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Abstract: Contents of the Abstract.

We investigate a statistical framework for Phase I clinical trials that test the safety of

two or more agents in combination. For such studies, the traditional assumption of

a simple monotonic relation between dose and the probability of an adverse event no

longer holds. Nonetheless, the dose toxicity (adverse event) relationship will obey an

assumption of partial ordering in that there will be pairs of combinations for which

the ordering of the toxicity probabilities is known. Some authors have considered how

to best estimate the maximum tolerated dose (a dose providing a rate of toxicity as

close as possible to some target rate) in this setting. A related, and equally interesting,
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problem is to partition the 2-dimensional dose space into two sub-regions: doses with

probabilities of toxicity lower and greater than the target. We carry out a detailed

investigation of this problem. The theoretical framework for this is the recently pre-

sented semiparametric dose finding method. This results in a number of proposals one

of which can be viewed as an extension of the Product of Independent beta Priors

Escalation method (PIPE). We derive useful asymptotic properties which also apply

to the PIPE method when seen as a special case of the more general method given

here. Simulation studies provide added confidence concerning the good behaviour of

the operating characteristics.

Key words and phrases: Bayesian method, Dose-finding design, Partial ordering, Phase

I clinical trials, semiparametric method.

1. Introduction

The importance of multi-agent Phase I trials in drug development has grown in

recent years. The practical benefits of drug combinations are numerous: several

modes of action can be combined or the negative side effects of one drug can

potentially be attenuated by the presence of a second compound. The aim of

Phase I oncology trials is to find one or more maximum tolerated dose (MTD)

combinations having probability of toxicity as close as possible to some threshold

α, specified in advance by clinicians (common values are 20% , 25% and 33%).

Algorithmic designs remain a popular approach to the identification of the MTD
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within a discrete set of levels, both for single-agent trials (Storer, 1989), as well

as for dual-agent trials (Huang, 2007). These designs make no appeal to any

model, and the escalation/de-escalation rules are determined as a function of

the most recent set of observations. The simplicity of these methods leads to

their frequent implementation in practice. Algorithmic designs have a Markov

property, sometimes referred to in this context as a lack-of-memory property.

These methods are not efficient and lack desirable statistical properties, such as

almost sure convergence. Many model-based designs have been suggested, but

their widespread adoption in practice remains an unaccomplished goal. This is

even more the case with dual-agent trials because of the complexity and lack of

interpretability of some of the proposed models, as well as operational difficulties

that can discourage clinical investigators. Model based designs come under two

headings: parametrics and non-parametric.

The design and analysis of dual-agent trials can be carried out using Wages,

Conaway and O’Quigley (2011), the partial ordering continual reassessment

method (CRM) and Wang and Ivanova (2005) with extensions of the CRM;

Thall (2003) with a six-parameter logistic-type model and Braun and Wang

(2010) with the use of beta distributions and log-linear models. The second one

is the class of non-parametric models. For dual-agent trials, we have Mander

and Sweeting (2015) with the product of independent beta probabilities escala-
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tion design (PIPE) and the Bayesian Optimal Interval (2d-BOIN) method of Lin

and Yin (2016). The primary focus of many methods for dual-agent trials has

been to find a single MTD for recommendation in phase II studies. However,

an arguably more relevant task is centered around the idea that, for combina-

tion studies, multiple, essentially, equivalent MTDs may exist. The collection

of these MTDs form a maximum tolerated contour (MTC) in two-dimensional

space. In this case, the primary objective of the study may be to identify mul-

tiple MTD’s for further testing, and investigators may desire a trial designed to

meet this objective. This is all the more so as it is becoming common to study

more than a single dose in the subsequent dose expansion cohorts (Iasonos and

O’Quigley, 2016, DEC).

Our motivation here is to describe a journey that starts with estimation of

the MTD and ends with estimation of the MTC. Our signposts are built from

illustrations and our ultimate purpose is to allow deeper study of the problem

of early phase dose finding for combinations of treatments. We set out on our

journey (Section 2) via a look at the landscape, a look at the context in which

these problems arise and, specifically, an actual trial carried out at the University

of Virginia School of Medicine, and a particular hypothesized set of rates of DLT.

Next stop (Section 3) outlines the tools that we will be using in the more usual

setting of an MTD target, while Section 4 - our destination is in sight - spells
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out, step by step, the way in which to solve MTC estimation. Dose finding

in two dimensions is necessarily more complex and Section 4.2 examines how

actual experimentation can be implemented. Although typically sample sizes

will not be large, large sample theory is helpful in providing some confidence in

how well the designs should work in practice (Section 5). In particular, Theorem

1 shows that, for all the methods, the almost sure convergence to the MTD is

equivalent to the almost sure convergence to the MTC. We have arrived at our

destination and Section 6 makes use of what we have learned to carry out a

simulated comparison with an available method (PIPE) while Section 7 returns

to our original illustration (Section 2) and studies it more deeply.

In addition, the Appendix contains several documents to enable deeper un-

derstanding of this work. We include a table that summarizes all of the notation,

we look closely at the dose allocation strategie, how to calibrate the methods,

numerical experiments in the MTC setting, as well as proofs of theorems and

other properties.

2. Context and motivation

We describe a Phase 1 clinical trial on drug combinations that was carried out at

the University of Virginia School of Medicine. The trial involved C6 Ceramide

NanoLiposome (CNL) and Vinblastine in patients with relapsed/refractory acute
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myeloid leukemia and patients with untreated acute myeloid leukemia. A grid

of 5 by 4 dose-combinations is considered: 5 levels for CNL (from 54 to 215

mg/m2) and 4 levels for Vinblastine (from 0.375 to 2.25 mg/m2). The target

rate α was taken to be 20% and the maximum sample size was fixed at 60

patients. This particular real application provides us with the opportunity to

illustrate the workings of such a Phase I drug combinations design as well as

providing a means to introduce some of the essential ideas developed in this

article. In Table 1, a hypothesized dose toxicity function, called Scenario T, is

described.

Let the dose d = (i, j) represents the combination of the i-th dose of an agent

A1 and the j-th dose of an agent A2, with i ∈ {1, · · · , I} and j ∈ {1, · · · , J}. In

Scenario T, I and J are respectively equal to 5 and 4 and dose (2, 3) corresponds

to 81 mg/m2 of CNL and 1.5 mg/m2 of Vinblastine. Let D be the set of all

dose combinations: D = {1, · · · , I} × {1, · · · , J}. The sequence (Xn, Yn)n∈N is

a sample of observations. At step n, corresponding to the n-th patient enrolled

in the trial, the variable Xn is the dose selected among the I × J combinations;

and the variable Yn is the observed binary response at this dose taking values

{0, 1}; 1 for a dose limiting toxicity (DLT) and 0 otherwise. Each combination

of drug d is associated with a toxicity probability noted Pd.

Assumption 1. ∀n ∈ N, P(Yn = 1|Xn = d) = Pd.
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Table 1: Scenario T corresponds to a hypothetical pattern of toxicity probability

in a study of Vinblastine and C6 Ceramide NanoLiposome (CNL). The 5×4 grid

of dose combinations is fixed and chosen by the investigator. Dose combinations

from the minimal set are shown in bold (see Definition 2).

Toxicity probabilities (%) Scenario T

of dose combinations Drug A1: CNL

Level (mg/m2) 54 81 122 183 215

2.25 24 29 34 59 70

Drug A2: 1.5 13 18 22 49 53

Vinblastine 0.75 7 9 16 35 42

0.375 2 5 9 21 30
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In Scenario T, P(2,3) is equal to 0.18. Note that the ranges {1, · · · , I} and

{1, · · · , J} are ordered in terms of the probability of toxic response. Such an

assumption is common in Phase I trials for cytotoxic agents. The ordering of

the marginal doses induces a partial ordering on the full range of doses D. Sign

< or ≤ will be used for the total ordering on R and the partial ordering on the

set of doses D: (i, j) ≤ (r, s) if and only if i ≤ r and j ≤ s .

Assumption 2. (i, j) < (r, s) ⇒ P(i,j) < P(r,s) .

In Scenario T, dose (2, 3) is ordered with dose (3, 3), as are their respective

toxicity probabilities: 18% and 22%. The ordering assumption is fundamental

to extract information on a dose d from observations on neighboring doses. In

particular, given any dose d, the partial ordering allows a decomposition of the

set D into four subsets: D = {d} ∪Ad ∪ Bd ∪ Cd, where Ad = {d′ ∈ D : d′ > d},

Bd = {d′ ∈ D : d′ < d} and Cd = D \ (Ad ∪ Bd). Those combinations where d

belongs to the set Ad, are associated with toxicity probabilities higher than Pd.

The set Bd contains those combinations of doses below d which are associated

with toxicity probabilities lower than Pd. The dose combinations in Cd are

not ordered with dose d which means that no prior assumption of order exists

between their respective probabilities of toxicity. In Scenario T, the set C(2,3)

contains doses associated to toxicity probabilities below or above P(2,3) = 0.18 :

e.g. P(3,1) = 0.09 and P(1,4) = 0.24. Not unlike the single-agent setting, the
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primary objective of a Phase I combination study is often to identify a single

MTD for further testing in the Phase II setting.

Numerous existing designs try to determine which combination d∗ among

those available in D has a probability of toxicity closest to the target toxicity

rate α so that d∗ = arg infd∈D |Pd − α|. For Scenario T, the MTD, dose (4, 1),

is associated with a toxicity probability 0.21, just above the threshold, α = 0.2,

fixed by the investigators. However, in the context of dual-agent dose-finding,

the notion of a single MTD is less clear cut. Indeed, aiming for the MTD is

justified by an assumption of an ordering on the probabilities of efficacy, corre-

sponding to an analogous ordering of the doses. For a single agent (full ordering),

choosing the MTD amounts to maximizing the efficacy probability (probability

of observing a sufficient therapeutic effect) under the constraint of being close

to some chosen threshold of toxicity. This is no longer true in the dual-agent

setting. Indeed, there exist situations in which a particular combination, less

toxic than the MTD, may be more efficacious overall (Harrington et al., 2012).

In Scenario T, let the efficacy probabilities of doses (4, 1) and (2, 3) be equal

to 0.10 and 0.90, respectively. Such a situation is coherent with the partial

ordering on D, as dose (2, 3) belongs to C(4,1). In this case, the MTD (4, 1) is

not particularly advantageous. As a result, a dual-agent trial may aim to lo-

cate more than a single MTD, forming an MTC (a cut or a contour) across the
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dose surface comprised of multiple combinations with similar acceptable toxicity

profiles. The objective of the trial then becomes one of determining an MTD

curve c∗ consisting of a set of combinations with toxicity probabilities close to

α. In Scenario T, the MTD contour is represented by the line splitting the set

of doses in two parts: the dose combinations associated to toxicity probabilities

below the target α and those associated to toxicity probabilities above α. The

minimal set related to this specific contour contains the closest doses from the

line according to the partial ordering (see doses with bold toxicity probabilities

in Table 1). This set is defined more formally in Section 4.

However, a design aiming for a single MTD will be of interest in some sit-

uations. This is the case if we have too small a number of patients available

in order to determine a complete contour of the MTD (20 or 30 patients in a

grid of 5 by 4), or if the investigators have some strong prior assumptions or re-

quirements on the set of potential outcomes. We present an example of such an

assumption. In the context of CNL and Vinblastine combinations, the investi-

gators may want to reach a dose combination with a level of Vinblastine at least

equal to 1.5mg/m2, because this agent has previously shown positive results in

term of efficacy at this level. The general structure of the semiparametric class

of dose finding methods is described by a hierarchical model where the first level

deals with the goal of the study - the doses themselves - and the second level

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



is devoted to the dose-response curve. Here, the goal of the study is to find a

single MTD. The first level of our model is then a distribution Π on the MTD

itself. This distribution is updated in the Bayesian setting after each patient

(see Section 3 for further details). In Figure 1, the posterior distribution on the
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Figure 1: A simulated trial under scenario T using poSPM and the final posterior

Π60, which means the probabilties of each dose combination for being the MTD

conditionnaly to observation on 60 patients. Red cross: Dose Limiting Toxicity;

black circle: no toxicity response.

MTD at the end of the trial is summarized by a histogram. Throughout the

trial, the next dose combination is selected as the one maximizing the posterior

Π according to the observations. The prior distribution on the range of doses D

is a matrix of positive weights summing up to 1. It can easily be tuned to allow

a progressive exploration in the range of doses or to correspond to expert knowl-
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edge: here, if possible, the investigators prefer to increase the level of vinblastine

until 1.5 mg/m2 (see Section E.2 for the exact prior distribution). This is what

is done in the trial. At the beginning, the method recommends increasing the

dose levels of vinblastine while keeping the CNL level at 54 mg/m2. After 15

patients, the method stays at dose (2, 3). This dose is the one recommended

at the end of the trial: 9 patients among 48 treated at this dose experienced a

DLT (rate= 18.75%) and the posterior distribution puts its mass at 33.5% on

it. According to the posterior distribution, the two other most probable dose

combinations are (1, 4) and (3, 3) which, respectively, account for 13.4% and

13.7% of the posterior mass. Note that semiparametric methods can be easily

adjusted either to meet a specific criteria or to work under general conditions

with uninformative priors. For readers interested in having a rapid overview,

the analysis based on semiparametric methods for scenario T continues at the

end of the article (Section 7).

The illustrated trial of Figure 1 shows classical behaviour for a model-based

design, as we tend to converge to a single MTD (Bayesian model in Section

3). However, a more useful goal may be to explore the MTD curve in order to

determine multiple safe dose combinations associated with potentially different

probabilities of efficacy (Section 4).
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3. Semiparametric methods and a single MTD target

We briefly recall the semiparametric dose finding method introduced in (Clertant

and O’Quigley, 2017, SPM) and then indicate how we can exploit these same

ideas to tackle the problem of partial ordering. We refer to this as poSPM.

The way in which we achieve an extension of the simpler to the more complex

situation is to build a model around the non-ordered dose combinations. This

extension corresponds to a non-informative prior which is structured in such a

way that no distinction can be made between two doses d1 and d2 on the basis of

observations on a dose d3 that is not ordered with respect to d1 and d2 : d3 ∈ Cd1

and d3 ∈ Cd2 .

Consider the set S ⊂ [0, 1]D, having elements P = (Pd)d∈D. Then, Pd

provides the probability of toxicity for scenario P at dose d. The set S is

partitioned according to the different values (dose levels) that θ can assume.

S =
⋃
θ∈D

Sθ, where Sθ ⊂ {P ∈ S | ∀d ∈ D, |Pθ − α| ≤ |Pd − α|} .

S breaks down into I × J classes indexed by θ, where every scenario from the

same class has the same MTD. Any P belonging to Sθ associates the MTD at

dose θ. For more discussion on this topic, we refer the reader to (Clertant and

O’Quigley, 2017, section 4). The definition of Sθ used in practice is expressed

via Assumption 3 below. For a fixed P ∈ S, the likelihood that we can associate
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with the history (Xn
1 , Y

n
1 ) = (Xk, Yk)1≤k≤n is:

L(P,Xn
1 , Y

n
1 ) =

n∏
k=1

(PXk)
Yk (1− PXk)

1−Yk =
∏
d∈D

P
n1
d

d (1− Pd)n
0
d , (3.1)

where n1
d represents the number of DLTs occurring at dose d, and nd = n1

d + n0
d

the number of patients that are treated at dose d. Let Π be the prior for the

parameter θ. Then Π is a probability measure on the discrete space D, i.e. a

matrix of positive numbers with I rows and J columns summing up to 1. Each

class Sθ is endowed with a prior noted Λθ = Λ(.|θ). The family of distributions

(Λθ)θ∈D and Π defines a prior on the whole set of scenarios. This prior can

be updated sequentially as observations are made. The posterior Πn on the

parameter of the MTD, θ, is obtained by integration over the support Sθ of the

scenarios associated with this dose.

Πn(θ) = Π(θ|Xn
1 , Y

n
1 ) ∝

∫
Sθ

L(P,Xn
1 , Y

n
1 )Λθ(dP ) Π(θ). (3.2)

The family of distributions (Λθ)θ∈D plays a predictive role and provides the basis

that underlies the practical implementation of the adaptive process. We call this

the prior model. In the sequential study, the next patient or cohort of patients is

allocated to the dose having the highest probability of being the MTD according

to the posterior Πn. The MTD and the probability of toxicity at any dose d, Pd,
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are estimated sequentially by:

θ̂n = argmax
θ∈D

Πn(θ) and P̂
(n)
d = E(Λ⊗Π)n [Pd] =

∑
θ∈D

[∫
Pd Λθ,n(dPd)

]
Πn(θ).

(3.3)

The prior model is a family of I × J distributions on the set of scenarios. More-

over, each scenario can be viewed as a matrix with I rows and J columns hav-

ing elements Pd, the toxicity probability at dose d. The following assumption

expresses a simple structure for the prior Λθ. For this purpose the Bernoulli

parameter space is broken down into three sets. The high and low toxicity

probabilities belong to A = [α + ε, 1] and B = [0, α − ε], respectively. The

probabilities of toxicity in the neighborhood of the target α lie in the centered

interval I = [α− ε, α + ε]. This interval results from our choice of ε and can be

made arbitrarily small. Indeed it can be reduced to a single point, α by choosing

ε equal to 0. From the point of view of the MTD parameter θ, the marginal Λd
θ

distributes its probability mass according to the relative position of the doses

d. The prior Λθ weights only those scenarios in which the MTD is θ. Given θ,

Λd
θ is the prior of toxicity probability at dose d itself. The position of d relative

to θ, summarized in the following assumption, indicates that: (i) if d = θ, as θ

is the parameter indicating the MTD, the marginal weights are on the centered

interval I, (ii) if d > θ (i.e. d ∈ Aθ), then Λd
θ puts its mass on the highest prob-

ability interval A, (iii) if d < θ (i.e d ∈ Bθ), then Λd
θ puts its mass on the lowest
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probability interval B, (iv) if the dose d is non-ordered with θ (i.e. d ∈ Cθ), the

marginal Λd
θ is uninformative and the weights are on the whole interval [0, 1].

Assumption 3. Λθ is a product of unidimensionnal distribution, i.e.

Λθ(dP ) =
∏
d∈D

Λd
θ(dPd),

and the support Sdθ of the distribution Λd
θ(dPd) satisfies: d ∈ Aθ ⇒ Sdθ = A;

d ∈ Bθ ⇒ Sdθ = B; d ∈ Cθ ⇒ Sdθ = [0, 1]; d = θ ⇒ Sdθ = I.

The probabilities of toxicity in each set Aθ, Bθ and Cθ are conditionally inde-

pendent once we have fixed Sθ. Marginally, of course, they are not independent

so that any independency assumption fails to be valid when considering the

whole model {(Λθ)θ∈D,Π}. This is intuitively clear when a stochastic order is

chosen for the marginal (Λd
θ)θ∈D, at a certain dose r : ∀r , d < d′ ⇒ Λr

d′,n � Λr
d′,n.

The coherence principle introduced by Cheung (2005) can be extended to the

case of partial ordering.

Definition 1 (Partial ordering coherence). A method M is coherent if the se-

quence of selected doses satisfies: (Xn, Yn) = (d, 0) ⇒ Xn+1 ∈ D\Bd and (Xn, Yn) =

(d, 1) ⇒ Xn+1 ∈ D \ Ad.

This definition matches the one of Cheung (2005) in the case of a single-

agent trial, and can be seen to be a logical extension of this criteria in the case
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of partial ordering. Note that the stochastic ordering implies that the poSPM

is coherent.

Proposition 1. Under Assumptions 3 and 6 (appendix), the poSPM is coherent.

Working with a simple product of the marginals allows us to choose con-

jugate priors for the likelihood, in particular Beta distributions of which the

uniform is a special case.

4. Identifying the Maximum Tolerated Contour (MTC)

4.1 Semiparametric Model

In the setting of partially ordered doses, the semiparametric class of methods on

the contour (poSPMc) takes its inspiration from the PIPE model (Mander and

Sweeting, 2015) and a method for single agents (Clertant and O’Quigley, 2018).

The set of dose combinations D can be naturally partitioned into two subsets

defined by the toxicity target α. The partition includes one set of dose combi-

nations that are associated with toxicity probabilities below α : D− = {d ∈ D :

Pd < α}, and a set of dose combinations associated with toxicity probabilities

above α : D+ = {d ∈ D : Pd > α}. We have: D = D− ∪ D+. The maximum

tolerated contour, also called the MTC curve, is a line separating the set D−

and D+ (see Figure 2). The goal of poSPMc is to allocate patients at acceptable
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4.1 Semiparametric Model

doses around the contour in order to better study dose combinations close to the

toxicity threshold. If these dose combinations are not ordered, then they do not

share information in terms of the probability of efficacy. In general a contour c

is a line which separates the set of dose combinations into two ordered sets of

doses: one set of dose combinations above the contour, Ac, and another set of

dose combination below the contour, Bc. For any given contour c, we note that:

d ∈ Ac and d′ ∈ Bc ⇒ d > d′ or d and d′ non-ordered.

In Figure 2, we can describe any contour as a polygonal chain tracing out a

path from (0.5, J + 0.5) to (I + 0.5, 0.5) with steps of size 1 along the abscissa

and of size −1 on the ordinate axis. Only rightward and downward steps are

permitted. As a result, for the range D containing I × J dose combinations,

there exist
(
I+J
I

)
possible contours c. Let C be the set of these contours and c?

the maximum tolerated contour (MTC) defined by the true, unknown, toxicity

probabilities at each dose combination. Estimating the MTC may appear to be

a considerable challenge as the number of contours increases exponentially with

the number of doses: 70 possible contours for a 4 × 4 grid and 962 for a 6 × 6

grid. Fortunately, each contour c is associated with a minimal set Mc of dose

combinations on which we need to have observations in order, with probability

one, to confirm or disprove that this contour can be identified as the MTC. The

dose combinations belonging to Mc are the closest doses of the contour in our

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4.1 Semiparametric Model

partially ordered set of doses D (see Figure 2). In the following definition, the

minimum and maximum operators are applied to partially ordered sets.

Definition 2. The minimal set of dose combinations, Mc, associated with the

contour c is: Mc = minAc ∪maxBc.

For a grid with I doses for agent A1 and J doses for agent A2, the number of

dose combinations belonging to a minimal set varies between 1 and 2×min(I, J),

except in the case I = J where the maximum is equal to 2I − 1. The average

number of combinations inside a minimal set is equal to 2IJ/(I+J). If a minimal

set contains only one dose combination, all of the toxicity probabilities (Pd)d∈D

are on the same side of the target, either below or above. If a minimal set

contains only two doses, it corresponds to a vertical or a horizontal contour.

Let Mc? be the minimal set associated with the MTC. Dose combinations

inMc? are not necessarly the ones closest to α in term of toxicity probabilities.

However,Mc? satisfies the following properties which justify that a model for a

dose combination study focuses on the contour or the associated minimal set.

Proposition 2. 1) For all dose combinations d /∈ Mc? , there exists a dose

d′ ∈Mc? ordered with d such that: |Pd − α| > |Pd′ − α|.

2) The MTD belongs to the minimal set associated with the MTC: d? ∈Mc? .

The proof is immediate by using Definition 2. The proposed model takes
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4.1 Semiparametric Model
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Figure 2: Two contours called (a) and (b): the green squares represent the

dose combinations belonging to the minimal set. Contour (a) corresponds to the

one of Scenario T (Table 1)

place in the setting of SPM; γ is the parameter of interest, the MTC itself. As in

Section 3, S is a broad set of scenarios and P = (Pd)d∈D is an element of S with

Pd the toxicity probability of the scenario P at dose d. The set S is partitioned

according to γ : S =
⋃
γ∈C Sγ, where Sγ = {P ∈ [0, 1]D : d ∈ Aγ ⇒ Pd > α and

d ∈ Bγ ⇒ Pd < α}. S is partitioned into
(
I+J
I

)
classes indexed by γ, where every

scenario of the same class has the same MTC.

Let Π be the prior for the parameter γ, which means that Π is a probability

measure on the discrete space C. Each class Sγ is endowed with a prior noted

Λγ = Λ(.|γ), and the family (Λγ)γ∈C is called the prior model. This family

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4.1 Semiparametric Model
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Figure 3: Model of two competitive contours: The blue and green models

corresponds to contours (a) and (b) (Figure 2). Figures (a) and (b) show the

modes of Λd
(a) and Λd

(b) for each dose d in comparison to the target α = 0.20.

Figures (c) and (d) represent sampling of marginal scenarios under these models

when agent A1 (respectively A2) is fixed at dose level 3.
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4.1 Semiparametric Model

can be easily shaped by the following assumption and the use of truncated beta

distributions for each marginal.

Assumption 4. Λγ is a product of one-dimensional distributions, i.e.

Λγ =
∏
d∈D

Λd
γ,

where Λd
γ is a prior for Pd, the toxicity probability at dose d. The support Sdγ of

the distribution Λd
γ satisfies: d ∈ Aγ ⇒ Sdγ = [α, 1]; d ∈ Bγ ⇒ Sdγ = [0, α].

In Figure 3, the distribution Λγ is illustrated when γ represents the two contours

in Figure 2. The parameters of these two distributions are the ones used in the

numerical experiments. Note that, in Figure 3 (d) marginal prior model Λ(a) is

steepest than Λ(b); the dose (2,3) and (3,3) are in the minimal set for contour

(a) but not for contour (b).

The family of distributions (Λγ)γ∈C and Π define a prior on the whole set

of scenarios S. The posterior Πn on the parameter of the MTC given the data

(Xn
1 , Y

n
1 ) is:

Πn(γ) ∝
∫

Sγ

L(P,Xn
1 , Y

n
1 )Λγ(dP ) Π(γ). (4.4)

The current estimate of the contour is.

γ̂n = argmax
γ∈D

Πn(γ). (4.5)
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4.1 Semiparametric Model

The algorithm for allocating the patient (or the next cohort of patients) during

the trial is based on the following two steps: (i) the prior Πn is updated and the

most probable contour γ̂n is selected; (ii) the dose where the next patient will be

treated is selected by an allocation strategy in the most probable minimal set

according to our posterior: Xn+1 ∈ Mc? . Such an allocation strategy spreading

the observations inside the estimated minimal set is developped in Section 4.2.

The PIPE method (Mander and Sweeting, 2015) might be seen as the first

example using a semiparametric method on the contour. However, it has some

strong limitations in term of calibration as it does not clearly specify priors on

the MTC and the space family (Sγ)γ∈C . For this method, the toxicity probability

at each dose d is modelled by a weak beta prior with parameter ad and bd. For

each contour, a posterior probability is obtained by multiplying the posterior

of the interval [0, α] for every dose below the contour and the posterior of the

interval [α, 1] for those doses above the contour. Let BI(a, b) be the truncated

beta distribution with parameter a and b on the interval I and B(x, a, b) be the

incomplete beta function. In the setting of SPM, the PIPE model is defined by:
Λc ∼

∏
d∈Bc

B[0,α](ad, bd)×
∏
d∈Ac

B[α,1](ad, bd)

Π(c) ∝
∏
d∈Bc

B(α; ad, bd)×
∏
d∈Ac

(1−B(α; ad, bd)).

Note that, for the PIPE method, the prior model (Λc)c∈C and the prior on

the contour Π are defined by the I × J prior of the toxicity probabilities at
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4.2 Allocation strategy

each dose combination. The indirect calibration of the prior model and the

prior on the set of contours can undermine the performance of this method.

In particular, the prior Π defined through the PIPE model is not chosen for

allowing a progressive exploration of the range of doses but is dependent on the

target toxicity probability α.

4.2 Allocation strategy

In a minimal set, many of the doses are not ordered and the question of allocation

within this set needs to be addressed. This is not straightforward and we do

not exhaust all possibilities here. Several allocation strategies can be made

available and any particular choice will result in some particular trial behaviour.

The allocation strategy introduced hereafter is a compromise between one that

spreads experimentation ‘equally’ against one that tests those doses that will,

in expectation, bring more information into the study. We also need restrict

experimentation to an area of the minimal set considered to be safe. After n

observations, the next dose Xn+1 is:

Xn+1 = min
d∈Mγ̂n\Tn

1

kd


 ∑
j∈Bd∪{d}

n0
j

×H(α|0) +

 ∑
j∈Ad∪{d}

n1
j

×H(α|1)

 ,

(4.6)

where H(p|q) is the entropy of p relative to q : H(p|q) = −q × log(p) − (1 −

q) log(1 − p), with the convention log(0) = −∞ and 0 × (−∞) = 0, and
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4.2 Allocation strategy

kd = #Ad+#Bd+1. In Equation 4.6, the relative entropy, which corresponds to

a quantity of information, is counter-balanced by kd, the number of dose com-

binations ordered with d, in other words, the number of dose combinations on

which we aim to learn something subsequent to an observation on d.

The next dose Xn+1 is selected among the safe dose combinations in the

estimated minimal set: Mγ̂n \ Tn. the set of dose combinations on which we

already have some evidence of overly toxicity is denoted Tn. It is estimated by

using local Bayesian tests at each of the doses and the assumption of partial

ordering. A dose d0 is excluded from the study if:

d0 ∈ Tn = {d ∈ D : ∃ d′ ∈ Hn, d ≥ d′} ,

with Hn = {d ∈ D : PU [Pd > θT |(nd, n1
d)] > δT} , and U is the uniform prior on

the parameter space [0, 1].

This allocation strategy spreads the observations along the estimated con-

tour and tests slightly more often the doses in the middle of the grid. Since a

DLT corresponds to a greater quantity of information, those doses with a smaller

number of toxicities are tried more often (for α = 0.25 : H(α|1)/H(α|0) =

log(α)/ log(1 − α) ≈ 4.82). A longer description of this allocation strategy can

be found in Section C
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5. Large sample theory

Two distinct and complementary asymptotic behaviors are described here. The

first kind of large sample behavior is that of ε-sensitivity, introduced by Cheung

(2011). This corresponds to the almost sure convergence to a dose combination

for which the true probability of toxicity lies inside the interval [α− ε;α + ε].

Definition 3. Let ε ≥ 0 and I = [α−ε;α+ε]. We consider the set E(I, P ) of the

collection of dose combinations associated with a toxicity probability belonging

to I, i.e. E(I, P ) = {d ∈ D : Pd ∈ I}. A method is ε-sensitive if for all scenarios

P = (Pd)d∈D such that E(I, P ) 6= ∅, we have:

P [∃N , ∀n > N : Xn ∈ E(I, P )] = 1 .

The ε-sensitivity corresponds to strong consistency for a single dose associ-

ated with a toxicity rate close to the threshold α. This dose is not necessarily

the MTD if there exist two or more doses in the interval I. The almost sure

convergence to the MTD is obtained if the MTD is a unique dose in E(I, P ).

Such an assumption on the scenario is necessary in the light of the impossibility

theorem of Azriel (2011). The particularity of our semiparametric method for a

single MTD (poSPM) is that the interval I is a parameter which can be directly

calibrated. This requires us to choose a small interval I which could potentially

fail to contain any of the toxicity probabilities associated with the given doses.
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For this reason, the complementary behavior of the ε-sensitivity introduced by

Clertant and O’Quigley (2017) is extended to the case of partial ordering. We

define as balanced behavior the almost sure convergence to a set of doses. More

precisely, a sequence (Xn)n∈N converges to a set B, denoted by Xn
S−→ B, when:

max
x∈B

(
lim inf
n→+∞

δ(Xn, x)

)
= 0 ,

and where δ(., .) is Euclidean distance. In the case of a complete ordering,

the sequence (Xn)n∈N converges to the set consisting of the two consecutive

doses on either side of the target α. This set of two doses corresponds to the

definition of the minimal set for the maximum tolerated contour (see definition

2): Mc? = maxD− ∪minD+.

Definition 4. Let D be a range of doses. A method is balanced, if for all

scenarios, we have:

Xn
S−→Mc? , a.s.

The doses recommended infinitely often by the current estimator of a bal-

anced method are all the doses in Mc? and only these doses. The following

theorem completes in a natural way the impossibility theorem formulated by

Azriel (2011).

Theorem 1. For any allocation method, the three following statements are

equivalent:
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(i) For all scenarios, there exists a statistic F on the sample (Xn
1 , Y

n
1 ) such

that F (Xn
1 , Y

n
1 )−→d? , a.s.

(ii) For all scenarios, there exists a statistic F on the sample (Xn
1 , Y

n
1 ) such

that F (Xn
1 , Y

n
1 )−→c? , a.s.

(iii) For all scenarios, there exists a set of dose combinations D′ with Mc? ⊂ D′

such that the sequence of recommended doses satisfies:

Xn
S−→ D′ , a.s.

In particular, this basic theorem expresses a necessary condition for any

method: the minimal set Mc? is the smallest set of dose combinations on which

we need to have observations in order to find almost surely the MTD and the

MTC under general circumstances. Some assumptions are needed on our models

in order to obtain the desired asymptotic behavior. The regularity assumptions

(7, Appendix) on the prior model of the poSPM and the poSPMc are readily

met. An other assumption concerns the allocation strategy.

Assumption 5. (a) The next dose combination Xn+1 is selected from Mγ̂n.

(b) All the doses in the limit supremum of (Mγ̂n)n∈N are selected infinitely often:

∀d ∈
⋂
n≥1

⋃
k≥n

Mγ̂k ,

{
n∑
i=1

1{Xn=d} −→
n→∞

∞

}
, a.s.
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Assumption 5 (b) means that if a contour is selected infinitely often by γ̂n,

all the doses in the minimal set associated to this contour would be explored

infinitely often (a.s). This is a necessary conditions to obtain a balanced behavior

(simple consequence of Theorem 1’s proof). This constructive assumption is

satisfied by the allocation strategy defined in Section 4.2.

Theorem 2. (a) Suppose that P T is the true scenario. Under assumptions 3

and 7, we have: if ε > 0 and E(I, P T ) contains no couple of ordered doses then

the poSPM is ε-sensitive; when ε = 0 then poSPM is balanced.

(b) Under assumptions 4, 5 and 7, poSPMc is balanced.

When ε = 0, the poSPM is balanced which means that the method explores

all the dose combinations included in Mc? when the sample size becomes large

enough. However, this only describes asymptotic behavior and, at finite sample

sizes, the simulations will often converge to a single dose identified as the MTD

(see Figure 1). Conversely, the balanced behavior of poSPMc at a finite sample

size can be observed in Figure 4.

6. Numerical experiments: MTC setting

In the MTC setting, we compared the poSPM to the PIPE design in terms of

each method’s ability to identify and treat patients along a target MTC. Each

trial targets a toxicity level of α = 0.20, with a total sample size of 50 and
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1 patient per cohort. The calibration of the two methods is fully described

in appendix E.1 and E.3. Table 2 shows the operating characteristics of the 2

methods under the 4 scenarios shown in Table 5. As in the MTD setting, for each

scenario, we report the percentage of patient allocation (experimentation %) and

percentage of MTD selection (recommendation %) for doses contained within

five different ranges of true toxicity probabilities. Since α = 0.20, the target

interval containing the true MTD is [0.15, 0.25]. In Scenarios 1 and 4, the poSPM

and PIPE method have very similar operating characteristics with regards to

recommending and experimenting at combinations in the target interval. The

difference in the methods in Scenarios 1 and 4 can be observed in the intervals

outside the target range. In both scenarios, when outside the target interval,

the poSPM allocates to combinations below the target range, whereas the PIPE

method tends to be more aggressive. This has an impact on the accuracy index

(see Equation D.10) for experimentation in Scenario 4, with poSPM yielding a

larger value: 0.67 vs. 0.55. For both of these scenarios, PIPE induces a higher

overall percentage of DLT’s, on average.

In Scenario 2, poSPM is the best performing method by all metrics. It

demonstrates better performance from the viewpoints of experimentation (45.0%

vs. 21.2%) and recommendation (54.3% vs. 38.4%) percentages in the target

interval. PIPE again tends to be more agressive, allocating 61% of patients
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Table 2: Experimentation and recommendation percentages for the poSPM and

the PIPE design. Column containing the MTD in bold. Scenarios 1 to 4 cor-

respond to scenarios A, C, E, G in Mander and Sweeting (2015). they can be

found in Appendix A.

Experimentation %

Scenario Method [0, 0.10) [0.10, 0.15) [0.15,0.25] (0.25, 0.30] (0.30, 1] Acc %DLTs

1 poSPM 9.0 25.8 56.9 7.7 0.4 0.35 16.9

PIPE 2.8 7.5 59.4 26.1 4.2 0.39 22.0

2 poSPM 0.0 26.4 45.0 9.4 19.1 0.88 23.5

PIPE 0.0 6.2 21.2 11.5 61.0 0.63 36.0

3 poSPM 12.2 27.0 36.1 22.8 1.9 0.38 18.0

PIPE 0.0 6.6 21.8 11.5 60.2 0.33 35.9

4 poSPM 31.2 19.4 32.4 13.7 3.2 0.67 14.2

PIPE 12.3 14.0 34.0 26.0 13.4 0.55 22.1

Recommendation %

[0, 0.10) [0.10, 0.15) [0.15,0.25] (0.25, 0.30] (0.30, 1] Acc NMTD

1 poSPM 2.0 19.9 71.6 6.3 0.0 0.63 3.73

PIPE 0.3 5.2 70.3 23.7 0.4 0.64 2.23

2 poSPM 0.0 17.8 54.3 12.8 15.0 0.92 2.60

PIPE 0.0 8.8 38.4 17.4 35.3 0.84 1.44

3 poSPM 3.8 29.1 36.6 29.5 0.9 0.44 3.18

PIPE 0.0 9.8 37.7 17.5 35.0 0.28 1.44

4 poSPM 20.1 22.6 39.1 16.8 1.2 0.77 4.2

PIPE 17.4 23.5 38.0 19.1 2.0 0.77 2.77
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to combinations with toxicity probabilities in the interval (0.30, 1.00]. The im-

provement of poSPM over the PIPE is also reflected in the accuracy indices in

Scenario 2. In Scenario 3, the methods have similar operating characteristics in

terms of recommendation percentage in the target interval (36.6% vs. 37.7%),

although the poSPM maintains an advantage when considering experimenta-

tion and accuracy. Similarly to Scenario 2, PIPE allocates 60.2% of patients to

combinations with toxicity probabilities in the interval (0.30, 1.00]. The more

aggressive behavior of PIPE is further indicated in the overall percentage of

DLT’s observed, as this value is both higher than the corresponding value for

poSPM, as well as larger than the target α = 0.20 in all scenarios. Considering

the average performance over the four scenarios the poSPMc is the best method

by all the metrics. In particular the poSPMc recommends a larger number of

doses (3.43 doses vs. 1.97) yet maintaining greater accuracy than the PIPE

method (0.69 of accuracy recommendation vs. 0.63).

7. CNL and vinblastine combination, a study of Scenario T

Three versions of our semiparametric class of methods are compared on Scenario

T introduced in Table 1 in the context of CNL and vinblastine combination:

- poSPMc is the semiparametric method targeting the MTD contour (or

the associated minimal set); the calibration is the same as in Section 6,
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- poSPM1 is the semiparametric method targeting a single MTD, without

including expert knowledge (uninformative prior); the calibration is the

same as in Appendix D,

- poSPM2 is the semiparametric method targeting a single MTD which

is calibrated in line with expert knowledge as described in Section 2 (‘if

possible, the investigators prefer to increase the level of vinblastine until

1.5 mg/m2’), the calibration is the same as in Appendix D except that the

mass of the prior Π on doses (i, j) ∈ {2, . . . , 5} × {1, 2} is divided by two.

Table 3: Experimentation and recommendation percentages for poSPMc,

poSPM1 and poSPM2 on Scenario T. Column containing the MTD in bold.

Experimentation %

Method [0, 0.10) [0.10, 0.15) [0.15,0.25] (0.25, 0.30] (0.30, 1] Acc %DLTs

poSPMc 27.5 8.8 47.3 8.9 7.4 0.52 18.1

poSPM1 14.7 19.4 55.7 8.7 18.7 0.48 22.2

poSPM2 10.7 20.1 42.9 14.1 11.9 0.48 21.6

Recommendation %

[0, 0.10) [0.10, 0.15) [0.15,0.25] (0.25, 0.30] (0.30, 1] Acc NMTD

poSPMc 13.9 8.4 60.7 11.5 5.4 0.63 4.31

poSPM1 5.4 2.2 73.0 9.1 10.1 0.67 1

poSPM2 1.7 18.2 62.9 11.5 5.6 0.65 1

In Table 3, the three methods are compared on Scenario T. The target α is
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20% and 60 patients are to be enrolled in the study. 10 000 trials are simulated

for each method. Cheung’s accuracy metric is defined in Section D. The metric

NMTD is the average number of dose combinations recommended at the end

of the trial: 4.31 for poSPMc (less than the number of doses in the minimal

set of Scenario T), 1 for the other methods. Regarding the final recommen-

dation percentages in interval [0.15, 0.25], poSPM1 obtains better performance

than poSPM2 and poSPMc. For poSPM2, this is due to the steep toxicity pro-

file around the MTDs in the middle of the grid rather than around the dose

(1,4), which is then more difficult to locate. The difference between poSPMc

and poSPM1 in terms of allocation and recommendation percentage in interval

[0.15, 0.25] is due both to the exploration behavior of poSPMc and the multiple

recommendation at the end of the trial (It is more difficult to recommend 4 dose

combinations in interval [0.15, 0.25] than 1). However, the percentage of dose

combinations recommended by poSPMc which are inside the interval [0.15, 0.25]

is still satisfactory (60.7%).

In order to show the benefits of targeting the MTD curve (poSPMc), four hy-

potheses concerning the efficacy profile of CNL and vinblastine are considered.

The minimal set of Scenario T contains dose combinations (1,4), (2,3), (3,2),

(3,3) and (4,1). Note that the true MTD always belongs to the minimal set; for

Scenario T, this is (4, 1). The hypotheses lean on the set of doses with sufficient
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efficacy probabilities in the minimal set. In the four hypotheses, the only dose

combinations which are sufficiently efficacious and not associated with overly

toxicity probabilities belong to set H1 = {(2, 3), (3, 3)}, H2 = {(3, 2), (3, 3)},

H3 = {(4, 1)} and H4 = {(1, 4)}, respectively. These four hypotheses are coher-

Table 4: Experimentation and percentage of trials recommending at least a dose

in setsH1 = {(2, 3), (3, 3)}, H2 = {(3, 2), (3, 3)}, H3 = {(4, 1)} andH4 = {(1, 4)}

for poSPMc, poSPM1 and poSPM2. Each of this set may be the only one

containing dose combitions sufficiently efficacious and not associated with overly

toxicity probabilities.

Experimentation %

Scenario T Method H1 H2 H3 H4

poSPMc 18.8 16.7 10.6 8.0

poSPM1 32.6 37.2 4.3 2.9

poSPM2 12.6 24.5 0.1 17.8

% of trials Recommendation

Scenario T Method H1 H2 H3 H4

poSPMc 65.2 74.3 64.8 62.8

poSPM1 44.9 43.6 6.5 3.75

poSPM2 21.3 41.3 0.2 20.2

ent with the partial order applied to the efficacy probabilities. They represent 4

possible profiles of efficacy. Note that a dose combination of CNL and Vinblas-

tine is considered to have a sufficient efficacy profile if its efficacy rate exceeds
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that associated with competitive therapies. The aim of the Phase I design is

to then recommend such a dose combination for further exploration in Phase

II. In Table 4, the percentage of trials (among the 10 000) which recommend a

dose in the set H1, H2, H3 and H4 are detailed for each of the three methods.

The advantage of the method targeting the MTD curve over methods aiming

for a single MTD is a significant one. For poSPMc, the percentage of trials

in which at least one dose with a sufficient efficacy profile is recommended is

between 60 and 75% for all the hypotheses. The same metric goes from 2 to

45% for poSPM1 and poSPM2. This does not mean that the two methods are

not accurate, but they are not equipped to deal with this situation.

Balanced behavior of poSPMc is outlined via a trial presented in Figure 4.

At the beginning of the trial, the method explores each of the dose combinations

of the progressive inverted diagonals (e.g. (1,2) and (2,1)) until a first DLT is

observed. Following the twentieth patient, almost all the recommended dose

combinations are in the minimal set of Scenario T.

Note that poSPMc updates a distribution Π on the possible maximum toler-

ated contour. The method does not immediately lead to a posterior distribution

on the MTD. However, as the model (Λ,Π) is a distribution on the range of

scenarios, one can still calculate a distribution Π̃ on the MTD parameter by

integrating out the toxicity probabilities conditional upon each possible value
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Figure 4: A simulated Trial under scenario T using poSPMc and the final pos-

terior Π̃60 on the dose combinations. Red cross: Dose Limiting Toxicity; black

circle: no toxicity response.

that could be assumed by the MTD. Instead of doing this complex calculation,

we can use the following formula which holds for all n :

∀c ∈ C , ∀d ∈ D , Π̃n ∝
1

Vd

∑
c∈Vd

Πn(c) , (7.7)

where Vd is a neighborhood in terms of contours for dose combination d : Vd =

{c ∈ C : d ∈ Mc}, and Vd its cardinality. The following proposition shows that

Π̃n is the desired result by considering a poSPM model (Λ̃, Π̃) for which the

updating process is conjugate with the one of the poSPMc model.

Proposition 3. For all n ∈ N, the probability Π̃n defined by Equation 7.7 is the
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posterior on the set of dose combinations from the poSPM model (Λ̃, Π̃) where:

Π̃(d) ∝ 1

Vd

∑
c∈Vd

Π(c) and Λ̃d =
∑
c∈Vd

rdcΛc with rdc =
Π(c)∑

c∈Vd
Π(c)

. (7.8)

Thus, there always exists a model (Λ̃, Π̃) of poSPM such that, for all n ∈

N, the distributions Π̃n can be seen to correspond to the posterior of Π̃. This

conjugacy property associates, with every poSPMc model on the MTD curve,

a poSPM model for a single MTD. However, this association is not trivial and

appealing to an allocation strategy for poSPMc allows the design to explore the

full MTD curve. At the end of a trial with poSPMc, the final recommendation

can rely on the posterior Π̃n. In Figure 4, more than 60% of the posterior mass

of Π̃ is on the minimal set of Scenario T.
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Appendix

A. Scenarios for the MTC setting

Table 5: Toxicity scenarios 1-4 for the two-drug combinations. Dose combina-

tions in the minimal set are in bold. Doses associated to a toxicity probability

equal to 0.20 belong to D− and D+ (see Section 4); they are always in the min-

imal set.

Dose Drug A2

Level 1 2 3 4 1 2 3 4

Scenario 1 Scenario 2

4 22 26 30 34 55 65 75 85

3 16 20 24 28 40 50 60 70

2 10 14 18 22 25 35 45 55

1 4 8 12 16 10 20 30 40

Drug

A1 Scenario 3 Scenario 4

4 11 21 31 41 10 30 50 80

3 10 20 30 31 6 15 30 45

2 9 19 29 30 4 10 15 20

1 8 18 28 29 1 2 3 4
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B. Notations

Table 6: Important notations

Notation Description

d or X a dose combination

Y response in term of toxicity

D set of dose combinations

I and J number of doses for agent 1 and 2

Ad, Bd and Cd set of doses above, below and non-ordered with d

P a scenario, i.e a I × J matrix of bernoulli parameters

c and Mc a contour and a minimal set associated to this contour

Ac and Bc set of dose combinations above and below c

C set of possible contour in the range of dose combinations

d? true Maximum Tolerated Dose (MTD)

c? true Maximum Tolerated Contour (MTC)

Π distribution on the MTD or the MTC parameter

θ MTD parameter

γ MTC parameter

Λ = (Λθ)θ∈D distributions on the scenarios conditioned by the MTD parameter

Λ = (Λγ)γ∈C distributions on the scenarios conditioned by the MTC parameter

S, Sθ, Sγ support of Λ, Λθ and Λγ

Λdθ (or Λdγ) marginal at dose combination d
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C. Allocation strategy

In a minimal set, many of the doses are not ordered and the question of alloca-

tion within this set needs to be addressed. This is not straightforward and we

do not exhaust all possibilities here. Several allocation strategies can be made

available and any particular choice will result in some particular trial behaviour.

The allocation strategy introduced hereafter is a compromise between one that

spreads experimentation ‘equally’ against one that tests those doses that will,

in expectation, bring more information into the study. We also need for ex-

perimentation to be restricted to an area of the minimal set considered to be

safe.

While allocating patients within the estimated minimal set, we want to do

our best to avoid the selection of dose combinations which are already associated

with having an unacceptably high toxicity probability. We can address this issue

by making use of a Bayesian test based on a uniform prior U on the space of

Bernoulli parameters. The set Hn describes those dose combinations indicated

as being too toxic following these local Bayesian tests at each of the doses.

Hn = {d ∈ D : PU
[
Pd > θT |(nd, n1

d)
]
> δT} .

We are then in a position to use the partial ordering in D to extend these

exclusions to other doses that are unfavourably ordered with the doses belonging
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to this set, e.g. a dose d′ in Ad with d belonging to Hn.

Exclusion rule: A dose d0 is excluded from the study if:

d0 ∈ Tn = {d ∈ D : ∃ d′ ∈ Hn, d ≥ d′} ,

where Tn is the set of dose combinations considered as overly toxic. A dose

combination of the estimated minimal setMγ̂n will not be tested if it belongs to

Tn. Note that this exclusion rule corresponds also to a stopping rule when the

evidence of unacceptably high toxicity is associated with the lowest dose. This

rule is an extension in the context of partial ordering to rules introduced by Ji

et al (2010).

The approach based on a compromise between spreading the observations

along the contour as opposed to making observations on those doses that we

estimate would bring more information into the study leans on two quantities:

(i) the number of doses which will potentially benefit from the next observation

through the partial ordering structure and (ii) the amount of information already

collected. Each dose d, can be associated with a value kd corresponding to the

number of dose combinations ordered with d plus one: kd = #Ad + #Bd + 1,

where the cardinality of a set E is noted E. The value kd corresponds to the

number of dose combinations on which we aim to learn something subsequent

to an observation on d. Observing a DLT at dose d implies that the patient

would have experienced a DLT for all the doses in Ad, and conversely, all the
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doses in Bd would have been safe for a patient who does not experience a DLT

at dose d. This structure is naturally taken into account by our model. When

the objective is to optimize the quantity of information obtained during the

trial, those doses associated with the highest value kd are, in expectation, those

that provide the most information. Note that these doses are located along the

diagonal going from the combination (1, 1) to (I, J). The notion of entropy is

our second tool. It corresponds to a quantity of information per unit of data, in

our case the observation related to a single patient. As the goal of the study is

to determine doses that are close to α in term of toxicity probability, we will use

the concept of relative entropy between each observation and the target α. If p

and q denotes two Bernoulli distributions and their parameters, the entropy of

p relative to q is: H(p|q) = −q× log(p)− (1− q) log(1− p), with the convention

log(0) = −∞ and 0×(−∞) = 0. Thus, n×H(α|1) is the quantity of information

relative to the target alpha which is brought by n DLT (H(α|0) for the non toxic

observations). It corresponds to the log-likelihood in α. After n observations,

the next dose Xn+1 is:

Xn+1 = min
d∈Mγ̂n\Tn

1

kd


 ∑
j∈Bd∪{d}

n0
j

×H(α|0) +

 ∑
j∈Ad∪{d}

n1
j

×H(α|1)

 .

(C.9)

This allocation strategy spreads the observations along the estimated contour

and tests slightly more often the doses in the middle of the grid. Since a DLT
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corresponds to a greater quantity of information those doses with a smaller

number of toxicities are tried more often (for α = 0.25 : H(α|1)/H(α|0) =

log(α)/ log(1− α) ≈ 4.82).

D. Numerical experiments: MTD setting

We evaluate the operating characteristics of poSPM and compared them to the

2d-BOIN method (Lin et al., 2016) and the poCRM (Wages, Conaway and

O’Quigley, 2011). Performance evaluation was based on several metrics under 4

toxicity scenarios. Our goal is to evaluate: (1) how well each method provides a

recommendation of sets of doses at and around the target rate (i.e. acceptable

MTD’s), and (2) how well each method allocates patients to acceptable MTD’s.

While traditional evaluation measures, such as the percentage of recommenda-

tion and allocation to the true MTD’s are useful in assessing performance, it is

also beneficial to consider the entire distribution of selected dose combination,

as it provides more detailed information as to what combinations are being rec-

ommended. For evaluating recommendation, Cheung (2011) proposes to use the

accuracy index so that, after n patients, he defines,

An = 1− I × J ×

I∑
i=1

J∑
j=1

(Pd − α)2 × ρd

I∑
i=1

J∑
j=1

(Pd − α)2

, (D.10)
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where Pd is the true toxicity probability at dose combination d = (i, j), ρd is the

percentage of trials in which combination d = (i, j) was selected as the MTD, and

n is the total sample size. For experimentation, the same formula can be used

with ρd representing the percentage of patients treated at combination d = (i, j).

The maximum value of An is 1 with larger values (close to 1) indicating that the

method has high accuracy. For each method, we simulated 10,000 trials under

the 4 different sets of assumed DLT probabilities in a 6× 6 grid of combinations

with varying positions and number of true MTD’s, as shown in Table 7. The

target toxicity rate is α = 0.25 and the total sample size for each simulated study

is 40 patients. For each method, a cohort of size 1 is used. The calibration of

the three methods is fully described in Appendix E.1 and E.2.

Table 8 shows the operating characteristics of the 3 methods under 10 000

trials for the 4 scenarios considered. For each scenario, we report the percent-

age of patient allocation (experimentation %) and percentage of MTD selection

(recommendation %) for doses contained within five different ranges of the true

toxicity probabilities. Since α = 0.25, the target interval containing the true

MTD is [0.20, 0.30]. In Scenarios 1 and 2, the poSPM and poCRM have very

comparable performance, with each method outperforming 2d-BOIN in terms of

experimentation %, recommendation %, as well as accuracy of experimentation

and recommendation. For both of these scenarios, 2d-BOIN induces a higher
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Table 7: True toxicity probabilities for the four scenarios of a 6 × 6 grid, with

maximum tolerated doses shown in bold

Dose Drug A1

Level 1 2 3 4 5 6 1 2 3 4 5 6

Scenario 1 Scenario 2

6 20 29 31 43 47 50 37 45 51 54 55 58

5 18 20 29 34 41 48 30 38 41 43 46 47

4 16 19 21 32 36 42 23 25 35 36 40 42

3 10 15 20 25 30 37 19 20 26 33 35 39

2 3 9 16 19 21 32 15 17 21 24 31 33

1 2 5 10 17 21 30 5 10 16 20 25 28

Drug

A2 Scenario 3 Scenario 4

6 11 13 15 17 25 33 65 70 76 80 84 90

5 9 11 13 15 16 25 55 63 69 77 80 85

4 7 9 11 14 15 17 45 56 60 72 76 79

3 5 8 10 11 13 15 35 42 52 65 70 73

2 3 6 7 9 12 13 25 34 46 54 60 64

1 1 3 5 7 9 11 15 25 36 43 49 55
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percentage of DLT’s, on average. In Scenario 3, the 2d-BOIN exhibits the best

performance when considering experimentation and recommendation percent-

ages in the target interval. The accuracy of recommendation of the poSPM is

very close to that of the 2d-BOIN due to the higher recommendation percentage

for 2d-BOIN on the toxicity probability interval [0, 0.10). In the final scenario,

poSPM is the best performing method according to all metrics.

We anticipate that there will always be certain scenarios in which some

methods perform better than others. A useful tool in this regard for compar-

ing dose-finding designs can be average performance over a range of scenarios.

Across the 4 scenarios, the poSPM method, the 2d-BOIN design and poCRM

methods demonstrated averages of 46.7%, 42.5%, and 43.3% recommendation

percentages for combinations in the true target interval [0.20, 0.30], respectively.

The overall percentage of observed toxicities of the poSPM method, the 2d-

BOIN design, and poCRM methods were on average; 24.1%, 27.3%, and 23.1%,

respectively. It is desirable for the value to be as close as possible to the tar-

get rate α. This is achieved by the poSPM. The average percentage of patients

allocated to a dose combination in the target interval of the poSPM method,

the 2d-BOIN design, and poCRM methods were 34.13%, 30.75%, and 31.75%,

respectively. Based on the accuracy index for recommendation, the poSPM

yielded an average value of 0.77, the 2d-BOIN method produced an average
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Table 8: Experimentation and recommendation percentages for the poSPM, the

BOIN design and the poCRM in four scenarios of a 6 × 6 grid of true toxicity

probabilities. Column containing the MTD in bold.

Experimentation %

Scenario Method [0, 0.10) [0.10, 0.20) [0.20,0.30] (0.30, 0.40] (0.40, 1] A40 %DLTs

poSPM 11.1 18.7 42.3 22.3 6.6 0.35 23.9

1 BOIN 8.6 16.2 32.0 23.9 19.3 0.34 27.5

poCRM 11.0 26.0 43.0 17.0 4.0 0.37 22.2

poSPM 4.6 18.5 44.0 26.6 6.4 0.54 25.8

2 BOIN 4.3 15.3 40.0 31.2 18.2 0.26 29.3

poCRM 4.0 22.0 47.0 24.0 4.0 0.64 25.1

poSPM 14.6 52.6 17.7 15.1 0.0 0.38 17.5

3 BOIN 14.3 38.7 25.1 21.8 0.0 0.48 20.0

poCRM 25.0 57.0 10.0 9.0 0.0 0.20 14.6

poSPM 0.0 24.2 32.5 25.5 17.8 0.90 29.2

4 BOIN 0.0 18.4 25.9 24.4 28.9 0.83 32.3

poCRM 0.0 18.0 27.0 29.0 26.0 0.86 32.3

Recommendation %

[0, 0.10) [0.10, 0.20) [0.20,0.30] (0.30, 0.40] (0.40, 1] A40

poSPM 0.4 16.0 54.2 25.1 4.3 0.68

1 BOIN 1.2 16.9 46.6 27.4 7.45 0.65

poCRM 1.0 24.0 56.0 16.0 3.0 0.68

poSPM 0.1 10.1 56.5 29.6 3.7 0.74

2 BOIN 0.1 13.69 44.5 33.5 8.1 0.63

poCRM 0.0 15.0 59.0 25.0 3.0 0.76

poSPM 0.6 47.0 30.6 21.8 0.0 0.71

3 BOIN 2.5 44.3 37.4 15.8 0.0 0.72

poCRM 12.0 63.0 18.0 8.0 0.0 0.46

poSPM 0.0 17.5 45.5 28.7 8.2 0.95

4 BOIN 0.0 11.5 41.4 30.7 13.3 0.93

poCRM 0.0 12.0 40.0 35.0 11.0 0.94
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value of 0.73, and the poCRM design resulted in an average value of 0.71. For

accuracy of experimentation, the average index values over the four scenarios

were 0.54, 0.48, and 0.52 for the poSPM, 2d-BOIN, and poCRM, respectively.

E. Calibration

E.1 poCRM, 2d-BOIN and PIPE methods

For poCRM, we utilized six possible orderings in all scenarios, arranging the

combinations across rows, up columns, and up or down any diagonal as sug-

gested by Wages and Conaway (2013). A uniform prior was placed on the

orderings. The skeleton values for poCRM were generated according to the al-

gorithm of Lee and Cheung (2009) using the getprior function in R package

dfcrm. Specifically, we used getprior(0.035,0.25,12,36), and all simulation

results were generated using the functions of the R package poCRM.

For the BOIN method, we used the default cutoff values α1 = 0.6α and α2 =

1.4α and a Beta(0.5, 0.5) prior for the toxicity probability at each combination.

The boundaries for the optimal interval for the BOIN method are (0.197, 0.298).

The prior distributions for PIPE are set to be the true DLT probabilities

taken from Scenario 1 in Table 5. PIPE uses a neighbourhood dose-skipping

constraint, as well as the closest doses chosen from the admissible dose set. The

dose escalation algorithm employs the smallest sample size strategy, and a weak
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E.2 poSPM

prior distribution (1/16) is specified.

E.2 poSPM

The marginals of the prior model are beta distributions truncated according to

their support (Assumption 3). Let BI(a, b) be the truncated beta distribution

with parameters a and b and let BI(m,T ) be an alternative parametrization of

this distribution such that: BI(m,T ) = B(m × T + 1, (1 −m) × T + 1). Then,

m is the mode of the beta distribution and T is a dispersion parameter.

The family of I × J matrix (mθ)θ∈D is associated with the prior model

(Λθ)θ∈D. The element of the matrix mθ in position d, noted md
θ, is the mode of

the marginal Λd
θ. The value T1 and T2 are the dispersion parameters used on the

different marginals. In the Bayesian setting, they can be equated to a number

of pseudo observations providing toxicities and non-toxicities. The rank of a

dose combination θ = (i, j), noted θ, is equal to i+ j. All the doses on the same

diagonal have the same rank. Let r1 and r2 be two positive values used for the

calibration of the prior Π. The poSPM model used in the simulations can be

summarized by:
Λθ ∼

∏
d∈Bθ

BB(md
θ, T1)×

∏
d∈Aθ

BA(md
θ, T1)×

∏
d∈Cθ

B[0,1](m
d
θ, T2)× BI(m

θ
θ, T1)

Π(θ) ∝ rθ−2
1 × rθ−3

2 ,

We set: A′θ = {d ∈ A : θ+1 < d} and B′θ = {d ∈ B : θ > d+1}. The parameters
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E.3 poSPMc

of the prior model are : md
θ = α(1+0.41Aθ(d)+0.21A′θ(d)−0.41Bθ(d)−0.21B′θ(d)),

T1 = 40 and T2 = 10. The parameters r1 and r2 are chosen to produce a

progressive allocation in the range of doses. The goal is to obtain a prior Π that

is non-informative with the purpose of compensating the weight given to the

highest dose combinations by the first non-toxic observations. For α = 0.25, we

choose: r1 = 0.942724 and r2 = 0.95566. In order to explore the diagonal going

from (1, 1) to (I, J) before a DLT is observed, a very small weight (10−5) is added

to these doses. Thus, the poSPM follows the sequence of dose combinations

(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), . . . until a first DLT is observed. After N

observations, the final recommendation is made by using our current estimator

θ̂N , which corresponds to the most probable MTD according to the posterior

ΠN .

E.3 poSPMc

We use the same notation as for the poSPM calibration. The poSPMc model

fulfills Assumption 4. The allocation strategy defined by Equation (4.6) is used.

The family of I × J matrix (mγ)γ∈C is associated with the prior model (Λγ)γ∈C .

The rank of a contour γ, noted γ, is the number of dose combination in Bγ. T is

the dispersion parameter of the truncated beta distributions, r1 and r2 are two
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E.3 poSPMc

positive values used for the calibration of the prior Π.

Λγ ∼
∏
d∈Bγ

B[0,α](m
d
γ, T )×

∏
d∈Aγ

B[α,1](m
d
γ, T1),

Π(γ) ∝ rγ−2
1 × rγ−3

2 ,

The parameters of the prior model are: md
γ = α(1+0.51Aγ (d)+0.251Aγ\Mγ (d)−

0.41Bγ (d)− 0.21Bγ\Mγ (d)) and T = 25. The parameters r1 and r2 are chosen to

produce a progressive allocation in the range of dose combinations. The goal is

to obtain a prior Π that is non informative with the idea of compensating the

weight given to the highest contour in term of rank by the the first non-toxic

observations. For α = 0.2, we choose r1 = 0.8739592 and r2 = 0.9749345 and for

α = 0.3, we choose r1 = 0.8117365 and r2 = 0.950334. For the exclusion rules

(End of section 4.2), we choose to exclude a dose when the probability of our

posterior on the upper interval attains 95% : δ = 0.95. An ε = 10−5 is added to

the part multiplying 1/kd such that the value kd drives the allocation between

dose combinations for which we do not yet posses any observations. After N

observations, we recommend all the dose combinations in the estimated minimal

set Mγ̂N , except the doses for which we have less than 2 observations and the

doses in H ′n which are considered as toxic:

H ′n = {d ∈ D : PU
[
Pd > α + 0.05|(nd, n1

d)
]
> 0.9} .
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F. Computation of minimal set

In the two dimensional case, I and J are the number of doses for each of the

agents. The set of contours could be described as all the polygonal chains tracing

out a path from (0.5, J + 0.5) to (I + 0.5, 0.5) with steps of size 1 along the ab-

scissae and of size −1 on the ordinate axis. Only rightward and downward steps

are permitted. This set is also equivalent to all the combinations of I among

I+J which could be generated with the R function combn of package combinat.

From there, it is easy to obtain matrices indicating which dose combinations are

below or above the contour c that correponds to the sets Ac and Bc.

Computing the minimal set is equivalent to computing minAc and maxBc.

For the general problem ”computing the maximum of a partially ordered set”

the greatest calculation burden is O(n2) : in a set where no element are a priori

ordered, all the elements have to be compared to solve the problem. In the case

of two drugs, the structure of N2 leads to a time complexity O(n). Let matBc be

a I × J matrix of 0 and 1 indicating the dose combinations in Bc. From row N

to 1:

1. Select the last element equal to 1 of the row in matBc , if it exists. Other-

wise, go to next row.

2. Compare the selected element to the previous one. Keep it, if they are not
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ordered. Otherwise, delete it.

Finally, the selected elements are the maximum set of Bc.

Note that in order to save time, all the arrays containing the minimal set

associated to each contour can be saved for use in simulations. If we do so, the

O(n2) solution (exhaustive comparison two by two) could be used as it is only

applied one time.

G. Proofs of two properties and a general theorem

G.1 Coherence

When there is no confusion, we write Λθ(dPr) for Λr
θ(dPr), with r ∈ D We then

state a stochastic partial ordering assumption on the prior-model.

Assumption 6. Let d and d′ be two doses such that d < d′. For all marginal

r ∈ D, the posterior Λr
d,n is stochastically greater than Λr

d′,n :

Λr
d,n([0, x]) ≤ Λr

d′,n([0, x])∀x ∈ [0, 1].

This assumption is satisfied by the calibration of poSPM presented in Section

E.2.

Proposition 1. Under Assumptions 3 and 6 (appendix), the poSPM is coherent.
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G.2 Conjugacy property

Proof. Suppose that Yn+1 = 1. The case Yn+1 = 0 can be solved in the same

way. By construction, we have

Πn+1(θ) ∝
[∫

P Λθ,n(dP )

]
Πn(θ).

Furthermore, ∫
PrΛθ,n(dP ) =

∫ [∫
1{0≤x≤Pr}µ(dx)

]
Λθ,n(dPr)

=

∫
Λr
θ,n(]x, 1])µ(dx).

If θ̂n = r, then for all θ ∈ D, Πn(θ) ≤ Πn(r). Let t > r. According to

Assumption 6, we know that Λr
r,n(.) is stochastically greater than Λt

t,n(.), i.e.∫
Λr
r,n(]x, 1])µ(dx) ≥

∫
Λr
t,n(]x, 1])µ(dx),

that is ∫
PrΛr,n(dP ) ≥

∫
PrΛt,n(dP ).

Finally Πn+1(r) ≥ Πn+1(t), which ends the proof.

G.2 Conjugacy property

Proposition 3. For all n ∈ N, the probability Π̃n defined by Equation 7.7 is the

posterior on the set of dose combinations from the poSPM model (Λ̃, Π̃) where:

Π̃(d) ∝ 1

Vd

∑
c∈Vd

Π(c) and Λ̃d =
∑
c∈Vd

rdcΛc with rdc =
Π(c)∑

c∈Vd
Π(c)

.
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G.3 Proof of Theorem 1

Proof. We have the following proportionnality relations:

Π̃n(d) ∝ 1

Vd

∑
c∈Vd

Πn(c) ∝ 1

Vd

∑
c∈Vd

[∫
Ln(P )Λc(dP )

]
× Π(c)∑

c∈Vd
Π(c)

×
∑
c∈Vd

Π(c)

∝

[∫
Ln(P )

∑
c∈Vd

rdc × Λc(dP )

]
×

(
1

Vd

∑
c∈Vd

Π(c)

)
∝
[∫

Ln(P )Λ̃d(dP )

]
× Π̃(d).

G.3 Proof of Theorem 1

Proof. The proof is made by showing that the two first statements are equivalent

to the third one. As the proofs of these two equivalences are very similar, we

focus on: (i) ⇔ (iii). The implication (i) ⇐ (iii) is immediate by using the

Law of Large Number for the frequentist estimators n1
d/nd at each dose of the

minimal set. We show (i)⇒ (iii) by using a reductio ad absurdum argument.

T is a scenario whose the maximum tolerated dose is MTDT and the

maximum tolerated contour is MTCT . We choose this scenario T and a dose

d0 ∈ MTCT such that there exists a set of sequences of our sample, A =

{a = (x∞1 , y
∞
1 )} satisfying: (1) ∀ a = (x∞1 , y

∞
1 ) ∈ A , F (xn1 , y

n
1 ) → MTDT , (2)

PT (A) > 0, (3) ∀ a ∈ A , d0 /∈
∞
∩
N=1

∞
∪

n=N
{xn}. This is possible as the absence of

(3) for any dose contradicts the negation of (iii) and the absence of (1) and (2)

together contradicts (i). The point (3) implies that there exists N0 ∈ N such

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



that:

PT (B = {s ∈ A : @n > N0 , xn = d0}) > 0.

We introduce the two following sets: B′ = {ω ∈ Ω : ∃a = (x∞1 , y
∞
1 ) ∈

A , (X∞N0
, Y ∞N0

)(ω) = (x∞N0
, x∞N0

)} andB′′ = {ω ∈ Ω : ∃a = (x∞1 , y
∞
1 ) ∈ A , (XN0

1 , Y N0
1 )(ω) =

(xN0
1 , xN0

1 )}. We have: PT (B) = PT (B′|B′′) × PT (B′′) and then PT (B′|B′′) > 0.

Let T ′ be a scenario such that, for all d ∈ D \ {d0}, PT ′(Y = 1|X = d) =

PT (Y = 1|X = d) and MTDT ′ = d0. We then have: PT ′(B′|B′′) > 0, as the

same method chooses the next dose being used for the two scenarios and the

dose is not tried after N0 for any sequence of B. Moreover, B′′ = ∪
(x∞1 ,y∞1 )∈A

{ω ∈

Ω : (XN0
1 , Y N0

1 )(ω) = (xN0
1 , xN0

1 )} with:

PT ′({ω ∈ Ω : (XN0
1 , Y N0

1 )(ω) = (xN0
1 , xN0

1 )}) ,

as the constraints are on the first N0 terms. Thus, PT ′(B) > 0 and on this set

of sequences of the sample the statistic F converges to MTDT 6= d0 = MTDT ′ .

H. Proof of asymptotic results for poSPM

H.1 Proof of Theorem 2 (a)

This assumption leans upon the regularity of the prior model.
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H.1 Proof of Theorem 2 (a)

Assumption 7. The following conditions are valid except when Λθ
θ is a Dirac

measure.

(a) For all d ∈ D, the marginal distribution Λd
θ is absolutely continuous with

respect to the Lebesgue measure and λdθ denotes its density function.

(b) There exist two numbers s and S in R∗+, such that, for all θ and d in D,

we have:

∀Pd ∈ Sdθ , s < λdθ(Pd) < S .

Note that this assumption can be used for the poSPMc by replacing θ by γ, the

parameter of the contour.

The second point is only useful for the sake of the demonstration when some β(i,j)

are equal to 0 or 1. In order to establish asymptotic properties for the poSPM,

we introduce the set D̃ to indicate those doses that are observed infinitely often:

d ∈ D̃ ⇔ nd −→
n→∞

∞.

Proof. Let us start with the proof of ε-sensitivity. In this proof, we are interested

in the asymptotic behavior of poSPM, that is why we are able to ignore those

doses tested only a finite number of times and we can reason as though they had

never been used. Specifically, the doses in this proof are always considered to be

in D̃. We assume that E(I, P T ) is not empty (P T denotes the true scenario). Let

r ∈ D̃ \ E(I, P T ). We can distinguish two cases. The first case is the existence
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H.1 Proof of Theorem 2 (a)

of a dose d ∈ E(I, P T ) such that d is ordered with r. We are then reduced to

the SPM in the case of total ordering and the proof can be found in Clertant

and O’Quigley (2017).

The second case is where there exists no dose in E(I, P T ) ordered with r.

So there exists a dose d ∈ E(I, P T ) not ordered with r, because we assume that

E(I, P T ) is not empty. We want now to compare the integrals In,r and In,d,

where g(p, n,m) = pn(1− p)m.

In,r
In,d

=
∏
k∈D̃

Mk
n,r

Mk
n,d

=
∏
k∈D̃

∫
Skr
g (Pk, n

1
k, n

0
k) Λr (dPk)∫

Skd
g (Pk, n1

k, n
0
k) Λd (dPk)

(H.11)

=
∏
k∈D̃

∫
Skr
g (Pk, n

1
k, n

0
k)λr (Pk) dPk∫

Skd
g (Pk, n1

k, n
0
k)λd (Pk) dPk

(H.12)

≤ S

s

∏
k∈D̃

∫
Skr
g (Pk, n

1
k, n

0
k) dPk∫

Skd
g (Pk, n1

k, n
0
k) dPk

, (H.13)

where Equation (H.11) follows from Assumption 3, Equation (H.12) from As-

sumption 7 (a) and Inequation (H.13) from Assumption 7 (b). We are able to

state the following property. For all functions f that are continuous on [0, 1],

we have

∫
f (Pk)

g(Pk, n
1
k, n

0
k)

Beta(n1
k + 1, n0

k + 1)
dPk −→

nk→∞

∫
f (Pk)1{Pk} (Pk) γ (dPk) = f (Pk) ,

(H.14)

where Beta(.) denotes the Beta function and γ the counting measure. Let then
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H.1 Proof of Theorem 2 (a)

k ∈ D̃. We are looking for the behavior, when nk increases without bound, of

Rk =

∫
Skr
g (Pk, n

1
k, n

0
k) dPk∫

Skd
g (Pk, n1

k, n
0
k) dPk

.

The case Skr = Skd is straightforward. For the other cases, we use the convergence

expressed in Equation (H.14). As d is not ordered with r, with Assumption 3,

we have six cases left to deal with.

• Skr = A or B or I and Skd = [0, 1]. Then Rk −→
nk→∞

1A
(
P T
k

)
or 1B

(
P T
k

)
or

0. This last result is due to the fact that r /∈ E(I, P T ).

• Skr = [0, 1] and Skd = I. Then Rk −→
nk→∞

1, because d ∈ E(I, P T ).

• Skr = [0, 1] and Skd = A. Then Rk −→
nk→∞

1/1A
(
P T
k

)
= 1. As there is no

couple of ordered dose in E(I, P T ), P T
k belongs to A.

• Skr = [0, 1] and Skd = B. With the same argument as the previous case, we

have Rk −→
nk→∞

1.

Finally, going back to Inequality (H.13), we conclude that In,r/In,d tends to

0 when n increases without bound. This leads to a contradiction because, as

r ∈ D̃, this ratio is greater than 1 infinitely often. So D̃ ⊂ E(I, P ), that is, the

poSPM is ε-sensitive.

We prove now that poSPM is also balanced. Assumption 3 allows us to
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H.1 Proof of Theorem 2 (a)

focus on the marginal ratio

Mk
n,r

Mk
n,t

=

∫
g(Pj, n

1
k, n

0
k) Λk

r(dPk)∫
g(Pk, n1

k, n
0
k) Λk

t (dPk)
and

In,r
In,t

=
∏
k∈D

Mk
n,r

Mn,tk
.

Assumption 7 involves:

d(P T
k , S

k
r ) = d(P T

k , S
k
t ) =⇒ 0 < lim inf

n→∞

Mk
n,r

Mk
n,t

≤ lim sup
n→∞

Mk
n,r

Mk
n,t

< +∞, a.s.

(H.15)

The ε-balanced behavior corresponds to the case where, forall k ∈ D, P T
k /∈ I.

We show that

r /∈Mc? =⇒ P({nr →∞}) = 0 (H.16)

By symmetry we can choose r ∈ D−. The set Mc? ∩ D− ∩ Ar is not empty.

Let t be a dose in Mc? ∩D− ∩ Ar. By using Equation (H.15), as At ⊂ Ar and

Skt = [0, 1] when k ∈ Ct, we have

∀k ∈ At ∪ Ct, P

(
lim sup
n→∞

Mk
n,r

Mk
n,t

<∞

∣∣∣∣∣ nk →∞
)

= 1.

If k ∈ (Br ∪ Cr) ∩ Bt then P T
k ∈ B and we obtain the same result

P

(
lim sup
n→∞

Mk
n,r

Mk
n,t

<∞

∣∣∣∣∣ nk →∞
)

= 1.

We consider now the ratios Mk
n,r/M

k
n,t when k ∈ (Bt ∩Ar)∪ {t, r}. In that case,

we have P T
k ∈ B, Skt = B and Skr equals to I or A. By using Proposition 4, we
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H.1 Proof of Theorem 2 (a)

have

∀k ∈ (Bt ∩ Ar) ∪ {t, r}, P

(
lim
n→∞

Mk
n,r

Mk
n,t

= 0

∣∣∣∣∣ nk →∞
)

= 1.

We then have

P
(

lim
n→∞

In,r
In,t

= 0

∣∣∣∣ nr →∞) = 1 and P
({

lim
n→∞

In,r
In,t

= 0

}
∩ {nr →∞}

)
= 0,

which proves Equation (H.16). We achieve the proof of the ε-balanced property

by showing that

t ∈Mc? =⇒ P(nt →∞) = 1 (H.17)

By using Equation (H.16), we have, for all r and t in Mc?

∀k ∈ D, k 6= r and k 6= t, P

(
lim sup
n→∞

Mk
n,r

Mk
n,t

<∞

)
= 1.

Moreover, for all r ∈Mc? , P
T
r is included in Srt . As P T

r /∈ I = Srr , we have

∀r ∈Mc? , P
(

lim
n→∞

M r
n,r

M r
n,t

= 0

∣∣∣∣ nr →∞) = 1.

Let Er be the event {nr →∞} ∩ {nt →∞}c. Then,

P
(

lim
n→∞

In,r
In,t

= 0

∣∣∣∣ Er) = 1 and P
({

lim
n→∞

In,r
In,t

= 0

}
∩ Er

)
= 0,

As P(
∑
Mc?

nk → +∞) = 1, we have P(∪Mc?
Er) = 1, which proves Equation

(H.17) and ends the demonstration of the poSPM ε-balanced behavior.
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H.2 Proof of Theorem 2 (b)

H.2 Proof of Theorem 2 (b)

Proof. We set:

In,c =
∏
k∈D̃

Mk
n,c =

∏
k∈D̃

∫
Skc

g
(
Pk, n

1
k, n

0
k

)
Λc (dPk)

We note that the regularity assumption 7 involves:

δ(P T
k , S

k
r ) = δ(P T

k , S
k
t ) =⇒ 0 < lim inf

n→∞

Mk
n,r

Mk
n,t

≤ lim sup
n→∞

Mk
n,r

Mk
n,t

<∞, a.s.

We will show the following assertion

c ∈ C \ c∗ =⇒ P(nc →∞) = 0 (H.18)

As c 6= c∗, we haveMc 6=Mc? and there exists k ∈Mc such that P T
k is included

in Skc∗ and not in Skc . By using Proposition 4, we have

P

(
lim
n→∞

Mk
n,c

Mk
n,c∗

= 0

∣∣∣∣∣nc →∞
)

= P

(
lim
n→∞

Mk
n,c

Mk
n,c∗

= 0

∣∣∣∣∣nk →∞
)

= 1,

where the first equality arises from Assumption 5(b). For all doses d ∈ D,

the distribution Λc∗ models correctly the probability of toxicity, in other words

P T
d ∈ SC∗ . We then have

P
(

lim
n→∞

In,c
In,c∗

= 0

∣∣∣∣nc →∞) = 1 and P
({

lim
n→∞

In,c
In,c∗

= 0

}
∩ {nc →∞}

)
= 0,

which ends the proof. (H.18).
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I. A general bayesian property

The following property is used in the proof of asymptotic results. It has already

been proved in (Clertant and O’Quigley, 2018). Here, for the convenience of the

reader, we reproduce this property without its proof.

The couple (Ω,A) denotes an abstract space endowed with its σ-field. We

denote by I a finite set and by (Xk)k∈N a sequence of independent random

variables taking their values in I. Let F be the set of functions from I to

the segment [0, 1]. For any element q ∈ F , qi denotes its value at i ∈ I. Let

S = {q ∈ F :
∑

i∈I qi = 1} be the probability space on which we want to work.

We say that a random variable X follows the distribution q if P{X = i} = qi ,

for all i ∈ I. Let Λ1 and Λ2 be two probabilities on the Borel σ-field B of S. Let

S1 and S2 be the topological supports of Λ1 and Λ2 respectively. We would like

to know the asymptotic behavior of the ratio of the expected likelihood under

Λ1 on the one under Λ2. We define the operator r as follows

r(Λ1,Λ2, n) =

∫ n∏
k=1

qXk Λ1(dq)∫ n∏
k=1

qXk Λ2(dq)

=

∫ ∏
i∈I

qnii Λ1(dq)∫ ∏
i∈I

qnii Λ2(dq)
,

where ni =
∑n

k=1 1{Xk=i}, for i ∈ I. We assume that, under the true probability

β, the random variables Xk, k ∈ N are identically distributed. The convergence

of r(Λ1,Λ2, n) depends mainly on the localization of β compared to the supports
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FILL IN A SHORT RUNNING TITLE

S1 and S2. To deal with this problem, we make use of the usual concept of

entropy. The entropy of q relative to p is H(q|p) = −
∑

i∈I pi log qi, with the

conventions log 0 = −∞ and 0 × −∞ = 0. We suppose that β is closer to S1

than S2 in terms of entropy.

Assumption 8. Let V be a subspace of S2 satisfying Λ2(V ) > 0. There exists

δ > 0 such that

inf
q∈S1

H(q|β)− sup
q∈V

H(q|β) > 4δ.

This leads to a simple characterisation of the behavior of r(Λ1,Λ2, n).

Proposition 4. Under Assumption 8, we have r(Λ1,Λ2, n) −→
n→∞

0.
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