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DYNAMIC PENALIZED SPLINES FOR STREAMING DATA

Dingchuan Xue and Fang Yao

School of Mathematical Sciences, Center for Statistical Science, Peking University

Abstract: We propose a dynamic version of the penalized spline regression de-

signed for streaming data and allows inserting new knots dynamically based on

sequential updates of summary statistics. A new theory using direct functional

methods rather than traditional matrix analysis is developed to attain the opti-

mal convergence rate in L2 sense for the dynamic estimation (also applicable for

standard penalized splines) under weaker conditions than those in existing work

for standard penalized splines.

Key words and phrases: Nonparametric regression, convergence rate, streaming

data.

1. Introduction1

Penalized spline regression is a computationally efficient method for2

reconstructing smooth functions from noisy data, which usually starts with3

a sequence of knots prior to the knowledge of data, then find the spline4

with given knots that minimize the total squared error plus a penalty on its5

qth derivate. Specifically, suppose data {(xi, yi)}i=1,...,n are sampled from a6
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nonparametric model7

yi = f0(xi) + εi

for some unknown function f0 : [0, 1] → R contaminated with an indepen-8

dent error εi. The penalized spline estimate of f0 is given by9

f̂n = arg min
f∈Sκn,p+1

n∑
i=1

{yi − f(xi)}2 + λn

∫ 1

0

f (q)2(x)dx, (1.1)

where p ≥ q are positive integers, κn = {0 = κn,1 ≤ · · · ≤ κn,kn = 1} ⊆ [0, 1]10

is the set of chosen knots,11

Sκn,p+1 = {f ∈ Cp−1([0, 1]) : f |[κn,i,κn,i+1] ∈ Pp, i = 1, . . . , kn − 1} (1.2)

is the space of splines of order p, Pp is the set of polynomial functions of12

degree not exceeding p, and λn is a positive tuning parameter depending13

on n. By taking a proper basis of Sκn,p+1, the calculation is reduced to per-14

forming a ridge-type regression. This formulation was originally proposed15

in O’Sullivan (1986) with q = 2 and p = 3, see Claeskens et al. (2009) for16

an explicit formulation. Generalized cross-validation proposed by Golub17

et al. (1979) and Wahba (1990) is often used to choose λn. Particularly,18

if λn = 0, the method is called regression spline. If κn = {x1 . . . , xn} and19

p = 2q − 1, it is called the smoothing spline (Craven and Wahba, 1978).20

It was offered in de Boor (1978) and Eubank (1999) a general guidance for21

fitting smoothing splines; see the formulation for the case q = p in Ruppert22
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(2002), Hall and Opsomer (2005) and Yao and Lee (2008), among others.23

Our main contribution in this article is to propose a dynamic version of24

the penalized spline estimtion with theoretical guarantee and specifically25

designed algorithm for streaming data that allows for an adaptive choice of26

knots sequence.27

It is worth mentioning that, to reach a consistent estimation that ap-28

proximates a function in an infinite dimensional space, we need to have the29

number of summary statistics grow as the samples streaming in, which dif-30

fers from the usual online algorithms. For example, Schifano et al. (2016)31

proposed online updating techniques for parametric regression problems32

with constant memory size, and Yang et al. (2010) focused on the online33

learning of group lasso by updating from previous estimation. By com-34

parison, our approach tackles a nonparametric problem with a sequential35

updating method, where the memory consumption grows much slower than36

the sample size.37

Owing to its technical challenge, there is no existing work on penal-38

ized spline approach orientied towards streaming data. To fill in this gap,39

we propose a dynamic version of penalized spline estimation, making a40

sensible modification on the target function by adding a projection to the41

function space of f on the goodness-of-fit term in the right side of (1.1).42
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Our algorithm requires only a single iteration of data and allows for an43

adaptive insertion of knots at a cost of a slight precision loss. We show44

that under certain conditions, the integrated squared error (i.e., L2-error)45

of the dynamic estimation converges at the same rate as the standard penal-46

ized spline estimation, Op

{
n−2q/(2q+1)

}
, which has not been established for47

dynamic penalized spline method. This result is derived from a novel tech-48

nique that lifts the spline space to an infinite dimensional one, which can be49

seamlessly adopted to the proposed dynamic estimation. By the definition50

in Stone (1982) or Stone (1980), this rate is asymptotically optimal if p = q51

and f0 ∈ Cq([0, 1]). It is relevant to mention that Speckman (1985) showed52

this to be the optimal rate of average mean squared error in an empirical53

sense. It was pointed out in Golubev and Nussbaum (1990) that this is the54

minimax rate for f0 in Sobolev balls, and Huang (2003) obtained similar55

results for regression splines. If f0 ∈ Cp+1([0, 1]) and p ≤ 2q − 1, with a56

nearly equi-spaced knots condition on κn, it is also the convergence rate of57

the average/empirical mean squared error for a “large” number of knots of58

the standard penalized spline method as shown in Claeskens et al. (2009).59

This indicates that the size of κn makes little contribution to the result once60

it is sufficiently large, i.e., exceeding a lower bound depending on f0 and61

n. Xiao (2019) extended this result to C l([0, 1]) for q ≤ l ≤ p to obtain L2
62

4

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



and L∞ rates, while Schwarz and Krivobokova (2016) established an equiv-63

alent kernel theory for penalized splines. It is worth noting that we require64

weaker conditions to attain the optional rate for the proposed dynamic es-65

timation than those by existing work for standard penalized splines (or the66

“the large number of knots scenario”) , e.g. Claeskens et al. (2009); Xiao67

(2019), while their work also included theories when the number of knots68

κn and the penalty strength λn are small, where the estimation behaves like69

regression spline.70

Nevertheless, in practice it is still meaningful to control the size and71

location of κn for computational efficiency. Various methods were proposed72

to choose κn according to the knowledge of data. For instance, it was73

suggested in Spiriti et al. (2013) a blind search with golden section adjust-74

ment or genetic algorithm for knot selection. Lindstrom (1999) proposed75

free-knot regression splines with penalty on knots. This type of methods76

usually involve iterative computations over full data and are not applicable77

when data come in a streaming manner. Thus a proper choice of κn with78

dynamic updates becomes relevant. It is natural to expect the size of κn to79

grow slowly with n to improve estimation. Intuitively we may insert new80

knots into existing κn as the sample size n grows, behaving like we have81

a new regressor in ridge-type regression. Hence we propose to modify the82
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target function by adding a projection operator, which sequentially elevates83

the model dimension.84

The rest of the article is organized as follows. We present the proposed85

dynamic penalized spline estimation with its updating algorithm in Section86

2, and offer the corresponding theory that outlines the new technique in87

Section 3. Numerical studies, including simulated and real data examples,88

are provided in Section 4, while technical proofs are delineated in the online89

Supplementary Material.90

2. Proposed Methodology and Algorithm91

2.1 Dynamic penalized spline estimation92

Our goal is to develop a dynamic version of penalized spline estimation that93

is easy to implement via a sequential updating algorithm with theoretical94

guarantee. The general setting is that the data are collected in a streaming95

manner, where the ith incoming data cluster consists of mi pairs of ob-96

servations, {(xj, yj) : j =
∑i−1

k=1mk + 1, . . . ,
∑i

k=1mk}, i = 1, 2, . . .. Since97

our proposed method and theory remain virtually unchanged for the case of98

each cluster mi = 1, we present in the sequel this setting for notational con-99

venience. Now suppose that we observe data {(xi, yi)}i=1,2,... in a streaming100
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fashion (i.e., one by one), following the model101

yi = f0(xi) + εi

for some unknown function f0 : [0, 1] → R and an error εi. For each n,102

we denote a knot set κn = {κn,1 ≤ · · · ≤ κn,kn} ⊆ [0, 1], depending on103

x1, . . . , xn−1, y1, . . . , yn−1 and κn−1, such that κn−1 ⊆ κn. Let p and q be104

positive integers satisfying p ≥ q, and Sκn,p+1 as in (1.2). Let H1((0, 1)) be105

the Sobolev space equipped with the inner product106

〈g1, g2〉H1 =

∫ 1

0

{g1(x)g2(x) + g′1(x)g′2(x)} dx.

Let Pn be the orthogonal projection from H1(0, 1) to Sκn,p+1 with respect107

to this norm. We propose the modification of the standard penalized spline108

regression in (1.1) as follows,109

f̃n = arg min
f∈Sκn,p+1

n∑
i=1

{yi − Pif(xi)}2 + λn

∫ 1

0

f (q)2(x)dx. (2.3)

Note that the projections {Pi}ni=1 serve as a bridge linking the full spline110

space Sκn,p+1 and the partial one Sκi,p+1, where the squared errors of (xi, yi)111

are evaluated in their own reduced spline spaces in the target function112

(2.3). With this modification, we show in the sequel that the current pe-113

nalized spline estimate depends on the previous summary statistics using114

the same tuning parameter and knots as well as the newly added data,115
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which provides an algorithm for streaming data and is referred to as dy-116

namic penalized spline estimation. We shall see that in our asymptotic117

theory the approximation error introduced by this modification is shown118

negligible. For theoretical convenience, we let Pi be H1 projections rather119

than L2 type to guarantee boundedness of the derivative of Pif without loss120

of generality. Now we describe how the estimation is updated dynamically.121

Choose a basis bi = (bi1, . . . , bili)
T of Sκi,p+1 for i = 1, 2, . . . . For i, j ≥ 1,122

let Cij be the li×lj matrix with the value in the uth row and the vth column123

being Cij,uv = 〈biu, bjv〉H1 , and let Qji = CjiC
−1
ii , then124

(Pibj1, . . . , Pibjlj)
T = Qji(bi1, . . . , bili)

T, i ≤ j.

For i ≤ j ≤ k, since Pi = PiPj, we have

(Pibk1, . . . , Pibklk)
T = Qkj(Pibj1, . . . , Pibjlj)

T = QkjQji(bi1, . . . , bili)
T.

Thus125

Qki = QkjQji. (2.4)

Suppose f̃n = a1bn1+ · · ·+alnbnln , we have the numerical representation126

for f̃n as127

(a1, . . . , aln)T = Un(λn)Tn,

where Un(λn) = (Sn + λnDn)−1, Sn =
∑n

i=1Qnibi(xi)bi(xi)
TQT

ni, Dn =128 ∫ 1

0
b
(q)
n (x)b

(q)
n (x)Tdx, and Tn =

∑n
i=1 yiQnibi(xi). Despite its complicated129
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expression, it is simple to calculate Sn+1 and Tn+1 given Sn, Tn, xn+1 and130

yn+1. If κn+1 = κn (no new knots), we may choose that bn+1 = bn, then131

Sn+1 = Sn + bn+1(xn+1)bn+1(xn+1)
T, Tn+1 = Tn + yn+1bn+1(xn+1).

If a new knot is inserted, i.e., κn+1 % κn, by (2.4) we have

Sn+1 = Qn+1,nSnQ
T

n+1,n + bn+1(xn+1)bn+1(xn+1)
T,

Tn+1 = Qn+1,nTn + yn+1bn+1(xn+1).

With these equations, we are able to update Sn and Tn in an sequential132

manner. When κn+1 = κn and λn+1 = λn, Un(λn) can be updated using133

the Sherman-Morrison formula,134

Un+1(λn) = Un(λn)− Un(λn)bn+1(xn+1)bn+1(xn+1)
TUn(λn)

1 + bn+1(xn+1)TUn(λn)bn+1(xn+1)
.

Note that both κn and λn grows much slower than n, thus in most cases135

we may update λn only when κn is changed, which greatly reduces the136

calculation of matrix inversions.137

For the computational complexity, when not inserting new knot or up-138

dating λn, our update procedure involves only a few matrix-vector multi-139

plication of scale |κn| that is O(|κn|2). The insertion of knots or update140

of λn involves complexity O(|κn|3), which occurs on average O(|κn|/n) of141

times. Thus the overall computational complexity of the proposed update142
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procedure is O(|κn|2m + |κn|4m/n) for a block of m data points, which143

is generally much smaller than the complexity O(|κn|2n) of the standard144

method, where n is the sample size.145

2.2 Implementation and dynamic knots insertion146

When the tuning parameter λn is updated (often together with updating147

κn), it can be tuned by minimizing the generalized cross-validation score.148

Suppose (f̃n(y1), . . . , f̃n(yn))T = An(λn)(y1, . . . , yn)T, the generalized cross-149

validation score as in Golub et al. (1979) is150

V (λn) =
n ‖{I − An(λn)}(y1, . . . , yn)T‖2

Tr{I − An(λn)}2
.

This can be rewritten as151

n {Rn + T T
nUn(λn)SnUn(λn)Tn − 2T T

nUn(λn)Tn}
[n− Tr{SnUn(λn)}]2

, (2.5)

where Rn =
∑n

i=1 y
2
i .152

The set of knots κn+1 can be updated with various algorithms. As153

an example, we use the following method in our implementation, while154

other methods are also viable as long as they can be updated dynamically155

for streaming data. The theory in Theorem 2 suggests that we may let156

κn+1 = κn for most n, which is in accordance to the intuition that knots157

grow slowly relative to sample size. We introduce a parameter ν that reflects158
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the spanning of κn, i.e. E∆n = O(n−ν) with ∆n = maxj |κn,j − κn,j+1|. Our159

theory implies that, given ν > (2q − 1)/{(2q + 1)(2q − 3)} and α > 0, we160

may add new knots when n > α|κn−1|1/ν . If we are to insert a new knot161

x into κn such that κn+1 = κn ∪ {x}, we put x in a similar way to that162

in Yuan and Zhou (2012). According to Proposition 6, Section 1.5.3.2 in163

Kunoth et al. (2017),164

inf
s∈Sκn,p+1

‖f0 − s‖L2([κn,i,κn,i+1])
≤ K (κn,i+p+1 − κn,i−p)q

∥∥∥f (q)
0

∥∥∥
L2([κn,i−p,κn,i+p+1])

for some constant K. We suggest to insert the new point where this bound165

is large, with f0 replaced by f̃n. Let166

j = arg max
j

(κn,j+p+1 − κn,j−p)q
∥∥∥f̃ (q)

n

∥∥∥
L2([κn,j−p,κn,j+p+1])

, (2.6)

then a new knot is placed at (κn,i + κn,i+1)/2, where167

i = arg max
j−p≤i≤j+p

(κi+1 − κi). (2.7)

This is a light weighted algorithm compared to the matrix algebraic compu-168

tations. Such way of selecting new knots tends to place more knots where169

the curve changes sharply. The limiting behavior of the algorithm would170

have the density of knots roughly proportional to |f (q)
0 (x)|1/q.171

We summarize the proposed dynamic penalized spline estimation into172

the algorithm as follows. Given an initial knot sequence κ0, the spline173

11

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



order p and the penalty order q, the values of ν and α for knot insertion, let174

{b0,1, . . . , b0,l0} be a basis of Sκ0,p+1. Let S0, T0 and R0 be zeroes in Rl0×l0 ,175

Rl0 and R, and Rn =
∑n

i=1 y
2
i .176

In practice, the parameter ν can be chosen to be slightly larger than its177

theoretical bound (2q − 1)/{(2q + 1)(2q − 3)} given in Theorem 2, and α178

can be tuned with the first batch of samples to achieve a balance between179

the number of knots and the generalized cross-validation scores, as shown in180

our numerical studies. Moreover, after one chooses α this way, the resulting181

estimates are fairly stable when varying the value of ν under the constraint182

α|κn−1|1/ν < n. This provides a practical guidance of choosing ν and α183

given the penalty order q. We conclude this section by noting that the184

proposed method and algorithm, as well as the theory in next section, can185

be straightforwardly extended to the case of multivariate covariates with186

slight modification.187

3. Theoretical Results188

Before stating the main result, we give a corresponding result on L2 conver-189

gence of standard penalized spline that has not been attained in literature.190

The proof is deferred to the Supplementary Material, in which the tech-191

niques are useful in analyzing the dynamic penalized splines. A standard192
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for n = 1, 2, . . . do

if n > max{α|κn−1|1/ν , p} then
Let κ∗ be the new knot as defined in (2.6) and (2.7) and

κn = κn−1 ∪ {κ∗};

Choose a basis bn = (bn,1, . . . , bn,ln)T for Sκn,p+1;

Let Cn−1,n−1 be the matrix that

Cn−1,n−1,uv = (bn−1,u, bn−1,v)H1 ;

Let Cn,n−1 be the matrix that Cn,n−1,uv = (bn,u, bn−1,v)H1 ;

Let Qn,n−1 = Cn,n−1C
−1
n−1,n−1;

Let Sn = Qn,n−1Sn−1Q
T
n,n−1 + bn(xn)bn(xn)T,

Tn = Qn,n−1Tn−1 + ynbn(xn) and Rn = Rn−1 + y2n;

else

Let κn = κn−1 and bn = bn−1;

Let Sn = Sn−1 + bn(xn)bn(xn)T, Tn = Tn−1 + ynbn(xn) and

Rn = Rn−1 + y2n;

end

Let Dn =
∫ 1

0
b
(q)
n (x)b

(q)
n (x)Tdx and λn be the minimizer of (2.5);

Let f̃n(x) = bn(x)T(Sn + λnDn)−1Tn;

end
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condition below is imposed for the penalized spline estimation defined in193

(1.1).194

Assumption 1. f0 ∈ C l([0, 1]) for some l ≥ q or f0 ∈ H l([0, 1]) for some195

l ≥ q + 1, p ≥ q ≥ 2, where H l([0, 1]) is the Sobolev space slightly larger196

than C l.197

Recall that ∆i = max1≤j≤ki |κi,j+1 − κij|, let Fi(x) =
∑i

j=1 1x≥xj/i,198

Ej(x) =
∑i

j=1 1x≥xjεj and Mj = max0≤x≤1Ej(x), where 1x≥xj is 1 when199

x ≥ xj and 0 otherwise. We suppose Fn converges to some differentiable200

function F . To be precise,201

Assumption 2. F is a continuously differentiable probability distribution202

function on [0, 1], such that 0 < minx F
′(x) ≤ maxx F

′(x) <∞.203

Assumption 3. ‖Fn − F‖∞ = Op

(
n−1/2

)
and Mn = Op

(
n1/2

)
.204

When x1, x2, . . . are independently and identically distributed from the205

distribution F , it is well-known that ‖Fn − F‖∞ = Op

(
n−1/2

)
. Further-206

more, when ε1, ε2, . . . are zero-mean and independent (also independent of207

x1, x2, . . . ) with second moment uniformly bounded by M , from Doob’s208

martingale inequality, one has P (Mn ≥ α) ≤ (nM)1/2/α for all α > 0,209

which implies Mn = Op

(
n1/2

)
. For non-random x1, x2, . . . , this assump-210

tion simply correspond to its non-random version ‖Fn − F‖∞ = O
(
n−1/2

)
211
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and Mn = O
(
n1/2

)
. When working with large number of knots, that is,212

the “smoothing spline” scenario in Claeskens et al. (2009), unlike existing213

theories for penalized spline, we impose neither an explicit assumption on214

the distributions of xi or yi, nor a lower bound on the distance between215

adjacent knots in κn (e.g., Claeskens et al., 2009).216

Theorem 1. Given Assumptions 1 and 2, there exist constants C1, C2 de-217

pending on l, p, q, f0, F , when the following holds,218

‖Fn − F‖∞ λ
− 1

2q
n n

1
2q ≤ C1, λn ≤ C1n, (3.8)

we have219

∥∥∥f0 − f̂n∥∥∥2
2
≤ C2∆

2min{l,p+1}
n + C2λn/n+ C2M

2
nλ
− 1

2q
n n−

4q−1
2q , (3.9)

where f̂n is the standard penalized spline estimation defined in (1.1).220

If we additionally impose Assumption 3, then for D1n
1/(2q+1) ≤ λn ≤221

D2n
1/(2q+1), D1, D2 ∈ (0,∞) and ∆n = Op

{
(λn/n)1/(2min{l,p+1})

}
, we have222

∥∥∥f0 − f̂n∥∥∥2
2

= Op

(
n−

2q
2q+1

)
.

The inequality (3.9) reveals the relation between λn/n and ∆
2min{l,p+1}
n .223

For instance, if (λn/n)−1/(2min{l,p+1}) ≥ C|κn| for some C, the first term224

∆
2min{l,p+1}
n shall dominate, which is usually not desired.225

15

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Compared to the conditions assumed in Claeskens et al. (2009), this226

L2 convergence rate does not require a lower bound of mini |κn,i+1 − κn,i| .227

In the second part of the theorem, Assumption 3 and D1n
1/(2q+1) ≤ λn ≤228

D2n
1/(2q+1) together implies (3.8) by noting229

‖Fn − F‖∞ λ
− 1

2q
n n

1
2q = Op(n

1−2q
4q+2 ), λn = o(n).

Stone (1982) has shown that under certain conditions, if (xi, yi) are sim-230

ple random samples with Eyi = f0(xi) and l = q, the rate Op

{
n−2q/(2q+1)

}
is231

optimal for integrated squared error. With stronger assumptions, Claeskens232

et al. (2009) showed the convergence rate of average mean squared error233

(in an empirical sense),
∑n

i=1{f0(xi) − f̂n(xi)}2/n = Op

{
n−2q/(2q+1)

}
, for234

a large number of knots, and Op

{
n−(2p+2)/(2p+3)

}
for a small number of235

knots. Such results were attained under a stronger condition that, roughly236

speaking, knots in κn are not far from equi-spaced.237

Next we present the result for the proposed dynamic penalized spline238

estimation, and requires additional assumptions as follows.239

Assumption 4. supi=1,2,...Eε
2
i < ∞, Eεi = 0 for i = 1, 2, . . . . Either240

{εi}i=1,2,... are pairwise uncorrelated and independent of {κi}i=1,2,... and241

{xi}i=1,2,..., or {εi}i=1,2,... are pairwise independent and εj is independent242

of κi and xi for i ≤ j.243
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Assumption 5. D1n
1/(2q+1) ≤ λn ≤ D2n

1/(2q+1) for some D1, D2 ∈ (0,∞),244

E∆n = O (n−ν), ‖Fn − F‖2∞ |κ2n+1| = op
(
nξ
)

and
∑

j≤n:κj+1 6=κj ‖Fj − F‖
2
∞ =245

op
(
nξ
)

for some ν > (2q−1)/{(2q+1)(2q−3)} and ξ = (2q−2)ν+2q/(2q+246

1).247

Assumption 4 is a rather mild condition and is apparently satisfied248

by most situations where xi’s and κi’s are commonly assumed indepen-249

dent εi’s. Assumption 5 imposes conditions on the distribution of xi’s250

and the growth of κn, where the spanning ∆n on average is assumed at251

a polynomial order of n. The conditions ‖Fn − F‖2∞ |κ2n+1| = op
(
nξ
)

252

and
∑

j≤n:κj+1 6=κj ‖Fj − F‖
2
∞ = op

(
nξ
)

are actually implied by a stronger253

one, D3n
ν ≤ |κn| ≤ D4n

ν , that was adopted in most existing work on254

standard spline estimation (e.g. Claeskens et al., 2009; Wang et al., 2011;255

Schwarz and Krivobokova, 2016; Xiao, 2019). Note that the condition256

‖Fn − F‖2∞ |κ2n+1| = oP (nξ) is different from ‖Fn − F‖2∞ |κn| = oP (nξ).257

Roughly speaking, this assumption requires that the distribution pattern258

of later samples to not differ dramatically from that of the early ones.259

Theorem 2. Suppose that Assumptions 1–5 hold, then we have260

∥∥∥f0 − f̃n∥∥∥2
2

= Op

(
n−

2q
2q+1

)
,

where f̃n is the dynamic penalized spline as defined in (2.3).261
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Note that the results holding in probability is a consequence of the262

random design points {xi}. Our assumptions on Fn are in the form of OP263

or oP , which is the usual case for i.i.d. design points. Had those assumption264

be replaced with nonrandom uniform bounds, the reader may follow our265

proof and arrive at similar results of E
∥∥∥f0 − f̃n∥∥∥2.266

Distinct from Hall and Opsomer (2005), Claeskens et al. (2009) and267

Xiao (2019) which built their arguments on the analysis of matrices, our268

proof deals directly with function spaces, which provides a new and general269

technique that is sketched below.270

Our theory has an origin from Munteanu (1973), which is adopted for271

penalized splines. Let Z be the Hilbert space L2 × Rn, with the inner272

product defined by273

〈(g1, z11, . . . , z1n), (g2, z21, . . . , z2n)〉Z = λn

∫ 1

0

g1(x)g2(x)dx+
n∑
i=1

z1iz2i.

Let L : Hq → Z be the bounded linear map given by274

Lg =
(
g(q), P1g(x1), . . . , Png(xn)

)
.

We show that275

sup
g
‖g‖22 / ‖Lg‖

2
Z = Op

(
n−1
)

(3.10)

and276 ∥∥∥Lf0 − Lf̃n∥∥∥2
Z

= Op

{
n1/(2q+1)

}
. (3.11)
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The first part (3.10) is done by showing that277

sup
g

n ‖g‖22 + λn
∥∥g(q)∥∥2

2
− ‖Lg‖2Z

n ‖g‖22 + λn ‖g(q)‖22
= op(1).

For (3.11), let h = (0, y1, . . . , yn) ∈ Z, and let Q1 : Z → LHq and Q2 : Z →

LSκn,p+1 be orthogonal projection, then Lf̃n = Q2h and Q2 = Q2Q1. We

have that ∥∥∥Lf0 − Lf̃n∥∥∥2 = ‖Lf0 −Q2Lf0‖2 +
∥∥∥Q2Lf0 − Lf̂n

∥∥∥2
≤ ‖Lf0 −Q2Lf0‖2 + ‖Q1Lf0 −Q1h‖2 .

From the theory of splines in Schumaker (2007), there exists s ∈ Sκn,p+1278

and C > 0 such that279

∥∥∥f (r)
0 − s(r)

∥∥∥
q
≤ C∆l−r ∥∥f (l)

n

∥∥
q
, 0 ≤ r ≤ l − 1,

thus280

‖Lf0 −Q2Lf0‖2 ≤ {1 + op(1)}
(
n ‖f0 − s‖22 + λn

∥∥∥f (q)
0 − s(q)

∥∥∥2
2

)
= Op

{
n1/(2q+1)

}
.

We may also show ‖Q1Lf0 −Q1h‖2 = Op

{
n1/(2q+1)

}
from the fact that281

‖Q1Lf0 −Q1h‖ = sup
g∈Hq

〈Lg, Lf0 − h〉Z
‖Lg‖

.

A detailed proof is given in the online Supplementary Material, while282

the proof for the standard penalized spline estimation is to substitute the283

definition of L with Lg =
(
g(q), g(x1), . . . , g(xn)

)
.284
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4. Numerical Study285

4.1 Simulated examples286

We generate independent x1, x2, . . . and ε1, ε2, . . . in simulation studies. For287

the first example, let xi be uniformly distributed on [0, 1], εi follow the stan-288

dard normal distributionN(0, 1), and f0(x) = 50(x−0.5) exp {−100(x− 0.5)2} .289

We consider fitting this model with two smoothness/penalty settings,290

p = 3, q = 2 or p = 4, q = 3. Starting with an initial κ1 = {0, 0.2, 0.4, 0.6, 0.8, 1},291

we take ν = 2/3 for the former setting, and ν = 1/3 for the latter. We292

evaluate the performance of the dynamic and standard penalized spline es-293

timation with various values of α, and the total sample size is 5 × 104.294

We calculate the bias, variance and total mean squared error, denoted by295

L2
bias = ‖f0 − Ef̃n‖22, L2

var = E‖f̃n − Ef̃n‖22 and L2
err = E‖f0 − f̃n‖22, by296

averaging over 1000 Monte Carlo runs. The results are shown in the Ta-297

ble 1, which indicates the dynamic penalized estimation performs as well298

as the standard method, no matter whether one used the common equi-299

spaced knots or the knots chosen by the dynamic method (the knots size300

equals to |κn|). This provides empirical support that the potential precision301

loss caused by modifying the target function (1.1) is numerically negligible.302

Note that we fixed ν slightly larger than (2q−1)/{(2q+ 1)(2q−3)} in each303
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smooth/penalty setting, the estimation with different values of α appears304

fairly stable. It is worth mentioning that the dynamic updates need only305

the previous-step estimates using newly added data.306

To see the influence of α and ν, we first fix ν slightly larger than its307

theoretical lower bound as above, and tune α with the first batch of samples.308

Figure 1 shows the generalized cross-validation scores versus different values309

of α for the first 500, 1000 and 1500 samples, respectively. We see that α = 2310

appears to reasonably balance the knots size and performance for p = 3,311

q = 2 and ν = 2/3, as a larger α encourages fewer knots and potentially312

elevates the estimation error. Analogously, we may choose α = 0.04 for the313

case of p = 4, q = 3 and ν = 1/3. It is also seen that, the number of samples314

has little impact on the choice of α when it is adequate. Moreover, with this315

selected α, the influence on the generalized cross-validation score from the316

choice of ν is fairly minor, shown in Fig. 2. This provides empirical support317

on how to choose ν and α in practice, and the performance is rather stable318

in a wide range of α (and ν).319

Our method and theory can be naturally extend to modeling multi-320

dimensional yi, and the algorithm for choosing new knots remains un-321

changed. In the second example, we let yi be a bivariate response. With322

f0(x) = (g(x) sinx, g(x) cosx)T, where g(x) = (2πx + 20πx3)/(1 + x3), εi323
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Table 1: Results of our first simulated example with the total sample size

5 × 104. The abbreviation DS stands for the proposed dynamic penalized

estimation, PS1 for the standard penalized spline estimation with λn tuned

by generalized cross-validation and the knots equi-spaced on [0, 1] with the

size equal to |κn| of the dynamic method, and PS2 for the standard penalized

spline estimation with the knots κn from the dynamic method. Shown

are the Monte Carlo averages over 1000 runs for L2
bias = ‖f0 − Ef̃n‖22,

L2
var = E‖f̃n − Ef̃n‖22 and L2

err = E‖f0 − f̃n‖22, all multiplied by 104 for

visualization.

p, q, ν α
L2
bias L2

var L2
err

DS PS1 PS2 DS PS1 PS2 DS PS1 PS2

3, 2, 2/3

1 2.25 2.26 2.26 18.9 18.9 18.9 21.1 21.2 21.2

2 2.13 2.16 2.16 18.7 18.6 18.6 20.9 20.8 20.8

4 2.29 2.36 2.36 18.8 18.5 18.5 21.1 20.9 20.9

4, 3, 1/3

.02 1.38 1.39 1.39 17.2 17.2 17.1 18.6 18.6 18.5

.04 1.29 1.28 1.27 17.1 17.1 17.1 18.4 18.4 18.3

.08 1.24 1.27 1.23 17.4 17.3 17.3 18.6 18.6 18.5
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Figure 1: Generalized cross-validation scores of the first batch of samples

in one Monte Carlo run with various values of α. For the left panel, p = 3,

q = 2 and ν = 2/3; for the right panel, p = 4, q = 3 and ν = 1/3.
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α=0.6

ν=1/2.5
α=0.15ν=1/3

α=0.04
ν=1/3.5
α=0.015

ν=1/4
α=0.005

Figure 2: Generalized cross-validation scores of the first 1500 samples in

one Monte Carlo run with various values of ν, where the parameter α is

tuned as in Fig. 1. For the left panel, p = 3 and q = 2, where ν is subject

to a lower bound constraint at 3/5. For the right panel, p = 4 and q = 3,

where the lower bound constraint is 5/21.
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follows the bivariate standard normal distribution, and other parameters324

are the same as in the first example. The penalized spline estimation is325

performed in two fittings, where the smoothness/penalty parameters (and326

associated values of ν and α) are given by p = 3, q = 2, ν = 2/3, α = 100 and327

p = 4, q = 3, ν = 1/3, α = 0.4 respectively, and the total sample size 5×104.328

To appreciate the influence of the knot placement offered by the dynamic329

estimation, we compare the proposed to the standard method using equi-330

spaced knots with the same knots size equal to |κn|. For the first setting,331

L2
err averaged over 1000 Monte Carlo runs for our and standard methods are332

1.563 × 10−3 and 1.530 × 10−3, respectively, where both bias and variance333

are similar. For the second setting, we have the L2
err of 1.51 × 10−3 from334

dynamic estimation (L2
bias = 2.46 × 10−4 and L2

var = 1.26 × 10−3, respec-335

tively), and 2.59× 10−3 from the standard estimation (L2
bias = 1.48× 10−3336

and L2
var = 1.11 × 10−3, respectively). As shown in Fig. 3, for the first337

setting, the dynamic estimation is close to the standard estimation. For338

the second, our method seems to put more knots at large values of x with339

high curvature, which reduced the approximation bias substantially but340

sufferred slightly larger variance. We also report in Table 2 the average341

computation time of each single update of our algorithm on our computer342

with an Intel i5-6500 CPU, which is much faster compared to that of the343

24

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



x

0.0 0.2 0.4 0.6 0.8 1.0

y1
−0.4

−0.2
0.0

0.2
0.4

0.6

y 2

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

x

0.0 0.2 0.4 0.6 0.8 1.0

y1

−0.4
−0.2

0.0
0.2

0.4
0.6

y 2

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

Figure 3: A Monte Carlo run of the second simulated example. The left

panel is under the setting p = 3, q = 2, ν = 2/3, α = 100, and the right

one is under the setting p = 4, q = 3, ν = 1/3, α = 0.4. The red solid line

is the proposed dynamic estimation, the green dash line is the estimation

of standard penalized spline estimation with equi-spaced knots of size |κn|,

and the blue dotted line is the underlying f0.

standard penalized spline estimation using a full sample of n = 1500 for344

empirical illustration.345

4.2 A real example346

We present an application to the regression of power plant output. The347

dataset comes from Tüfekci (2014), containing 9568 data points collected348

from a Combined Cycle Power Plant over 6 years 2006–2011, when the349

power plant was set to work with full load. The features include ambi-350
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Table 2: Computation time comparison in various settings with sample size

n = 1500 for illustration. We listed the average time of a single update on

our computer with an Intel i5-6500 CPU, and the time of a full computation

of the standard penalized spline estimation, both in milliseconds.

p, q, ν α Avg. update time(ms) Std. method(ms)

3, 2, 2/3

1 0.8 24

2 0.5 19

4 0.3 6

4, 3, 1/3

0.02 0.2 19

0.04 0.2 14

0.08 0.2 13
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ent temperature (AT) measured in whole degrees in Celsius and full load351

electrical power output (PE) measured in mega watts, shown in Fig 4(a).352

We perform a penalized spline regression with the proposed dynamic353

method and the standard method measuring E(PE|AT ), where xi is the AT354

of the ith observation, scaled to [0, 1], and yi is the PE of the ith observation.355

We perform the regression with two settings, q = 2, p = 3, ν = 2/3 and356

q = 3, p = 4, ν = 1/3. We first obtain estimation with various α on 500 data357

points, shown in (b) and (d) of Fig 4. From the generalized cross-validation358

scores we see that α = 2 (or 0.125) is an adequate choice for adding knots359

in the first (or the second) setting. Then we carry out the proposed and360

the standard methods on the full dataset, denoting the estimates by f̃361

and f̂ (with the same number of knots as ours but equi-spaced on [0, 1]),362

respectively. We measure the relative L2 difference between f̃ and f̂ , ‖f̃ −363

f̂‖2/‖f̂‖2, which is 1.268 × 10−4 for the first setting and 8.478 × 10−5 for364

the second. This suggests little difference using the dynamic updates in365

a streaming manner, compared to the standard estimation using the full366

data. We also perform a 10-fold cross-validation measuring average mean367

squared prediction error, which has nearly identical results for dynamic and368

standard estimation in both settings (not reported for conciseness) . This369

empirically supports our theory for the dynamic penalized splines, and is370
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also graphically demonstrated in Figure 4 (c) and (e) that the estimates371

obtained by two methods are visually indistinguishable.372

Supplementary Material373

The auxiliary lemmas and the proofs to the main theorems are deferred374

to the online Supplementary Material.375
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Figure 4: Illustration of the power plant dataset. Panels (b) and (d) are

plotted under setting q = 2, p = 3 and ν = 2/3, while (c) and (e) are plotted

under setting q = 3, p = 4, ν = 1/3. (a): Scatter plot of the dataset. (b)

and (c): The red solid line obtained by the proposed method and the green

dashed line by the standard estimation are visually indistinguishable. (d)

and (e): Generalized cross-validations scores of our method performed on

500 from a total of 9568 sample points with various α, suggesting α = 2

and α = .125, respectively.
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