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Abstract: Fractional factorial designs are widely used for designing screening

experiments. Nonregular fractional factorial designs can have better properties

than regular designs, but their construction is challenging. Current research on

the construction of nonregular designs focuses on two-level designs. We provide a

novel class of multilevel nonregular designs by permuting levels of regular designs.

We develop a theory illustrating how levels can be permuted without computer

search and accordingly propose a sequential method for constructing nonregular

designs. Compared to regular designs, these nonregular designs can provide more

accurate estimations on factorial effects and more efficient screening for experi-

ments with quantitative factors. We further explore the space-filling property of

the obtained designs and demonstrate their superiority.

Key words and phrases: Generalized minimum aberration, geometric isomor-

phism, level permutation, orthogonal array, regular design, Williams transforma-

tion.
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1. Introduction

Screening experiments are commonly designed to investigate the controlled

factors and identify important ones. Fractional factorial designs are very

suitable for screening experiments because they allow the investigation of

many factors simultaneously with a small number of runs. These designs

are classified into two broad types: regular designs and nonregular designs.

Designs that can be constructed through defining relations among factors

are called regular designs, while all other designs are nonregular. There

are many more nonregular designs than regular designs. Good nonregular

designs can either fill the gaps between regular designs in terms of various

run sizes or provide better estimation for factorial effects.

The construction of good nonregular designs is important and chal-

lenging. Constructions for two-level nonregular designs include Plackett

and Burman (1946), Deng and Tang (2002), Xu and Deng (2005), Fang

et al. (2007), Phoa and Xu (2009), among others. While numerous con-

structions are available for two-level designs, these designs are not able to

provide information on quadratic or high-order factorial effects. Multilevel

designs with three or more levels are in high demand in many scientific and

engineering fields such as many recent studies on drug combination exper-

iments (Ding et al., 2013; Jaynes et al., 2013; Silva et al., 2016; Clemens
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et al., 2019) because these designs provide the capability of studying com-

plex factorial effects and interactions. They are also flexible on designing

the number of levels for factors, without the strict restriction with Latin

hypercube designs (LHDs) that the number of levels has to be the same as

the run size. Nevertheless, constructions for multilevel nonregular designs

rarely exist (Xu et al., 2009). This is because the number of multilevel non-

regular designs is huge so that providing an efficient algorithm for searching

the design space is super challenging. A systematic construction also seems

impossible without a unified mathematical description.

This paper provides a class of multilevel nonregular designs by manip-

ulating nonlinear level permutations on regular designs. While linear level

permutations have been studied by Cheng and Wu (2001), Xu et al. (2004),

and Ye et al. (2007) for three-level designs, and by Tang and Xu (2014)

to improve properties of regular designs, nonlinear level permutations have

not been studied. Note that linearly permuted regular designs can be still

considered as regular because they are just cosets of regular designs and

share the same defining relationship. We consider a nonlinear level permu-

tation via the Williams transformation, which was first used by Williams

(1949) to construct balanced Latin square designs, followed by Butler (2001)

and Wang et al. (2018b) to construct orthogonal or maximin LHDs. Our
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purpose is different from theirs. We provide a class of nonregular designs

by manipulating nonlinear level permutations on regular designs via the

Williams transformation and develop a general theory on the obtained de-

signs. Using the theory, we propose a sequential construction method that

efficiently constructs good designs in terms of the minimum β-aberration

criterion, a criterion that assesses multilevel designs. We further explore

the space-filling property of the obtained designs and demonstrate their

superiority.

The paper is organized as follows. Section 2 introduces the minimum

β-aberration criterion and generates a class of nonregular designs via the

Williams transformation. Section 3 presents our main theoretical results.

Based on the theory, in Section 4 we propose a sequential construction

method and compare the constructed designs with available designs. In

Section 5, we consider the application of the constructed designs. Section

6 concludes the paper and all proofs are deferred to the Appendix.

2. Notation, Background and Definitions

Let Zq = {0, . . . , q − 1}. A q-level design D = (xij) with N runs and n

factors is an N × n matrix over Zq where each column corresponds to a

factor. Let p0(x) ≡ 1 and pj(x) for j = 1, . . . , q − 1 be an orthonormal
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polynomial of order j defined on Zq satisfying

q−1∑
x=0

pi(x)pj(x) =


0, i 6= j;

q, i = j.

The set {p0(x), p1(x), . . . , pq−1(x)} is called an orthonormal polynomial ba-

sis.

Multilevel designs are often used for studying quantitative factors by

fitting response surface models such as polynomial models. A commonly

accepted principle for polynomial models is that effects of a lower polyno-

mial order are more important than effects of a higher polynomial order,

while effects of the same polynomial order are regarded as equally impor-

tant. Based on this principle, Cheng and Ye (2004) proposed the minimum

β-aberration criterion for selecting multilevel designs. For a q-level design

D = (xij) with N runs and n factors, define

βk(D) = N−2
∑
‖u‖1=k

∣∣∣∣∣
N∑
i=1

n∏
j=1

puj(xij)

∣∣∣∣∣
2

for k = 1, . . . , K, (2.1)

where u = (u1, . . . , un) ∈ Zn
q , ‖u‖1 = u1 + · · · + un and K = n(q − 1).

The vector (β1(D), . . . , βK(D)) is called the β-wordlength pattern of D

and each βk measures the overall aliasing between jth- and (k− j)th-order

polynomial terms for all j with 0 ≤ j ≤ k. The minimum β-aberration

criterion is to sequentially minimize βk for k = 1, 2, . . . , K. Because linear
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and second-order terms are more important than higher-order terms, the se-

quential minimization of β1, . . . , β4 would be adequate for choosing designs

in practice. Tang and Xu (2014) and Lin et al. (2017) provided statisti-

cal justification and additional insights regarding minimum β-aberration

designs.

The minimum β-aberration criterion is an extension of the minimum

G2-aberration criterion (Tang and Deng, 1999) for two-level designs, but is

different from the generalized minimum aberration criterion (Xu and Wu,

2001) for multi-level designs with qualitative factors.

For x ∈ Zq, the Williams transformation is defined by

W (x) =


2x, for 0 ≤ x < q/2;

2(q − x)− 1, for q/2 ≤ x < q.

(2.2)

The Williams transformation is a permutation of Zq. For a designD = (xij),

let W (D) = (W (xij)). The following example shows that we can get better

designs from the Williams transformation.

Example 1. Consider a 5-level regular design D with three columns x1, x2

and x3 = x1 + x2 (mod 5). By (2.1), β1(D) = β2(D) = 0, β3(D) = 0.125,

and β4(D) = 0.525. For each b = 0, . . . , 4, we obtain two designs via linear

permutations and the Williams transformation, namely, Db with columns

x1, x2 and x3 = x1 + x2 + b (mod 5) and Eb = W (Db). It can be verified
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Table 1: The β-wordlength pattern of Db and Eb in Example 1.

b β3(Db) β4(Db) β3(Eb) β4(Eb)

0 0.125 0.525 0.442 0.004

1 0.125 0.525 0.168 0.021

2 0.125 0.096 0.168 0.021

3 0.000 0.686 0.442 0.004

4 0.125 0.096 0.000 0.027

that all Db’s and Eb’s have β1 = β2 = 0. Table 1 shows their β3 and β4.

The best design from Db’s is D3 with β3 = 0 and β4 = 0.686, while the best

design from Eb’s is E4 with β3 = 0 and β4 = 0.027. Design E4 performs

much better than D3 under the minimum β-aberration criterion, although

they are both better than the original design D.

Remark 1. In the computation of βk defined in (2.1), the orthonormal

polynomials for a 5-level factor are p0(x) = 1, p1(x) = (x− 2)/
√

2, p2(x) =√
10/7{p1(x)2−1}, p3(x) = {10p1(x)3−17p1(x)}/6, and p4(x) = {70p1(x)4−

155p1(x)2 + 36}/
√

14.

Example 1 shows that from a regular design, we can obtain a series of

nonregular designs via linear permutations and the Williams transforma-

tion. This series of designs can provide better designs than the original
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regular design and linearly permuted designs.

Generally, for a prime number q, a regular qn−m design D has n −m

independent columns, denoted as x1, . . . , xn−m, and m dependent columns,

denoted as xn−m+1, . . . , xn, which can be specified by m generators as

xn−m+i = ci1x1 + · · ·+ ci(n−m)xn−m (mod q), for i = 1, . . . ,m, (2.3)

where each vector (ci1, . . . , ci(n−m)) is a generator whose entries are constants

in Zq. For each regular qn−m design D and b = (b1, . . . , bm) ∈ Zm
q , let

Db = (x1, . . . , xn−m, xn−m+1 + b1, . . . , xn + bm) (mod q), (2.4)

and

Eb = W (Db). (2.5)

Note that we only consider permutations for dependent columns in (2.4)

because linearly permuting one or more independent columns is equivalent

to linearly permuting some dependent columns, which can be seen from

(2.3). Throughout the paper, all additions between columns of a design are

subject to the modulus q, the number of levels of the design, as in (2.3)

and (2.4). We omit the notation (mod q) for such operations when no

confusion is introduced. From each regular qn−m design D, we can derive

qm Db’s and qm Eb’s. To find the best design, one can search over all possible

permutations b ∈ Zm
q , which is, however, cumbersome and even infeasible
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in many cases. In the next section we develop a theory to determine the

best Eb without computer search.

For q = 3, the two classes of designs, Db’s and Eb’s, always have

the same β-wordlength patterns because they are geometrically isomorphic

(Cheng and Ye, 2004). However, with more than three levels, their per-

formances are pretty different under the minimum β-aberration criterion.

Tang and Xu (2014) studied the class of Db’s. As we have seen in Example

1, the class of Eb’s can provide many better designs than the class of Db’s.

3. Theoretical Results

We study properties of Eb in this section. It is well known that a regular

design D is an orthogonal array of strength t ≥ 2. An orthogonal array

is a design in which all qt level combinations appear equally often in ev-

ery submatrix formed by t columns. The t is called the strength of the

orthogonal array, which is often omitted when t = 2. Because the Williams

transformation is a permutation of {0, . . . , q − 1}, if D = (xij) is a q-level

orthogonal array, then W (D) = (W (xij)) is still an orthogonal array. The

following result is from Tang and Xu (2014).

Lemma 1. For an orthogonal array of strength t, βk = 0 for k = 1, . . . , t.

From the construction in (2.5), Eb is an orthogonal array of the same
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strength as D and Db. While we use designs of strength 2 in practice,

Lemma 1 guarantees β1(Eb) = β2(Eb) = 0 so that linear terms are not

aliased with the intercept, nor with each other. Then we want to minimize

β3(Eb) in order to minimize the aliasing between linear and second-order

terms. The following theorem gives a permutation b theoretically to ensure

β3(Eb) = 0 so that no aliasing exists between any linear and second-order

terms.

Theorem 1. For an odd prime q, let

γ = W−1((q − 1)/2) =


(q − 1)/4, if q = 1 (mod 4);

(3q − 1)/4, if q = 3 (mod 4).

(3.6)

Let D be a regular qn−m design generated by (2.3), and Eb be defined by

(2.5). Then β3(Eb∗) = 0 with b∗ = (b∗1, . . . , b
∗
m), where

b∗i =

(
1−

n−m∑
j=1

cij

)
γ (i = 1, . . . ,m). (3.7)

Example 2. Consider a 73−1 design D with x3 = x1 + x2. Then γ =

(3 × 7 − 1)/4 = 5, and equation (3.7) gives b∗1 = 2. It can be verified that

β3(E2) = 0 and β4(E2) = 0.003. Consider another 73−1 design D with

x3 = 2x1 + 2x2. Then γ = 5, and equation (3.7) gives b∗1 = 6. It can be

verified that β3(E6) = 0 and β4(E6) = 0.0196.

Theorem 1 states that given a regular design D, we can always find an
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Eb∗ such that β3(Eb∗) = 0. In the following, we give a sufficient condition

for the Eb∗ to be the unique design with β3 = 0 among all possible qm Eb’s.

Definition 1. Let D be a regular qn−m design. If there exist n−m inde-

pendent columns of D, z1, . . . , zn−m, and a series of s + 1 sets of columns,

T0 ⊂ · · · ⊂ Ts, such that T0 = {z1, . . . , zn−m},

Tk+1 = Tk ∪ {w ∈ D : w = c1w1 + c2w2 (mod q), w1, w2 ∈ Tk, c1, c2 ∈ Zq}

(3.8)

for k = 0, . . . , s− 1, and Ts = D, then D is called recursive. Furthermore,

if either c1 or c2 is restricted to 1 or −1 in (3.8) for all k, then D is called

ordinary-recursive; if both c1 and c2 are resticted to 1 or −1 in (3.8) for all

k, then D is called simple-recursive.

Example 3. Consider the 73−1 design D defined by x3 = 2x1 + 2x2 in

Example 2. Clearly, D is recursive. Because −1 = 6 (mod 7), we have

2x1 + 2x2 + 6x3 = 0, x1 + x2 + 3x3 = 0 and x2 = −x1 + 4x3. Then D is

also ordinary-recursive, if we take T0 = {x1, x3} and T1 = {x1, x2, x3} = D.

However, D is not simple-recursive.

Example 4. Consider a 55−2 design D with x4 = x1 + x2 and x5 =

x1 + x2 + x3. Take T0 = {x1, x2, x3}, T1 = {x1, x2, x3, x4} and T2 =

{x1, x2, x3, x4, x5} = D, then D is simple-recursive. If x5 = x1 + x2 + 2x3
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instead, then D is ordinary-recursive but not simple-recursive. Consider

another 55−2 design D with x4 = x1 + x2 and x5 = x1 + 2x2 + 2x3. This

design is not recursive because x5 is not involved in any word of length

three. However, when one more column x6 = x1 + 2x2 is added, it is

ordinary-recursive.

Regular designs with q2 runs are commonly used in practice because

they are economical and guarantee that linear terms are uncorrelated. Those

designs accommodate two independent columns and up to q− 1 dependent

columns. By Definition 1, they are all recursive by letting T0 include the

two independent columns and T1 = D.

Lemma 2. Let q be an odd prime and D be a regular design of q2 runs.

Then D is recursive.

Clearly, recursive designs include ordinary-recursive designs, which in

turn include simple-recursive designs. For three-level designs, the three

types of designs are equivalent, while for designs with more than three

levels, they are dramatically different. Table 2 compares the numbers of

the three types of designs with 25 and 49 runs. The numbers of simple-

recursive designs are much smaller than the numbers of the other two types

of designs. Although there is a difference between the numbers of ordinary-
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Table 2: The numbers of the three types of recursive designs with 25 and

49 runs.

25-run designs 49-run designs

n simple ordinary recursive simple ordinary recursive

3 2 6 8 2 10 18

4 6 22 24 6 99 135

5 20 32 32 20 517 540

6 16 16 16 70 1214 1215

7 252 1458 1458

8 267 729 729

recursive and recursive designs, the difference is small. As the number of

columns increases, all designs tend to be ordinary-recursive.

The next theorem gives a sufficient condition for the Eb∗ to be the

unique design with β3 = 0 among all possible qm Eb’s.

Theorem 2. For an odd prime q, let D be a regular qn−m design defined

by (2.3), and Eb be defined as (2.5). If D is ordinary-recursive, then Eb∗

with b∗ defined in (3.7) is the only design with β3 = 0 among all qm Eb’s

derived from D.

In fact, we can show that if D has no greater than 13 levels, the result
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of Theorem 2 can be extended beyond ordinary-recursive designs. That is,

we have the following more general result for q ≤ 13.

Theorem 3. For a recursive qn−m design D, if q is an odd prime and

q ≤ 13, the Eb∗ with b∗ defined in (3.7) is the only design with β3 = 0

among all Eb’s derived from D.

Theorem 3 is not true for q ≥ 17. A counter example for q = 17 comes

with a 173−1 design with x3 = 2x1 + 4x2. By (3.7), b∗ = 14. Then E14 has

β3 = 0, while the design E4 with columns x1, x2, and x3 + 4 also has zero

β3. That being said, as the number of columns increases, the number of

non-ordinary-recursive regular designs decreases dramatically so Theorem

2 works for most recursive designs with many columns.

Example 5. Consider a 78−6 design D with x3 = x1+x2, x4 = x1+2x2, x5 =

x1 + 4x2, x6 = x1 + 5x2, x7 = 2x1 + 5x2, and x8 = 2x1 + 6x2. There

are 76 = 117, 649 Eb’s derived from D, which makes it cumbersome, if

not impossible, to do an exhaustive search for the best Eb. Note that

x7 = x1 + x6, x8 = x3 + x6. So D is ordinary-recursive by taking T0 =

{x1, x2}, T1 = {x1, . . . , x6} and T2 = {x1, . . . , x8} = D. Equation (3.7)

gives b∗1 = 2, b∗2 = 4, b∗3 = 1, b∗4 = 3, b∗5 = 5, and b∗6 = 0. It can be verified

that β3(Eb∗) = 0 and β4(Eb∗) = 9.677. By Theorem 2, Eb∗ is the best design

among all Eb’s derived from D under the minimum β-aberration criterion.
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By Theorems 2 and 3, for an ordinary-recursive design or a recursive

design with no more than 13 levels, Eb∗ is the best design among all Eb’s,

which is obtained without any computer search. Theorem 2 does not apply

to the class of linearly permuted designs Db’s. Here is a counter example.

Example 6. Consider the design 73−1 design D defined by x3 = 2x1 + 2x2

in Example 2. Example 3 shows that it is ordinary-recursive, but there are

three Db’s with zero β3. Specifically, it is easy to verify that β3(Db) = 0 for

b = 0, 3, 5.

In fact, Tang and Xu (2014) showed that if D is simple-recursive, the

design Db̃ given by

b̃i =

(
1−

n−m∑
j=1

cij

)
(q − 1)/2 (i = 1, . . . ,m). (3.9)

is the unique design with β3 = 0 among all Db’s. As we have shown above,

only a small amount of regular designs are simple-recursive. Therefore,

results on simple-recursive designs are usually not applicable for designs

with more than three levels. In contrast, Theorem 2 is more general and

applies to the broader classes of ordinary-recursive and recursive designs.

Theorem 3 and Lemma 2 indicate the following result.

Corollary 1. For an odd prime q ≤ 13, let D be a regular design of q2

runs. Then Eb∗ with b∗ defined as (3.7) is the unique design with β3 = 0
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among all Eb’s derived from D.

Now we show another useful property of Eb∗ . A design D over Zq is

called mirror-symmetric if (q − 1)J −D is the same design as D, where J

is a matrix of unity. Mirror-symmetric designs include two-level foldover

designs as special cases.

Theorem 4. For an odd prime q, let D be a regular qn−m design defined

by (2.3), and Eb be defined as (2.5). Then Eb∗ with b∗ defined in (3.7) is

mirror-symmetric.

Tang and Xu (2014) showed that a design is mirror-symmetric if and

only if it has βk = 0 for all odd k. By Theorem 4, the Eb∗ has βk(Eb∗) = 0

for all odd k. This guarantees that odd-order terms are not aliased with

any even-order term. Specifically, linear terms are not aliased with any

even-order term.

4. Construction Method and Design Comparisons

Based on our theoretical results, we propose a sequential method for con-

structing multilevel nonregular designs. For simplicity, we focus on de-

signs with q2 runs although the method and results apply for general qn−m

designs. A regular fractional factorial design with q2 runs has two in-

dependent columns, denoted as x1 and x2, and can accommodate up to
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Table 3: Comparison of β-wordlength patterns for 25-run designs with 5

levels.

D Db̃ Eb∗

n β3 β4 Generators β3 β4 Generators β3 β4

3 0.125 0.525 (1,2) 0 0.271 (1,1) 0 0.027

4 0.375 1.361 (2,1) 0 1.336 (1,2) 0 1.037

5 0.750 3.029 (1,4) 0 3.793 (1,3) 0 3.768

6 1.250 6.786 (1,1) 0 8.250 (2,3) 0 8.250

(q − 1) dependent columns each of which is generated by c1x1 + c2x2 with

c1, c2 ∈ {1, . . . , q − 1}. Then the first two columns of Eb∗ are W (x1) and

W (x2), respectively. To obtain n ≥ 3 columns, we add columns to Eb∗

sequentially by searching over generators (c1, c2). Each new column is gen-

erated by W (c1x1 + c2x2 + b∗) where b∗ = (1− c1 − c2)γ with γ defined in

(3.6) and (c1, c2) minimizes β4(Eb∗), that is,

(c1, c2) = arg min
(c1,c2)

β4(Eb∗).

The last three columns of Tables 3–5 show the generators of the added

columns as well as the β-wordlength patterns of the obtained Eb∗ .

To see the merit of Eb∗ ’s, we compare them with commonly used regular

designs and the class of Db̃’s. The commonly used regular design (Mukerjee
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Table 4: Comparison of β-wordlength patterns for 49-run designs with 7

levels.

D Db̃ Eb∗

n β3 β4 Generators β3 β4 Generators β3 β4

3 0.063 0.563 (2,3) 0 0.063 (1,1) 0 0.003

4 0.188 1.354 (1,4) 0 0.313 (3,5) 0 0.055

5 0.375 2.440 (2,5) 0 1.135 (3,6) 0 0.836

6 0.625 4.313 (1,2) 0 3.094 (2,5) 0 2.368

7 0.938 7.401 (2,2) 0 6.438 (2,6) 0 4.928

8 1.312 12.78 (2,6) 0 11.23 (2,3) 0 9.677

and Wu, 2006), denoted by D, consists of the first n columns of

x1, x2, x1 + x2, x1 + 2x2, x1 + 3x2, . . . , x1 + (q − 1)x2. (4.10)

The design Db̃ is obtained sequentially similar to the generation of Eb∗ .

The only difference is that the added column of Db̃ is c1x1 + c2x2 + b̃ where

b̃ = (1−c1−c2)(q−1)/2. Tables 3–5 show the comparisons of such obtained

designs D, Db̃, and Eb∗ with 25 runs, 49 runs, and 121 runs, respectively.

We can see that the Eb∗ always performs the best for any design size.

To illustrate the merit of the obtained designs Eb∗ , we further examine

their space-filling property. For an N × n design, we consider the maximin
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Table 5: Comparison of β-wordlength patterns for 121-run designs with 11

levels.

D Db̃ Eb∗

n β3 β4 Generators β3 β4 Generators β3 β4

3 0.025 0.585 (2,4) 0 0.010 (1,1) 0 0.0002

4 0.075 1.388 (4,2) 0 0.055 (2,4) 0 0.005

5 0.150 2.350 (5,3) 0 0.281 (4,2) 0 0.015

6 0.250 3.629 (3,5) 0 0.710 (2,9) 0 0.031

7 0.375 5.274 (4,7) 0 1.466 (2,8) 0 0.637

8 0.525 7.682 (1,3) 0 3.152 (5,3) 0 1.308

9 0.700 11.07 (2,8) 0 5.519 (4,10) 0 3.572

10 0.900 15.82 (3,3) 0 8.891 (1,7) 0 5.864

11 1.125 22.26 (1,7) 0 13.49 (5,1) 0 9.896

12 1.375 31.29 (4,10) 0 19.65 (5,4) 0 14.44
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Figure 1: Plot of Mms (the larger the better) against s for four designs: D

(circle), Db̃ (cross), Eb∗ (square), the maximum-projection design (triangle),

and the collapsed maximum-projection design (plus).
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measure in all projection dimensions, which is given by

Mms = min
r=1,...,(n

s)

{
1(
N
2

) N−1∑
i=1

N∑
j=i+1

1

d2sij,sr

}−1/(2s)
, for s = 1, . . . , n,

where dij,sr is the Euclidean distance between the ith and jth design points

in the rth projection of dimension s. Design points are scaled to [0, 1]n

to apply this measure, that is, the jth column is obtained by xj/(q − 1).

The measure was proposed in Joseph et al. (2015) to generate the so called

“maximin projection designs”. Designs with larger Mms values are more

space-filling in s-dimension projections. Figure 1 plots the Mms values

of the 121 × 12 designs in Table 5 for s = 1, . . . , 12. We also generate a
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121×12 maximum-projection LHD from R package MaxPro (Joseph et al.,

2015) and include its Mms values in Figure 1. The design was claimed to be

space-filling in all projected dimensions so may serve as a benchmark in the

comparison. Because this design has 121 levels, we further collapse it to a

11-level design and include the Mms values of the collapsed design in Figure

1. To obtain a good maximum-projection design, the R package MaxPro

is run 100 times and the best design is selected. It takes on average 7

seconds to get a maximum-projection design. Therefore, to run the package

100 times takes about 12 minutes, whereas it takes less than a second to

get any of the other designs in the plot. Even so, Figure 1 shows that

Eb∗ outperforms the selected maximum-projection design and its collapsed

design for all s ≤ 11 projection dimensions, although the collapsed design

is marginally better than Eb∗ for the full dimension s = 12. Besides, Eb∗

performs better than all other designs in Figure 1 on projection dimension

s = 2, . . . , 10, and is only slightly worse than Db̃ when s = 11. The good

performance of Eb∗ comes from its zero β3 and smaller β4 values.

We also examine such comparisons for designs of other sizes in Table

5 and get similar performance. This is because designs in Table 5 are

obtained sequentially such that those with less than 12 columns are actually

projections of the 121 × 12 designs. Therefore, Figure 1 also reflects the
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projection properties of designs with fewer columns. Similar results also

hold for 25-run and 49-run designs.

5. Applications

Consider applying the three 25-run designs with 3 columns and 5 levels in

Table 3 to the following normalized second-order polynomial model

y = α0+
3∑
j=1

p1(xj)αj+
3∑
j=1

p2(xj)αjj+
2∑
j=1

3∑
k=j+1

p1(xj)p1(xk)αjk+ε, (5.11)

where p1(x) =
√

2(x−2)/2, p2(x) =
√

5/14{(x−2)2−2}, α0, αj, αjj, and αjk

are the intercept, linear, quadratic and bilinear terms, respectively, and ε ∼

N(0, σ2). Using such a normalized model instead of a model with natural

terms (i.e., terms xj, x
2
j , and xjxk) produces orthogonality between any

two linear terms and between linear and quadratic terms for an orthogonal

array. For the regular design D, because β3(D) 6= 0, linear terms are

aliased or correlated with bilinear terms and the model in (5.11) is indeed

not estimable. While both Db̃ and Eb∗ have β1 = β2 = β3 = 0, the intercept

and all the linear terms are not correlated with the quadratic and bilinear

terms and so they can be estimated independently. For either design, let M

denote the model matrix corresponding to the 3 quadratic and 3 bilinear

terms: α11, α22, α33, α12, α13 and α23. The variance-covariance matrix of

the estimates of parameters for these terms is σ2(MTM)−1. For Db̃, the
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variances of the estimates for quadratic terms α11, α22 and α33 are 0.047σ2,

0.041σ2, and 0.047σ2, respectively, and for bilinear terms α12, α13 and α23

are 0.051σ2, 0.050σ2, and 0.051σ2, respectively. For Eb∗ , the variance of

the estimate for each quadratic term is 0.040σ2, and for each bilinear term

is 0.041σ2. With Eb∗ , the variance of quadratic terms decreases by up to

14.9% and the variance of bilinear terms decreases by up to 19.6%. It can

be verified that the correlations between the estimates are also smaller for

Eb∗ than Db̃.

Further, consider the bias brought by the inadequacy of polynomial

terms in model (5.11). Suppose there are nonnegligible third-order polyno-

mial terms as ∑
i+j+k=3

αijkpi(x1)pj(x2)pk(x3).

Then the estimates of the linear parameters in model (5.11) are biased by

these third-order terms. Specifically, for the estimators from the design Db̃,

we have

E(α̂1) = α1 − .12α021 − .36α012 + .3α111,

E(α̂2) = α2 + .36α201 − .36α102 − .1α111,

E(α̂3) = α3 + .36α210 − .12α120 − .3α111,
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and for the estimators from the design Eb∗ , we have

E(α̂1) = α1 + .096α021 − .096α012 + .08α111,

E(α̂2) = α2 + .096α201 − .096α102 + .08α111,

E(α̂3) = α3 + .096α210 + .096α120 − .08α111.

Obviously, the design Eb∗ brings less bias to the estimators of linear terms

than Db̃. Because β5 = 0 for both designs, the estimates of second-order

terms from Db̃ and Eb∗ are not biased by third-order terms. In summary,

Eb∗ is better for screening or studying quantitative factors than Db̃ and Db.

The results are general and apply to other designs in Tables 3–5.

6. Concluding Remarks

We provide a new class of nonregular designs via the Williams transforma-

tion and develop a theory on the property of the obtained designs. Using

the theory, we further propose a sequential method for constructing non-

regular designs with minimum β-aberration. The sequential method is fast

and efficient to generate multilevel nonregular designs with large numbers of

runs and factors. While two-level nonregular designs have been catalogued

by some researchers, the construction of multilevel nonregular designs was

rarely studied. The approach in this paper is a pioneer work in this field.
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The obtained designs provide more accurate estimations on factorial ef-

fects and are more efficient than regular designs for screening quantitative

factors.

The obtained designs can be used to generate orthogonal LHDs which

are commonly used and studied in computer experiments. Orthogonal

LHDs have β1 = β2 = 0 therefore guarantee the orthogonality between lin-

ear effects. A popular construction, proposed by Steinberg and Lin (2006)

and Pang et al. (2009), is to rotate a regular design to obtain an LHD which

inherits the orthogonality from both the rotation matrix and the regular

design. Wang et al. (2018a) improved the method by rotating a linearly

permuted regular design, that is, the Db̃ with b̃ defined in (3.9). Such gen-

erated orthogonal LHDs have β3 = 0 thus can guarantee that nonnegligible

quadratic and bilinear effects do not contaminate the estimation of linear

effects. With the results in this paper, we can rotate the class of designs Eb∗

and obtain new orthogonal LHDs which have smaller β4 values and inherit

the good space-filling property of Eb∗ . These LHDs may be good options

for designing computer experiments and Gaussian processing modeling.

The Williams transformation is pairwise linear, which is probably the

simplest nonlinear transformation, yet it leads to some remarkable results

such as Theorems 2 and 4. It would be of interest to identify and char-
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acterize other nonlinear transformations that have similar properties. In

addition, the proposed method requires the number of levels of regular de-

signs being a prime number and does not work for, say, four-level designs.

It would also be interesting to extend the method for non-prime numbers

of levels.
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Appendix: Proofs

We need the following lemmas for the proofs.

Lemma 3. The Db is the same design as De+γ (mod q), where e = b−b∗,

γ is defined as (3.6), and b∗ is defined as (3.7).

Proof. For Db, permuting all columns xj to xj − γ for j = 1, . . . , n is

equivalent to keeping the independent columns unchanged while permuting

the dependent columns xn−m+i + bi to xn−m+i + bi − b∗i for i = 1, . . . ,m.

Hence, Db − γ is the same design as De with e = b − b∗. Equivalently, Db

is the same design as De + γ (mod q).

Lemma 4. If x is a real number which is not an integer, then

∞∑
n=−∞

(−1)n−1

(n+ x)2
=
π2 cos πx

(sin πx)2
.
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Proof. It is known that
∑∞

n=−∞ 1/(n+ x)2 = π2/(sin πx)2. Then

∞∑
n=−∞

(−1)n−1

(n+ x)2
=

∞∑
n=−∞

1

(n+ x)2
− 2

∑
even n

1

(n+ x)2

=
π2

(sin πx)2
− 1

2

π2

(sin(πx/2))2

=
π2 cos πx

(sin πx)2
.

Lemma 5. Let p1(x) = ρ[x−(q−1)/2] be the linear orthogonal polynomial,

where ρ =
√

12/[(q + 1)(q − 1)]. Then for x = 0, . . . , q − 1,

p1(x) = − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(x+ 0.5)

q

}
.

where

g(v) =
cos(π(v + 0.5)/q)

{sin(π(v + 0.5)/q)}2
. (6.12)

Proof. For x ∈ (0, q), the Fourier-cosine expansion of x− q/2 is given by

x− q

2
=
∞∑
v=1

av cos

(
vπx

q

)
,

with

av =
2

q

∫ q

0

(
x− q

2

)
cos

(
vπx

q

)
dx =


0, if v is even;

−4q/(v2π2), if v is odd.
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Then

p1(x) = −4ρq

π2

∑
odd v>0

1

v2
cos

(
vπ(x+ 0.5)

q

)

= −2ρq

π2

∞∑
v=−∞

1

(2v + 1)2
cos

{
(2v + 1)π(x+ 0.5)

q

}

= −2ρq

π2

∞∑
k=−∞

q−1∑
v=0

1

(2kq + 2v + 1)2
cos

{
(2kq + 2v + 1)π(x+ 0.5)

q

}
.

Since for any integers k and x,

cos

{
(2kq + 2v + 1)π(x+ 0.5)

q

}
= (−1)k cos

{
(2v + 1)π(x+ 0.5)

q

}
,

we have

p1(x) = −2ρq

π2

q−1∑
v=0

∞∑
k=−∞

(−1)k

(2kq + 2v + 1)2
cos

{
(2v + 1)π(x+ 0.5)

q

}
.

By Lemma 4 and (6.12), we have

p1(x) = − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(x+ 0.5)

q

}
.

Proof of Theorem 1. Denote e = b − b∗ and De = (yij). By Lemma 3, Db

is the same design as (De + γ) (mod q), so Eb = W (Db) = W (De + γ). By

Lemma 5,

p1 (W (x)) = − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(W (x) + 0.5)

q

}

= − ρ

2q

q−1∑
v=0

g(v) cos

{
(2v + 1)π(2x+ 0.5)

q

}
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because cos {(2v + 1)π(W (x) + 0.5)/q} = cos {(2v + 1)π(2x+ 0.5)/q} for

any integer v. Then we have

β3(Eb) = β3(W (De + γ))

= N−2
∑

y1,y2,y3

∣∣∣∣∣
N∑
i=1

p1(W (yi1 + γ))p1(W (yi2 + γ))p1(W (yi3 + γ))

∣∣∣∣∣
2

= N−2
(
ρ

2q

)6 ∑
y1,y2,y3

∣∣∣∣∣
q−1∑
v1=0

q−1∑
v2=0

q−1∑
v3=0

g(v1)g(v2)g(v3)S(y, v)

∣∣∣∣∣
2

, (6.13)

where
∑

y1,y2,y3
sums over all three different columns y1, y2, y3 in De, yj =

(y1j, . . . , yNj) for j = 1, 2, 3, and

S(y, v) =
N∑
i=1

3∏
j=1

cos

{
(2vj + 1)π(2yij + 2γ + 0.5)

q

}

=
N∑
i=1

3∏
j=1

(−1)(q+1)/2+vj sin

{
2(2vj + 1)πyij

q

}

= (−1)(q+1)/2+v1+v2+v3

N∑
i=1

3∏
j=1

sin

{
2(2vj + 1)πyij

q

}
.

If b = b∗, e = 0 and De = D. Because D is a regular design, it is a linear

space over Zq. Thus, (q− yi1, . . . , q− yin) ∈ D whenever (yi1, . . . , yin) ∈ D.

Then S(y, v) = 0 for any y = (y1, y2, y3) and v = (v1, v2, v3). By (6.13),

β3(Eb∗) = 0.

Proof of Theorem 2. Following the proof of Theorem 1, if b 6= b∗, then

e = b − b∗ has nonzero components. Since D is ordinary-recursive, there

exist three columns, say z1, z2, z3, in D such that z3 = c1z1 + c2z2, c1 = 1
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or −1, c2 ∈ Zq, and z1, z2 and z3 + e0 are three columns in De, where e0 is

a nonzero component of e. We only consider c1 = 1 below as the proof for

c1 = −1 is similar. Let d be the design formed by z1, z2, and z3 + e0. By

(6.13), we only need to show that β3(W (d)) 6= 0. Note that

β3(W (d)) = N−2
(
ρ

2q

)6
∣∣∣∣∣
q−1∑
v1=0

q−1∑
v2=0

q−1∑
v3=0

(−1)v1+v2+v3g(v1)g(v2)g(v3)S(z, v)

∣∣∣∣∣
2

,

(6.14)

where g(v) is defined in (6.12), and

S(z, v) =
N∑
i=1

sin

(
2(2v1 + 1)πzi1

q

)
sin

(
2(2v2 + 1)πzi2

q

)
sin

(
2(2v3 + 1)π(zi3 + e0)

q

)
.

By applying the product-to-sum identities twice, we have

S(z, v) =
1

4

{
N∑
i=1

sin

(
2π(t1zi1 − t4zi2 + (2v3 + 1)e0)

q

)

+
N∑
i=1

sin

(
2π(t2zi1 + t4zi2 − (2v3 + 1)e0)

q

)

−
N∑
i=1

sin

(
2π(t1zi1 + t3zi2 + (2v3 + 1)e0)

q

)

−
N∑
i=1

sin

(
2π(t2zi1 − t3zi2 − (2v3 + 1)e0)

q

)}
, (6.15)

where t1 = 2(v1 + v3) + 2, t2 = 2(v1 − v3), t3 = 2(v2 + v3c2) + c2 + 1, and

t4 = 2(v2 − v3c2)− c2 + 1. Let

v10 = q − 1− v3 and v20 = v3c2 + (c2 − 1)(q + 1)/2 (mod q). (6.16)
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When v1 = v10 and v2 = v20, t1 = t4 = 0 (mod q) and the first item in

the right hand side of (6.15),
∑N

i=1 sin (2π(t1zi1 − t4zi2 + (2v3 + 1)e0)/q),

equals N sin(2π(2v3 + 1)e0/q). When v1 6= v10 or v2 6= v20, the item is zero.

By similar analysis to other items in (6.15), we have

S(z, v) =


N
4

sin
{

2π(2v3+1)e0
q

}
, if (v1, v2) = (v10, v20) or (q − 1− v10, q − 1− v20);

−N
4

sin
{

2π(2v3+1)e0
q

}
, if (v1, v2) = (v10, q − 1− v20) or (q − 1− v10, v20);

0, otherwise.

Note that g(q − 1− v) = −g(v) for any v. Then by (6.14),

β3(W (d)) =

(
ρ

2q

)6
∣∣∣∣∣
q−1∑
v3=0

(−1)v3c2g(v20)(g(v3))
2 sin

{
2π(2v3 + 1)e0

q

}∣∣∣∣∣
2

,

(6.17)

where v20 is defined in (6.16). Applying g(q− 1− v) = −g(v) again, we can

simply (6.17) as

β3(W (d)) =
ρ6

16q6

∣∣∣∣∣∣
(q−1)/2∑
v3=0

(−1)v3c2g(v20)(g(v3))
2 sin

{
2π(2v3 + 1)e0

q

}∣∣∣∣∣∣
2

.

(6.18)

By considering the Taylor expansion of g(v), we can see that the sum in

(6.18) is dominated by the first two items with v3 = 0 and v3 = 1. It can

be verified that (6.18) is nonzero for e0 = 1, . . . , q − 1. This completes the

proof.

Proof of Theorem 3. Following the same process as in the proof of Theorem
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2, if D is recursive, then for the three columns z1, z2, and z3 in D, z3 = c1z1+

c2z2, where both c1 and c2 can be any value in Zq. Then we can get (6.15)

with t1 and t2 replaced by t′1 = 2(v1+v3c1)+1+c1 and t′2 = 2(v1−v3)+1−c1,

which will in turn result in a change of v10 in (6.16) to

v′10 =


(q − 1)/2− c1/2− v3c1 (mod q), if c1 is an even number;

q − (c1 + 1)/2− v3c1 (mod q), if c1 is an odd number.

Similar to (6.18), we have

β3(W (d)) =
ρ6

16q6

∣∣∣∣∣∣
(q−1)/2∑
v3=0

(−1)v3c2g(v′10)g(v20)(g(v3)) sin

{
2π(2v3 + 1)e0

q

}∣∣∣∣∣∣
2

.

(6.19)

It can be verified that, for q ≤ 13, (6.19) is nonzero for e0 = 1, . . . , q− 1 for

any c1, c2 ∈ Zq. This completes the proof.

Proof of Theorem 4. We need to show that for any run W (x1, . . . , xn) in

Eb∗ , (q − 1) − W (x1, . . . , xn) also belongs to Eb∗ . This is equivalent to

show that for each run (x1, . . . , xn) in Db∗ , W−1(q−1−W (x1, . . . , xn)) also

belongs to Db∗ . Since the design D contains the zero point (0, . . . , 0), by

Lemma 3, Db∗ contains the point (γ, . . . , γ). Because all design points of

D form a linear space and Db is a coset of D, then γ− (x1, . . . , xn) belongs

to the null space of Db∗ . Hence, γ − (x1, . . . , xn) + γ = 2γ − (x1, . . . , xn)
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belongs to Db∗ . For x = 0, . . . , q − 1,

W−1(x) =


x/2, for even x;

q − (x+ 1)/2, for odd x,

and

W−1(q − 1− x) =


(q − 1)/2−W−1(x), for even x;

(3q − 1)/2−W−1(x), for odd x,

= 2γ −W−1(x).

Then W−1(q−1−W (x1, . . . , xn)) = 2γ− (x1, . . . , xn). Hence, W−1(q−1−

W (x1, . . . , xn)) belongs to Db∗ . This completes the proof.
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