

the union ofM0(1 : 7) andM0(8 : 11);M0(12 : 22) denotes the subset of eleven genes with only

noncontiguous linkages. The number of data random splits for the CUTSM is M=50.

Example 5. Li, Zhong and Zhu (2012) used distance correlation (DC-
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SIS) to rank the most influential genes for the expression level of a G

protein-coupled receptor (Ro1) in a cardiomyopathy microarray dataset

(Segal, Dahlquist and Conklin , 2003). In this dataset, we only have 30

observations but the dimension of genes as predictors is 6319. We set the

conditioning set as the subset of top k genes ranked by the DC-SIS and

test the overall significance of the remaining ultrahigh dimensional genes

using the WC test and the CUTSM with M = 50. We do not include the

CUTS with a single data splitting because the sample size is only 30 and

the result of the CUTS is not stable and heavily depends on data splits.

This drawback can be addressed by the ensemble CUTSM procedure as we

discussed before. For comparison of powers, we set the conditioning set

as a subset of 4 genes randomly selected from all genes except the top 40

genes ranked by the DC-SIS. In this case, the null hypothesis is not true

since the top 40 genes should contain important genes for the response Ro1.

We repeat it 200 times and compute the empirical powers of the WC and

CUTSM tests at the significance level α = 0.05. In addition, we also report

the adjusted R2 of linear regressions of the response against the condition-

ing sets of genes. Table 5 summarizes the results. WC and CUTSM have

similar results and imply that conditional on the top four genes selected by

the DC-SIS, the remaining 6315 genes are not statistically significant in the
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linear regression. Moreover, the CUTSM has a better empirical power to

reject the null hypothesis conditional on random four genes.

Table 5: P-values and powers of WC and CUTSM in Example 5

Conditioning Set Top 1 Top 1:2 Top 1:3 Top 1:4 Top 1:5 Random 4 Genes

P-value Power

WC <0.0001 0.0034 0.0093 0.0084 0.1630 0.795

CUTSM <0.0001 0.0045 0.0003 0.0053 0.0752 0.820

Adjusted R2 0.584 0.776 0.781 0.773 0.778 0.168(0.157)

Notes: Top 1:k denotes the subset of top k genes ranked by the DC-SIS. Random 4 Genes denotes

the subset of 4 genes randomly selected from all genes except the top 40 genes ranked by the DC-

SIS. The last column is based on 200 repetitions and 0.168(0.157) denotes the average adjusted R2

and its standard deviation. The number of data random splits for the CUTSM is M=50.

5. Discussion

In this paper, we proposed a two-stage conditional U-statistic test with

screening (CUTS) procedure for testing the overall significance of regression

coefficients of the remaining ultrahigh dimensional predictors given a sub-

set of known predictors. It reduces the dimensionality under the sparsity

assumption and enhances the empirical power based on random data split-

ting strategy. The ensemble CUTSM algorithm based on multiple splitting

strategy is demonstrated to be powerful in the simulations. This two-stage

testing procedure can be directly applied to the unconditional tests of ultra-

high dimensional linear regression coefficients by setting the conditional set

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



CONDITIONAL TEST WITH SCREENING 30

as an empty set and is able to improve the power performances of tests in

Zhong and Chen (2011) and Cui, Guo and Zhong (2018) under the sparsity.

It is also interesting to extend the idea of the thresholding test in Zhong,

Chen and Xu (2013) and Chen, Li and Zhong (2019) to test high dimen-

sional linear regression. We let

∆i,j(X
(k)
1 ) = (X

(k)
1i −X

(k)

1 )T(X
(k)
1j −X

(k)

1 ) +
|X(k)

1i −X
(k)
1j |2

2n
.

Then, the test statistic in (2.4) can be written as Tn =
∑p−q

k=1 T
(k)
n where

T (k)
n =

(
1− 2

n

)−2(
n

2

)−1 n∑
i=2

i−1∑
j=1

∆i,j(X
(k)
1 )∆i,j(Y

∗).

To remove nonsignal bearing T
(k)
n and keep those with signals, we define

the thresholding test statistic as

Ln(λn) =

p−q∑
k=1

nT (k)
n I{nT (k)

n ≥ λn},

where the I(·) is the indicator function and the λn is the thresholding level.

It is worth investigating power performances and theoretical properties of

the thresholding test for high dimensional sparse linear regression in the

future study. We will also study how to determine the thresholding level

and check how the spurious correlations affect the thresholding test for

ultrahigh dimensional cases.
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Appendix: Technical Proofs

The test statistic (2.4) is invariant to location shifts in both Xi and Yi,

so we assume, without loss of generality, that α = 0 and µ = 0 in the rest

of the article. For convenience, we denote δβ0 = β0 − β̂0, δβ1 = β1 − β10,

Bi = δT

β1
Σi

11δβ1 , and ci, i = 1, 2, 3, · · · are some positive constants which

are independent of the samples. We first present two lemmas which have
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been shown in Cui, Guo and Zhong (2018).

Lemma 1. Let U = (U1, · · · , Up)T be a random vector uniformly distributed

on the unit sphere in Rp. Then E(U) = 0, V ar(U) = p−1Ip, E(U4
j ) =

3
p(p+2)

,∀j = 1, · · · , p, and E(U2
j U

2
k ) = 1

p(p+2)
for j 6= k.

Lemma 2. Suppose condition (C2) holds, then we have E(U1U
T
1MU1U

T
1) =

1
p(p+2)

(2M + tr(M)Ip) , where M is a p× p symmetric matrix.

Lemma 3. Suppose conditions (C2)-(C3) hold, then we have ‖β̂0−β0‖2 =

OP (n−1+κ) under the local alternatives (2.7).

Proof of Lemma 3. The ordinary least squared estimator of β0 implies

that

β̂0 = (XT

0X0)
−1XT

0 (Y −X1β10)

= β0 + (
1

n
XT

0X0)
−1 1

n
XT

0X1(β1 − β10) + (
1

n
XT

0X0)
−1 1

n
XT

0ε

=: β0 +W1 +W2.

Under condition (C3), it is obtained that ( 1
n
XT

0X0)
−1 converges to Σ−100 in

probability. Write W ∗
1 = 1

n
XT

0X1(β1 − β10) and W ∗
2 = 1

n
XT

0ε. Then we

have E‖W ∗
1 ‖2 = n+1

n
δT

β1
Σ10Σ01δβ1 + 1

n
tr(Σ00)δ

T

β1
Σ10Σ01δβ1 and E‖W ∗

2 ‖2 =

1
n
σ2tr(Σ00), which imply that ‖W1‖2 = OP (n−1+κ) and ‖W1‖2 = OP (n−1+κ)

under condition (C3) and the local alternatives 2.7. Then this lemma fol-

lows.
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Proof of Theorems 1 and 2.

It is easy to see that the local alternatives 2.7 is satisfied naturally under

the null hypothesis. Then Theorem 1 could be considered as a special case

of Theorem 2. Therefore it is just needed to prove Theorem 2. In order to

simplify the calculation, we re-formulate 4i,j as follows:

n

n− 2
4i,j(X1) = (1− 1

n
)XT

1iX1j −
1

2n

(
XT

1iX1i + XT

1jX1j − 2E(XT

11X11)
)

− (1− 2

n
)X

(i,j)T

1 (X1i + X1j) + (1− 2

n
)[X

(i,j)T

1 X
(i,j)

1 − E(XT
11X11)

n− 2
]

=: M
(1)
ij +M

(2)
ij +M

(3)
ij +M

(4)
ij , (A.1)

where X
(i,j)

1 = 1
n−2

∑
−(i,j)X1k, that is the average of Xk

′s with deleting

the i-th and j-th samples respectively. Let H = Y − X1β10 − X0β0 =

α+X1(β1−β10)+ε, and thus Y∗ = Y−X0β̂0−X1β10 = H+X0(β0−β̂0).

Furthermore, we obtain that

∆i,j(Y
∗)−∆i,j(H)

= (1− n−1)(X0i −X0)
Tδβ0(Hj −H) + (1− n−1)(Hi −H)(X0j −X0)

Tδβ0

+(1− n−1)δT

β0
(X0i −X0)(X0j −X0)

Tδβ0 + n−1(Hi −H)(X0i −X0)
Tδβ0

+n−1(Hj −H)(X0j −X0)
Tδβ0 + (2n)−1δT

β0
(X0i −X0)(X0i −X0)

Tδβ0

+(2n)−1δT

β0
(X0j −X0)(X0j −X0)

Tδβ0 =:
7∑

k=1

Kk.

Write T0 = 2
n(n−1)

∑
i>j4i,j(X1)4i,j(H), and by Theorem 3.2 and 3.4
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in Cui, Guo and Zhong (2018), we obtain that

n[T0 − (β1 − β10)
TΣ2

11(β1 − β10)]

σ2
√

2tr(Σ2
11)

D−→ N(0, 1) (A.2)

hold under conditions (C1) and (C2) together with the local alternatives 2.7.

Then, the proof is complete if we prove that Tk = 2
n(n−1)

∑
i>j ∆i,j(X1)Kk =

o(n−1
√
tr(Σ2

11)), for k = 1, 2, · · · , 7 under the conditions given in this the-

orem. In the following, we often simply write the constant coefficients with

the order of n−k as O(n−k). Firstly, we may rewrite

T1 = O(n−2)
∑
i>j

∆i,j(X1)(X0i −X0)
Tδβ0(X1j −X1)

Tδβ1

+O(n−2)
∑
i>j

∆i,j(X1)(X0i −X0)
Tδβ0(εj − ε) =: T11 + T12.

Then, by the expression in (A.1), we can write

T11 = O(n−2)
∑
i>j

XT

1iX1j(X1j −X1)
Tδβ1(X0i −X0)

Tδβ0

+O(n−3)
∑
i>j

[XT

1iX1i + XT

1jX1j − 2E(XT

11X11)](X1j −X1)
Tδβ1(X0i −X0)

Tδβ0

+O(n−2)
∑
i>j

X
(i,j)T

1 (X1i + X1j)(X1j −X1)
Tδβ1(X0i −X0)

Tδβ0

+O(n−2)
∑
i>j

[
X

(i,j)T

1 X
(i,j)

1 − E(XT
11X11)

(n− 2)

]
(X1j −X1)

Tδβ1(X0i −X0)
Tδβ0

=: T111 + T112 + T113 + T114.

Denote T
(1)
111 := O(n−2)

∑
i>j XT

1iX1jX
T
1jδβ1X0i, T

(2)
111 := O(n−2)

∑
i>j XT

1iX1jX
T

1δβ1X0i,

T
(3)
111 := O(n−2)

∑
i>j XT

1iX1jX
T
1jδβ1X0 and T

(4)
111 := O(n−2)

∑
i>j XT

1iX1jX
T

1δβ1X0.
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Then, using Lemmas 1-2, we can obtain that

E[‖T (1)
111‖2] = O(1)E(δT

β1
X12X

T

12X11X
T

01X03X
T

13X14X
T

14δβ1)

+O(n−1)E(δT

β1
X12X

T

12X11X
T

01X01X
T

11X13X
T

13δβ1)

+O(n−1)E(δT

β1
X12X

T

12X11X
T

01X03X
T

13X12X
T

12δβ1)

+O(n−1)E(δT

β1
X12X

T

12X11X
T

01X02X
T

12X13X
T

13δβ1)

+O(n−2)E(δT

β1
X12X

T

12X11X
T

01X01X
T

11X12X
T

12δβ1)

≤ c1B3 + c2
q

n
B3 + c3

1

n
tr(Σ2

11)B1 + c4

√
q

n
B3

+c5
1

n

√
qtr(Σ2

11)B1B3 + c6
q

n2
tr(Σ2

11)B1,

where the inequality follows by simple calculation and Cauchy-Schtwarz

inequality. As for the term T
(2)
111, we have

E‖T (2)
111‖2

= E‖O(n−3)
∑
i>j

[XT

1iX1jX
T

1iδβ1X0i + XT

1iX1jX
T

1jδβ1X0i +
∑
k/∈{i,j}

XT

1iX1jX
T

1kδβ1X0i]‖2

≤ O(n−2)E(XT

01X01)E(δT

β1
X11X

T

11X12X
T

12X11X
T

11δβ1)

+
[
O(n−1)E(δT

β1
X12X

T

12X11X
T

01X
T

03X
T

13X14X
T

14δβ1)

+ O(n−2)E(XT

01X01)E(δT

β1
X11X

T

11X12X
T

12X11X
T

11δβ1)
]

+O(n−2)E(XT

01X01)E(δT

β1
X13X

T

12X11X
T

11X12X
T

13δβ1)

≤ O(n−2)tr(Σ00)(2B3 + tr(Σ2
11)B1) +O(n−1)B3

≤ c1
q

n2
B3 + c2

q

n2
B1tr(Σ

2
11) + c3

1

n
B3,
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With the same methods, similar results can be obtained for T
(k)
111, k = 3, 4.

Combining with Lemma 3, T111 = oP (n−1
√

tr(Σ2
11)) follows under the

local alternatives 2.7. As for T112, write T
(1)
112 := O(n−3)

∑
i>j[X

T
1iX1i +

XT
1jX1j − 2E(XT

11X11)]X
T
1jδβ1X0i, T

(2)
112 := O(n−3)

∑
i>j[X

T
1iX1i + XT

1jX1j −

2E(XT
11X11)]X

T

1δβ1X0i, T
(3)
112 := O(n−3)

∑
i>j[X

T
1iX1i+XT

1jX1j−2E(XT
11X11)]X

T
1jδβ1X0

and T
(4)
112 := O(n−3)

∑
i>j[X

T
1iX1i + XT

1jX1j − 2E(XT
11X11)]X

T

1δβ1X0. Then,

we obtain that

E‖T (1)
112‖2 ≤ E‖O(n−3)

∑
i>j

[XT

1iX1i + XT

1jX1j − 2E(XT

11X11)]X
T

1jδβ1X0i‖2

≤ O(n−2)V ar(XT

11X11)E(δT

β1
X11X

T

11δβ1X
T

02X02)

= O(n−2)tr(Σ00)tr(Σ
2
11)B1 = o(n−2tr(Σ2

11)),

E‖T (2)
112‖ ≤ O(n−1)

[
V ar(XT

11X11)E(δT

β1
X1X

T

1δβ1X
T

01X01)
]1/2

= O(n−3/2)
[
tr(Σ00)tr(Σ

2
11)B1 +O(n−1)tr(Σ2

11)B1

]1/2
= o(n−1

√
tr(Σ2

11)).

Similar results can be obtained for T
(k)
112, k = 3, 4. Then using Lemma

3, it is obtained that T112 = oP (n−1
√
tr(Σ2

11)) under the local alterna-

tives 2.7. Similarly, for T113, denote T
(1)
113 := O(n−2)

∑
i>j X

(i,j)T

1 (X1i +

X1j)X
T
1jδβ1X0i, T

(2)
113 := O(n−2)

∑
i>j X

(i,j)T

1 (X1i + X1j)X
T

1δβ1X0i, T
(3)
113 :=

O(n−2)
∑

i>j X
(i,j)T

1 (X1i+X1j)X
T
1jδβ1X0, and T

(4)
113 := O(n−2)

∑
i>j X

(i,j)T

1 (X1i+

X1j)X
T

1δβ1X0. Then, calculating the expectations of ‖T (k)
113‖ or ‖T (k)

113‖2, we
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have

E‖T (1)
113‖2 = E‖O(n−2)

∑
i>j

(X
(i,j)T

1 X1iX
T

1jδβ1X0i + X
(i,j)T

1 X1jX
T

1jδβ1X0i)‖2

≤ O(n−1)[E‖X(1,2)T

1 X11X
T

12δβ1X01‖2 + E‖X(1,2)T

1 X12X
T

12δβ1X01‖2]

≤ 2O(n−1)E(X
(1,2)T

1 X11X
T

11X
(1,2)

1 )E(δT

β1
X12X

T

12δβ1X
T

01X01)

= O(n−2)tr(Σ00)tr(Σ
2
11)B1 = o(n−2tr(Σ2

11)),

under the local alternatives (2.7). Rewrite

T
(2)
113 = O(n−3)

∑
i>j

X
(i,j)T

1 (X1i + X1j)(X1i + X1j)
Tδβ1X0i

+O(n−3)
∑
i>j

X
(i,j)T

1 X1i(
∑
k/∈{i,j}

X1k)
Tδβ1X0i

+O(n−3)
∑
i>j

X
(i,j)T

1 X1j(
∑
k/∈{i,j}

X1k)
Tδβ1X0i,

then we obtain that

E‖T (2)
113‖2 ≤ O(n−2)tr(Σ2

11)B1 +O(n−2)tr(Σ00)tr(Σ
2
11)B1

+ O(n−2)B3 +O(n−2)tr(Σ2
11)B1 +O(n−2)tr(Σ00)tr(Σ

2
11)B1

+ O(n−3)tr(Σ00)tr(Σ
2
11)B1 +O(n−4)tr(Σ00)B3 = o(n−2tr(Σ2

11)).

Similar results can be obtained for T
(k)
113, k = 3, 4. Thus, we have T113 =
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o(n−1
√
tr(Σ2

11)). As for T114, write

T
(1)
114 = O(n−2)

∑
i>j

(X
(i,j)T

1 X
(i,j)

1 − E(XT
11X11)

(n− 2)
)XT

1jδβ1X0i,

T
(2)
114 = O(n−2)

∑
i>j

(X
(i,j)T

1 X
(i,j)

1 − E(XT
11X11)

(n− 2)
)X

T

1δβ1X0i,

T
(3)
114 = O(n−2)

∑
i>j

(X
(i,j)T

1 X
(i,j)

1 − E(XT
11X11)

(n− 2)
)XT

1jδβ1X0,

T
(4)
114 = O(n−2)

∑
i>j

(X
(i,j)T

1 X
(i,j)

1 − E(XT
11X11)

(n− 2)
)X

T

1δβ1X0

Then, we have

E‖T (1)
114‖ ≤ [V ar(X

(1,2)T

1 X
(1,2)

1 )E(δT

β1
X12X

T

12δβ1X
T

01X01)]
1/2

= [O(n−2)tr(Σ00)tr(Σ
2
11)B1]

1/2 = o(n−1
√
tr(Σ2

11)),

and E‖T (k)
114‖ = o(n−1

√
tr(Σ2

11)), for k = 2, 3, 4. Thus, we have T114 =

oP (n−1
√
tr(Σ2

11)). For the term T12, write

T121 = O(n−2)
∑
i>j

XT

1iX1j(X0i −X0)
Tδβ0(εj − ε),

T122 = O(n−3)
∑
i>j

[XT

1iX1i + XT

1jX1j − 2E(XT

11X11)](X0i −X0)
Tδβ0(εj − ε),

T123 = O(n−2)
∑
i>j

X
(i,j)T

1 (X1i + X1j)(X0i −X0)
Tδβ0(εj − ε),

T124 = O(n−2)
∑
i>j

(X
(i,j)T

1 X
(i,j)

1 − E(XT
11X11)

(n− 2)
)(X0i −X0)

Tδβ0(εj − ε)

Re-formulate T121 as T
(1)
121 := O(n−2)

∑
i>j XT

1iX1jεjX0i, T
(2)
121 := O(n−2)

∑
i>j XT

1iX1jεX0i,

T
(3)
121 := O(n−2)

∑
i>j XT

1iX1jεjX0, and T
(4)
121 := O(n−2)

∑
i>j XT

1iX1jεX0.
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Then, we have

E‖T (1)
121‖2 = O(n−4)

∑
i>j

∑
k>l

E(εjεlX
T

1iX1jX
T

0iX0kX
T

1kX1l)

≤ O(n−2)(qtr(Σ2
11) + tr(Σ2

11)) +O(n−1)tr(ΓT

1Γ1Γ
T

0Γ0Γ
T

1Γ1)

E‖T (2)
121‖2 = O(n−4)

∑
i>j

∑
k>l

E(XT

1iX1jε
2XT

0iX0kX
T

1kX1l)

≤ O(n−2)tr(Σ2
11) +O(n−3)qtr(Σ2

11),

and also E‖T (k)
121‖2 = o(n−1−κtr(Σ2

11)), for k = 3, 4. Thus, using Lemma

3, we have T121 = oP (n−1
√
tr(Σ2

11)) under conditions (C3)-(C4). For T122,

write T
(1)
122 = O(n−3)

∑
i>j[X

T
1iX1i + XT

1jX1j − 2E(XT
11X11)](εj − ε)X0i and

T
(2)
122 = O(n−3)

∑
i>j[X

T
1iX1i+XT

1jX1j−2E(XT
11X11)](εj−ε)X0. Then using

lemmas (1)-(2), we have

E‖T (1)
122‖ ≤ O(n−1)[V ar(XT

11X11)E(XT

01X01)]
1/2 ≤ O(n−1/2)

√
qtr(Σ2

11)/n,

E‖T (2)
122‖ ≤ O(n−1)

√
qtr(Σ2

11)/n = o(n−1
√
tr(Σ2

11)).

Therefore, we obtain that T122 = oP (n−1
√
tr(Σ2

11)). Similarly, for the

term T123, denote T
(1)
123 = O(n−2)

∑
i>j X

(i,j)T

1 (X1i + X1j)εjX0i, T
(2)
123 =

O(n−2)
∑

i>j X
(i,j)T

1 (X1i + X1j)εX0i, and T
(3)
123 = O(n−2)

∑
i>j X

(i,j)T

1 (X1i +

X1j)X
T

0 (εj − ε). Then, under conditions given in this theorem, we obtain
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that

E‖T (1)
123‖2 = O(n−4)

∑
i>j

∑
k>l

E[εjεlX
(i,j)T

1 (X1i + X1j)X
T

0iX0kX
(k,l)T

1 (X1k + X1l)]

≤ O(n−1)E[X
(1,2)T

1 (X11 + X12)X
T

01X01X
(1,2)T

1 (X11 + X12)]

≤ O(n−2)[tr(Σ2
11) + qtr(Σ2

11)],

E‖T (2)
123‖ ≤ O(n−1/2)[E(X

(1,2)T

1 (X11 + X12)(X11 + X12)
TX

(1,2)

1 )E(XT

01X01)]
1/2

≤ O(n−1/2)[qtr(Σ2
11)/n]1/2,

E(‖T (3)
123‖) ≤ O(1)[E(X

(1,2)T

1 (X11 + X12)(X11 + X12)
TX

(1,2)

1 )E(X
T

0X0)]
1/2

≤ O(n−1/2)[qtr(Σ2
11)/n]1/2.

Thus, by the definition of T123, condition (C3) and Lemma 3, T123 =

oP (n−1
√
tr(Σ2

11)) follows. Denote

T ∗124 = O(n−2)
∑
i>j

(X
(i,j)T

1 X
(i,j)

1 − E(XT
11X11)

(n− 2)
)(εj − ε)(X0i −X0),

Then calculate the expectation of the absolute value of T124,

E‖T ∗124‖ ≤ O(1)[V ar(X
(1,2)T

1 X
(1,2)

1 )E(X0i −X0)
T(X0i −X0)]

1/2

≤ O(

√
qn−2tr(Σ2

11)).

Then T124 = oP (n−1
√
tr(Σ2

11)) follows by Lemma 3.

Write T ∗3 = O(n−2)
∑
i>j

∆i,j(X1)(X0i − X0)(X0j − X0)
T. Write T ∗31 =

O(n−2)
∑

i>j ∆i,j(X1)X0iX
T
0j, T

∗
32 = O(n−2)

∑
i>j ∆i,j(X1)X0X

T
0j and T ∗33 =
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O(n−2)
∑

i>j ∆i,j(X1)X0X
T

0 . For T ∗31, reconstruct it as

T ∗311 = O(n−2)
∑
i>j

XT

1iX1jX0iX
T

0j,

T ∗312 = O(n−3)
∑
i>j

[XT

1iX1j + XT

1jX1j − E(XT

11X11)]X0iX
T

0j,

T ∗313 = O(n−2)
∑
i>j

X
(i,j)T

1 (X1i + X1j)X0iX
T

0j,

T ∗314 = O(n−2)
∑
i>j

[X
(i,j)T

1 X
(i,j)

1 − E(XT
11X11)

(n− 2)
]X0iX

T

0j.

Then using Lemmas (1)-(2), we obtain that

E‖T ∗311‖2 = O(n−4)
∑
i>j

∑
k>l

E(XT

1iX1jX
T

0jX0kX
T

1kX1lX
T

0lX0i)

≤ O(1)tr[(Σ10Σ01)
2] +O(n−1)tr(Σ00)tr(Γ

T

1Σ10Σ01Γ1),

E‖T ∗312‖ = O(n−1)[V ar(XT

11X11)tr(Σ
2
00)]

1/2

≤ O(n−1)[tr(Σ2
00)]

1/2[tr(Σ2
11)]

1/2

E‖T ∗313‖ ≤ O(n−1/2)[tr(Σ2
11)tr(Σ

2
00)]

1/2,

E‖T ∗314‖ ≤ O(n−1)[tr(Σ2
11)tr(Σ

2
00)]

1/2.

By condition (C3) and Lemma 3, we have T31 = OP (n−1
√
tr(Σ2

11)).

E‖T ∗32‖ ≤ O(1)[V ar(∆1,2(X1))E(X
T

0X01X
T

01X0)]
1/2 = O(

1

n
tr(Σ2

11)tr(Σ
2
00))

where V ar(∆1,2(X1)) = O(tr(Σ2
11)). Furthermore, we have

E‖T ∗33‖ ≤ O(1)[V ar(∆1,2(X1))E(X
T

0X0X
T

0X0)]
1/2

≤ [O(n−2)(tr(Σ2
00) + tr2(Σ00))tr(Σ

2
11)]

1/2.
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Using Lemma 3 and condition (C3), T3 = oP (n−1
√
tr(Σ2

11)) is true. By

similar analysis, write T ∗4 = O(n−3)
∑

i>j ∆i,j(X1)(Hi −H)(X0i −X0) and

rewrite is with T ∗41 = O(n−3)
∑

i>j ∆i,j(X1)(X1i −X1)
Tδβ1(X0i −X0) and

T ∗42 = O(n−3)
∑

i>j ∆i,j(X1)(εi − ε)(X0i −X0). Using Lemmas (1)-(2), we

obtain that

E‖T ∗41‖ ≤ O(n−1){V ar(∆1,2(X1))E[δT

β1
(X11 −X1)(X11 −X1)

T

×δβ1(X01 −X0)
T(X01 −X0)]}1/2

≤ O(n−1)[tr(Σ00)tr(Σ
2
11)B1]

1/2

and

E‖T ∗42‖ ≤ O(n−1)[V ar(∆1,2(X1))E(X01 −X0)
T(X01 −X0)]

1/2

≤ O(n−1)[tr(Σ00)tr(Σ
2
11)]

1/2.

Combine the last two results, we have T4 = oP (n−1
√
tr(Σ2

11)) under condi-

tion (C3) and the local alternatives (2.7). For T6, write T ∗6 = O(n−3)
∑

i>j ∆i,j(X1)(X0i−

X0)(X0i −X0)
T, and then calculate the expectation of the absolute value

E‖T ∗6 ‖ ≤ O(n−1)[V ar(∆i,j(X1))E(X0i −X0)
T(X0i −X0)(X0i −X0)

T(X0i −X0)]
1/2

≤ O(n−1)[(tr(Σ2
00) + tr(Σ00)

2)]1/2[tr(Σ2
11)]

1/2 ≤ O(n−1+κ[tr(Σ2
11)]

1/2).

Then by Lemma 3, T6 = oP (n−1
√
tr(Σ2

11)) follows. Finally, notice that

the analysis of the terms T5 and T7 are quite similar to that of T4 and T6

respectively. This completes the proof.
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Proof of Proposition 1. As discussed in Meinshausen, Meier and Buhlman-

n (2009), we also omit the function min{1, ·} from the definition of Q(γ)

and Q∗. Then it is sufficient to show that

P

{
(1− logγmin) inf

γ∈(γmin,1)
Q(γ) ≤ α

}
≤ α.

Define π(u) as the fraction of samples of pk satisfying pk ≤ u, that is π(u) =

m−1
∑m

k=1 I(pk ≤ u). Then, the two events {Q(γ) ≤ α} and π(αγ) ≥ γ are

equivalent. Therefore,

P (Q(γ) ≤ α) = P (π(αγ) ≥ γ) = P

{
m−1

m∑
k=1

I(pk ≤ αγ) ≥ γ

}

≤ (γm)−1
m∑
k=1

P (pk ≤ αγ),

where the last inequality is applied by Markov’s inequality. Using the fact

that the obtained p-values pk’s follow a uniform distribution conditional

under the null hypothesis H0, we have P (pk ≤ αγ|H0) = αγ, which implies

that P (Q(γ) ≤ α|H0) ≤ α.

Since pk’s follow a uniform distribution under the null hypothesis H0,

E

{
sup

γ∈(γmin,1)

γ−1I(pk ≤ αγ)

}
=

∫ αγmin

0

γ−1mindu+

∫ α

αγmin

α

u
du = α(1− logγmin).

Again using Markov’s inequality,

E

(
sup

γ∈(γmin,1)

I(π(αγ) ≥ γ)

)
= E

(
sup

γ∈(γmin,1)

I

(
m−1

m∑
k=1

I(pk ≤ αγ) ≥ γ

))
≤ α(1− logγmin).
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It implies that P (infγ∈(γmin,1)Q(γ) ≤ α) ≤ α(1 − logγmin) holds. by re-

placing α(1 − logγmin) with α, we obtain lim sup
n→∞

P (Q∗ ≤ α|H0) ≤ α. This

completes the proof.
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