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Abstract: In this paper, we introduce a novel projection mean variance (PMV)

measure to construct a nonparametric test for the multisample hypothesis of e-

qual distributions for univariate or multivariate responses. The proposed PMV

measure generalizes the mean variance index via the projection technique. We ob-

tain the theoretical properties of the PMV measure and its empirical counterpart.

The PMV measure can yield an analogous variance component decomposition.

Through this decomposition, an ANOVA F statistic is derived to test the multi-

sample problem. The proposed test is statistically consistent against the general

alternatives and robust to heavy-tailed data. The test is free of tuning parameters

and does not require moment conditions on the response. The simulation results

demonstrate that the PMV test has higher power than the classical Wilks-type
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methods and DISCO test, especially when the dimension of the response is rela-

tively large or the moment conditions required by the DISCO test are violated.

We further illustrate our method by empirical analyses of two real datasets.

Key words and phrases: Projection, multivariate multisample problem, nonpara-

metric tests, independence test, nonparametric ANOVA extension.

1. Introduction

The multisample problem, i.e., testing whether the underlying distributions

of two or more populations are the same, is a classical topic in statistics

and arises in many modern scientific applications. For example, in ge-

nomics research, we wish to explore whether gene expression levels differ

among distinct predefined patient groups to identify disease-associated gene

expression. In data integration for bioinformatics, it is of interest to know

whether datasets from different labs are distributed identically to synthesize

information across labs (Borgwardt et al., 2006).

Let Fk(z) be the distribution function of p-variate continuous random

variable Zk, for k = 1, · · · , K. The multisample problem is concerned with

testing the null hypothesis

H0 : F1(z) = · · · = FK(z) ≡ F (z), for all z ∈ Rp, (1.1)

against the alternative hypothesis H1 : Fk(z) 6= Fj(z) for some k 6= j ∈
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{1, · · · , K}. When the distributions Fk(z) are normal with constant vari-

ance, two widely used methods for testing the problem (1.1) are the analysis

of variance (ANOVA) for univariate data and the multivariate analysis of

variance (MANOVA) for multivariate data. These methods can effective-

ly detect the location difference among K independent samples. However,

the normality and common variance assumptions are usually violated in

most applications. Thus, much effort has been devoted to exploring non-

parametric test approaches without specific distribution assumptions. For

example, Kruskal and Wallis (1952) proposed a rank-based test procedure,

Kiefer (1959) introduced the K-sample Kolmogorov-Smirnov and Cramér-

von Mises tests, and Scholz and Stephens (1987) extended the Anderson-

Darling test to the K-sample setting.

In general, the above nonparametric test methods are limited to dealing

with univariate data and are not easily extendable to multivariate settings.

In this paper, we propose a novel nonparametric test for the multivariate

multisample problem. The proposed method is based on the fact that

the K-sample problem (1.1) is equivalent to an independence test between

a continuous random vector and a categorical variable. Specifically, we

introduce a latent categorical variable Y with K categories, denoted by

{y1, · · · , yK}. Then, a new random vector (X, Y ) can be defined by X = Zk
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if Y = yk. In this way, it is easy to see that the original variables Zk,

k = 1, · · · , K are one-to-one transformed to the new variables (X, Y ). Thus,

the multisample problem has the following equivalent form:

H0 : pr{X ≤ x|Y = yk} = F (x), for all x ∈ Rp and k = 1, · · · , K.

compared to the alternative hypothesis H1 : pr{X ≤ x|Y = yk} 6= pr{X ≤

x|Y = yj}, for some k 6= j ∈ {1, · · · , K}. This yields that (1.1) is equivalent

to the following problem:

H0 : X and Y are independent versus H1 : X and Y are dependent. (1.2)

In the following context, we shall mainly restrict our attention to inferring

the independence test problem (1.2).

Recently, Cui et al. (2015) proposed a mean variance (MV) index for

feature screening in high-dimensional discriminant analysis. The MV index

can quantify the dependence between a continuous random variable and a

categorical variable. This measure has also been applied to test the problem

(1.1) for univariate data by Cui and Zhong (2019). In general, the above

methods cannot effectively handle the multivariate multisample problem

(1.1) or the independent test problem (1.2). The main reason is that the

MV index is substantially rank-based and computationally expensive to

implement when the dimension of X is moderate or high.
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In this paper, we shall generalize the univariate MV index to an ar-

bitrary dimension by a projection technique. The projection method is a

useful tool for multivariate statistical inference, which can be found in Bar-

inghaus and Franz (2004), Escanciano (2006), and Zhu et al. (2017), among

others. The new measure has many nice properties. First, it is equal to

zero if and only if X and Y are independent. Second, it has a closed-form

expression and can be easily estimated from the data. Third, it does not re-

quire any moment condition and is easily applicable in arbitrary dimensions

of X. Finally, it is robust to heavy-tailed data and outliers.

The proposed measure can provide an analogous variance component

decomposition. Thus, we can derive a nonparametric extension of the typi-

cal ANOVA and MANOVA. Based on this extension, an analog to the ANO-

VA F statistic is obtained to test hypothesis (1.1). A related research topic

is the distance components (DISCO) test proposed by Rizzo and Székely

(2010), who used all pairwise distances between-sample elements and ob-

tained an analog to ANOVA decomposition of distances. An important

difference between our method and the DISCO test is that the latter re-

quires the moment condition E[‖X‖] <∞. Recently, Zhu et al. (2017) and

Kim et al. (2020) have demonstrated that the distance-based statistics, dis-

tance covariance (DCOV, Székely et al. (2007, 2009)) and energy statistic

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



6

(Székely and Rizzo, 2013b) may suffer from low power when the moment

condition is violated or when extreme observations exist. Thus, it is not d-

ifficult to imagine that the distance-based DISCO test may also inherit this

shortcoming in certain settings. However, such data subject to heavy-tailed

errors are often encountered in various areas of science, especially in the big

data era. Examples include high-frequency financial data, fMRI data, and

gene expression data. Thus, our aim is to develop new robust methods to

tackle the multisample problem for heavy-tailed high-dimensional data.

The rest of the paper is organized as follows. In Section 2, we introduce

the projection mean variance measure and its sample counterpart; the the-

oretical properties of the proposed estimators are established. In Section

3, we present some new interpretations of the MV index. In Section 4, we

describe the PMV-based test. PMV decomposition for multifactor models

follows in Section 5. The results from our numerical studies are reported

in Sections 6 and 7. We provide some discussion in Section 8. All technical

proofs are arranged in a supplementary file.

2. Projection mean variance measure

To facilitate the presentation, we first review the MV index. Let the latent

group variable Y be a categorical variable with K classes {y1, y2, · · · , yK}.
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When X is univariate, Cui et al. (2015) proposed the MV index for feature

screening in high-dimensional discriminant analysis, given by

MV(X|Y ) := EX [varY (F (X|Y ))], (2.1)

where F (x|Y ) = pr{X ≤ x|Y }. Cui et al. (2015) further showed that

MV(X|Y ) =
K∑
k=1

pk

∫ ∞
−∞

[Fk(x)− F (x)]2dF (x), (2.2)

where pk=pr{Y =yk}, Fk(x)=pr{X≤x|Y =yk} and F (x)=pr{X≤x}.

It follows from (2.2) that the MV index can be viewed as the weighted

average of Cramér-von Mises distances between conditional and uncondi-

tional distribution functions. This indicates that MV(X|Y ) = 0 if and only

if the distributions of the K populations are identical. Thus, MV(X|Y ) is

a natural measure to test the independent problem (1.2).

We next extend the univariate MV index to the setting where the di-

mensionality of X is arbitrary by the integration over all one-dimensional

projections. Let Sp−1 = {β ∈ Rp : ‖β‖ = 1} be the unit hypersphere in Rp

for any p > 1. Our approach relies on the following lemma:

Lemma 1. Let X be a p-dimensional random vector and Y be a categorical

variable. Then, we have that

X |= Y ⇐⇒ βTX |= Y, for any β ∈ Sp−1, (2.3)
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where “⇐⇒ ” stands for “ equivalent to”, and “ |= ” indicates independence.

This result in (2.3), together with (2.1), motivates us to propose the

following projection mean variance:

Definition 1. Let X be a p-dimensional random vector and Y be a cat-

egorical random variable with K classes {y1, y2, · · · , yK}. The projection

mean variance (PMV) index between Y and X is defined by

PMV(X|Y ) := c−1p

∫
Sp−1

EβTX[varY (FβTX(βTX|Y ))]dβ, (2.4)

where FβTX(u|Y ) = pr{βTX ≤ u|Y }, cp = πp/2−1/Γ(p/2), and Γ(·) is the

gamma function.

By the definition in (2.4), we can see that PMV(X|Y ) is the integra-

tion of the MV index between the projected random variables βTX and Y.

Generally, it is difficult to compute such an integral over the p-dimensional

unit sphere. Fortunately, PMV(X|Y ) has a closed-form expression owing

to the following lemma:

Lemma 2. (Escanciano, 2006) For any two nonzero vectors v1,v2 ∈ Rp,

we have that∫
Sp−1

I(βTv1 ≤ 0)I(βTv2 ≤ 0)dβ = cp{π − ang(v1,v2)}, (2.5)

where ang(v1,v2) := arccos
{

vT
1 v2

‖v1‖‖v2‖

}
is the angle between v1 and v2.
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Let FβTX(u)=pr{βTX≤u} and FβTX(u|Y =yk)=pr{βTX≤u|Y =yk}.

By Lemma 2, we provide some useful properties for PMV(X|Y ) as follows:

Theorem 1. If pk = pr{Y = yk} > 0, for k = 1, · · · , K, then we have that

(i) PMV(X|Y ) = c−1p
∑K

k=1 pk
∫
Sp−1

∫∞
−∞[FβTX(u|Y = yk)−FβTX(u)]2dFβTX(u)dβ;

(ii) PMV(X|Y ) = 0 if and only if X and Y are statistically independent;

(iii) PMV(X|Y ) = E[ang(X1−X3,X2−X3)]−PSW(X|Y ), where (X1, Y1),

(X2, Y2) and (X3, Y3) are i.i.d. copies of (X, Y ) and

PSW(X|Y ) :=
K∑
k=1

p−1k E[I(Y1 = yk, Y2 = yk)ang(X1 −X3,X2 −X3)];

(iv) PMV(a+cAX|Y ) = PMV(X|Y ), where A ∈ Rp×p is any orthonormal

matrix, a ∈ Rp and c ∈ R.

We present some remarks on Theorem 1. Property (i) indicates that

PMV(X|Y ) can also be represented as a weighted average of the distances,

such as the MV index in (2.2). Property (ii) implies that PMV(X|Y ) is

generally applicable as an index to measure the dependence between a con-

tinuous random vector and a categorical one. Property (iii) indicates that

PMV(X|Y ) has a closed form and is thus easily estimated from the data.

Property (iv) suggests that PMV is invariant with respect to the group of

orthogonal transformations.
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Note that the integration over Sp−1 in (2.4) implicitly requires p > 1.

By the property (iii) of Theorem 1, we can extend the original definition of

PMV in (2.4) to the one-dimensional setting. With slight abuse of notation,

we still define the generalized PMV index by PMV(X|Y ), given by

PMV(X|Y ) := E[ang(X1 −X3,X2 −X3)]− PSW (X|Y ). (2.6)

When p = 1, the following result establishes the relationship between

MV(X|Y ) and PMV(X|Y ) :

Corollary 1. Assume that X is univariate. If pk = pr{Y = yk} > 0 for

all k = 1, · · · , K, then we have that PMV(X|Y ) = 2πMV(X|Y ).

Corollary 1 indicates that PMV(X|Y ) is proportional to MV(X|Y ) for

one-dimensional random variable X. This property, together with Theorem

1, suggests that PMV(X|Y ) can measure independence for any p ≥ 1.

We next develop the empirical estimate of PMV(X|Y ). Suppose that

{(Xi, Yi), i = 1, · · · , n} is a random sample of (X, Y ). To simplify the

notations, we denote

p̂k := n−1
n∑
i=1

I(Yi = yk), gnU(u) := p̂r{βTX ≤ u} = n−1
n∑
i=1

I(Ui ≤ u),

gnU,Y (u; yk) := p̂r{βTX ≤ u|Y = yk} = p̂−1k n−1
n∑
i=1

I(Ui ≤ u, Yi = yk),
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where Ui := βTXi. By property (i) in Theorem 1, we can give a straight-

forward plug-in estimator of PMV(X|Y ) as follows:

P̂MVn(X|Y ) :=
1

ncp

K∑
k=1

p̂k

n∑
i=1

∫
Sp−1

{
gnU,Y (βTXi; yk)− gnU(βTXi)

}2

dβ.

Note that the above plug-in estimator is intractable. To put P̂MVn(X|Y )

into practice, we shall present two equivalent forms in the following theo-

rem: For i, j, r = 1, 2, · · · , n and k = 1, 2, · · · , K, denote

Ãjr;i := ajri −
1

n

n∑
j=1

ajri −
1

n

n∑
r=1

ajri +
1

n2

n∑
j,r=1

ajri,

B̃ij;k := bij;k −
1

n

n∑
i=1

bij;k −
1

n

n∑
j=1

bij;k +
1

n2

n∑
i,j=1

bij;k,

where ajri := ang(Xj−Xi,Xr−Xi), bik := I(Yi = yk), bij;k := bikbjk. Here,

define arccos{0
0
} = 0. Then, we can obtain the following results:

Theorem 2. For a given random sample {(Xi, Yi), i = 1, · · · , n}, then we

have that

P̂MVn(X|Y ) = − 1

n3

K∑
k=1

p̂−1k

n∑
i,j,r=1

Ãjr;iB̃jr;k (2.7)

=
1

n3

n∑
i,j,r=1

aijr −
1

n3

K∑
k=1

p̂−1k

n∑
i,j,r=1

bikbjkaijr. (2.8)

Using (2.7), it is easy to compute P̂MVn(X|Y ) in practice. A further

discussion on its implementation is given in Section 4.2. The result in (2.8)

is useful for studying the theoretical property of P̂MVn(X|Y ). In fact,
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each term on the right side of (2.8) can easily be expressed in U -statistics.

Then, we can establish their tail probability inequalities by the theory of

U -statistics (Serfling, 1980) and obtain the following result, the proof of

which can be found in the Supplementary Materials:

Theorem 3. Assume that there exist two positive constants c1 and c2, such

that c1/K ≤ min1≤k≤K pk ≤ max1≤k≤K pk ≤ c2/K and K = O(nκ) for some

0 ≤ κ < 1/6. Then, for any α ∈ (0, 1) and sufficiently large n, there exists

a positive constant c0, such that

pr
{
|P̂MVn(X|Y )− PMV(X|Y )| ≤ c0

√
K6

n
log(K/α)

}
≥ 1− α.

The condition c1/K ≤ min1≤k≤K pk ≤ max1≤k≤K pk ≤ c2/K is also

used in Cui et al. (2015). When K is fixed, the condition is automatically

satisfied and |P̂MVn(X|Y )−PMV(X|Y )| = O(n−1/2). Theorem 3 suggests

that limn→∞ P̂MVn(X|Y ) = PMV(X|Y ) if K = O(nκ) with 0 ≤ κ < 1/6.

However, when X is univariate, we can obtain from Lemma A.4 in Cui et al.

(2015) that limn→∞ M̂Vn(X|Y ) = MV(X|Y ) if K = o(n). Thus, the order

κ in Theorem 3 may further be relaxed to 0 ≤ κ < 1. This is beyond the

scope of this work but is an interesting topic for future research.
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3. Extension of ANOVA via MV index

In this section, we illustrate that the MV index can provide a decomposition

similar to the variance components in ANOVA. Then, in the next section, we

generalize this decomposition to the PMV index to construct an analogous

ANOVA F statistic for the testing problem (1.1).

Note that the definition in (2.1) is formally similar to the quantities

E[var(X|Y )] and var(E[X|Y ]), both of which appear in the basic variance

decomposition formula

var(X) = E[var(X|Y )] + var(E[X|Y ]). (3.1)

After some algebra, we can obtain that

var(E[X|Y ]) =
K∑
k=1

pk(E[X|Y = yk]− E[X])2, (3.2)

E[var(X|Y )] =
K∑
k=1

pkE[(X − E[X|Y = yk])
2|Y = yk]. (3.3)

From the above two equations, we can see that E[var(X|Y )] and var(E[X|Y ])

are able to describe the population between and within the group variation.

From (2.2) and (3.2), we can see that MV(X|Y ) and var(E[X|Y ]) have

similar forms. This motivates us to obtain a similar variance decomposition

for MV(X|Y ). This result is provided in the following theorem:
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Theorem 4. If pk = pr{Y = yk} > 0, for k = 1, · · · , K, then we have that

E[I(X1 > X3)I(X2 ≤ X3)] = MV(X|Y ) + SW(X|Y ), (3.4)

where SW(X|Y ) :=
∑K

k=1 pk
∫∞
−∞E[{I(X ≤ x)− Fk(x)}2|Y = yk]dF (x).

We next provide some intuition to explain the connection between (3.4)

and the population ANOVA decomposition in (3.1). First, MV(X|Y ) and

(3.2) have a similar form, which can describe differences among groups,

and SW(X|Y ) and (3.3) also enjoy a common property, which can measure

differences within each of the groups. Next, consider the following decom-

position: I(X ≤ x)− F (x) = [Fk(x)− F (x)] + [I(X ≤ x)− Fk(x)], for any

x ∈ R. Then, it is easy to obtain that

var(I(X ≤ x)) =
K∑
k=1

pk[Fk(x)− F (x)]2+
K∑
k=1

pkE[{I(X ≤ x)− Fk(x)}2|Y = yk].

Integration over x ∈ [−∞,∞] and simple calculations yield that

∫ ∞
−∞

var(I(X ≤ x))dF (x) = E[I(X1 > X3)I(X2 ≤ X3)]

= MV(X|Y ) + SW(X|Y ). (3.5)

Thus, (3.5) can be viewed as a direct nonparametric extension of (3.1) by

replacing X and its total variation var(X) by the binary variables I(X ≤ x)

and the cumulative total variation
∫∞
−∞ var(I(X ≤ x))dF (x).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



15

In summary, from (3.5) and Theorem 4, we can obtain a nonparametric

extension of the typical ANOVA as follows:

Total variation:
∫∞
−∞ var(I(X ≤ x))dF (x) = E[I(X1 > X3)I(X2 ≤ X3)];

Between-group variation: MV(X|Y ) =
∑K

k=1 pk
∫∞
−∞[Fk(x)−F (x)]2dF (x);

Within-group variation: SW(X|Y )=
∑K

k=1 pk
∫∞
−∞E[{I(X≤x)−Fk(x)}2|Y =

yk]dF (x).

As mentioned above, this decomposition is similar to that in ANOVA, ex-

cept that it does not rely on assumptions on the distribution of the popula-

tion. Thus, it would be a useful tool and have many statistical applications.

4. The PMV tests of equal distributions

4.1 Method

We first show that the PMV index also has an interpretation similar to that

in (3.5). By Lemma 2, it can be shown that

c−1p

∫
Sp−1

∫ ∞
−∞

var(I(βTX ≤ u))dFβTX(u)dβ = E[ang(X1 −X3,X2 −X3)],

c−1p

∫
Sp−1

SW(βTX|Y )dβ = PSW(X|Y ).

These, together with the definition of SW(βTX|Y ), indicate that E[ang(X1−

X3,X2−X3)] and PSW(X|Y ) can be viewed as the population total vari-
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ability and within-group variation. Thus, (2.6) suggests that E[ang(X1−

X3,X2−X3)] can be decomposed into two sources: within-group variation

PSW(X|Y ) and between-group variation PMV(X|Y ). That is, (2.6) can

naturally provide a nonparametric analysis of variance decomposition.

Note that (2.6) is a population decomposition, and its empirical coun-

terpart can be obtained by (2.8). By the notations of the classical ANOVA,

we rewrite (2.8) as

SST = SSB + SSW , (4.1)

where SST = 1
n3

∑n
i,j,r=1 aijr, SSW = 1

n3

∑K
k=1 p̂

−1
k

∑n
i,j,r=1 bikbjkaijr and

SSB = P̂MVn(X|Y ). Then, an analog to the ANOVA F statistic can be

derived as follows:

Fn =
SSB/(K − 1)

SSW/(n−K)
=

P̂MVn(X|Y )/(K − 1)

(SST − SSB)/(n−K)
.

The larger value of Fn presents stronger evidence to support the alter-

native hypothesis. We name the new test as the PMV test of equal distri-

butions. Generally, Fn does not have a F distribution, and the following

result presents its asymptotic null distribution when K is fixed:

Theorem 5. Under the null hypothesis H0, we have that

Fn =
SSB/(K − 1)

SSW/(n−K)

d−→
∞∑
j=1

λjη
2
j , n→∞,
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where ηj are independent standard normal random variables and λj are

nonnegative constants and depend on the distribution of (X, Y ).

When X is univariate, Theorem 3.1 in Cui and Zhong (2019) suggests

that the λj in Theorem 5 has a simple closed form. However, in general, the

λj do not necessarily have such a good form by the definition in (S1.17) and

the Hilbert-Schmit theory of integral equation (Kuo, 1975). This leads to

the asymptotic null distribution of Fn being computationally infeasible. To

implement the PMV test in practice, we approximate the asymptotic null

distribution through a random permutation approach. The permutation

method is referred to in Section 4.2.

Next, we can further study the asymptotic performance of P̂MVn(X|Y )

under the alternative hypothesis.

Theorem 6. Under the alternative hypothesis, we have that

√
n(P̂MVn(X|Y )− PMV(X|Y ))

d−→ N
(
0, σ2

)
,

where σ2 = var [Φ(Xi, Yi)] , in which Φ(X, Y ) is given in (S1.20).

From Theorem 6 and Sultsky’s theorem, we can easily obtain that Fn

converges weakly to a normal distribution. This result shows that the PMV

test can detect all types of differences between distributions as follows:
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Corollary 2. The PMV test of hypothesis (1.1) is consistent against all

alternatives.

From the above theoretical results, we can see that the main difference

between the PMV test and the DISCO test is that the PMV test does not re-

quire any moment condition. This advantage shall be further demonstrated

by numerical simulations.

4.2 Implementation

In this section, we discuss the implementation of the PMV test in practice.

For any given i ∈ {1, 2, · · · , n} and k ∈ {1, 2, · · · , K}, let Ai = (ajri)n×n

and Bk = (bjr;k)n×n be n×n matrices with entries ajri and bjr;k, respectively.

From the definitions of Ãjr;i and B̃jr;k and (2.7), we obtain that

P̂MVn(X|Y )=− 1

n2
Tr
(

[
1

n

n∑
i=1

Ai]H[
K∑
k=1

p̂−1k Bk]H
)
, SST =

1

n2
1Tn

( 1

n

n∑
i=1

Ai

)
1n,

where H = In − 1
n
1n1

T
n , In is the identity matrix and 1n is an n× 1 vector

of ones. Here, we use the property H2 = H. Thus, the PMV test statistic

is easily implemented by computing matrices Ai and Bk.

To put the proposed test into practice, we apply the permutation method

to approach the asymptotic null distribution in Theorem 5. The permuta-

tion approach can yield a valid level α test for finite sample size. It has
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been shown to be effective; see the DCOV test, the DISCO test, and the

projection correlation-based test (Zhu et al., 2017).

The permutation test procedure is as follows:

Step 1. Compute Fn and ŜST for the observed data {(Xi, Yi), i = 1, · · · , n};

Step 2. For each replicate, indexed b ∈ {1, · · · , B}, generate a random per-

mutation πb=(πb,1, . . . , πb,n) of {1, . . . , n}, and compute the estimator

of PMV(X|Y ) using the permuted sample (X, Yπb) :={(Xi, Yπb,i), i=

1, · · · , n}, denoted by P̂MVn(X|Yπb). Calculate the test statistic

F (b)
n =

P̂MVn(X|Yπb)/(K − 1)

(SST − P̂MVn(X|Yπb))/(n−K)
;

Step 3. Compute the empirical p-value by

p̂ =
1

B + 1

{
1 +

B∑
b=1

I(F (b)
n ≥ Fn)

}
.

5. The PMV decomposition in the general case

Following our approach to the one-way PMV decompositions in (2.8) and

(4.1), we can generalize it to the general factorial design case by analogy.

Here, we focus on the full factorial two-level design. Suppose that there are

KA levels of factor A and KB levels of factor B and that R independent

observations can be observed at each of the KAKB combinations of levels.
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Using the classical ANOVA formula notation from linear models, we

specify the corresponding two-way additive model as X ∼ A + B, and the

two-way design with interaction as X ∼ A+B +A ∗B, where A ∗B is the

interaction term between factor A and factor B. Let A : B be the crossed

factors A and B with KAKB levels. For the above two-factor models, we

have the following two-way PMV decompositions in the population:

Theorem 7. (i) For model X ∼ A+B, we have that

E[ang(X1−X3,X2−X3)] = PMV(X|A) + PMV(X|B) +σ2
E,1; (5.1)

(ii) For model X ∼ A+B + A ∗B, we have that

E[ang(X1−X3,X2−X3)]=PMV(X|A)+PMV(X|B) + PMV(X|A∗B)+σ2
E,2; (5.2)

(iii) PMV(X|A ∗B) = PMV(X|A : B)− PMV(X|A)− PMV(X|B),

where σ2
E,1, σ

2
E,2 and PMV(X|A∗B) are defined in (S1.26), (S1.28) and

(S1.29), respectively.

In a manner analogous to (4.1), we can obtain the empirical counter-

parts of (5.1) and (5.2), given by

SST = P̂MVn(X|A) + P̂MVn(X|B) + SSE,1, (5.3)

for model X ∼ A+B; and

SST = P̂MVn(X|A) + P̂MVn(X|B) + P̂MVn(X|A ∗B) + SSE,2, (5.4)
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for model X ∼ A+B + A ∗B, where

P̂MVn(X|A ∗B) = P̂MVn(X|A : B)− P̂MVn(X|A)− P̂MVn(X|B),

SSE,1 and SSE,2 are the plug-in estimators of σ2
E,1 and σ2

E,2.

From (5.3) and (5.4), we can see that SST has similar two-way ANOVA

decompositions. In Table 1, we summarize the PMV analysis for the two-

way design with interaction. For factorial designs on three or more factors,

we can obtain similar results.

Table 1. PMV analysis for the two-factor model with interaction.

Factor df Dispersion F-ratio

A KA − 1 P̂MVn(X|A) P̂MVn(X|A)
KA−1 /

SSE,2

KAKB(R−1)

B KB − 1 P̂MVn(X|B) P̂MVn(X|B)
KB−1 /

SSE,2

KAKB(R−1)

A*B (KA − 1)(KB − 1) P̂MVn(X|A ∗B) P̂MVn(X|A∗B)
(KA−1)(KB−1)/

SSE,2

KAKB(R−1)

Error KAKB(R− 1) SSE,2

Total KAKBR− 1 SST

6. Monte Carlo simulations

In this section, several simulations are conducted to assess the finite sample

performance of the proposed PMV test. We compare our results with the

DISCO test, the Wilks’ lambda test (Wilks) in Wilks (1932) and the rank
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transformed Wilks’ lambda method (RankWilks) in Nath and Pavur (1985).

All the numerical studies described in this paper have been implemented

using R software. The relevant codes are available on the second author’s

GitHub page: https://github.com/Oliver9803/PMV_code.

Throughout our experiments, the p-value of the PMV or DISCO test

is obtained by B = 199 permutations. We repeat each setting 1000 times

and report the empirical power or type-I error rate of different tests. In

each example, we consider a balanced design with four groups, where the

common sample size is denoted by n.

Example 1. Data are generated from distributions with identical indepen-

dent marginals. The following two settings are studied:

Case (i): The data are generated from Example 3 in Rizzo and Székely

(2010). Group 1 is noncentral t(4) with noncentrality parameter δ.

Groups 2-4 each have central t(4) distributions.

Case (ii): This is identical to Case (i), except that group 1 is from the

noncentral t(2), and groups 2-4 are from the central t(2) distribution.

Table 2 reports the empirical type-I error rate of each test at significance

levels α = 0.01, 0.05 and 0.1 with p = 10 and n = 30, 50. From Table 2,

it can be seen that each test achieves approximately the three nominal
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significance levels under the null hypothesis in Cases (i) and (ii).

Table 2. Example 1: Empirical type-I error rate with p = 10.

n = 30 n = 50

Setting Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

Case (i) PMV 0.015 0.050 0.097 0.012 0.049 0.093

DISCO 0.007 0.050 0.103 0.013 0.045 0.086

Wilks 0.012 0.049 0.096 0.010 0.049 0.095

RankWilks 0.009 0.050 0.103 0.012 0.055 0.102

Case (ii) PMV 0.014 0.054 0.107 0.007 0.044 0.095

DISCO 0.012 0.052 0.102 0.006 0.039 0.097

Wilks 0.002 0.042 0.097 0.010 0.043 0.095

RankWilks 0.008 0.051 0.102 0.011 0.052 0.101

An empirical power comparison is displayed in Figure 1. Figures 1(a)

and (c) show the plots of the power curve against the noncentrality parame-

ter δ with dimensions fixed at p = 10. The results from Figure 1(a) suggest

that the PMV, DISCO and RankWilks tests have similar performances and

are slightly more powerful than the Wilks test in Case (i). Figure 1(c) in-

dicates that the DISCO test is inferior to the PMV and RankWilks tests in

Case (ii) where the data have heavy tails. This may be because the DISCO

test is sensitive to the heavy-tailed data.

Figures 1(b) and (d) show the plots of the power curve against the

dimension at the significance level α = 0.05 and δ = 0.2. Figure 1(b)
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illustrates that the PMV and DISCO tests perform comparably and are

increasingly superior to Wilks and RankWilks as the dimension increases.

For the dimension p ≥ 60, the RankWilks test fails due to the dimension

restriction, and thus, the power is missing in Figures 1(b) and (d). Thus,

although the RankWilks test exhibits good power when p is small, it be-

comes practically infeasible for the large p. Again, Figure 1(d) suggests

that the PMV test is still more powerful than the DISCO test in Case (ii).

Thus, from Figure 1, we can see that the PMV test is robust to heavy-tailed

data and can be applied in arbitrary dimensions, regardless of sample size.

Example 2. Samples 2-4 have i.i.d. marginal Cauchy(0, 1) distributions.

Sample 1 is the mixture distribution 0.5Cauchy(δ, 1)+0.5Cauchy(−δ, 1) with

noncentrality parameter δ.

The empirical type-I error rates for Example 2 are summarized in Table

3. The empirical type-I error rates of the PMV, DISCO and RankWilks

tests are under reasonable control. It is also shown that the Wilks test

fails to control the type-I error, mainly because the usual assumption of

normality is not satisfied.

Figure 2(a) displays power curves with respect to δ. The results il-

lustrate that the DISCO test has lower power than the PMV test. This

may be because the condition E[‖X‖] <∞ required by DISCO is violated.
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Figure 1. Example 1: Empirical power comparisons at the 0.05 significance

level for n = 30: (a) δ varies with p = 10 for Case (i); (b) p varies and

δ = 0.2 for Case (i); (c) and (d): As in (a) and (b) but for Case (ii).

Table 3. Example 2: Empirical type-I error rate with p = 10.

n = 30 n = 50

Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

PMV 0.011 0.047 0.106 0.013 0.047 0.094

DISCO 0.014 0.048 0.095 0.010 0.045 0.093

Wilks 0.002 0.018 0.062 0.001 0.017 0.061

RankWilks 0.014 0.046 0.091 0.006 0.036 0.086
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Figure 2. Example 2: Empirical power comparisons at the 0.05 significance

level for n = 30: (a) δ varies with p = 10; (b) p varies and δ = 8.

The results suggest that our test is very robust in the setting. It might be

surprising to see that the RankWilks test fails in the location model.

In Figure 2(b), the noncentrality parameter is fixed at δ = 8, and the

power varies with dimension. Figure 2(b) indicates that the PMV test has

less power loss than the DISCO test as the dimension increases. In contrast

to Figure 1(b), the power curve in Figure 2(b) decreases with respect to the

dimension p. The phenomenon also occurred in Zhu et al. (2017) (see their

simulations). This problem is another interesting topic in high-dimensional

statistical analysis; see Székely and Rizzo (2013a) and Kim et al. (2020).

Example 3. The marginal distributions are independent of Cauchy distri-

butions. Sample 1 is Cauchy(0, δ) with the scale parameter δ. Samples 2-4
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each have standard Cauchy(0, 1).

Example 3 is designed to evaluate the finite sample performance of our

method for the K-sample hypothesis test of equal scale parameters. The

results in Table 4 indicate that the empirical sizes of the PMV, DISCO and

RankWilks tests are very close to the significance levels.

Table 4. Example 3: Empirical type-I error rate with p = 10.

n = 30 n = 50

Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

PMV 0.009 0.042 0.091 0.012 0.046 0.097

DISCO 0.007 0.037 0.079 0.016 0.054 0.109

Wilks 0.003 0.021 0.055 0.001 0.026 0.066

RankWilks 0.010 0.056 0.112 0.010 0.047 0.096

From Figure 3(a), it can be seen that the PMV test still has superior

performance over the other three methods. As expected, the Wilks and

RankWilks tests lose efficiency in such a scale model. Figure 3(b) suggests

that the power of the PMV test is increasingly superior relative to the

other methods as the dimension increases. In addition, we can see that the

power of the DISCO test is increasing slowly in Figure 3(b), partly because

E[‖X‖] <∞ is not satisfied.

Example 4. In Sample 1, the marginal distributions are independent of
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Figure 3. Example 3: Empirical power comparisons at the 0.05 significance

level for n = 30: (a) δ varies with p = 10; (b) p varies and δ = 2.5.

the mixture distributions δN(0, 1) + (1− δ)Cauchy(0, 1), δ ∈ [0, 1]. Samples

2-4 each have Cauchy(0, 1) distributions.

From Example 4, the mixing weight δ = 0 indicates that H0 is true,

and δ 6= 0 suggests that H0 is false. The simulation results are summarized

in Table 5 and Figure 4. The results again indicate that the PMV test can

roughly achieve the nominal significance levels at δ = 0 and has almost the

highest power at δ 6= 0 when the dimension is fixed or increases.

Example 5. Rizzo and Székely (2010) generalized the original DISCO de-

composition to the α-DISCO decomposition by replacing the ‖ · ‖-norm with

the ‖·‖α-norm for α ∈ (0, 2]. For convenience, we call it the α-DISCO test.

They proved that the α-DISCO tests work if E[‖X‖α] <∞. In this example,
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Table 5. Example 4: Empirical type-I error rate with p = 10.

n = 30 n = 50

Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

PMV 0.011 0.053 0.110 0.009 0.046 0.110

DISCO 0.009 0.049 0.096 0.006 0.046 0.098

Wilks 0.001 0.021 0.058 0.001 0.011 0.045

RankWilks 0.013 0.058 0.110 0.009 0.064 0.106
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Figure 4. Example 4: Empirical power comparisons at the 0.05 significance

level for n = 30: (a) δ varies with p = 10; (b) p varies and δ = 0.5.
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we would like to compare PMV with the α-DISCO test. The following two

settings are studied:

Case (i): The data are generated from Example 4;

Case (ii): In Sample 1, the marginal distributions are independent of the

mixture distributions δCauchy(0, 1) + (1 − δ) exp{Cauchy(0, 1)}, δ ∈

[0, 1]. Samples 2-4 each have exp{Cauchy(0, 1)} distributions.

The simulation results for Example 5 are summarized in Figure 5 and

Table 6, where DISCO 1, DISCO 0.8, DISCO 0.5, DISCO 0.2 and DISCO 0.02

represent the α-DISCO test with α = 1, 0.8, 0.5, 0.2 and 0.02, respectively.

For any α ∈ (0, 1), it is easy to see that E[‖X‖α] < ∞ but E[‖X‖] = ∞

in Case (i) and E[‖X‖α] = ∞ in Case (ii). Figure 5 Case (i) indicates

that the α-DISCO tests work well for the empirical type-I error rate and

empirical power in Case (i), which is consistent with Rizzo and Székely

(2010). We can also see that DISCO 0.2 performs best, followed by PMV

and DISCO 0.5 and then DISCO 0.8 and DISCO 1.

Table 6 illustrates that DISCO 1 and DISCO 0.5 cannot control the

empirical type-I error rate in Case (ii). Figure 5 Case (ii) shows that the

PMV test works the best, whereas DISCO 0.2 and DISCO 0.02 have inferior

powers. In Figure 5 Case (ii), we only report the α-DISCO test where the
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Figure 5. Example 5: Empirical power comparisons at the 0.05 significance

level for n = 30 and p = 10.

minimum value of α is set to 0.02. A smaller α has also been considered,

and it has been found that our method is still better than the α-DISCO

test in this setting (here, we do not report the results).

Table 6. Example 5 Case (ii): Empirical type-I error rate with p = 10.

n = 30 n = 50

Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

PMV 0.006 0.056 0.096 0.009 0.046 0.095

DISCO 1 0.438 0.463 0.499 0.433 0.451 0.476

DISCO 0.5 0.287 0.317 0.333 0.256 0.293 0.323

DISCO 0.2 0.074 0.107 0.149 0.024 0.049 0.104

DISCO 0.02 0.014 0.030 0.083 0.000 0.030 0.104

From the above results, the finite sample performance of the PMV test
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is quite encouraging. In Example 1 Case (i), where data follow from t(4)

distributions, the PMV and DISCO tests behave comparably well. However,

the PMV test outperforms the DISCO test in Example 1 Case (ii), where

E[‖X‖] < ∞ but E[‖X‖] is large. In Examples 2–4, where the data are

generated from heavy-tailed distributions with infinite moments, our test

exhibits superior performance over the other tests. In Example 5, the PMV

and α-DISCO tests perform basically comparably in Case (i), and the PMV

test works best than the α-DISCO tests with different α in Case (ii). Our

limited experience demonstrates that the PMV test is very effective when

the moments are large or data include outliers.

7. Real data analysis

The section illustrates our method by empirical analysis of two real datasets.

Example 6 (Michigan lung cancer data). This example considers Michigan

lung cancer data, which has been analyzed by Subramanian et al. (2005).

The dataset consists of observations of 86 samples on 5,217 gene expression

levels from two classes: 62 in the “good outcomes” class and 24 in the “poor

outcomes” class. The dataset is available at http: // statweb. stanford.

edu/ ~ ckirby/ brad/ LSI/ datasets-and-programs/ datasets. html .

We apply the proposed method to measure the differences between the
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“good outcomes” and “poor outcomes” classes. Since the dataset contains

86 samples, the statistical inference becomes a p� n problem for which the

Wilks-type methods fail. The PMV and DISCO tests with B = 999 per-

mutations are listed in Table 7. The results suggest that both of them can

detect significant differences between the good and poor outcome groups.

We also perform PMV and DISCO tests on subsets of the original data

to provide power comparisons. Specifically, for some given subsample size,

we pick a subsample from the full data uniformly at random. Then, we

repeat each resampling 200 times and obtain the empirical power of each

test method. In Figure 6, we conduct resamplings with subsample sizes

from 30 to 86 and report empirical powers with B = 199 permutations at

significance levels of 0.05 and 0.1. Figure 6 shows that the proposed method

significantly outperforms DISCO in the dataset.

Example 7 (Prostate data). In this example, we consider the prostate

dataset in the MultNonParam package for R. The dataset consists of 101

prostate cancer patients and 5 features for each patient. The 5 feature vari-

ables are hospital in which the patient is hospitalized (hosp), stage of the

cancer (stage), used to help evaluate the prognosis of the cancer (gleason),

prostate-specific antigen (psa) and age of the patient (age).

hosp is a factor variable that consists of three levels: A, B and C hospi-
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Table 7. Analysis of Michigan lung cancer data.

Methods Source Df Sum Mean F-ratio p-value

PMV Between 1 106.647[1] 106.647 1.215 0.048

Within 84 7370.344[2] 87.742

Total 85 7476.991[3]

DISCO Between 1 23.338 23.338 1.172 0.086

Within 84 1672.408 19.910

Total 85 1695.746

[1] n2SSB [2] n2SSW [3] n2SST .
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Figure 6. Michigan lung cancer data: Empirical power comparisons (a) at

the 0.05 significance level; (b) at the 0.1 significance level.
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tals. In the analysis, our interest is to check whether there is heterogeneity

between the three hospitals. To this end, we test independence between

X = (gleason, psa, age)T and Y = hosp. Table 8 reports the p-values of the

PMV, DISCO, Wilks and RankWilks tests, where B = 999 permutation

replicates are carried out for the PMV and DISCO tests. From Table 8,

it can be seen that the DISCO fails to detect the difference between three

hospitals, whereas PMV, as well as Wilks and RankWilks, is able to reveal

significant distinctions between hospitals. The reasonability of the result is

supported by the boxplots of the data in Figure 7.

Table 8. Analysis of prostate data.

Methods Source Df Sum Mean F-ratio p-value

PMV Between 2 342.534[1] 171.267 1.675 0.056

Within 98 10018.56[2] 102.230

Total 100 10361.1[3]

DISCO Between 2 17.390 8.695 1.427 0.15

Within 98 597.179 6.093

Total 100 614.570

Wilks Df Wilks approx F p-value

Between 2 0.810 3.547 0.002

RankWilks Wilks Chi2-Value

0.8134 20.034 0.003

[1] n2SSB [2] n2SSW [3] n2SST .
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Figure 7. Boxplots for prostate data.

8. Discussion

In this paper, we propose a novel nonparametric multivariate multisample

test based on the projection method and the mean variance index. The

proposed method is equivalent to testing the independence between a con-

tinuous random vector and a categorical variable. The proposed test is

consistent against all fixed alternatives and robust to heavy-tailed data,

applicable in arbitrary dimensions, regardless of sample size.

Note that the time complexity for the DISCO statistic is O(K2pn2),

but that for the PMV statistic is O(Kpn3). Thus, DISCO may be faster

than PMV for a small K. In fact, all projection-based methods, such as

PC test (Zhu et al., 2017) and multivariate CvM test (Kim et al., 2020),

also suffer from problems. However, we think that it may be significantly

improved by the sketch approach (Pham and Pagh, 2012), which can easily
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be extended to our method. As suggested by Pham and Pagh (2012), it is

a near-linear time approximation algorithm, which needs further research.

Although our theoretical results are obtained only for the setting p is

fixed, we evaluate the finite sample performance in both small p and large

p settings in our numerical studies. Thus, it is desirable to establish similar

theoretical properties in the large p setting, such as the consistency of the

PMV test and the limiting distributions of Fn under H0 and H1. We can

refer to the works in Székely and Rizzo (2013a) and Kim et al. (2020). This

is our future research.

Supplementary Materials

The online supplementary materials contain proofs of the theoretical

results.
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