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Order-of-Addition Experiments

Zack Stokes and Hongquan Xu

University of California, Los Angeles

Abstract: In many physical and computer experiments the order in which the

steps of a process are performed may have a substantial impact on the mea-

sured response. Often the goal in these situations is to uncover the order which

optimizes the response according to some metric. The brute force approach of

performing all permutations quickly becomes impractical as the number of com-

ponents in the process increases. Instead, we seek to develop order-of-addition

experiments that choose an economically viable subset of permutations to test.

The statistical literature on this topic is sparse and many researchers rely on

ad-hoc methods to study the effect of process order. In this work we present a

series of novel developments including a modeling framework that exploits cer-

tain structures of the data, a method for constructing optimal designs under this

proposed framework, and an evaluation of the performance and robustness of the

constructed designs. We use data from a drug combination therapy problem to

highlight the benefits of our approach.

Key words and phrases: Experimental design, drug combination experiment, gen-

eralized minimum aberration, Latin square, optimal design, orthogonal array.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Order-of-Addition Experiments 2

1. Introduction

In many experiments, the order in which a process is executed or compo-

nents are added can have a substantial impact on the response. Researchers

must therefore consider this effect when designing their experiments, or they

run the risk of producing sub-optimal conclusions. However, the combinato-

rial explosion that occurs in experiments with more than a few components

quickly renders running a trial for every permutation impractical. The solu-

tion to this problem is the design of order-of-addition experiments in which

the goal is to choose an appropriate subset of all possible permutations

such that the study objective can be appropriately met while satisfying

computational and financial constraints.

Order-of-addition experiments have been popularly conducted to study

physical and simulated phenomenon in many areas such as medical science,

pharmaceutical science, bio-chemistry, nutritional science, food science, and

mechanics and engineering; see Lin and Peng (2019) for a review of these

applications. We encounter order-of-addition experiments in both past and

present drug combination projects. Combination chemotherapy has be-

come commonly used in cancer treatment, viral infection eradication and

super bacteria inhibition (Ding et al. (2013), Jaynes et al. (2013), Ding et

al. (2015), Silva et al. (2016), Xiao et al. (2019)). A major limitation in
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the current techniques for drug combination experimentation is that drugs

are simultaneously added and drug sequence is not considered. However,

drug sequence often plays a major role in deciding endpoint efficacy, since

the early addition of certain drugs could prepare the biological system to

better accept or defend the later drugs. Pre-clinical and clinical studies

indicate that drug sequence is of great importance to improve the effect of

the treatment (MacBeath and Yaffe (2012), Wang et al. (2020)).

Nevertheless, references for the design and modeling of such experi-

ments are rather primitive. Traditional factorial designs and orthogonal ar-

rays cannot be used for order-of-addition experiments since each run must

be a permutation of the components, and the existing methods fall short

when working with complex, real data. In this work, Section 2 begins with

an overview of the current order-of-addition literature. Next, Section 3

proposes new models and presents the results of applying them to the drug

sequencing problem discussed above in the context of treating lymphoma.

Section 4 introduces a novel construction method and covers general opti-

mality results for a class of models. Section 5 provides a thorough evalu-

ation of the performance and properties of the designs from our algorithm

compared to those from existing literature. This includes a study that

demonstrates that the proposed designs are robust under algorithm tuning
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and model misspecification. Section 6 concludes the work with a summary

and discussion. All proofs are given in Section S1 of the Supplementary

Materials.

2. Background and Recent Works

We call each material or drug to be added in an experiment a component.

If the experiment involves m components, denoted by 0, 1, . . . ,m− 1, then

there are m! possible permutations. Let Fm be the full design with m!

distinct rows and m columns, where each row is a permutation of m com-

ponents. Performing all possible permutations quickly becomes unfeasible

even for experiments with five or more components. To save time and cost,

it is necessary to choose a subset of the runs to perform. A natural question

then arises of which subset to choose and how to model the response.

There have been a few recent studies on the design and analysis of

order-of-addition experiments as formulated above. Van Nostrand (1995)

and Voelkel (2019) studied order-of-addition experiments by creating a set

of psuedo-factors {Iij, 0 ≤ i < j ≤ m − 1} such that each corresponds to

the pairwise ordering of the components. For example, in the case of m = 4

components, the six pairwise ordering factors are I01, I02, I03, I12, I13, I23.

Each factor Iij has two levels, 1 and −1, indicating whether or not com-
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ponent i is added before component j. Furthermore, they considered the

following pairwise ordering (PWO) model

y = β0 +
∑
i<j

βijIij + ε, (2.1)

with random error ε ∼ N(0, σ2). Voelkel (2019) constructed optimal designs

for this PWO model and employed the D-criterion to assess their properties

and make comparisons. Peng et al. (2019) showed that the full design Fm

is optimal for the PWO model under any concave and signed permutation

invariant criterion. The authors also constructed a class of fractional designs

that are optimal under these same conditions. However, their designs often

have an excessive number of runs and may be less useful in practice. Zhao

et al. (2020) constructed minimally-supported designs for the PWO model

containing only one point per parameter. Mee (2020) extended the PWO

model to include interactions of the pairwise ordering factors, which we

briefly consider in Section 3. Lin and Peng (2019) provided a good summary

of PWO models.

Yang et al. (2020) took a different approach to the problem by measur-

ing the absolute position effects instead of relative position effects. They

framed the order-of-addition experiment with n runs and m components
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as a design matrix A = (aij), where aij is the component that will be

added in the jth position of the ith run. They constructed an indicator

z
(i)
kj for each component-position pair (k, j) such that z

(i)
kj is 1 if aij = k

and 0 otherwise. Because exactly one component is used at each position,

we have
∑m−1

k=0 z
(i)
kj = 1 for any i and j. Thus, m − 1 contrasts are needed

to represent the effects of m components for each position. Because each

run is a permutation of m distinct components, we also have
∑m

j=1 z
(i)
kj = 1

for any i and k. As a result, we can only include m − 1 positions in the

model. With these constraints an appropriate regression model, called the

component-position (CP) model, is

y = γ0 +
m−1∑
k=1

m−1∑
j=1

zkjγkj + ε, (2.2)

where y is the response, γ0 is the intercept, zkj is an indicator for the

component-position pair (k, j) as described above, γkj is the parameter

representing the effect of component k being added at the jth position, and

ε is an independent normal random error. Yang et al. (2020) also proposed

the following class of designs for the CP model (2.2).

Definition 1. An n×m matrix with entries from {0, 1, . . . ,m−1} is called

a component orthogonal array (COA) of n runs and m factors if each row
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is a permutation of {0, 1, . . . ,m− 1} and, for any subarray of two columns,

each level combination (i, j) with i 6= j and i, j = 0, 1, . . . ,m − 1 appears

equally often. Such an array is denoted by COA(n,m).

By Definition 1, every level combination (i, j) with i 6= j and i, j =

0, 1, . . . ,m − 1 must appear equally often in every two column sub-array

of a COA(n,m). Thus, all designs must have n = λm(m − 1), where λ

is an integer. Indeed, COAs are orthogonal arrays of type I as defined by

Rao (1961). Hedayat et al. (1999) gave a comprehensive introduction to

orthogonal arrays.
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Figure 1: Component-position effects plots for a 4-drug (left) and a 5-drug
(right) order-of-addition experiment.

Several of these recent works have focused on the aforementioned prob-

lem of choosing an optimal sequence for drug administration. Figure 1

shows the component-position effects plots for 4-drug (left) and 5-drug
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(right) order-of-addition experiments from Yang et al. (2020) and Mee

(2020). These experiments considered four or five chemotherapeutics for

treating lymphoma that have been FDA approved for clinical testing (Wang

et al., 2020). Each drug was tested at a fixed dosage that was estimated

from a preliminary dose-response study. For each sequence a drug was ad-

ministered every four hours in the 4-drug study and every three hours in

the 5-drug study. In each plot the horizontal axis denotes the position at

which a drug is added and the vertical axis denotes the mean response, in

this case a measure of cancer cell inhibition 24 hours after the first drug was

administered. Each point denotes the mean response of all runs in which

the labeled drug is at the fixed position. For each drug, the m dots cor-

responding to m different positions are connected to visualize the trend as

that drug is shifted to a later position in the sequence. The solid horizontal

line, used as a reference, represents the average response of all observations.

Both plots show that the effect of a drug on tumor inhibition depends on its

position. The 4-drug plot suggests that the component effects have a nearly

linear relationship with the positions. In this case, the authors have found

that both the PWO model (2.1) and the CP model (2.2) fit the data well,

with predictive R2 of 0.67 and 0.54, respectively. On the other hand, the

5-drug plot suggests that the relationship between the component effects
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and positions is non-linear. Neither model fits the data well, with predictive

R2 of 0.20 and 0.09, respectively.

The two existing models do not fit the 5-drug data well because they

lack interaction terms. It is common in practice to find that a few two-factor

interactions are also significant in addition to the main effects. For this rea-

son, Mee (2020) proposed a triplets order-of-addition model which expands

the PWO model to include two-factor interactions involving exactly three

distinct components. The triplets model has many more parameters than

both existing models, so it requires a much larger run size to estimate.

This is a major shortcoming. We hope to improve this body of literature

by proposing new models and designs which can handle increasingly com-

plex situations, such as the 5-drug example, without requiring an excessive

number of runs.

3. Flexible Position Models

Before presenting our proposed models, we first give some notation and

definitions to fix ideas. Given an n×m component matrix A = (aij) where

each row is a permutation of the components 0, 1, . . . ,m−1, we define a new

n×m matrix B = (bik) as follows: bik = j if aij = k − 1 for k = 1, . . . ,m.

Note that aij is the component used at the jth position of the ith run while
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bik is the position of component k − 1 in the ith run. For example, the

left side of row 14 in Table 1 indicates that the four components should

appear in the order (2, 0, 3, 1) while the right-hand side equivalently states

that positions (2, 4, 1, 3) should be assigned to components 0, 1, 2, and 3,

respectively. Each row of B is a permutation of the m positions 1, . . . ,m.

To maintain the previous notation we refer to B as the position matrix.

To compare our new models against the existing ones, we use the pre-

viously discussed four and five drug data presented in Yang et al. (2020)

and Mee (2020). The data from these two experiments are given in Table 1

(matricesA andB) and Table 2 (matrixA). Recall from Section 2 that the

existing methods are not sufficient for efficiently estimating the interaction

effects between the drugs. We propose the following new, broader class of

linear models based on the position matrix B = (bik) that overcomes this

weakness:

y = f(x)Tβ + ε, (3.1)

where x is a row of the position matrix B, f(x) is a vector of some basis

functions, β is a vector of unknown coefficients, and ε ∼ N(0, σ2) consists

of independent, normal errors. Using B, we can represent the two existing

models as special cases of this model. Specifically, the PWO model uses a set

of basis functions that return the sign of bk− bl for each pair of components

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



11

Table 1: Design and data for a 4-drug order-of-addition experiment.
Components Positions

Run a1 a2 a3 a4 b1 b2 b3 b4 y
1∗ 0 1 2 3 1 2 3 4 41.1
2∗ 0 1 3 2 1 2 4 3 37.5
3∗ 0 2 1 3 1 3 2 4 55.4
4∗ 0 2 3 1 1 4 2 3 56.5
5∗ 0 3 1 2 1 3 4 2 43.3
6∗ 0 3 2 1 1 4 3 2 51.2
7∗ 1 0 2 3 2 1 3 4 46.1
8∗ 1 0 3 2 2 1 4 3 27.8
9∗ 1 2 0 3 3 1 2 4 39.5
10∗ 1 2 3 0 4 1 2 3 46.4
11∗ 1 3 0 2 3 1 4 2 34.4
12∗ 1 3 2 0 4 1 3 2 39.4
13∗ 2 0 1 3 2 3 1 4 53.5
14∗ 2 0 3 1 2 4 1 3 51.2
15∗ 2 1 0 3 3 2 1 4 50.8
16∗ 2 1 3 0 4 2 1 3 51.4
17∗ 2 3 0 1 3 4 1 2 52.9
18∗ 2 3 1 0 4 3 1 2 53.4
19∗ 3 0 1 2 2 3 4 1 39.1
20∗ 3 0 2 1 2 4 3 1 46.4
21∗ 3 1 0 2 3 2 4 1 37.2
22∗ 3 1 2 0 4 2 3 1 42.1
23∗ 3 2 0 1 3 4 2 1 46.8
24∗ 3 2 1 0 4 3 2 1 41.8

Note: The 12 (∗) runs were used in Example 1 to fit models and compare
the quality of out-of-sample predictions.

k − 1 and l − 1 when x = (b1, . . . , bm). The CP model similarly includes

one indicator function for every component-position pair (k, j). However,

these methods do not take full advantage of the benefit provided by this

new position-based perspective.
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Table 2: Design and data for a 5-drug order-of-addition experiment.
Run Components y Run Components y

1 3 1 0 2 4 4.93 21 3 1 2 4 0 5.53
2 1 0 2 3 4 13.63 22 1 0 3 4 2 7.72
3 3 0 1 4 2 15.57 23 0 1 3 2 4 10.96
4 3 2 4 0 1 18.47 24 1 3 2 0 4 12.09
5 4 3 0 1 2 19.5 25 3 0 4 2 1 13.84
6 0 1 4 3 2 20.23 26 0 3 4 1 2 16.25
7 1 3 4 2 0 21.47 27 0 4 2 3 1 16.37
8 0 4 1 2 3 21.59 28 3 2 0 1 4 17.97
9 0 2 3 1 4 23.55 29 4 2 3 0 1 19.71
10 0 3 2 4 1 23.61 30 4 3 1 2 0 20.35
11 1 2 0 4 3 23.85 31 1 4 0 2 3 20.4
12 3 4 2 1 0 25.23 32 0 2 1 4 3 22.06
13 4 2 1 3 0 25.62 33 2 1 4 0 3 22.35
14 2 1 3 4 0 26.08 34 2 0 1 3 4 23.37
15 4 0 3 2 1 26.75 35 3 4 1 0 2 23.4
16 1 4 3 0 2 28.38 36 4 1 0 3 2 24.31
17 2 3 1 0 4 29.43 37 1 2 4 3 0 24.65
18 2 4 0 3 1 30.52 38 2 3 0 4 1 25.99
19 2 0 4 1 3 31.27 39 2 4 3 1 0 26.3
20 4 1 2 0 3 31.96 40 4 0 2 1 3 26.49

Since positions have a natural order, we can study their effects using

polynomial functions (e.g., Wu and Hamada (2009)). Such a model was

proposed by Anderson-Cook and Lu (2019), but no framework or details

were given. We define the orthogonal polynomials of degree 1 and 2 over

the set of positions as

p1(x) = c1

(
x− m+ 1

2

)
and p2(x) = c2

[(
x− m+ 1

2

)2

−
(
m2 − 1

12

)]
,
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where c1 and c2 are scalars that ensure the length of each contrasts vec-

tor is
√
m. For example, when m = 4, c1 = 2/

√
5 and c2 = 2, and

(p1(x), p2(x)) = (−1.5c1, 1), (−0.5c1,−1), (0.5c1,−1) and (1.5c1, 1) for x =

1, 2, 3, and 4, respectively. When m = 5, c1 =
√

1/2 and c2 =
√

5/14, and

(p1(x), p2(x)) = (−2c1, 2c2), (−c1,−c2), (0,−2c2), (c1,−c2) and (2c1, 2c2) for

x = 1, 2, 3, 4, and 5, respectively.

The orthogonal polynomials have the following constraints:

(a)
m∑
x=1

pj(x) = 0, (b)
m∑
x=1

p2j(x) = m, (3.2)

for j = 1, 2. These constraints complicate the modeling as well as the study

of design optimality for order-of-addition experiments because each row of

the position matrix B is a permutation of {1, . . . ,m}.

Using these polynomials we consider three specific models:

y = β0 +
m−1∑
k=1

p1(bk)βk + ε, (3.3)

y = β0 +
m−1∑
k=1

p1(bk)βk +
m−1∑
k=1

p2(bk)βkk + ε, (3.4)

y = β0 +
m−1∑
k=1

p1(bk)βk +
m−2∑
k=1

p2(bk)βkk

+
∑

1≤k<l≤m−1

p1(bk)p1(bl)βkl + ε, (3.5)
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where y is the response, b1, . . . , bm are positions of the m components, β0

is the intercept, βk, βkk and βkl are unknown parameters, and ε ∼ N(0, σ2)

is a random error. We can interpret the main effect parameters as the

expected change in the response after moving the specified component one

position later in the sequence. Because each row of the position matrix

is a permutation of {1, . . . ,m} and the orthogonal polynomials obey the

constraints in (3.2), we must remove one component effect from models

(3.3) and (3.4) in order to make the models estimable. Furthermore, model

(3.5) only includes βkk for k = 1, 2, . . . ,m− 2 and removes any interaction

terms involving component m−1. We can similarly craft more complicated

models with higher-order terms if needed. For convenience, we refer to

models (3.3), (3.4) and (3.5) as the first-order, quadratic and second-order

position models, which have m−1, 2m−1, and (m−1)(m+2)/2 parameters,

respectively.

Table 3 shows the number of parameters of five models form = 3, . . . , 10,

including the PWO model and the CP model. The first-order and quadratic

position models have fewer parameters than the others when m > 4. The

second-order position model has a few more parameters than the PWO

model, but has fewer parameters than the CP model as m increases. The

new position models are both parsimonious and flexible. We demonstrate
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Table 3: Number of parameters of models for m = 3–10.

m
Model 3 4 5 6 7 8 9 10
PWO Model 4 7 11 16 22 29 37 46
CP Model 5 10 17 26 37 50 65 82
First-order Model 3 4 5 6 7 8 9 10
Quadratic Model 5 7 9 11 13 15 17 19
Second-order Model 5 9 14 20 27 35 44 54

these traits through both drug sequencing experiments, each of which has

two objectives: fitting an accurate model and locating the optimal drug

sequence.

Example 1. Consider the 4-drug order-of-addition experiment in Table 1.

We first fit the five models to the full data. The PWO and CP models have

predictive R2 of 0.67 and 0.54, respectively. The first-order, quadratic and

second-order position models have predictive R2 of 0.69, 0.66, and 0.65,

respectively. The root-mean-square error (RMSE) for the PWO and CP

models is 2.97 and 2.86, respectively, and 3.34, 3.00, and 2.67 for the posi-

tion models. From this we see that all five models have a similar goodness

of fit. The first-order model with 4 parameters is the simplest and achieves

the best predictive R2 value.

To further compare the predictive accuracy of the models we train each

on the COA(12,4) given by the runs with ∗ in Table 1 and predict across
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all 24 sequences. The PWO and CP models have predicted vs. observed

correlation 0.90 and 0.87, respectively, while the position models have cor-

relation 0.87, 0.88, and 0.89, respectively. All models achieve comparable

prediction accuracy, but we have seen that the first-order model is able to

do so with fewer parameters and has a better predictive R2 when consider-

ing the full dataset. Thus, for the simpler dataset in which the relationship

appears linear (Figure 1), we find that our succinct models fit well and

produce accurate predictions.

In order to interpret the position models we first simplify each model (fit

to all 24 runs) with forward and backward stepwise variable selection with

respect to AIC. We start from a constant model, and instead of removing

the last effect as in (3.3) - (3.5) we allow for the choice of any effect. The

resulting models are

ŷ = 45.22 + 2.03B − 5.55C − 1.81A, (3.6)

ŷ = 45.22− 1.81A+ 2.03B − 5.55C + 1.41A2, (3.7)

ŷ = 44.68− 1.81A+ 2.03B − 5.55C + 0.98A2 − 1.62AB, (3.8)

where each drug has been replaced with a letter to make the conclusions

clearer (e.g., A and A2 represent the linear and quadratic effects of drug 0).
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The predictive R2 for these 3 models is 0.69, 0.72, and 0.74, and the RMSE

is 3.34, 3.03, and 2.76, respectively. Further examination reveals that A,

A2, and A2 and AB are not significant at the 5% level in models (3.6) -

(3.8), respectively. After removing the insignificant terms we end up with

the reduced model ŷ = 45.22 + 2.93B − 4.65C.

In this model the negative coefficient of drug C can be interpreted as

the response being maximized when it comes earlier in the sequence and

the positive coefficient of drug B signifies that the response increases when

it is placed later. These interpretations reflect the linear trends we see in

the 4-drug component-position effects plot in Figure 1. Mee (2020) and

Yang et al. (2020) also performed stepwise regression to simplify the PWO

and CP models respectively. Their simplified PWO and CP models are

comparable to models (3.6) - (3.8) in terms of predictive R2.

Example 2. Consider the 5-drug order-of-addition experiment in Table 2.

The experiment was conducted in batches. The first 20 runs were used in

a batch and the second 20 runs were used in another batch. After fitting

each model to all 40 runs, including a block variable representing the batch

effect, the PWO and CP models have predictive R2 of 0.20 and 0.09, re-

spectively, and the first-order, quadratic and second-order position models

have predictive R2 of 0.44, 0.41, and 0.52, respectively. The RMSE for the
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PWO and CP models is 4.11 and 3.45, respectively, and 4.18, 3.80, and

2.85 for the position models. The position models show a greater ability to

capture the non-linear trends present in Figure 1. The second-order model

not only produces the overall best fit, but also generalizes well.

In order to improve interpretability and keep the final model concise,

variable selection is used to choose the most appropriate effects from the

second-order model to include. Starting with a constant model, forward

and backward stepwise regression is used to produce a model with small

AIC. Since the choice of which effects to remove from the position models

was arbitrary, we allow for the selection of any linear, quadratic or two-

factor interaction effects, as in Example 1. We also allow for the selection

of a block effect that represents the two batches. With this in mind, the

resulting model has a total of 8 terms, a predictive R2 of 0.68 (larger than

any competitor), and is given by

ŷ = 23.13− 4.08∆ + 3.19A+ 3.45B + 4.49D+ 1.05C2 + 1.82BE − 1.64CE.

(3.9)

In this model, the block variable is given by ∆ and each drug is again

replaced by a letter representation to facilitate substantive conclusions. We

see that the quadratic effect of drug C and two interactions involving drug
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E are included in the final model. Due to the constraints in (3.2), we have

A+B+C +D+E = 0. Therefore, if we replace A with −B−C −D−E,

then we get an equivalent model that follows the effect hierarchy principle

(Wu and Hamada, 2009).

The direct interpretation of these significant effects is complicated by

the inclusion of C2, BE and CE, so we consider the top 10 predicted se-

quences: CEBAD, CAEBD, CEABD, CBEAD, CADEB, CEBDA, EBADC,

CAEDB, CABED, and EBACD. While most of these sequences are not in

the Table 2 design, the sequence CAEBD has the second-highest predicted

response as well as the second-highest observed response.

In order to overcome the shortcomings of the PWO model when fitting

to the data, Mee (2020) considered expanded pairwise models that include

interactions of the pairwise factors Ijk. The model that only includes factor

interactions that involve exactly three components is dubbed the triplets

model and is given by

y = β0 +
∑
j<k

βjkIjk +
m−2∑
j=1

m−1∑
k=j+1

m∑
l=k+1

[βjk?jlIjkIjl + βjk?klIjkIkl] + ε (3.10)

This model contains too many parameters to be useful in many cases;

however, this also gives it additional flexibility that may produce a better

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



20

fit. Also using forward stepwise regression, Mee (2020) found two models

that include some of the additional interaction terms. Our stepwise model

(3.9) with df=32, predictive R2 = 0.68, and RMSE = 3.32 is competitive

with both of these triplets models (df = 24, predictive R2 = 0.60, RMSE =

3.14 and df = 26, predictive R2 = 0.51, RMSE = 3.73) and becomes more

appealing when considering the use of fewer parameters. Furthermore, the

top two predicted sequences from both of these models are CAEBD and

CEBAD, aligning with the top two predicted sequences from the position

model. Our model is also better than the PWO and CP models with interac-

tions reported by Yang et al. (2020) in terms of various measures including

predictive R2 and RMSE. This further substantiates our claim that the

second-order model is able to achieve an intuitive and cost-effective fit on

complex order-of-addition data that until now has not been possible.

Note that while our models fit well to the real data in these examples,

they are based on the assumption that the absolute component positions,

not the relative ones, are most predictive of the response. While the sub-

stantive conclusions are similar between the two model types, it is impor-

tant to recognize in practice that the details of the application should be

considered when assuming a model. For example, the absolute position as-

sumption may be more valid in the drug administration problem in which
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early exposure to a drug may produce better results. On the other hand,

the relative position assumption makes more sense in cases where the com-

ponents are known to react with each other, such as in the experiments

considered by Voelkel and Gallagher (2019). We study the robustness of

our models to this assumption in Section 5.

4. Design Construction and Optimality

The positive results shown in the previous examples inspire us to study the

properties of these new models and design construction. As we do not know

in advance which model would be the best model in a practical situation,

we would like to have a class of designs that can perform well with different

models and various run sizes. To achieve this goal, we propose a novel

construction method which, for many values of m, can quickly generate

efficient designs of any run size.

For a prime or a prime power m, let GF (m) = {ω0, ω1, . . . , ωm−1} be

a Galois field of order m with ω0 being the zero element (Barker, 1986).

When m is a prime, GF (m) = {0, 1, . . . ,m−1} is a ring of integers modulo

m. The following algorithm constructs an n×m design for any n ≤ m!.

Algorithm 1.

Step 1. For k = 1, . . . ,m − 1, define an m × m matrix Lk such that its
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(i, j)th element is ωi + ωk ∗ ωj for i, j = 0, . . . ,m − 1, where the

addition and multiplication are defined on GF (m).

Step 2. Construct an (m2 −m)×m matrix C1 by row-wise concatenating

L1, . . ., Lm−1.

Step 3. Keep the first two columns of C1 fixed and permute the last m− 2

columns of C1 in a systematic way. There are (m− 2)! permutations

admitting a total of (m− 2)! permuted matrices, denoted as C1, . . . ,

C(m−2)!.

Step 4. Construct an m! × m matrix Fm by row-wise concatenating C1,

. . . , C(m−2)! and replacing ωi with number i for i = 0, . . . ,m− 1.

Step 5. Let Fn,m be the n×m design formed by the first n rows of Fm.

Step 6. Permute the columns of Fn,m to improve its performance under a

chosen criterion.

Each Lk in Step 1 is an m × m Latin square, and the (m − 1) Latin

squares (L1, . . ., Lm−1) are mutually orthogonal. (Two Latin squares are

orthogonal if, when they are superimposed, each pair (i, j) appears exactly

once for any i, j = 0, . . . ,m − 1.) Mutually orthogonal Latin squares are
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Table 4: The full 24-run design F4 as generated by Algorithm 1.
Run a1 a2 a3 a4 Run a1 a2 a3 a4

1 0 1 2 3 13 0 1 3 2
2 L1 1 0 3 2 14 1 0 2 3
3 2 3 0 1 15 2 3 1 0
4 3 2 1 0 16 3 2 0 1
5 0 2 3 1 17 0 2 1 3
6 C1 L2 1 3 2 0 18 C2 1 3 0 2
7 2 0 1 3 19 2 0 3 1
8 3 1 0 2 20 3 1 2 0
9 0 3 1 2 21 0 3 2 1
10 L3 1 2 0 3 22 1 2 3 0
11 2 1 3 0 23 2 1 0 3
12 3 0 2 1 24 3 0 1 2

traditionally used to construct balanced incomplete block designs and or-

thogonal arrays. We use them for a different purpose.

The design C1 constructed in Step 2, as well as any Ci in Step 3,

is a COA(m2 − m,m). Any pair of Ci and Cj in Step 3 do not share

any common permutations. The m!×m matrix Fm constructed in Step 4

consists of all m! permutations of m components. Step 5 simply chooses the

first n rows of Fm as a candidate design, which often has good properties

already. Specifically, Anderson-Cook and Lu (2019) outline the benefits of

constructing designs from Latin squares and choosing a run size that is a

multiple of m. Step 6, to be discussed later, can be used to further improve

the design according to a specific criterion.

To fix ideas, we consider the m = 4 case in which the full design Fm
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consists of 24 permutations in the order given in Table 4. The first four

permutations form a 4 × 4 Latin square L1, the next four permutations

form another Latin square L2, etc. The first twelve permutations form a

COA(12,4). The last twelve permutations are obtained from the first twelve

by permuting the last two columns.

When n = m(m − 1), Fn,m is equivalent to the COA(m(m − 1),m)

constructed by Yang et al. (2020). However, their construction does not

provide designs with other run sizes. When m is not a prime power, a

Galois field of order m does not exist. In these cases an exchange algorithm

may produce good designs. It will be the subject of future work to explore

construction methods for this situation.

One criterion that we can use to assess the goodness of the designs

produced by Algorithm 1 is the generalized wordlength pattern (GWLP),

which can be computed via the GWLP function in the R package DoE.base

(Groemping et al., 2014). The GWLP (W1, . . . ,Wm) measures the aliasing

of factorial effects, where Wi ≥ 0 measures the overall aliasing of i-factor

interactions on the general mean under the standard ANOVA model. An

important property of the GWLP is that it characterizes the orthogonality

or strength of a design. Xu and Wu (2001) showed that a design is an

orthogonal array of strength t if and only if W1 = · · · = Wt = 0. Applying
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this result, we have W1 = 0 if and only if the design is level balanced, that

is, each level appears the same number of times in each column. Among

level balanced designs, designs with small W2 are preferred. The general-

ized minimum aberration criterion (Xu and Wu, 2001) favors designs which

sequentially minimizeW1,W2, . . .. The generalized minimum aberration cri-

terion includes the minimum aberration criterion (Fries and Hunter, 1980),

the minimum G2-aberration criterion (Tang and Deng, 1999) and many op-

timality criteria as special cases (Xu, 2003; Xu et al., 2009). Generalized

minimum aberration designs are model robust in the sense that they mini-

mize contamination of higher-order effects on the estimation of lower-order

effects (Xu and Wu, 2001).

To assess the orthogonality of different types of designs, we use the

GWLP of the component matrix A directly. It is worth noting that the

component matrix A and the position matrix B have the same GWLP,

provided that every component appears in every position at least once.

With this in mind, the designs Fn,m produced by Algorithm 1 have several

desirable properties.

Theorem 1. The design Fn,m has the following properties:

(i) For any n = qm + r with integers q > 0 and 0 ≤ r < m, Fn,m has

W1 = mr(m− r)/n2, which is minimum among all possible designs with n
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runs, m columns, and m levels.

(ii) If n is a multiple of m, then Fn,m has W1 = 0.

(iii) If m ≤ n ≤ m(m − 1), then Fn,m has generalized minimum aber-

ration among all possible designs with n runs, m columns, and m levels.

(iv) If n is a multiple of m(m− 1), then Fn,m is a COA(n,m).

Theorem 1 (i) and (ii) imply that our designs always have the desirable

property of being level balanced or nearly balanced for each column. Theo-

rem 1 (iii) and (iv) indicate that our designs tend to minimize the correlation

between columns and reduce aliasing among first-order and second-order ef-

fects. Finally, having shown in Theorem 1 (iv) that Fn,m is a COA when n

is a multiple of m(m− 1) we will soon see in Theorem 2 that these designs

are D-optimal under the first-order and quadratic models.

Cheng et al. (2002) and Mandal and Mukerjee (2005) showed that gener-

alized minimum aberration designs have high efficiency under model uncer-

tainty for factorial experiments. Thus, Theorem 1 implies that the designs

constructed from our algorithm have high efficiency under various models

for order-of-addition experiments. Evidence of this property is presented in

the next section.

We can also assess the constructed designs using the popular D- and

A-optimality criteria. For an n-run design ξ = {x1, . . . ,xn}, let X =
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(f(x1),f(x2), . . . ,f(xn))T be the model matrix of the linear model (3.1)

and M (ξ) = XTX/n be the per-run information matrix. A D-optimal

design maximizes |M(ξ)| while an A-optimal design minimizes tr(M (ξ)−1).

The D-optimality criterion seeks to minimize the volume of the confidence

ellipsoid around the parameter estimates and the A-optimality criterion

minimizes the sum of the variances of the parameter estimates. The full

design Fm with all m! permutations is D-optimal for both the PWO model

and the CP model (Peng et al., 2019; Yang et al., 2020). Additionally,

Peng et al. (2019) showed that this design is also A-optimal for the PWO

model. We can therefore compare the quality of any proposed design to

this optimal one. For convenience, we define the D- and A-efficiency of ξ

under model (3.1) relative to Fm respectively as

D(ξ) = {|M (ξ)|/|M(Fm)|}1/p, A(ξ) = {tr(M (ξ))/tr(M (Fm))}, (4.1)

where p is the number of columns of the model matrix X.

We need to determine whether the full design Fm is indeed optimal

under the three position models. In this process we rely on the checking

condition for optimality provided by the equivalence theorem (Silvey, 1980).

The equivalence theorem for models of the form (3.1) states that a design ξ∗

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



28

is D- or A-optimal for a model with regression function f(x) over compact

space Ω if and only if

D : f(x)TM(ξ∗)−1f(x)− p ≤ 0 ∀x ∈ Ω, (4.2)

A : f(x)TM (ξ∗)−2f(x)− tr(M (ξ∗)−1) ≤ 0 ∀x ∈ Ω, (4.3)

with equality obtained at the design points x ∈ ξ∗. In the case of the three

position models, each x is a permutation, and Ω is the space of all permu-

tations of {1, . . . ,m}. We have the following important results regarding

the full design and COAs.

Theorem 2. The full design Fm is D-optimal under the first-order and

quadratic position models, as is every COA(n,m).

Theorem 3. The full design Fm is D-optimal for the second-order position

model.

Remark 1. It is important to note that the result of Theorem 1 from Peng

et al. (2019), which shows the optimality of Fm under the PWO model for

any concave and signed permutation invariant criteria, does not apply to the

three position models. As a counterexample, we consider the A-optimality

criterion. If the result of their theorem held for the position models, then

we would be able to confirm A-optimality of the full design numerically.
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However, as shown below in Remark 2, this is not the case. Furthermore,

the information matrices for the first-order and quadratic models are block

diagonal (see Section S1), yet the closed form of the information matrix

for the second-order model is too complex to work with directly. However,

the proof of Theorem 3 is general and can be applied to the PWO and CP

models, as well as other models such as a third-order model that includes

all estimable terms.

Remark 2. We leave the detailed investigation of A-optimal designs for

these models to future work. Through preliminary investigation we con-

clude that the design Fm does not satisfy the checking condition (4.3), and

is thus not A-optimal, for any of the position models (see Section S2). Sim-

ilarly, I-optimal designs under the position models can ensure that we are

able to predict the best ordering, but they are beyond the scope of this pa-

per and warrant further study. The D-optimality remains the most popular

design criterion, so we focus on it for the remainder of this work.

The D-efficiency of a design varies with respect to column permuta-

tions, that is, permuting the columns of a design may lead to different

D-efficiencies. For this reason, we can permute the columns in Step 6 to

maximize the D-efficiency for a specific model. We consider other opportu-

nities for improved efficiency through level and Ci permutations in Section
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5. In contrast, the GWLP is invariant with respect to column permuta-

tions and instead studies the combinatorial properties of the design such as

balance and orthogonality.

5. Efficiency and Robustness of Designs

We compare our designs with those from Voelkel (2019) with m = 4, 5, 7

and various run sizes. We also compare to the design given in Table 2 from

Mee (2020) with (n,m) = (40, 5). In order to present a fair comparison we

consider one design Fn,m which is generated by taking the first n rows of the

full design Fm in Step 5 and another design F∗n,m that permutes the columns

of Fn,m in Step 6 to maximize the geometric mean efficiency of the models

of interest. Table 5 compares the D-efficiencies of these designs under the

five models as well as the first two terms (W1 and W2) of the GWLP.

Designs F∗n,m for which there is no improvement over Fn,m are omitted.

While Voelkel (2019) used many other criteria to compare his order-of-

addition designs, many of these are derivative of the two we are considering

here and are thus not necessary to include. Since our algorithm is able to

generate designs with variable run size we also include the efficiencies of

designs with various n between m(m− 1) and m!.

Voelkel’s designs are constructed for the PWO model and thus perform
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Table 5: Comparison of D-efficiency and GWLP across designs and models.

D-efficiency GWLP
n m Design DPWO DCP DFO DPQ DSO W1 W2

12 4 Voelkel.12a 1 0.758 1 0.955 0.953 0 4.667
Voelkel.12b 1 0 1 0.916 0.877 0.361 2.514
F12,4 0.909 1 1 1 1 0 2

16 4 F16,4 0.917 0.950 0.977 0.963 0.953 0 3
20 4 F20,4 0.954 0.957 0.983 0.970 0.961 0 2
20 5 Voelkel.20a 0.903 0.588 0.997 0.945 0.861 0.35 10.35

Voelkel.20b 0.97 0.623 0.993 0.931 0.854 0.625 8
F20,5 0 1 1 1 0.959 0 2.5
F∗20,5 0.898 1 1 1 0.950 0 2.5

24 5 Voelkel.24a 1 0.094 1 0.969 0.933 0.573 8.281
Voelkel.24b 1 0 1 0.967 0.94 0.639 7.635
Voelkel.24c 1 0.668 1 0.969 0.944 0.226 8.368
F24,5 0.545 0.961 0.99 0.982 0.949 0.035 3.75
F∗24,5 0.926 0.961 0.996 0.981 0.950 0.035 3.75

40 5 Mee.40 0.969 1 1 1 0.994 0 2.5
F40,5 0.889 1 1 1 0.999 0 2.5
F∗40,5 0.969 1 1 1 0.995 0 2.5

60 5 F60,5 0.977 1 1 1 0.986 0 2.5
F∗60,5 0.977 1 1 1 0.999 0 2.5

24 7 Voelkel.24 0.990 - 1 0 - 2.125 20.688
F24,7 0 - 0.989 0.686 - 0.146 21
F∗24,7 0.742 - 0.989 0.873 - 0.146 21

36 7 Voelkel.36 0.970 - 1 0.911 0.764 0.789 23.722
F36,7 0 - 1 0.923 0.809 0.032 7.389
F∗36,7 0.881 - 0.987 0.979 0.839 0.032 7.389

48 7 Voelkel.48 0.986 0.587 1 0.950 0.872 0.924 17.099
F48,7 0 0.967 0.993 0.985 0.876 0.018 5.688
F∗48,7 0.943 0.967 0.995 0.989 0.798 0.018 5.688

Note: D-efficiency: the larger the better; GWLP: the smaller the bet-
ter. DX is the D-efficiency under model X (PWO, CP, first-order, pure
quadratic, and second-order respectively). In some cases the chosen run
size does not permit estimation of some models (with D-efficiencies marked
by “-”). Designs Fn,m are obtained via Algorithm 1 without Step 6 while
F∗n,m are obtained with column permutations in Step 6 to maximize the
geometric mean efficiency of the estimable models.
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well under this model, but they have poor performance under the CP model

and have large W1 or W2 values. In contrast, our designs are robust and

perform well under all models (with the exception of the PWO model in

certain situations) and always have small W1 and W2 values. Recall W1 = 0

if and only if a design is level balanced for each column. Voelkel’s designs

are not level balanced, except for one case (Voelkel.12a) while our designs

are all level balanced or nearly balanced. Mee’s design performs compara-

bly to F40,5 for all models except the PWO model for which it outperforms.

When allowing for column permutations, Mee’s design has similar proper-

ties as F∗40,5. In general, the F∗n,m designs in Table 5, which maximize the

geometric mean efficiency, may not necessarily be optimal for any of the

five models, but they are model robust and have high D-efficiencies for all

models; see Section S3 of the Supplementary Materials.

Figure 2 shows the maximal D-efficiency that is obtained via Algorithm

1 for each model across a range of run sizes, n, by using a brute force search

over all column permutations in Step 6. From these plots we find that the

algorithm is able to produce highly efficient designs for many values of n.

Specifically, we find that with the proper selection of a column permutation

our designs achieve high D-efficiency (> 85%) for every model.

In addition to column permutations, the assignment of values to ω0, ω1,
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(a) m = 4

(b) m = 5

(c) m = 7

Figure 2: Maximal D-efficiency of F∗n,m under column permutations for
variable run sizes for (a) m = 4, (b) m = 5, and (c) m = 7.
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. . . , ωm−1 in Step 1 and the order of permutations of the last m−2 columns

to create the Ci in Step 3 can both be manipulated. To understand the

effects of these permutations, we repeat the algorithm many times with

each iteration using a different combination of level, Ci and column per-

mutations. This detailed study has demonstrated that for small values of

m the effect of the choice of permutations on efficiency is large under the

PWO model and small for the other models. Upon studying each choice

of permutation in turn, we find that improvements to the D-efficiency of

the best column-permuted design are small when allowing for level and Ci

permutations. This justifies the inclusion of column permutations in Step

6 of Algorithm 1. The full results of this study can be found in Section S3.

Having shown that Algorithm 1 can, in general, produce designs which

are optimal or near-optimal for many models when accounting for choices

in the algorithm, we would now like to understand the robustness of our

designs to model misspecification. For example, we see from Table 5 that

Voelkel’s designs have lower efficiency under the CP model while our designs

Fn,m have lower efficiency for the PWO model. If we design our experiment

under the assumption that one of these models fits the experimental data,

when in reality a different model captures the trend, then we run the risk

of choosing an inefficient design. To test the properties of our designs to
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withstand such an error we consider the trade-off in efficiency for different

levels of confidence in our selection of the true model and find that our

designs are robust to misspecifcation and specifically to the assumption

that relative/absolute position effects are most relevant. The details of this

study can be found in Section S4.

6. Concluding Remarks

Researchers are often interested in understanding the relationship between

the process order of their experiment and the measured response; however,

statistical techniques for efficiently studying this effect are largely absent

from the literature. In this work we have proposed succinct models and

cost-effective designs for accurately capturing important trends. Through

careful research into our ideas we have seen that our models yield a superior

fit and interpretable estimates while our designs are optimal in many cases

as well as robust to model misspecification. It is of note, however, that

all of the models we consider, with the exception of the PWO model, are

based on the absolute position effects assumption. Were we to consider

further extensions of the PWO model such as those proposed in Voelkel and

Gallagher (2019) or Mee (2020) we may see different results. Furthermore,

Schoen and Mee (2020) have recently found designs for m = 5, 6, 7 which are
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optimal under the PWO model and exhibit stronger balance than Voelkel’s.

Such designs may be more appropriate if there is strong confidence in the

relative position assumption, but we do not consider them here. Further

investigation is also needed into the robustness of the designs to omitted

higher-order terms and interactions in both absolute and relative position-

based models.

Applications to sequential drug administration have further demon-

strated the scientific value of these methods to the broader research com-

munity. However, there is still much work left to be done in this field. Con-

struction of efficient designs with large, non-prime m remains a challeng-

ing open problem. Existing algorithms may be sufficient for constructing

nearly-optimal designs for small, non-prime m. Mee (2020) briefly discussed

the idea of ordering restrictions, yet there are many constrained situations

for which no appropriate designs exist. Additionally, standard approaches

for combining designs for the ordering effect with those for additional covari-

ates result in experiments too large to be of much practical use. Through

further development of our techniques and subsequent research into these

and other related problems, we hope that meaningful guidelines will be

produced for scientists conducting order-of-addition experiments.
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Supplementary Materials

The supplement includes proofs of the theorems, discussion of the A-optimality

results and model robustness of the proposed order-of-addition designs.

Acknowledgements

The authors kindly thank two reviewers for their helpful comments.

References

Anderson-Cook, C. M. and Lu, L. (2019). Discussion on “Order-of-Addition Experiments: A

review and some new thoughts” Quality Engineering, 31(1), 64–68.

Barker, H.A. (1986). Sum and product tables for Galois fields. International Journal of Math-

ematical Education in Science and Technology, 17(4), 473-485.

Cheng, C.-S., Deng, L.-Y., and Tang, B. (2002). Generalized minimum aberration and design

efficiency for nonregular fractional factorial designs. Statistica Sinica, 12, 991–1000.

Ding, X., Matsuo, K., Xu, L., Yang, J. and Zheng, L. (2015). Optimized combinations of

bortezomib, camptothecin, and doxorubicin show increased efficacy and reduced toxicity

in treating oral cancer. Anti-Cancer Drugs, 26, 547–554.

Ding, X., Xu, H., Hopper, C., Yang, J., and Ho, C.-M. (2013). Use of fractional factorial designs

in antiviral drug studies. Quality and Reliability Engineering International, 29, 299–304.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



References 38

Fries, A. and Hunter, W. G. (1980). Minimum aberration 2k−p designs. Technometrics, 22,

601-608.

Groemping, U., Amarov, B., and Xu, H. (2014). DoE.base: Full factorials, orthogonal arrays

and base utilities for DoE packages. Package version 0.25-3.

Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory and Appli-

cations. Springer, New York.

Jaynes, J., Ding, X., Xu, H., Wong, W. K., and Ho, C.-M. (2013). Application of fractional

factorial designs to study drug combinations. Statistics in Medicine, 32, 307–318.

Lin, D. K. J. and Peng, J. (2019). Order-of-addition experiments: A review and some new

thoughts. Quality Engineering, 31(1), 49–59.

MacBeath, G., and Yaffe, M. B. (2012). Sequential application of anticancer drugs enhances

cell death by rewiring apoptotic signaling networks. Cell, 149(4), 780–794.

Mandal, A. and Mukerjee, R. (2005). Design efficiency under model uncertainty for nonregular

fractions of general factorials. Statistica Sinica, 15, 697–707.

Mee, R. W. (2020). Order of addition modeling. Statistica Sinica, 30, 1543–1559.

Peng, J. Y., Mukerjee, R. and Lin, D. K. J. (2019). Design of order-of-addition experiments.

Biometrika, 106(3), 683–694.

Rao, C. R. (1961). Combinatorial arrangements analogous to orthogonal arrays. Sankhya: The

Indian Journal of Statistics, Series A, 23(3), 283–286.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



References 39

Schoen, E. D. and Mee, R. W. (2020). Order-of-addition orthogonal arrays to elucidate the

sequence effects of treatments. Preprint.

Silva, A., Lee, B. Y., Clemens, D. L., Kee, T., Ding, X., Ho, C. M. and Horwitz, M. A.

(2016). Output-driven feedback system control platform optimizes combinatorial therapy

of tuberculosis using a macrophage cell culture model. Proceedings of the National Academy

of Sciences, 113, E2172–E2179.

Silvey, S. D. (1980). Optimal Design. London: Chapman & Hall.

Tang, B. and Deng, L. Y. (1999). Minimum G2-aberration for non-regular fractional factorial

designs. Ann. Statist., 27, 1914-1926.

Van Nostrand, R. C. (1995). Design of experiments where the order of addition is important.

ASA Proceeding of the Section on Physical and Engineering Sciences, 155–160. American

Statistical Association, Alexandria, Virginia.

Voelkel, J. G. (2019). The design of order-of-addition experiments. Journal of Quality Technol-

ogy, 51(3), 230–241.

Voelkel, J. G. and Gallagher, K. P. (2019). The design and analysis of order-of-addition exper-

iments: An introduction and case study. Quality Engineering, 31(4), 627–638.

Wang, A., Xu, H. and Ding, X. (2020). Simultaneous optimization of drug combination

dose-ratio-sequence with innovative design and active learning. Advanced Therapeutics,

3, 1900135.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



References 40

Wu, C. F. J. and Hamada, M. S. (2009). Experiments: Planning, Analysis and Optimization,

2nd ed., New York: Wiley.

Xiao, Q., Wang, L., and Xu, H. (2019). Application of Kriging models for a drug combination

experiment on lung cancer. Statistics in Medicine, 38, 236-246.

Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs.

Statistica Sinica, 13, 691–708.

Xu, H., Phoa, F. K. H., and Wong, W. K. (2009). Recent developments in nonregular fractional

factorial designs. Statistics Surveys, 3, 18–46.

Xu, H. and Wu, C. F. J. (2001). Generalized minimum aberration for asymmetrical fractional

factorial designs. Annals of Statistics 29, 1066–1077.

Yang, J., Sun, F., and Xu, H. (2020). A component-position model, analysis and design for

order-of-addition experiments, Technometrics, doi: 10.1080/00401706.2020.1764394.

Zhao, Y. N., Lin, D. K. J. and Liu, M. Q. (2020). Designs for order-of-addition experiments.

Journal of Applied Statistics, DOI: 10.1080/02664763.2020.1801607.

Department of Statistics, University of California, Los Angeles, CA 90095, USA

zstokes@ucla.edu

hqxu@stat.ucla.edu

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Supplementary Materials 41

A Position-Based Approach for Design and Analysis of

Order-of-Addition Experiments

Zack Stokes and Hongquan Xu

Department of Statistics, University of California, Los Angeles, CA 90095

S1. Proofs

Proof of Theorem 1. (i) By Corollary 6 (i) of Xu (2003), we have W1 ≥

mr(m − r)/n2, with equality if and only if each component appears as

equally often as possible in every column. When n = qm+r, Fn,m contains

q m×m Latin squares, so each level appears in each column q times in the

first qm runs of Fn,m. Each column of the last r runs of Fn,m contains each

level at most once, meaning that the maximum difference in the number

of occurrences of each level per column is 1. Thus, Fn,m has minimum

W1 = mr(m− r)/n2 among all possible designs.

(ii) This is a direct result of (i).

(iii) We show that Fn,m is an orthogonal array of weak strength t for

all t ≥ 1. A design is an orthogonal array of weak strength t if all possible

level combinations for any t columns appear as equally often as possible (Xu,

2003). From (i) we know that Fn,m has minimum W1. Since Fm(m−1),m is

a COA with the property that every pair of level combinations shows up

exactly once, we know that the sub-design Fn,m, n ≤ m(m − 1), contains

each pair of level combinations either 0 or 1 times. Since n ≤ m(m − 1),

Fn,m is an orthogonal array of weak strength t for all t ≥ 1. Hence, by

Theorems 2 and 3 of Xu (2003), design Fn,m has generalized minimum
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aberration among all possible designs.

(iv) If n = m(m−1), then the claim is true by the mutual orthogonality

of the Latin squares derived in Step 1 of Algorithm 1. The two COA

properties of a design given in Definition 1 are invariant with respect to

column permutation. Therefore, each Ci, i = 1, . . . , (m − 2)!, is also a

COA(m(m − 1),m) and for any n > 0 such that n/(m(m − 1)) = λ is

an integer, concatenating the λ COA(m(m − 1),m) designs produces a

COA(n,m).

Proof of Theorem 2. We prove the claim for any COA(n,m) as the full

design Fm is a special case with n = m!. For a point b = (b1, . . . , bm) ∈ Ω,

the vector of regression functions under the quadratic model (3.4) is

f(b) = (1, p1(b1), . . . , p1(bm−1), p2(b1), . . . , p2(bm−1))
T,

with the first m terms being the regression functions under the first-order

model (3.3). For any COA(n,m) the information matrix under the quadratic

model and its inverse take the form

M (ξ) =


1 01×(m−1) 01×(m−1)

0(m−1)×1 δJ(m−1) + (1− δ)I(m−1) 0(m−1)×(m−1)

0(m−1)×1 0(m−1)×(m−1) δJ(m−1) + (1− δ)I(m−1)

 ,

M (ξ)−1 =


1 01×(m−1) 01×(m−1)

0(m−1)×1 −(mδ)−1(J(m−1) + I(m−1)) 0(m−1)×(m−1)

0(m−1)×1 0(m−1)×(m−1) −(mδ)−1(J(m−1) + I(m−1))

 ,

where δ = −1/(m− 1), Jk is a k × k matrix of 1’s, and Ik is the k × k

identity matrix. The top left 2×2 submatrix in both cases is the equivalent
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information matrix and inverse under the first-order model. Now we can

apply the checking condition (4.2) provided by the equivalence theorem and

exploit the properties of the orthogonal polynomial contrasts (3.2).

f(b)TM (ξ)−1f(b) = 1− 2

mδ

m−1∑
k=1

p21(bk)−
2

mδ

m−2∑
k=1

m−1∑
l>k

p1(bk)p1(bl)

− 2

mδ

m−1∑
k=1

p22(bk)−
2

mδ

m−2∑
k=1

m−1∑
l>k

p2(bk)p2(bl).

Because b = (b1, . . . , bm) is a permutation of {1, . . . ,m}, using (3.2) and

some algebra, for j = 1, 2, we have

2
m−1∑
k=1

p2j(bk) + 2
m−2∑
k=1

m−1∑
l>k

pj(bk)pj(bl) = m.

Therefore,

f(b)TM (ξ)−1f(b) = 1− 1

δ
− 1

δ
= 1 + (m− 1) + (m− 1) = 2m− 1.

As the quadratic model has p = 2m − 1 parameters, the equality in (4.2)

holds for any b ∈ Ω. By the equivalence theorem, every COA(n,m) is

D-optimal for the quadratic model. The proof of D-optimality for the first-

order model is simpler. This completes the proof.

Proof of Theorem 3. For the full design Fm and the second-order position

model (3.5), let X be the n × p model matrix and M = XTX/n be the

p × p information matrix with n = m! and p = (m − 1)(m + 2)/2. Let

H = X(XTX)−1XT be the hat matrix. To prove the D-optimality, we

need to show that the equality in (4.2) holds for any b ∈ Ω. For any b ∈ Ω,
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by the standard linear model theory, the variance of the fitted value when

x = b is V ar(ŷ(x)) = σ2f(b)T(XTX)−1f(b) = n−1σ2f(b)TM−1f(b).

Because every b is a row of the full design Fm, it is sufficient to show that

each of the diagonal elements of the hat matrix H is p/n.

To do this, we consider the extended second-order model

y = β0 +
m∑
k=1

p1(bk)βk +
m∑
k=1

p2(bk)βkk +
∑

1≤k<l≤m

p1(bk)p1(bl)βkl + ε, (S1.1)

which includes all m first-order, m pure quadratic and m(m− 1)/2 bilinear

(or interaction) terms. The extended second-order model has q = (m +

1)(m + 2)/2 parameters. Let Z be the n × q model matrix for the full

design Fm. Due to the constraints on the orthogonal polynomials and the

fact that each row is a permutation, ZTZ has rank p and its inverse does not

exist, so we consider its Moore-Penrose generalized inverse (ZTZ)−. By the

standard linear model theory (Seber and Lee, 2003), the projection matrix

P = Z(ZTZ)−ZT of the extended second-order model (S1.1) is identical

to the hat matrix H = X(XTX)−1XT of the second-order position model

(3.5) because columns of Z and X span the same linear space. Under

the extended model (S1.1), all variables are exchangeable; therefore, the

variances of the fitted values are the same for all rows of the full design.

This is equivalent to saying that the diagonal elements of projection matrix

P are the same. Since P is idempotent and has rank p, its trace is equal

to its rank. Therefore, all of the diagonal elements of P , and hence H , are

equal to p/n. This completes the proof.
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S2. A-optimality

Using a popular metheuristic algorithm, Differential Evolution (Storn and

Price 1997; Chakraborty 2008), we have found nearly A-optimal designs

for the position models for several values of m. Table 6 shows the relative

efficiency of Fm to these designs and indicates that the full design is indeed

sub-optimal in most cases, with its efficiency growing worse as m increases.

Furthermore, we have found that A-optimal designs under our models de-

pend on specifically which component effects are removed from the model

to make it estimable. Since our decision to remove the effect of component

m was in large part arbitrary, we hope to explore this phenomenon further

and produce A-optimal designs which are robust to this choice.

Table 6: Relative A-efficiency of Fm to near-optimal designs.
m first-order quadratic second-order
3 0.951 1 0.951
4 0.909 0.987 0.885
5 0.879 0.934 0.812

S3. Additional Permutation Robustness Results

For each sample size n in Figure 2 up to five unique designs are necessary to

obtain the largestD-efficiency under each model. Instead, we could consider

a single design F∗n,m for each combination of n and m that is derived from

maximizing the geometric mean efficiency of the estimable models, akin to

those presented in Table 5. The results of this analysis are presented in

Figure 3. Generally, we see that many of the efficiencies are on par with

what we observed when maximizing the value for each model individually.

A notable exception is the efficiency of the maximal geometric mean design
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under the PWO model, which for some combinations of n and m is slightly

lower than the efficiency of the design that solely optimizes performance for

the PWO model; see Figure 2.

While Figures 2 and 3 substantiate our claim that our algorithm pro-

duces efficient designs, they do not inherently show how much there is to

gain or lose by selection of permutations in Algorithm 1. They also do not

consider the effect of level or Ci permutations. To remedy this, Table 7

gives the maximal DPWO and DSO values obtained through a brute force

search over all choices of the three permutations and the improvement rel-

ative to the values of the Fn,m designs in Table 5. We do not include the

other efficiencies since many of the designs are optimal under the CP, first-

order and quadratic models and show minimal improvement with column

permutations. The notation F+
n,m is used to represent the resulting designs.

∆PWO and ∆SO give the difference in D-efficiency under the specified model

between the best permuted design and the design Fn,m given in Table 5.

Cases for which the same set of permutations generate the best design for

both models are indicated by †.

Table 7: Maximal D-efficiencies of designs for the PWO and second-order
models under permutation.

D-efficiency Change
n m Design DPWO DSO ∆PWO ∆SO
†12 4 F+

12,4 0.909 1 0 0
†16 4 F+

16,4 0.917 0.953 0 0
†20 4 F+

20,4 0.954 0.961 0 0

20 5 F+
20,5 0.898 0.959 0.898 0

24 5 F+
24,5 0.926 0.961 0.381 0.012

40 5 F+
40,5 0.969 0.999 0.08 0

†60 5 F+
60,5 0.977 0.999 0 0.013
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(a) m = 4

(b) m = 5

(c) m = 7

Figure 3: The D-efficiency of F∗n,m which maximizes the geometric mean
efficiency for variable run sizes for (a) m = 4, (b) m = 5, and (c) m = 7.
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There are several interesting observations we can make from Table 7.

First, as expected, we see that the DPWO values of our designs in situations

that were previously troubling greatly improve with this manipulation, clos-

ing the gap between our designs and Voelkel’s. We also see minor improve-

ments in the DSO values for some cases with m = 5. Most importantly,

considering all three types of permutations did not lead to designs that

substantially outperform the F∗n,m designs that only considered column

permutations.

We are also interested in knowing the worst efficiency attainable under

our algorithm. Table 8 summarizes this effect in the same manner as before,

this time using F−n,m to denote the worst design. In this case we see that

compared to the small gains in DSO of Table 7, the loss of efficiency due

to poor selection of permutations is relatively large when m = 5. On the

other hand, the minimal value of DPWO is often not a substantial decrease

from the values found without permutations. For larger m, the brute force

approach is limited by the same combinatorial explosion that motivates

order-of-addition designs.

Table 8: Minimal D-efficiencies of designs for the PWO and second-order
models under permutation.

D-efficiency Change
n m Design DPWO DSO ∆PWO ∆SO
†12 4 F−12,4 0.909 1 0 0
†16 4 F−16,4 0.917 0.953 0 0
†20 4 F−20,4 0.954 0.961 0 0

20 5 F−20,5 0 0.428 0 −0.531
24 5 F−24,5 0.545 0.581 0 −0.368
†40 5 F−40,5 0.784 0.735 −0.105 −0.264
†60 5 F−60,5 0.861 0.875 −0.116 −0.111
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S4. Additional Model Misspecification Results

We fix (n,m) = (12, 4) and consider the PWO and CP models. We define

our confidence that the PWO model is indeed the true model as α ∈ [0, 1]

and similarly our confidence in the CP model as 1 − α. We then use the

discrete form of Differential Evolution (Cuevas et al. 2011) to find 12-run

designs for various values of α that maximize the desirability function given

by

Ḡ(α)(ξ) = Dα
PWO(ξ)D1−α

CP (ξ). (S4.1)

Differential Evolution is inspired by principles of natural selection, mu-

tation and genetic crossover and has been shown to work well for finding

optimal designs while only depending on the choice of a few parameters

(Paredes-Garćıa and Castaño-Tostado, 2017). We implement it using the

R package DEoptim (Ardia et al. 2011) and after choosing appropriate set-

tings for the parameters, it is able to quickly locate the global maximum

for all α = 0, 0.1, . . . , 1.

Figure 4 shows the unweighted efficiencies of the designs found by the

search. In this plot, α gives our confidence in the PWO model. When

α = 0, we assume that the data follow the CP model with high confidence

(1 − α = 1). In this case the algorithm finds a design that is isomorphic

to F12,4 from Algorithm 1, with the efficiencies matching our results from

Table 5. Designs with this property are represented in the plot by the “F”

symbol. As we then increase α and split our confidence between this model

and the PWO model, F12,4 continues to have maximal Ḡ(α). In fact, it is

not until we increase α from 0.7 to 0.8 that this changes. For α ≥ 0.8

the algorithm finds a design equivalent to Voelkel.12a. These designs are
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denoted with the “V” symbol.

Figure 4: D-efficiencies of designs that maximize (S4.1).

This result demonstrates that our designs are indeed robust to model

misspecification in this case. In addition to the model’s form, there is also

the underlying assumption made by each of these models as to whether the

relative positions or absolute positions are important in determining the

response. By demonstrating that our designs are robust to model misspec-

ification under this pair of models, we have also shown that they are robust

to this assumption.
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Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., and Ramı́rez-Ortegón, M.

(2011). Circle detection using discrete differential evolution optimiza-

tion. Pattern Analysis and Applications, 14(1), 93–107.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Supplementary Materials 51
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