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Abstract:

We propose a Cox proportional hazards model with a change hyperplane to allow

the effect of risk factors to differ depending on whether a linear combination of

baseline covariates exceeds a threshold. The proposed model is a natural ex-

tension of the change-point hazards model. We maximize the partial likelihood

function for estimation and suggest an m out of n bootstrapping procedure for

inference. We establish the asymptotic distribution of the estimators and show

that the estimators for the change hyperplane converge in distribution to an in-

tegrated composite Poisson process that is defined on a multi-dimensional space.

Finally, the numerical performance of the proposed approach is demonstrated

through simulation studies and analysis of the Cardiovascular Health Study.

Key words and phrases: Change hyperplane, m out of n bootstrap, Proportional

hazards model.

1. Introduction
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Change Hyperplane Cox Model

Cox proportional hazards model with a change point is often used to

identify subjects whose risk profiles are substantially different from the

others and those subjects are characterized by a biomarker exceeding a

threshold (Tapp et al., 2006; Marquis et al., 2002; Zhao et al., 2014). More

recently, such a model has been increasingly used in subgroup analysis

of clinical trials in order to determine treatment-respondents based on a

threshold of some potentially predictive biomarker. Inference for the change

point model has been extensively studied in literature (Liang et al., 1990;

Luo, 1996; Pons, 2002; Luo, 1996; Gandy et al., 2005; Gandy and Jensen,

2005; Jensen and Lütkebohmert, 2008; Luo and Boyett, 1997; Pons, 2003;

Kosorok and Song, 2007). In particular, Pons (2003) shows that the asymp-

totic distribution of the maximum likelihood estimator for the change point

is given by a composite Poisson process.

For many practices, it is rather restrictive to assume the change point

determined by a single biomarker. For example, Zhao et al. (2014) inves-

tigated the change point of leukocyte telomere length (LTL) for diabetes

incidence in the Strong Heart Family Study (SHFS). In the same study, the

change point based on LTL has been observed to depend on triglycerides

and high-density lipoproteins (HDL), indicating that the incidence of di-

abetes can change dramatically depending on a combination of all these
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Change Hyperplane Cox Model

biomarkers. To better model this general change point pattern, a natural

extension of the change point model to be considered in this paper is a Cox

proportional hazards model with a change hyperplane. More specifically,

we assume that the log-hazards ratios of some covariates are different de-

pending on whether a linear combination of baseline biomarkers is larger

than an unknown threshold. In other words, the risk profiles for subjects

whose baseline biomarkers are above the hyperplane can be very different

from those who are below.

Estimation and inference for the Cox proportional hazards model with

a change hyperplane are much more challenging. We propose maximum

likelihood approach for estimation in which all parameters including the

coefficients of the change hyperplane are estimated by maximizing the Cox

partial likelihood function. Since the likelihood function is not continu-

ous in the latter parameters, we adopt a genetic optimization algorithm

(Sekhon and Mebane, 1998) for optimization. For inference, we suggest an

m out of n bootstrap procedure for constructing confidence intervals. Since

the hyperplane is defined by more than one biomarker, existing theory for

the change point model is no longer applicable. To establish asymptotic

distribution of the estimators for the change hyperplane, we need to care-

fully partition the support of the hyperplane then show that its asymptotic
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distribution is determined by an integrated composite Poisson process that

is defined on a multidimensional space of the covariates. To our knowledge,

this finding has never been discovered before. Furthermore, when there

are no covariates except a constant term in the change plane, the derived

asymptotic distribution reduces to the change point distribution given in

Pons (2003).

As a note, although the proposed model can be viewed as one single-

index hazard model which has been studied in Wang (2004) and Huang

and Liu (2006), the link function for our model is discontinuous while the

usual single index model assumes a smooth link function. This leads to

substantially different properties for the maximum likelihood estimators.

For example, we show in this paper that the estimators for the single index,

i.e., the coefficient in the hyperplane, has a convergence rate 1/n, in contrast

to the standard 1/
√
n rate in Wang (2004) and Huang and Liu (2006).

2. Methods

2.1 Model and Parameter Estimation

For subject i, let T̃i denote the failure time, X i consist of the baseline

biomarkers of p1-dimension and constant 1 and Zi(t) the potential time-

dependent covariates with dimension p2. A Cox proportional hazards model
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2.1 Model and Parameter Estimation

with a change hyperplane assumes that the hazard rate function for T̃i given

W i(t) ≡
{
XT

i ,Z
T
i (t)

}T
takes form

λ(t|W i) = λ0(t) exp
{
βT

1Zi(t) + β2I(ηTX i > 0) + βT
3Zi(t)I(ηTX i > 0)

}
,

where λ0(t) is an unknown baseline function, β ≡
(
βT

1 , β2,β
T
3

)T
is a vector

of 2p2 + 1 unknown parameters, and η = (η1, η2, ..., ηp1 , η0)T is a vector of

p1 + 1 unknown change hyperplane parameters. Since the model remains

the same if replacing η by any rescaled η, for model identifiability, we

further assume that η2
1 + η2

2 + ...+ η2
p1

= 1 and η1 is positive. Additionally,

we assume (β2,β
T
3 ) 6= 0; otherwise, any η gives the same model. In the

model, the change hyperplane is given by η1Xi1 + η2Xi2 + ...+ ηp1Xip1 + η0.

The effect of Zi(t) is β1 when ηTX i ≤ 0, and it becomes (β1 + β3) when

ηTX i > 0. Furthermore, the hazard ratio between two groups ηTX i > 0

and ηTX i ≤ 0 is exp
{
β2 + βT

3Zi(t)
}

. When p1 = 1, it reduces to the

change point model in Pons (2003).

Suppose that right-censored data are obtained from n i.i.d subjects and

we denote them as (Ti = T̃i ∧ Ci,∆i = I(T̃i ≤ Ci),W i), i = 1, ..., n, where

Ci is the censoring time and assumed to be non-informative. We propose to

estimate all the parameters by maximizing the observed likelihood function.

After profiling the nuisance parameter for λ0(t), we obtain the following
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2.2 Inference

partial likelihood to be maximized for estimation:

Ln(η,β) =
n∏
i=1

(
exp [rη,β {W i(Ti)}]∑n

l=1 I(Tl ≥ Ti) exp [rη,β {W l(Ti)}]

)∆i

,

where rη,β {W i(t)} ≡ βT
1Zi(t) + β2I(ηTX i > 0) + βT

3Zi(t)I(ηTX i > 0).

We adopt a similar two-step procedure (Luo and Boyett, 1997) for com-

puting the maximum likelihood estimators. In the first step, for any fixed

value of η, we obtain the estimates of β by applying the Newton-Raphson

method to maximize the logarithm of the partial likelihood function. The

algorithm for this step guarantees the convergence to the global minimum

due to the strictly concavity of the log-partial likelihood function in terms

of β. In the second step, we apply an evolutionary algorithm with a

quasi-Newton method to maximize the profile function for η subject to

the constraints for η (Sekhon and Mebane, 1998). This evolutionary al-

gorithm has been widely applied to optimize the function when the ob-

jective function is not a continuous function of the parameter of interest.

We iterate between these two steps till convergence. Finally, we denote

(η̂, β̂) = arg max
η21+η22+...+η2p1=1,η1>0,β

ln(η,β), where ln(η,β) = logLn(η,β).

2.2 Inference

We will prove that η̂ and β̂ are asymptotically independent and that their

convergence rates are 1/n and 1/
√
n, respectively. In addition, the asymp-
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2.2 Inference

totic distribution of β̂ remains to be normal no matter whether η is known

or not. Consequently, the inference of β̂ can be carried out as for the

usual Cox proportional hazards model as if η̂ were a fixed constant, so the

corresponding confidence intervals are generated by normal approximation.

It is more challenging to make inference for η because the asymptotic

distribution for η̂ is no longer normal and in fact, it has no explicit expres-

sion. For the parameters like η̂ that are estimated at non-standard n-rate,

Shao (1994), Bickel et al. (2012), Politis and Romano (1999), and Xu et al.

(2014) proposed the m out of n bootstrap to generate the 95% confidence

intervals under this situation, where m is determined by the data-driven ap-

proaches (Hall et al., 1995; Lee, 1999; Cheung et al., 2005; Bickel and Sakov,

2005; Bickel and Sakov, 2008). Theoretically, Xu et al. (2014) showed the

consistency of the m out of n bootstrap in the Cox proportional hazards

model with a change point.

Therefore, for the inference in our approach, we suggest to adopt a

similar m out of n bootstrap algorithm. Specifically, we choose to adapt

the algorithm proposed by Bickel and Sakov (2008) to select m. In this

algorithm, for each j = 0, 1, .., p1, we first determine mj as the maximum

sample size that achieves the stable empirical distribution of bootstrap es-

timators for ηj. Then the final m is defined as the minimum of mj’s. Both
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2.3 Hypothesis Testing for the Change Hyperplane

the standard error estimator for η̂ and the confidence interval for η will

be adjusted by n/m based on the convergence rate 1/n of η̂ (Theorem

3). Particularly, the equal-tailed 95% confidence intervals are generated as(
η̂ − Qη̂,0.95

n/m
, η̂ +

Qη̂,0.95

n/m

)
, where Qη̂,0.95 is the 95th quantile of the absolute

value
∣∣∣η̂ − η̂(b)

m

∣∣∣ for b = 1, 2..., B.

2.3 Hypothesis Testing for the Change Hyperplane

In practice, one important question is whether the change hyperplane exists.

Equivalently, we wish to test the null hypothesis H0 : β2 = 0,βT
3 = 0 in our

proposed model. Since the estimation of the change hyperplane relies on

either β2 or β3 unequal to zero, the model is not identifiable given the fact

that both β2 and β3 are zero under the null hypothesis. The supremum

(SUP) tests is proposed to verify the existence of the change point based

on single covariate (Davies, 1977, Davies, 1987, Kosorok and Song, 2007).

Here, we extend this SUP test with score statistics to multi-dimensional

covariates. Specifically, our test statistic is

SUPkp1 = sup
ηj∈{ηj1,...,ηjk},j=0,2,...,p1

U(η)TΣ(η)−1U(η),

where U (η) = ∂ln(η,β)/∂β, Σ(η) = −∂2ln(η,β)/∂β2, and {ηj1, ..., ηjk}

is the set of k pre-determined values for each ηj, j = 0, 2, ..., p1. We use

permutation to generate the null distribution of the proposed test statis-
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tic. Under the null hypothesis, there is no change hyperplane effect on

the response. Thus, we randomly shuffle the covariate X i to obtain the

permutation distribution of the proposed test statistics. We reject the null

hypothesis at a significance level of α if SUPkp1 is larger than the upper

α-quantile of the permutation distribution.

3. Asymptotic Properties

The consistency and asymptotic distributions of the estimators for both

the change hyperplane and the regression parameters are established in

this section. Let τ be the study duration assumed to be finite. First,

we define Yi(t) = I(Ti ≥ t) as the at-risk process for subject i and let

s(r)(t;η,β) = E
{
Yi(t)Z̃

⊗r
i (t;η) exp [rη,β {W i(t)}]

}
for r = 0, 1, 2, and

Z̃i(t;η) = {ZT
i (t), I(ηTX i > 0),ZT

i (t)I(ηTX i > 0)}T. In addition to

assuming η2
1 + η2

2 + ... + η2
p1

= 1 with η1 > 0, we assume the following

conditions.

(C.1) The joint density of (Xi1, Xi2, ..., Xip1) with respect to a dominating

measure has a support containing 0 and is assumed to be strictly positive,

bounded and continuous in a neighborhood V0 = {x : |ηT
0 x| < ε}, where η0

is the true value of η. In addition, each of Zij(t) has a finite total variation

with probability one and the joint density of {Zi1(t), ..., Zip2(t)} given X i
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is assumed to be strictly positive and bounded for any t in [0, τ ].

(C.2) The matrix, E{(1,X i)
T(1,X i)} has a full rank. In addition, con-

ditional on X i, if with probability one, a(t) + bTZi(t) = 0 holds for any

t ∈ [0, τ ] for some deterministic function a(t) and constant b, then a(t) = 0

and b = 0.

(C.3) For any Vδ(η0) = {η : ‖η − η0‖ < δ}, the covariance matrix I(η,β) =∫ τ
0
v(t;η,β)s(0)(t;η,β)

λ0(t)dt is positive definite, where

v(t;η,β) = s(2)(t;η,β)/s(0)(t;η,β)−
{
s(1)(t;η,β)/s(0)(t;η,β)

}⊗2
.

In addition, the smallest eigenvalue of
∫ τ

0
E
[
Yi(t) {1,Zi(t)}⊗2

∣∣ηT
0X i = 0

]
dΛ0(t)

is positive.

(C.4) We assume β to be bounded by a known constant B and λ0(t) is

continuously differentiable in [0, τ ]. Additionally, P{Y (τ) = 1} > 0.

(C.1) and (C.2) are needed for the identifiability of the change hyper-

plane and regression coefficients. (C.2) holds if Zi is time-independent and

E{(1,Zi)(1,Zi)
T |X i} is full rank. (C.3) requires that λ0(t) is bounded

and the at-risk probability is non-zero for t ∈ [0, τ ]. Condition (C.4) holds

if the study ends at a fixed time τ so subjects who are alive at τ will be

censored at τ . Our first theorem establishes the identifiability of the change

hyperplane parameters and regression coefficient parameters.
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Theorem 1. Under the condition that at least one of the elements in β2 or

β3 is nonzero, the change hyperplane parameters η and regression parame-

ters β are identifiable.

Theorem 2 and Theorem 3 show the consistency and convergence rates

of the change hyperplane estimators and regression coefficients estimators.

Theorem 3 implies that the convergence rates for η̂ and β̂ are 1/n and

1/
√
n, respectively. These rates will be applied to establish the asymptotic

distributions of the estimators in Theorem 4.

Theorem 2. Under conditions (C.1)-(C.4), η̂ and β̂ converge in probability

to η0 and β0 as n→∞, respectively.

Theorem 3. Under conditions (C.1)-(C.4), it holds

lim
A→∞

lim
n→∞

P0 (n ‖η̂ − η0‖ > A) = 0,

lim
A→∞

lim
n→∞

P0

(
n1/2

∥∥∥β̂ − β0

∥∥∥ > A
)

= 0.

In other words, ‖η̂ − η0‖ = Op(1/n) and
∥∥∥β̂ − β0

∥∥∥ = Op(1/
√
n).

To give the asymptotic distribution for η̂ and β̂, we use W for ηT
0X

and let

η = ∆
[{
β20 + βT

30Z(T )
}]

+

∫ τ

0

φ(t)dΛ0(t),
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where φ(t) = Y (t) exp
{
βT

10Z(t)
} [

1− exp
{
β20 + βT

30Z(t)
}]
. Additionally,

we define Γ(x, t) as a random process and it is independent for any x and

t, each with the conditional distribution of η given W = 0 and X = x,

and v(ω, t) is a multivariate Poisson process defined on Ω × (0,∞), where

Ω is the probability measure space generating data, with Poisson intensity

E{v(ω ∈ A, u ∈ [t, t + dt))} ≡ P (A)dt for any measurable set A in the

σ-field of the probability measure space and for any t > 0. Finally, we

define the following integrated compound Poisson process:

Q−(u1) ≡
∫

Ω

∫ max(0,X(ω)Tu1)

0

Γ(X(ω), t)v(dω, dt)

and

Q+(u1) ≡
∫

Ω

∫ max(0,−X(ω)Tu1)

0

Γ(X(ω), t)v(dω, dt).

That is, the integrals inside both Q+ and Q− are some compound Poisson

process. With these definitions, we have the following theorem.

Theorem 4. Under conditions (C.1)-(C.4), n(η0 − η̂) and n1/2(β0 − β̂)

are asymptotically independent. Furthermore, n(η0 − η̂) converges weakly

to inf{u1 : arg maxQ(u1)} where Q = Q+−Q−, and n1/2(β0−β̂) converges

weakly to N(0, I(η0,β0)−1), where I(η0,β0)−1 is the efficient information

bound for β0 assuming η0 is known.

Since the change hyperplane can be precisely determined by a finite
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number of observations near the true location, the estimator for the pa-

rameter in the change hyperplane η̂ has a convergence rate in an order of

n−1. Thus, the randomness in η̂ has no effect for the random behavior for

β̂ whose variability is in an order of 1/
√
n. This explains why the two dis-

tributions are asymptotically independent. The proof of this theorem relies

on the derivation of the asymptotic process for Q(u1). Since the change

hyperplane depends on the random variable X, such a derivation is much

challenging than the case with a change point. The detail of the proof is

given in the appendix.

4. Simulation Studies

We conducted simulation studies to evaluate the performance of our pro-

posed method. Our first set of studies was designed to assess the perfor-

mance of the estimators and the coverage rate of the confidence interval.

We considered one covariate Z ∼ Uniform(-1,1) and the change hyperplane

with two covariates X1 ∼ N(2, 1.52) and X2 ∼ N(0, 1). We generated the

survival times T̃i under the proportional hazards model Λ(t|X1, X2, Z) =

t exp{β1Z+β2I(η1X1+η2X2−η0 > 0)+β3ZI(η1X1+η2X2−η0 > 0)}, where

(β1, β2, β3) = (−1, 1.8, 0.5), (η1, η2, η0) = (0.8,−0.6, 1.7), and η2
1 +η2

2 = 1. In

order to obtain the censoring rates of 10%, 30%, and 50%, we generated the
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censoring time from Uniform (0,680), Uniform(0,220), and Uniform(0,118),

respectively. The number of subjects is 200 or 300. To use m out of n boot-

strap, we consider a sequence of candidates, [nk/10], where k = 1, ..., 10 and

[x] denotes the integer part of x. Following Bickel and Sakov (2008) and

the description in Section 2.2, we first determine mj as the maximal sample

size in this sequence for each ηj that gives the stable bootstrap distribution.

Then the final m is chosen as the minimal size of these mj’s. All results

are based on 500 replications and each m out of n bootstrap consists of 100

replicates.

In Table 1, the proposed method provides approximately unbiased es-

timates for the change hyperplane parameters η2 and η0. Here, we only

presented the results for η2 and η0 because η1 and η2 satisfy η2
1 + η2

2 = 1.

In addition, the m out of n bootstrap confidence interval generates proper

coverage rates. When the number of subjects increases or the censoring rate

decreases, the bias of the change point estimate and the variance estimates

decrease. In Table 2, the results show that the estimates for the regression

coefficients β are also approximately unbiased and the confidence intervals

using normal approximation have proper coverage rates.

Our second set of simulation studies were aimed at comparing type

I error and power of the SUP52 , SUP102 , and SUP202 tests under various
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Table 1: Simulation Results for the Change Hyperplane Parameters

Censoring Sample Parameters Bias SSD 95% CI Length
Rate Size (×10−2) (×10−2) (×10−2) (×10−2)

50% 200 η̂2 0.17 8.3 96.0 42.7

η̂0 1.11 15.7 95.2 73.9

300 η̂2 0.06 5.2 95.6 28.3

η̂0 0.83 9.5 94.6 50.6

30% 200 η̂2 0.40 6.4 96.4 32.5

η̂0 0.76 11.7 96.6 56.9

300 η̂2 -0.13 4.0 96.2 21.0

η̂0 1.23 7.7 95.0 37.3

10% 200 η̂2 -0.23 5.0 97.2 26.9

η̂0 1.81 9.8 95.8 46.8

300 η̂2 0.20 4.0 95.4 17.9

η̂0 0.86 7.1 95.6 31.7

NOTE: SSD stands for sample standard deviation. 95% CI is the coverage

rate for the 95% confidence interval coverage. Length is the length of the

95% CI.

scenarios. Since our test is based on two change hyperplane parameters,

the SUP test will be evaluated on the set with k2 points, where k is the
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Table 2: Simulation Results for the Regression Parameters

Censoring Sample Parameters Bias SSD SSE 95% CI
Rate Size (×10−2) (×10−2) (×10−2) (×10−2)

50% 200 β̂1 -4.69 33.2 34.4 94.4

β̂2 11.63 25.5 24.4 94.4

β̂3 3.92 39.9 40.7 95.0

300 β̂1 -2.54 26.7 27.0 95.4

β̂2 6.57 20.4 20.5 95.0

β̂3 0.51 32.1 32.4 95.2

30% 200 β̂1 -3.46 25.0 24.5 96.2

β̂2 8.54 21.8 20.9 95.2

β̂3 1.89 32.0 31.4 95.6

300 β̂1 -2.40 20.2 20.6 94.8

β̂2 5.76 17.5 17.1 95.0

β̂3 0.35 25.9 26.4 95.6

10% 200 β̂1 -2.28 21.0 20.7 95.0

β̂2 6.92 19.7 19.1 95.2

β̂3 1.12 28.1 27.3 96.2

300 β̂1 -1.53 17.0 18.1 94.2

β̂2 4.57 16.0 16.9 92.6

β̂3 0.31 22.8 22.9 95.2

NOTE: SSD and SEE stand for sample standard deviation and average

standard error estimate, respectively. 95% CI is the coverage rate for the

95% confidence interval coverage. Length is the length of the 95% CI.
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number of grids in the pre-specified range [−1, 1] for η2 and [−10, 10] for η0.

The range for η2 is determined by the conditions in Theorem 1. The range

of η0 is determined by the range of each covariate as well as the value of η2.

For example, the test SUP52 stands for the test which is evaluated on the

grids (−1,−0.5, 0, 0.5, 1)×(−10,−5, 0, 5, 10). We examine the performance

of these tests with the sample sizes 200, 300, and 400. The results for type

I error and power are based on 10000 and 1000 replicates, respectively. All

the other specifications are the same as the first set of simulations.

Table 3 shows that type I errors of all three tests are generally close

to 0.05. As the sample sizes increase and the censoring rates decrease, the

type I errors get closer to 0.05. For the power, the performance of the

supremum tests is determined by the numbers of grids, sample sizes, and

censoring rates. Given the same sample size and censoring rate, the power

gets stabilized after the number of grids reaches 10 for each parameter.

Given the tests with the same number of grids, the power increases as the

sample size increases and the censoring rate decreases.

5. Application to the Cardiovascular Health Study

We applied the proposed method to the Cardiovascular Health Study (CHS).

The CHS recruited 5,888 participants aged 65 years and older from four U.S.
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Table 3: Type I Error and Power for SUP Tests for the Existence of the

Change Hyperplane (×10−2)

Sample Size

(β20, β30) Censoring Rate Test 200 300 400

β20 = β30 = 0 10% SUP52 5.6 5.0 5.1

SUP102 5.1 5.3 5.2

SUP202 4.9 5.3 5.1

30% SUP52 5.4 4.8 5.3

SUP102 5.2 5.1 5.4

SUP202 4.9 5.8 5.4

50% SUP52 5.4 4.9 5.1

SUP102 5.5 5.0 5.2

SUP202 5.1 5.5 5.2

β20 = 0.8, β30 = −0.4 10% SUP52 14.4 26.0 29.4

SUP102 71.8 84.6 97.2

SUP202 74.8 94.0 99.6

30% SUP52 11.0 28.0 29.4

SUP102 70.0 85.2 95.8

SUP202 74.4 94.8 98.8

50% SUP52 9.4 19.6 23.2

SUP102 60.0 77.2 90.4

SUP202 60.2 87.6 96.0
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communities to study the development and progression of CHD and stroke.

We applied our approach to the cohort of male participants, who were free

of CHD at baseline. It resulted in 995 subjects after excluding the ones

with missing responses and covariates. Among them, there are 851 sub-

jects developed CHD before the end of the study. We included the linear

combination of HDL, systolic blood pressure, and cholesterol level to form

the risk categories (high vs. low). We investigated the association between

these risk categories and the risk of CHD in a Cox proportional hazards

model, adjusting for baseline confounding covariates age, hypertension, di-

abetes, and smoking status.

The analysis was conducted in the following two steps. First, we applied

the SUP103 test to verify the existence of these risk categories. The test is

significant with p-value less than 0.01. Second, we obtained the parameter

estimates to form the risk categories by applying the two-step estimation

procedures. The corresponding 95% confidence intervals was generated by

the m out of n bootstrap. The results were summarized in Table 4. All

the estimates are significant and included in the final model. The change

point in Table 4 is referring to the estimated cut-off, which is used to form

the risk categories (high vs. low) based on this linear combination for each

individual subject. Based on these risk categories, the regression coefficient
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Table 4: Change Hyperplane Covariates Coefficients Estimates in CHS

Change Hyperplane Covariate Estimate (×10−2) 95% CI (×10−2)

HDL 67.1 [33.8, 100.3]

SBP −60.4 [−79.6, −41.2]

CHOL −43.1 [−81.1, −5.1]

Intercept −20.9 −

estimates were summarized in Table 5. Except for hypertension, all the

other covariates have statistically significant effects. The hazard ratio of

CHD for the low risk group I(ηTX > 0) vs. the high risk group I(ηTX <

0) is 0.652. To show the survival functions of these two risk groups, we

generated the Kaplan Meier curves in Figure 1.

6. Discussion

Although a number of approaches have been developed to estimate the

change point that is based on a single covariate, no rigorous theory has

been developed for the change hyperplane that is based on multiple covari-

ates. In this paper, we developed for the first time a two-step approach

to estimate the change hyperplane parameters and a testing procedure to

verify the existence of a change hyperplane for univariate survival data. We
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Table 5: Regression Coefficients Estimates in CHS

Estimate (×10−2) exp(Est) (×10−2) p−value (×10−2)

Age 7.1 107.3 < 1

Change Hyperplane −42.8 65.2 < 1

Diabetes 38.5 146.9 < 1

Smoke 31.5 137.0 < 1

Hypertension 2.7 102.8 70.7

developed an adaptive m out of n bootstrap to construct the confidence in-

terval and provided an easy way to determine the appropriate m. We proved

the asymptotic properties of the proposed change hyperplane estimators.

To our knowledge, no previous work has ever derived such asymptotic dis-

tribution for a change plane estimator. As shown in our simulation studies,

the estimator is approximately unbiased and its confidence interval has a

good coverage rate.

For the proposed test procedure, there is not a general rule for choosing

the number of grids k. SUP test based on a larger k is likely to detect a

change hyperplane under the alternative so may lead to a higher power.

However, for a fixed sample size, a larger k brings a higher variability into

the test so can potentially reduce the power at the same time. Our nu-
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Figure 1: The Kaplan-Meier Plot of the risk groups based on the change

hyperplane (logrank test: p< 0.001).

merical experience suggests k = 10 is a reasonable choice in terms of both

type I error and power, but more thorough investigation into the choice k

is warranted.

In this paper, we consider the situation that the linear combination of

the multiple risk factors has only one change point. In reality, the change

hyperplane may have multiple change points. Instead of categorizing the

participants into low and high risk groups, we may further define a moderate
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risk group. In this situation, the inference procedures and the asymptotic

properties cannot be directly extended to the change hyperplane with mul-

tiple thresholds. Thus, it is essential to devise valid and efficient inference

procedures for general change hyperplane models in the future. Moreover,

when the proportional hazards assumption is violated, we could extend the

change hyperplane model to other survival models, e.g. additive hazard

models and accelerated failure time model. Such extension will have a wide

application in univariate survival analysis.

Appendix 1: Proof of Theorems

An equivalent constraint for η2
1 + η2

2 + ... + η2
p1

= 1 with η1 > 0 is to only

restrict η1 = 1. The maximum likelihood estimator for ηj under this new

constraint is 1 for j = 1 and is η̂j/η̂1 for j > 1. The following proofs assumes

this new equivalent constraint.

For convenience, we define Vδ(η0) = {η : ‖η − η0‖ < δ}, Vε(β0) = {β :

‖β − β0‖ < ε},

s(r)+(t;η,β) = E
{
Y (t)I(ηTX > 0)Z⊗r(t)eβ

T
1 Z(t)+β2+βT

3 Z(t)
∣∣∣X} ,

s(r)−(t;η,β) = E
{
Y (t)I(ηTX ≤ 0)Z⊗r(t)eβ

T
1 Z(t)

∣∣∣X} ,
where r = 0, 1, 2.
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Proof of Theorem 1. Suppose that two set of parameters, (η,β, λ0) and

(η̃, β̃, λ̃0), give the same likelihood functions. We set ∆ = 1 then after

integrating the likelihood function from 0 to t, we obtain∫ T

0

λ0(s) exp
{
βT

1Z(s) + β2I(X1 + η2X2 + ...+ ηp1Xp1 > η0)

+βT
3Z(s)I(X1 + η2X2 + ...+ ηp1Xp1 > η0)

}
ds

=

∫ T

0

λ̃0(s) exp
{
β̃

T

1Z(s) + β̃2I(X1 + η̃2X2 + ...+ η̃p1Xp1 > η̃0)

+β̃
T

3Z(s)I(X1 + η̃2X2 + ...+ η̃p1Xp1 > η̃0)
}
ds.

Thus, letting X2 = ... = Xp1 = 0, we have

log λ0(s) + βT
1Z(s) + β2I(X1 > η0) + βT

3Z(s)I(X1 > η0)

= log λ̃0(s) + β̃
T

1Z(s) + β̃2I(X1 > η̃0) + β̃
T

3Z(s)I(X1 > η̃0)

for s ∈ [0, τ ].

If η0 6= η̃0, without loss of generality, we assume η0 > η̃0 then choose

X1 to be a value larger than η0 and another value between η̃0 and η0. We

obtain

log λ0(s) + βT
1Z(s) + β2 + βT

3Z(s) = log λ̃0(s) + β̃
T

1Z(s) + β̃2 + β̃
T

3Z(s)

and

log λ0(s) + βT
1Z(s) = log λ̃0(s) + β̃

T

1Z(s) + β̃2 + β̃
T

3Z(s).
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This gives β2 + βT
3Z(s) = 0 for all s ∈ [0, τ ] so β2 = 0 and β3 = 0 by

condition (C.2). This gives a contradiction to the condition in Theorem

3.1. We conclude η0 = η̃0. This further gives

log λ0(s) + β2I(X1 > η0) = log λ̃0(s) + β̃2I(X1 > η0)

and

β1 + β3I(X1 > η0) = β̃1 + β̃3I(X1 > η0).

We immediately conclude λ0(s) = λ̃0(s), β2 = β̃2 , β1 = β̃1 and β3 = β̃3.

This further gives

I(X1 + η2X2 + ...+ ηp1Xp1 > η0) = I(X1 + η̃2X2 + ...+ η̃p1Xp1 > η0).

For fixed X2, ..., Xp1 , the same arguments as before yield

η2X2 + ...+ ηp1Xp1 = η̃2X2 + ...+ η̃p1Xp1

so it holds ηj = η̃j for j = 2, ..., p1. Theorem 1 is proved.

Proof of Theorem 2. To prove the consistency, since the class

[rη,β{W (t)} : η1 = 1, ‖β‖ ≤ B]
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is a P-Donsker so P-Glivenko-Cantelli class (van der Vaart et al., 1996), it

holds

sup
η,‖β‖≤B

∣∣∣n−1ln(η,β) + log n− l(η,β)
∣∣∣→ 0

almost surely, where

l(η,β) = E
[
∆ log rη,β{W (T )} − Ẽ(I(T̃ ≥ T ) exp[rη,β{W̃ (T )}])

]
,

where Ẽ is the expectation with respect to (T̃ , W̃ ), which is an independent

copy of (T,W ).

Note that l(η,β) ≤ l(η0,β0) based on the standard result for the Cox

partial likelihood theory. Furthermore, the equality holds if and only if

there exits some λ(t) such that the two sets of parameters, (η0,β0, λ0) and

(η,β, λ), give the same likelihood functions. However, Theorem 1 implies

that the equality holds if and only if η0 = η and β0 = β. In other words,

l(η,β) has the unique maximum at (η0,β0). By Theorem 5.9 (Van der

Vaart, 1998), we conclude that (η̂, β̂) converges to (η0,β0) almost surely.

Thus, Theorem 2 holds.

Proof of Theorem 3. First, we define

Uε(η0,β0) = {(η,β) : A < n1/2
(
‖η − η0‖+ ‖β − β0‖

2)1/2 ≤ n1/2ε} and

Vε(η0,β0) = {(η,β) :
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(
‖η − η0‖+ ‖β − β0‖

2)1/2
< ε}, for a given ε. From Theorem 2,

P0 {(η,β) ∈ Vε(η0,β0)} > 1 − ζ for any ζ > 0, when n is large enough.

Hence,

P0

{
n1/2

(
‖η̂ − η0‖+

∥∥∥β̂ − β0

∥∥∥2
)1/2

> A

}

=P0

{
(η̂, β̂) ∈ Uε(η0,β0)

}
+ P0

{
(η̂, β̂) ∈ V C

ε (η0,β0)
}

≤P0

{
sup

η,β∈Uε(η0,β0)

Ln(η,β) ≥ Ln(η0,β0)

}
+ ζ

=P0

{
sup

η,β∈Uε(η0,β0)

Gn(η,β) ≥ 0

}
+ ζ,

where Gn(η,β) = logLn(η,β)− logLn(η0,β0). Let G(η,β) be the expec-

tation of Gn(η,β). The Taylor expression gives

G(η,β) = Ġη(η,β)(η − η0)T − 1

2
(β − β0)TI(η∗,β∗)(β − β0) + o(1),

where β∗ is between β and β0. The second order term in the expansion is

due to the fact that the second order derivatives of the observed log likeli-

hood function at the true value converges to the true negative information

matrix by the strong law of large numbers. By linearization, we can show

that Ġη(η,β)(η − η0)T is negative. In addition, the matrix I(η∗,β∗) is

positive definite by (C.3). Therefore, there exists a positive constant k0

which ensures G(η,β) ≤ −k0(‖η − η0‖ + ‖β − β0‖
2). Additionally, we
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split Uε(η0,β0) into subsets

Hn,j =
{

(η,β) : g(j) ≤ n1/2
(
‖η − η0‖+ ‖β − β0‖

2)1/2
< g(j + 1)} ,

where g(j) = 2j, and j = 1, 2, .... Similar to Lemma 3 in Pons (2003), there

exists a constant k > 0 such that for any ε̃, E sup(η,β)∈Vε̃(η0,β0)∣∣n1/2 {Gn(η,β)−G(η,β)}
∣∣ ≤ kε̃ as n→∞. Thus, we obtain

lim sup
n

∑
j:g(j)>A

P0

[
sup
Hn,j

n1/2 {Gn(η,β)−G(η,β)} ≥ n−1/2g2(j)k0

]

≤ lim sup
n

∑
j:g(j)>A

E
[
supHn,j n {Gn(η,β)−G(η,β)}

]2

g4(j)k2
0

≤
∑

j:g(j)>A

k2g2(j + 1)

k2
0g

4(j)
→ 0,

as A goes to infinity. Hence, it gives limA lim supn P0

{
n1/2 (‖η̂ − η0‖

+
∥∥∥β̂ − β0

∥∥∥2
)1/2

> A

}
= 0. Theorem 3 has been proved.

Proof of Theorem 4. Let η0 = ηn,u1 + n−1u1, β0 = βn,u2 + n−1/2u2, and

Wi0 = ηT
0X i, where u1 = (a1, a2, ..., ap1)

T and u2 = (b1, b2, ..., b2p2+1)T

assumed to have norm bounded by a large constant A. Note that from

Theorem 3, the probability n(η0− η̂) and
√
n(β0− β̂) bounded by A tends

to 1 when A diverges.
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First, after some algebra, we can rewrite ln(ηn,u1 ,βn,u2)− ln(η0,β0) as

ln(ηn,u1 ,βn,u2)− ln(η0,β0)

= (βn,u2 − β0)T

{
n∑
i=1

∫ τ

0

Z̃i(t;ηn,u1)dNi(t)

}

−
∫ τ

0

log

{
S

(0)
n (t;ηn,u1 ,βn,u2)

S
(0)
n (t;η0,β0)

}
dN̄n(t)

+
n∑
i=1

∆i{β20 + βT
30Zi(Ti)}

{
I
(
0 ≥ Wi0 > n−1XT

i u1

)
I(XT

i u1 < 0)

−I
(
0 < Wi0 ≤ n−1XT

i u1

)
I(XT

i u1 ≥ 0)
}
,

where N̄n(t) =
∑n

i=1 ∆iI(Ti ≤ t),

S(k)
n (t;η,β) ≡ n−1

n∑
i=1

Yi(t)Z
⊗k
i (t)erη,β(W i(t))

for k = 0, 1, and Wi0 = ηT
0X i. By the Taylor expansion for βn,u2 at β0,

log

{
S

(0)
n (t;ηn,u1 ,βn,u2)

S
(0)
n (t;η0,β0)

}
=
S

(0)
n (t;ηn,u1 ,β0)− S(0)

n (t;η0,β0)

S
(0)
n (t;η0,β0)

− n−1/2uT
2

S(1)
n (t;ηn,u1 ,β0)

S
(0)
n (t;η0,β0)

+
n−1

2
uT

2V n(t;ηn,u1 ,β0)u2 + op(n
−1),

where V n(t;η,β) = S(2)
n (t;η,β)/S

(0)
n (t;η,β)−

{
S(1)
n (t;η,β)/S

(0)
n (t;η,β)

}⊗2

and op(·), here and in the sequel, denotes the sequence of random variables

converging uniformly in u1,u2 in any bounded set. Thus, we have

ln(ηn,u1 ,βn,u2)− ln(η0,β0) = Qn(u1)− uT
2Cn(u1)− 1

2
uT

2 I(η0,β0)u2

+ op(n
−1),
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where

Qn(u1) =
n∑
i=1

∆i

[{
β20 + βT

30Zi(Ti)
}

×
{
I
(
0 ≥ Wi0 > n−1XT

i u1,X
T
i u1 < 0

)
−I
(
0 < Wi0 ≤ n−1XT

i u1,X
T
i u1 ≥ 0

)}
−
S

(0)
n (Ti;ηn,u1 ,β0)− S(0)

n (Ti;η0,β0)

S
(0)
n (Ti;η0,β0)

]
,

and

Cn(u1) = n−1/2

n∑
i=1

∫ τ

0

{
Z̃i(t;ηn,u1)−

S(1)
n (t;ηn,u1 ,β0)

S
(0)
n (t;η0,β0)

}
dMi(t)

+n−1/2

∫ τ

0

n∑
i=1

Z̃i(t;ηn,u1)
(
exp

[
rη0,β0

{W i(t)}
]

− exp
[
rηn,u1 ,β0 {W i(t)}

])
dΛ0(t).

Using the uniform convergence property for the martingale process and

noting

n−1/2

n∑
i=1

Z̃i(t;ηn,u1)
(
exp

[
rη0,β0

{W i(t)}
]
− exp

[
rηn,u1 ,β0 {W i(t)}

])
converges to 0 uniformly in t, we obtain that Cn(u1) is asymptotically

equivalent to

l̃n = n−1/2

n∑
i=1

∫ τ

0

{
Z̃i(t;η0)− S

(1)
n (t;η0,β0)

S
(0)
n (t;η0,β0)

}
dMi(t)

in probability, uniformly for u1 with ‖u1‖ ≤ A for the given constant A.
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Then we have

ln(ηn,u1 ,βn,u2)− ln(η0,β0) = Qn(u1)− uT
2 l̃n −

1

2
uT

2 I(η0,β0)u2 + op(1).

Next, we derive the asymptotic distributions of Qn(u1) and l̃n. Clearly,

the variable −l̃n converges weakly to a Gaussian variable following the

normal distribution Z = N(0, I(η0,β0)−1). Thus, if we can prove that

Qn(u1) converges to a tight process, say, Q(u1), then the argmax map-

ping theorem gives that the maximizer for ln(ηn,u1 ,βn,u2)− ln(η0,β0), i.e.,{
n(η̂ − η),

√
n(β̂ − β0)

}
converges in distribution to the maximizer for the

limiting process, Q(u1) + uT
2Z − 1

2
uT

2 I(η0,β0)u2, which is

{argmaxQ(u1), I(η0,β0)−1Z}.

Furthermore, it is clear that the latter two random variables are indepen-

dent. We then obtain the theorem.

It remains to show that Qn(u1) converges weakly to Q(u1) in the Sko-

rohod space in u1. First,

∫ {
S(0)
n (t;ηn,u1 ,β0)− S(0)

n (t;η0,β0)
}{ dN̄n(t)

nS
(0)
n (t;η0,β0)

− dΛ0(t)

}
= op(1)
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and

S(0)
n (t;ηn,u1 ,β0)− S(0)

n (t;η0,β0)

= −n−1

n∑
i=1

Yi(t) exp
{
βT

10Zi(t)
} [

1− exp
{
β20 + βT

30Zi(t)
}]

×I
(
0 ≥ Wi0 > n−1XT

i u1,X
T
i u1 < 0

)
+n−1

n∑
i=1

Yi(t) exp
{
βT

10Zi(t)
} [

1− exp
{
β20 + βT

30Zi(t)
}]

×I
(
0 < Wi0 ≤ n−1XT

i u1,X
T
i u1 ≥ 0

)
.

We then obtain

Qn(u1) = Q+
n (u1)−Q−n (u1) + op(1),

where

Q−n (u1) =
n∑
i=1

(
∆i

[{
β20 + βT

30Zi(Ti)
}]

+

∫ τ

0

φi(t)dΛ0(t)

)
× I

(
XT

i u1 ≥ 0, 0 < Wi0 ≤ n−1XT
i u1

)
,

Q+
n (u1) =

n∑
i=1

(
∆i

[{
β20 + βT

30Zi(Ti)
}]

+

∫ τ

0

φi(t)dΛ0(t)

)
× I

(
XT

i u1 < 0, 0 ≥ Wi0 > n−1XT
i u1

)
with

φi(t) = Yi(t) exp
{
βT

10Zi(t)
} [

1− exp
{
β20 + βT

30Zi(t)
}]
.

Next, we aim to determine the asymptotic process for Qn(u1), which

can be viewed as a random process on the Skorohod space in Rp1 . To this
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end, we first show that the finite dimensional convergence holds for Q−n (u1)

(the same holds for Q+
n (u1)), and we will identify its limit process based on

this finite dimensional convergence. Let v1,v2, ...,vS be a sequence of vec-

tors then we wish to obtain the limit distribution of any linear combination∑S
s=1 qsQ

−
n (vs), where q1, q2, ..., qS are any fixed constants. Let

η = ∆
({
β20 + βT

30Z(T )
})

+

∫ τ

0

φ(t)dΛ0(t).

We let H(1), ...., H(S) be the ordered statistic ofXTv1, ...,X
TvS, i.e., H(s) =

XTv(s). Correspondingly, we let q(1), ..., q(S) be the corresponding sequence

of q1, ..., qS. We then define set As =
{
H(s−1) < 0 < H(s)

}
for 1 ≤ s ≤ S

and let A0 be the set of H(S) ≤ 0. We have that the characteristic function

for
∑S

s=1 qsQ
−
n (vs) is given by

E

{
exp

(
it̃

S∑
s=1

qsQ
−
n (vs)

)}

=

(
P (A0) +

S∑
s=1

P (As)
[
E
{
I(0 < W < H(s)/n)e(q(s)+···+q(S))it̃η

∣∣∣As}
+E

{
I(H(s)/n ≤ W < H(s+1)/n)e(q(s+1)+···+q(S))it̃η

∣∣∣As}+ · · ·

+E
{
I(H(S−1)/n ≤ W < H(S)/n)eq(S)it̃η

∣∣∣As}])n
=

{
1 +

S∑
s=1

P (As)
(
E
[
I(0 < W < H(s)/n){e(q(s)+···+q(S))it̃η − 1}

∣∣∣As]
+E

[
I(H(s)/n ≤ W < H(s+1)/n){e(q(s+1)+···+q(S))it̃η − 1}

∣∣∣As]+ · · ·

+E
[
I(H(S−1)/n ≤ W < H(S)/n){eq(S)it̃η − 1}

∣∣∣As])}n .
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Since

P (As)E
[
I(H(s)/n ≤ W < H(s+1)/n){e(q(s+1)+···+q(S))it̃η − 1}

∣∣∣As]
= n−1E

[
(H(s+1) −H(s))I(As){e(q(s+1)+···+q(S))it̃η − 1}

∣∣∣W = 0
]
fW (0)+O(n−2),

we conclude that

E

[
exp

{
it̃

S∑
s=1

qsQ
−
n (vs)

}]

=

{
1 + n−1fW (0)

S∑
s=1

(
E
[
H(s)I(As){e(q(s)+···+q(S))it̃η − 1}

∣∣∣W = 0
]

+E
[
(H(s+1) −H(s))I(As){e(q(s+1)+···+q(S))it̃η − 1}

∣∣∣W = 0
]

+ ...

+E
[
(H(S) −H(S−1))I(As){eq(S)it̃η − 1}

∣∣∣W = 0
])

+O(n−2)
}n

so it converges to

exp

{
fW (0)

S∑
s=1

S∑
k=s

(
E
[
(H(k) −H(k−1))I(As){e(q(k)+···+q(S))it̃η − 1}

∣∣∣W = 0
])}

.

We want to show that the limit distribution of
∑S

s=1 qsQ
−
n (vs) is the

same as
∑S

s=1 qsQ
−(vs). Similarly, let xTv(k), k = 1, ..., S denote the or-

dered value for xTvk, k = 1, ..., S and As denotes the set of x for which 0
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is between xTv(s−1) and xTv(s). To this end, we note

E

[
exp{it̃

S∑
s=1

qsQ
−(vs)}

]

= E

{
exp

(
it̃

S∑
s=1

qs

∫
Ω

[
I{X(ω)Tvs > 0}

∫ X(ω)Tvs

0

Γ(X(ω), t)v(dω, dt)

])}

= E

(
exp

[
it̃

S∑
s=1

∫
Ω

I{X(ω) ∈ As}

×
S∑
k=s

q(k)

∫ X(ω)Tv(k)

0

Γ{X(ω), t}v(dω, dt)

])

=
S∏
s=1

S∏
k=s

E

(
exp

[
it̃

∫
Ω

I{X(ω) ∈ As}

× (q(k) + · · ·+ q(S))

∫ X(ω)Tv(k)

X(ω)Tv(k−1)

Γ{X(ω), t}v(dω, dt)

])
.

Note that the integration inside the above expectation is essentially the

discrete summation over ω and t where v(ω, t) has jumps. Since conditional

on that v(ω, t) has jumps at (ωj, tj), j = 1, ...,m, Γ{X(ω), t} is independent
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for any ω and t, we have

E

(
exp

[
it̃

∫
Ω

I{X(ω) ∈ As}(q(k) + · · ·+ q(S))

∫ X(ω)Tv(k)

X(ω)Tv(k−1)

Γ{X(ω), t}v(dω, dt)

])

= E

{
exp

(
it̃
∑
j

I{X(ωj) ∈ As}(q(k) + · · ·+ q(S))

× I[tj ∈ {X(ωj)
Tv(k−1),X(ωj)

Tv(k)}]Γ{X(ωj), tj}
)}

= E

{∏
j

exp
(
it̃I{X(ωj) ∈ As}

× I[tj ∈ {X(ωj)
Tv(k−1),X(ωj)

Tv(k)}](q(k) + · · ·+ q(S))Γ{X(ωj), tj}
)}

= E

[
exp

{∑
j

I{X(ωj) ∈ As} × I[tj ∈ {X(ωj)
Tv(k−1),X(ωj)

Tv(k)}]

× logE
(

exp
[
it̃(q(k) + · · ·+ q(S))Γ{X(ωj), tj}

] ∣∣∣X, wj, tj

)}]
= E

{
exp

(∫
Ω

I{X(ω) ∈ As}

×
∫ X(ω)Tv(k)

X(ω)Tv(k−1)

logE
[
eit̃(q(k)+···+q(S))Γ{X(ω),t}

]
v(dω, dt)

)}

= exp

[∫
Ω

I{X(ω) ∈ As}
∫ X(ω)Tv(k)

X(ω)Tv(k−1)

(
E
[
eit̃(q(k)+···+q(S))Γ{X(ω),t}

]
− 1
)
dP (ω)dt

]
,

where the last equality uses the fact that v(dω, dt) is independent Poisson

with rate dP (w)dt. Consequently, since the characteristics function for
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Γ(x, t) is independent of t, we obtain

E

[
exp{it̃

S∑
s=1

qsQ
−(vs)}

]

=
S∏
s=1

S∏
k=s

exp

[∫
Ω

I{X(ω) ∈ As}
∫ X(ω)Tv(k)

X(ω)Tv(k−1)

(
E
[
eit̃(q(k)+···+q(S))Γ{X(ω),t}

∣∣∣X]− 1
)

× dP (ω)dt]

= exp

{
fW (0)

S∑
s=1

S∑
k=s

E
(
{H(s) −H(s−1)}I(X ∈ As)

×
[
E
{
eit̃(q(k)+···+q(S))Γ(X,t)

∣∣∣X}− 1
] ∣∣∣W = 0

)}
,

which is the same as the characteristic function for the limit distribution of∑S
s=1 qsQ

−
n (vs). Similarly, we apply the same proof to Q+

n (u1) (by changing

Wi0 to −Wi0 and X i to −X i) to obtain the finite dimensional distribution

of Q+
n (u1) to the the finite dimensional distribution of Q+(u1).

Finally, we can easily show E[|Q−n (v2)−Q−n (v1)||Q−n (v2)−Q−n (v1)|] is

bounded by ‖v2 − v1‖ times a constant. Thus, the processes Q−n is tight so

converge weakly to Q−, using the D-tightness criterion (Billingsley, 2009).

Similarly, we can prove that Q+
n converges weakly to Q+ in the Skorohod

space. Therefore, Qn(u1) converges weakly to Q(u1). We have completed

the proof.
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