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Abstract. Quantile regression is widely employed in heterogeneous data, but to select

covariates that globally affect the response and estimate coefficients simultaneously are

very challenging. In this article, we introduce a novel sparse composite quantile regres-

sion screening method for the analysis of ultra-high dimensional heterogeneous data. The

proposed method enjoys the sure screening property, provides a consistent selection path,

and yields consistent estimates of coefficients simultaneously across a continuous range

of quantile levels. An extended Bayesian information criterion is employed to select the

“best” candidate from the path. Extensive simulation studies demonstrate the effective-

ness of the proposed method, and an application to a gene expression dataset is provided.

Keywords: Quantile regression; Sparsity; Ultra-high dimensional data; Variable screen-

ing.
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1 Introduction

Ultra-high dimensional data frequently arise in a wide variety of scientific fields, such as

genomics, biomedical imaging, signal processing, finance, and so forth. For such data, the

number of covariates p greatly exceeds the sample size n, and even grows at an exponential

rate of n. One major feature of these datasets is heterogeneity. This poses challenges but

also great opportunities for statistical analysis.

Quantile regression, as an important alternative to linear regression, is a technique

to investigate the heterogeneity across quantiles (Koenker and Bassett (1978)). For high

dimensional data, many penalized quantile regression methods have been well developed

to inquire into covariate effects at a single or multiple prespecified quantile levels (Zou

and Yuan (2008); Wang, Wu and Li (2012); Fan, Fan and Barut (2014)). However, these

existing models are sensitive to the specific choices of quantile levels and may overlook

some important covariates, which are undesirable for interpretation. To settle this issue,

Belloni and Chernozhukov (2011) and Zheng, Peng and He (2015, 2018) extended quantile

regression methods to examine regression quantiles over a continuous set of quantile levels.

Such kind of quantile regression method enjoys two advantages: (1) it takes advantage

of all useful information across quantiles and can draw a robust conclusion; (2) it grasps

global sparsity more concisely. These offer a useful complement to regularized quantile

regression, and make it much more flexible for variable selection, robust estimation, and

heteroscedasticity detection. However, regularized quantile regression may not perform

well under ultra-high dimensional scenarios, especially in the aspects of computational
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expediency, statistical accuracy, and algorithmic stability (Fan and Lv (2010)). This

inspires the development of screening methods.

The sure independence screening (SIS) method was proposed for sparse recovery in

ultra-high dimensional linear regression models (Fan and Lv (2008)), and the idea is to

rank all covariates by using the marginal correlation between each covariate and the re-

sponse. This method enjoys the sure screening property and is widely applied in various

models (Fan, Samworth and Wu (2009); Fan and Song (2010); Zhu et al. (2011); Fan,

Feng and Song (2011); Liu, Li and Wu (2014); Song et al. (2014); Fan et al. (2017); Kong

et al. (2017); Pan et al. (2019)). To derive robust statistics, He, Wang and Hong (2013)

considered a quantile-adaptive model-free variable screening method. Wu and Yin (2015)

developed a conditional quantile screening method via a goodness-of-fit-like marginal util-

ity. Ma, Li and Tsai (2017) employed the quantile partial correlation and proposed three

variable screening algorithms. For other related works, we refer the readers to Zhang

and Zhou (2018); Li, Ma and Zhang (2018) and the references therein. Note that these

screening methods only considered model sparsity at a single or multiple quantile levels.

Recently, Ma and Zhang (2016) and Xu (2017) proposed composite quantile correlation

via integrating quantile levels from 0 to 1, which enjoys the sure screening property and

grasps global sparsity. However, these two works did not study the estimation of coeffi-

cients, and also did not consider an interval of quantile levels that well captures part or

all of the conditional distributions.

Against this background, we aim to develop a variable screening method that can glob-
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ally capture important features and estimate their coefficients simultaneously. Motivated

by the work of Zheng, Peng and He (2015), we adopt a quantile regression model with an

interval of quantile levels, denoted as Θ ⊂ (0, 1), and propose an approach called sparse

composite quantile regression (SCQR) for variable screening. The SCQR naturally em-

beds the sparsity information about regression functions in composite quantile regression

and identifies active covariates by the estimates of regression functions over a continuum

of quantile levels. It utilizes the joint effects rather than the marginal effects of candidate

covariates, in the spirit of Xu and Chen (2014) and Yang et al. (2018). Compared to

that of Xu and Chen (2014) and Yang et al. (2018), our proposed method is robust in

model selection, and the development of theory and algorithm is not a trivial extension

of existing methods, due to a nonsmooth objective function.

The main contribution of this article is twofold. First, we establish the consistency

properties of our method in terms of model selection and parameter estimation. Specifical-

ly, the SCQR method can create a solution path including the true model with probability

approaching one, and can also yield a consistent estimate across a continuous range of

quantile levels. To the best of our knowledge, this is new in the screening literature. An

extended Bayesian information criterion (EBIC) (Lee, Noh and Park (2014)) is employed

to identify the ideal model. Second, we employ a smoothing technique to develop an itera-

tive groupwise-hard-thresholding method to approximate our proposed solution, establish

the convergence of the proposed algorithm, and show the sure screening property of the

approximation solution. The proposed algorithm overcomes two kinds of computational
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challenges. One is that the objective function is not differentiable at zero point. The

other comes from the ℓ0 constraint, which results in a heavy computation burden of the

existing programming for quantile regression.

The rest of the paper is organized as follows. Section 2 provides some preliminar-

ies about high-dimensional sparse quantile regression models and describes the SCQR

method. Section 3 presents a high efficient algorithm for the SCQR procedure. Section 4

establishes the theoretical properties of the SCQR procedure and the proposed algorithm.

An application to a gene expression dataset is provided in Section 5, and some concluding

remarks are given in Section 6. Simulation studies and all proofs are given in the online

Supplementary Material.

2 Methodology

2.1 Some Preliminaries

Let X = (1, x1, . . . , xp)
⊤ be a (p + 1)-dimensional vector of covariates, and QY (τ |X) =

inf{y|P (Y ≤ y|X) ≥ τ} denote the τth conditional quantile of a response variable Y

given X. For the analysis, the following quantile regression model (Zheng, Peng and He

(2015)) is considered:

QY (τ |X) = X⊤β⋆
τ for τ ∈ Θ, (1)
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where β⋆
τ = (β⋆

τ,0, β
⋆
τ,1, . . . , β

⋆
τ,p)

⊤ is a (p + 1)-dimensional vector of unknown coefficient

functions of τ, Θ ⊂ (0, 1) is a pre-specified continuous quantile index set of interest, and

can be taken generally as the union of multiple disjoint intervals. In what follows, let |A|

denote the cardinality of a set A, M⋆(τ) = {1 ≤ j ≤ p : β⋆
τ,j ̸= 0}, and M⋆ = ∪τ∈ΘM

⋆(τ).

We consider ultra-high dimensional data here, namely log(p) = o(nξ0) with ξ0 > 0, in

which a large number of predictors are irrelevant to the response. Examples of such data

include gene expression microarray data, single nucleotide polymorphism data and high-

frequency financial data (Ma, Li and Tsai (2017)). Two common sparsity assumptions for

β̃
⋆

τ ≡ (β⋆
τ,1, . . . , β

⋆
τ,p)

⊤ ∈ Rp arise to ensure the model interpretability and identifiability:

local sparsity (LS) condition (Belloni and Chernozhukov (2011)) and global sparsity (GS)

condition (Zheng, Peng and He (2015)). The LS condition assumes that |M⋆(τ)| =

o(n), which tends to cause over-fitting phenomenon by simply taking the union of active

covariate sets selected separately for each τ ∈ Θ. The GS condition assumes |M⋆| =

o(n), which is indispensable to derive a parsimonious model. Thus, we employ the GS

assumption for variable screening to identify all the significant covariates related to the

interesting segment of the conditional distribution of the response.

2.2 Sparse Composite Quantile Regression

We approximate βτ by a piecewise constant function with respect to τ ∈ Θ. Specifically,

denote τ0 and τK be the infimum and supremum of Θ, respectively. Let τ0 < · · · < τK

be a partition of Θ, and define the approximate function as β̄τ =
∑K

k=1 βτk
I(τk−1 < τ ≤
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τk) ≡ (β̄τ,0, β̄τ,1, . . . , β̄τ,p)
⊤ for τ ∈ Θ, where βτk

= (βτk,0, βτk,1, . . . , βτk,p)
⊤ ∈ Rp+1, and I(·)

denotes an indicator function. Define D = (βτ1 , . . . ,βτK
) ≡ (d0, . . . ,dp)

⊤ ∈ R(p+1)×K .

Thus, to determine whether βτ,j ≡ 0 over Θ reduces to identify whether dj is a zero vector

or not (1 ≤ j ≤ p). The latter is a row-wise sparsity problem for the coefficient matrix

D, and hence we can utilize the group learning method.

Suppose that the observed data consist of n independent and identically distribut-

ed replicates of (Y,X⊤)⊤, denoted by {(Yi,X⊤
i )

⊤, i = 1, . . . , n}. We employ compos-

ite quantile regression (CQR) in Zou and Yuan (2008) to estimate D. Let Un(D) =

(nK)−1
∑K

k=1

∑n
i=1 ρτk(Yi−X⊤

i βτk
) be the objective function, where ρτ (u) = u{τ −I(u <

0)} is the check function (Koenker (2005)). Based on the GS condition, we consider the

following problem:

min
D

Un(D) subject to

p∑
j=1

I(∥dj∥2 ̸= 0) ≤ t, (2)

where t is a positive integer. Note that t controls the sparse level in problem (2). If we

take t < n, then there are at least (p− t) covariates screened out from model (1). Let D̂ =

(β̂τ1 , . . . , β̂τK
) be a minimizer of problem (2). An efficient algorithm is proposed to solve

problem (2) in Section 3. Denote β̂τ =
∑K

k=1 β̂τk
I(τk−1 < τ ≤ τk) ≡ (β̂τ,0, β̂τ,1, . . . , β̂τ,p)

⊤

as the estimate of β̄τ , which is the approximation of β⋆
τ , and define M̂t as the selected

model index by using β̂τ , that is, M̂t = ∪τ∈Θ{1 ≤ j ≤ p : β̂τ,j ̸≡ 0}.

Since our method is a group learning method with a sparsity constraint for composite

quantile regression, we call it as sparse composite quantile regression (SCQR). The main

difference between the CQR and SCQR is that the coefficients βτ,j are deemed as con-
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stants over τ ∈ Θ in the CQR but they are a group of functions in the SCQR. Besides,

the proposed procedure employs the joint effects of candidate variables, which makes it

distinct from marginal screening methods.

Let s = |M⋆| be the true mode size. As guaranteed by Theorem 3 in Section 4, one has

that M̂s =M⋆ holds with probability tending to one under certain regularity conditions.

However, s is unknown and needs to be estimated in practice. Motivated by Wang (2009),

we can derive a solution path by problem (2) and adopt an EBIC to estimate s. Specifically,

let t̃ < n be a prespecified positive integer. We solve problem (2) for given t ∈ {1, . . . , t̃},

and get a solution path of candidate models: {M̂1, . . . , M̂t̃}. Theorem 3 implies that for

choosing t̃ ≥ s, one can always guarantee that M⋆ is contained in one of the candidate

models {M̂1, . . . , M̂t̃} with an overwhelming probability. For Xi = (1, xi1, . . . , xip)
⊤ and

an arbitrary subset M ⊂ {1, . . . , p}, let Xi,M be the subvector of Xi consisting of all xij

with j ∈M. Also β̂τk,M
is similarly defined for 1 ≤ k ≤ K. The EBIC is defined as

EBIC(M̂t) = log

{
1

nK

K∑
k=1

n∑
i=1

ρτk

(
Yi −X⊤

i,M̂t
β̂τk,M̂t

)}
+ Cn

t log(n)

n
,

where Cn is a positive constant that diverges along with the sample size n. We determine

a hard-thresholding parameter t̂ by t̂ = argmin1≤t≤t̃ EBIC(M̂t). Then the final selected

model is defined as M̂ = M̂t̂.

Remark 1. Since there is a tradeoff between computation and model selection accuracy

when choosing t̃ in practice, we set t̃ = [n1/5 log(n)], where [a] denotes the largest integer

part of a. This empirical choice is analogous to the recommended t̃ values in Xu and Chen

(2014), and it works well in both our simulation studies and real data analysis.
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Figure 1: ψτ,h(u) is a smoothed approximation of ρτ (u)

3 Computational Algorithm

Koenker and D’Orey (1987) developed parametric linear programming to compute a quan-

tile regression function for all τ ∈ (0, 1). Many algorithms have been recently introduced

for high-dimensional sparse penalized quantile regression approaches; see Gu et al. (2018)

for an overview. For problem (2), there are Ct
p candidate submodels to fit the data for a

given t, where Ct
p denotes the number of t-combinations from a given set of p elements.

This will increase the computation burden of the existing algorithm. In addition, the check

function ρτ (u) is not differentiable at point u = 0. To overcome these issues, we develop a

high efficient algorithm to solve problem (2), which combines a smoothing technique and

an iterative hard-thresholding algorithm.

First, we approximate the indicator function I(u < 0) in ρτ (u) by a local distribution

function Φ(−u/h), where Φ(·) is the standard normal cumulative distribution function

and h is a bandwidth that converges to 0 as n → ∞. This method is originally devised
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by Heller (2007) for rank regression. Define ψτ,h(u) = u{τ −Φ(−u/h)}, which is smooth

and differentiable at point u = 0. Note that if u ≥ 0, ψτ,h(u) → uτ as n → ∞, whereas

if u < 0, ψτ,h(u) → u(τ − 1). Figure 1 illustrates that ρτ (u) can be approximated well

by ψτ,h(u) with an appropriate h. Thus, a smoothed version of problem (2) is given as

follows:

min
D

Ũn(D) subject to

p∑
j=1

I(∥dj∥2 ̸= 0) ≤ t, (3)

where Ũn(D) = (nK)−1
∑K

k=1

∑n
i=1 ψτk,h(Yi −X⊤

i βτk
). If the bandwidth h satisfies nh→

∞ and nh4 → 0 as n → ∞, then Lemma 1 in the online Supplement Material indicates

that the check function is equivalent to the smoothed version with probability tending to

one. Thus, we can focus on solving problem (3). For the bandwidth, we used the rule of

thumb bandwidth and chose h = O(n−1/3). Let ℓτ (β) = n−1
∑n

i=1 ψτ,h(Yi − X⊤
i β), and

denote ḟ(·) and f̈(·) as the first and second derivatives of any function f(·), respectively.

Consider the following quadratic approximation to ℓτ (v) :

φτ (u|v) = ℓτ (v) + ⟨u− v, ℓ̇τ (v)⟩+
λ

2
∥u− v∥22, (4)

where ⟨·, ·⟩ denotes the inner product in the Euclidean space, and λ is a pre-specified

positive constant. It can be seen that φτ (v|v) = ℓτ (v), and thus φτ (u|v) nicely approxi-

mates ℓτ (v) for u close to v. Let B = (β̌τ1 , . . . , β̌τK
) ≡ (b0, . . . , bp)

⊤ ∈ R(p+1)×K . In view

of equation (4), the smoothed composite quantile function Ũ(·) can be approximated by

Qλ(B|D) ≡ 1

K

K∑
k=1

φτk(β̌τk
|βτk

) = Ũ(D) +
1

K

K∑
k=1

⟨
β̌τk

− βτk
, ℓ̇τk(βτk

)
⟩
+

λ

2K
∥B −D∥2F ,
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where ∥A∥F is the Frobenius norm of an arbitrary matrix A. Using Qλ(B|D), we can

obtain an iterative solution to problem (3). Specifically, let D[l] be the estimate of D at

the lth iteration. We update D[l] by D[l+1], where

D[l+1] = argmin
B

Qλ(B|D[l]) subject to

p∑
j=1

I(∥bj∥2 ̸= 0) ≤ t.

It is also equivalent to

D[l+1] = argmin
B

∥∥B − [D[l] − 1

λ
Ψ̇(D[l])]

∥∥2

F
subject to

p∑
j=1

I(∥bj∥2 ̸= 0) ≤ t, (5)

where Ψ̇(D) = (ℓ̇τ1(βτ1), . . . , ℓ̇τK (βτK
)) ∈ R(p+1)×K .

Proposition 1. Let D = (d0, . . . ,dp)
⊤ ∈ R(p+1)×K be an arbitrary matrix. If B̂ =

(b̂0, . . . , b̂p)
⊤ is an optimal solution to the following problem

min
B∈R(p+1)×K

∥B −D∥2F subject to

p∑
j=1

I(∥bj∥2 ̸= 0) ≤ t,

then B̂ has a closed form with the jth row defined as

b̂0 = d0 and b̂j = djI(d
∗
j ≥ d∗(t)) for 1 ≤ j ≤ p, (6)

where d∗j = ∥dj∥2, and d∗(t) is the t-th largest value of d∗1, . . . , d
∗
p.

The proof is given in the online Supplement Material. Proposition 1 indicates that

equation (6) is indeed a hard-thresholding rule. It first ranks the importance of covariates

according to the estimates of ∥dj∥2 in decreasing order, and then filters out those having

small effects over Θ.

Based on Proposition 1, we get that D[l+1] defined in (5) has the following form:

d
[l+1]
j = ď

[l]

j I(∥ď
[l]

j ∥2 ≥ ď(t)) for 1 ≤ j ≤ p, (7)
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where ď
[l]

j is the transposition of the jth row of [D[l] − λ−1Ψ̇(D[l])], and ď(t) is the t-th

largest value of ∥ď[l]

1 ∥2, . . . , ∥ď
[l]

p ∥2.

However, there still exists a step-size λ in updating rule (7), which plays an important

role in the convergence of the algorithm. Our empirical studies indicate that a large value

of λ often leads to a slow convergence rate, while a small value of λ results in failing to

identify active covariates. In what follows, a backtracking method is employed to find λ

such that the objective function monotonically decreases after each iteration. Specifically,

we choose the step-size λ[l] at the lth iteration as the minimum value such that

Ũn(D
[l+1]) ≤ Ũn(D

[l])− ϱλ[l]

2K
∥D[l+1] −D[l]∥2F , (8)

where ϱ ∈ (0, 1) is a fixed small constant. The proposed algorithm is presented in the

following Algorithm 1.

Algorithm 1. Let L be a pre-specified positive integer.

Step 1. Choose an initial value for D[0], such as D[0] = 0;

Step 2. For each l ∈ {0, 1, . . . , L},

Step 2.1. Compute D[l+1] by equation (7);

Step 2.2. Stop Step 2 if the linear search criterion (8) is satisfied; otherwise, take

the step-size to be 2λ[l] and return to Step 2.1 ;

Step 3. Stop the algorithm if l > L or ∥D[l+1] −D[l]∥F < δ∥D[l]∥F , where δ > 0 is a

prespecified tolerance parameter. Otherwise, increase l, and return to Step 2.1.
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In our simulation studies and real data analysis, we take L = 1000, and set δ = ϱ = 10−5.

4 Theoretical Properties

4.1 Convergence Analysis of Algorithm

To show the convergence property of the proposed algorithm, we need the following Lip-

schitz condition:

∥ℓ̇τ (β1)− ℓ̇τ (β2)∥2 ≤ ϕ∥β1 − β2∥2,

where ϕ is a positive constant independent of τ. The Lipschitz condition is satisfied if the

largest eigenvalue of ℓ̈τ (β) is uniformly bounded in β and τ. A more serious concern is

whether for each l ≥ 0 the step size λ[l] is bounded or not. Following similar arguments

in Gong et al. (2013), the Lipschitz condition, together with criterion (8), guarantees

the boundedness of the step size λ[l] in Step 2.2. The following theorem summarizes the

convergence property of Algorithm 1.

Theorem 1. Let {D[l]} be the sequence generated by Algorithm 1. If λ[l] > ϕ/(1 − ϱ),

then as l → ∞, there exists at least one subsequence such that {D[l]} is convergent. In

addition, if the stopping criterion is K−1/2∥D[l+1] −D[l]∥F ≤ ε, we have that Algorithm 1

stops in a finite number of steps, where ε > 0 is a prespecified small constant.

The proof can be found in the online Supplement Material, which indicates that the

proposed algorithm yields an approximate solution. The next theorem presents an upper
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bound for the estimation error of D[l]. Let ϕ̃ = min0<∥x∥0≤3t{x⊤ℓ̈τ (β)x}/(x⊤x) > 0 be the

restricted eigenvalue, where ∥a∥0 =
∑p

j=1 I(aj ̸= 0) for a vector a = (a1, . . . , ap)
⊤ ∈ Rp.

The restricted eigenvalue condition is frequently used in the literature of high dimensional

data analysis (Candes and Tao (2007); Belloni and Chernozhukov (2011)). Let D⋆ denote

the true value of D.

Theorem 2 (Upper Bound of Algorithm 1). If s ≤ t and ϕ < λ[l] < ϕ̃/{1 − 1/(4
√
2)},

then

∥D[l] −D⋆∥F ≤ 2−l∥D[0] −D⋆∥F +

√
8

ϕ
∥Ψ̇(D⋆)∥F .

Theorem 2, combining with the convergence property of Algorithm 1, implies that

there exists at least one subsequence such that the difference between the limiting point

and the true value D⋆ can be bounded by ∥Ψ̇(D⋆)∥F .Moreover, if we take the initial value

D[0] = 0, after at most l = [log2(∥D⋆∥F/∥Ψ̇(D⋆)∥F )] + 1 iterations, the sequence {D[l]}

satisfies that ∥D[l] −D⋆∥F ≤ (1 +
√
8/ϕ∥Ψ̇(D⋆)∥F . Thus, in a finite number of steps, the

estimation error can be controlled by ∥Ψ̇(D⋆)∥F .

4.2 Sure Screening Property

Let M be an arbitrary subset of {1, . . . , p}, and Mt = {M : |M | ≤ t}. Define the

collections of over-fitted models with model size t asM t
+ = {M :M⋆ ⊂Mt}. To study the

asymptotic properties of the proposed SCQR, we need the following regularity conditions:

(C1) log(p) = o(nξ0) for 0 < ξ0 < 1.
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(C2) There exist some positive constants ω1, ω2, ξ1 and ξ2 such that for a given hard-

thresholding parameter t in (2), the true mode size s ≤ t < ω1n
ξ1 , and

min
j∈M⋆

[ ∫
Θ

(β⋆
τ,j)

2dτ
]1/2

≥ ω2n
−ξ2 .

Condition (C2) suggests that the minimum signal of the active set is bounded away from

zero, but it is allowed to converge to zero in order O(n−ξ2). This encompasses what is

considered by Xu and Chen (2014) for the generalized linear model.

(C3) Let ϵ = Y −X⊤β⋆
τ , and F (·|x) and f(·|x) be the cumulative distribution function

and density function of ϵ given X = x, respectively. There exist positive constants ν

and δ∗ free of τ such that for sufficiently large n and each vector u ∈ {v : ∥vM∥2 <

δ∗, M ∈M2t
+ },

1

n1−ξ2

n∑
i=1

∫ X⊤
i u

0

[
F
( s

nξ2
|Xi

)
− F

(
0|Xi

)]
ds ≥ ν∥u∥22.

Condition (C3) is similar to condition (2) of Zou and Yuan (2008), which is used to

establish the asymptotic properties of composite quantile regression. Indeed, condition

(C3) can be replaced by some sufficient conditions that are commonly used in quantile

regression. Some examples are given in the online Supplement Material.

(C4) For X i = (1, xi1, . . . , xip)
⊤, there exists a positive constant m such that supi,j |xij| ≤

m.

Condition (C4) is commonly used in the context of high-dimensional data analysis

(Wang, Wu and Li (2012); Lee, Noh and Park (2014)). This assumption can be relaxed
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to a tail probability inequality that there exist some positive constants m0, m1 and α such

that for sufficiently large η, P{|xij| > η} ≤ m0 exp{−m1η
α}. In this case, the theoretical

results still hold with slight modifications in the proofs.

Theorem 3 (Sure Screening Property). Suppose that conditions (C1)-(C4) hold with

max{ξ1 + ξ2, ξ1/2 + 2ξ2} < (1− ξ0)/2. Then for sufficiently large K,

P
{
M⋆ ⊂ M̂t

}
→ 1 as n→ ∞.

Theorem 3 states that with probability tending to one, all relevant variables can be

identified by carrying out the SCQR within at most O(nξ1) times, which is a number much

smaller than n under condition max{ξ1 + ξ2, ξ1/2+ 2ξ2} < (1− ξ0)/2. Based on Theorem

3, the strong screening consistency (Huang, Li and Wang (2014)) is further provided in

the following corollary.

Corollary 1. Under the conditions of Theorem 3, we have

P
{
M⋆ = M̂s

}
→ 1 as n→ ∞.

Corollary 1 suggests that if one has prior knowledge on the model size s, the selected

model M̂s is exactly the true model M⋆ with probability approaching one. This corollary

is important because it guarantees that the true model is one of our candidate models

{M̂1, . . . , M̂t̃} as long as t̃ ≥ s. The consistency property for the EBIC procedure is

established in the following theorem.

Theorem 4. Suppose that conditions (C1)-(C4) hold with max{ξ1+ξ2, ξ1/2+2ξ2} < (1−
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ξ0)/2. If E(|ϵ|) <∞, C−1
n = o(1), and Cn log(n)/(n

1−ξ1) = o(1). Then P
{
M⋆ = M̂

}
→ 1

as n→ ∞.

Theorem 4 suggests that with probability approaching one, the true model index can

be correctly identified by the SCQR when the EBIC is employed as the stopping criterion.

Theorem 5. Under conditions (C1)-(C4) with max{ξ1 + ξ2, ξ1/2+ 2ξ2} < (1− ξ0)/2, we

have that there exists a constant c0 > 0 such that

P
{[∫

Θ

∥β̂τ − β⋆
τ∥22dτ

]1/2
≥ c0n

−ξ2
}
→ 0 as n→ ∞.

Theorem 5 indicates that the integral square error of the proposed estimate can be

bounded by Op(n
−ξ2). This, combining with Theorem 3, implies that the SCQR procedure

can perform variable screening and parameter estimation simultaneously. The consistency

property of Algorithm 1 is guaranteed by the following theorem.

Theorem 6. Suppose that conditions (C1)-(C4) hold with max{ξ1 + ξ2, ξ1/2 + 2ξ2} <

(1 − ξ0)/2. If E(|ϵ|) < ∞ and ϕ < λ[l] < ϕ̃/{1 − 1/(4
√
2)}. Then there exists a constant

c1 > 0 such that after l = [log2(∥D⋆∥F/∥Ψ̇(D⋆)∥F )] + 1 iterations,

P
{[∫

Θ

∥β̂
[l]

τ − β⋆
τ∥22dτ

]1/2
≥ c1n

−ξ2
}
→ 0 as n→ ∞.

Theorems 5 and 6 indicate that the estimates generated by Algorithm 1 and problems

(2) and (3) have the same consistency rate Op(n
−ξ2). Theorem 6 also implies the following

result, which indicates the sure screening property of Algorithm 1.
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Corollary 2 (Sure Screening of Algorithm 1). Under the conditions of Theorem 6, we

have that after l = [log2(∥D⋆∥F/∥Ψ̇(D⋆)∥F )] + 1 iterations,

P
{
M⋆ ⊂ M̂

[l]
t

}
→ 1 as n→ ∞.

Remark 2. To guarantee the sure screening property, Xu and Chen (2014) proposed to

use an appropriate Lasso-type initial value in their algorithm. However, the Lasso-type

estimate may be unstable and time-consuming under ultra-high dimensional settings.

Corollary 2 generalizes their results and states that zero is a reasonable initial value for

Algorithm 1. This finding further enriches the SCQR method from a practical perspective.

5 Real Data Analysis

In this section, the proposed method is applied to a gene expression dataset to investigate

gene regulation in the mammalian eye and to identify genetic variations relevant to human

eye disease (Scheetz et al. (2006)). This dataset has 31,042 gene expression probe sets

on 120 rats, and the gene expression levels are analyzed on a log scale with base 2. The

response variable of interest is the expression of gene TRIM32 (probe 1389163 at), which

is known to cause human hereditary diseases of the retina. As in Huang, Ma and Zhang

(2008), Wang, Wu and Li (2012), and Zheng, Peng and He (2015), the main aim of this

analysis is to study how the response variable depends on the gene expression of other

probes. The dataset is available inR package “flare”, which has been processed to exclude

probes that are not expressed or lack variation. There are 200 probes left as covariates.
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As in Zheng, Peng and He (2015), two reasonable choices for Θ are considered:

(0.2, 0.8) and (0.25, 0.75). The bandwidth is chosen as h = 1.9n−1/3 and Cn = log(p)/2 in

the EBIC. For comparison, two other methods are also considered: our proposed method

with Θ degenerating to one point τ , denoted by SQR(τ) with τ ∈ {0.25 + 0.05k, k =

0, 1, . . . , 10}; the method of simply taking the union of active covariate sets identified by

SQR(τ) at each τ, denoted by USQR. To evaluate each method, we consider 400 random

partitions. For each partition, the data are randomly divided into two equal datasets:

a training dataset and a testing dataset. Based on the training dataset, we implemen-

t the screening methods and obtain the estimate of βτ . Subsequently, we compute the

prediction error:

PE(Θ) =
1

|T |
∑
i∈T

∫
Θ

ρτ (Yi −X⊤
i β̂τ )dτ,

where T = {i : the ith subject in the testing dataset} is the testing set index. For the

SQR(τ), we treat the coefficient functions as constants over τ ∈ Θ and calculate PE(Θ).

A smaller value of the prediction error indicates a better performance.

The results averaged over 400 random partitions are reported in Table 1. The table

indicates that the SCQR procedure selects four same genes that are significantly related to

the response variable for two different choices of Θ. This suggests that the SCQR method

is robust to the selection of Θ, which is a desirable feature from the perspective of model

selection. For the SQR(τ) method, the chosen set of probes varies with τ. For instance,

the genes 1370551 a at and 1398389 at are selected by the SQR(τ) with τ from 0.4 to

0.6, but they are overlooked at lower and higher τ ’s. These may suggest a heterogeneous
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relationship across different quantile levels. Further, the results indicate that 3 probes are

selected by the SQR(0.4), but no probe is selected by the SQR(0.35). This implies that

the SQR(τ) method may be sensitive to the choice of τ . For the USQR procedure, a total

number of 5 probes are selected both for Θ = (0.25, 0.75) and Θ = (0.2, 0.8). Compared

to the selection results of the USQR, the SCQR yields slightly smaller predictor errors.

6 Conclusions

This article considered a sparse composite quantile regression method for analyzing ultra-

high dimensional heterogeneous data across a continuous range of quantile levels. An

efficient iterative algorithm was developed to implement our proposed method. The prop-

erties of the proposed procedure were provided. Specifically, the theoretical results suggest

that the SCQR method with ultra-high dimensional covariates can successfully identify

active covariates with probability approaching one. Meanwhile, the SCQR method yields

consistent estimates of coefficients. Furthermore, the proposed algorithm enjoys consis-

tent properties in terms of variable screening and parameter estimation.

Supplementary Material

The online Supplementary Material includes simulation studies, some sufficient conditions

for (C3) and the proofs of Proposition 1 and Theorems 1-6.
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Table 1. Probe sets identified by various methods.

PE(Θ)

Θ Method Probes [0.25, 0.75] [0.2, 0.8]

[0.25, 0.75] SCQR “1370551 a at, 1374106 at, 1384862 at, 1389457 at” 0.020(0.002) -

[0.2, 0.8] SCQR “1370551 a at, 1374106 at, 1384862 at, 1389457 at” - 0.028(0.003)

[0.25, 0.75] USQR 5 probes 0.034(0.002) -

[0.2, 0.8] USQR 5 probes - 0.042(0.002)

0.25 SQR 0 probes 0.040(0.003) 0.047(0.003)

0.30 SQR 0 probes 0.038(0.003) 0.046(0.004)

0.35 SQR 0 probes 0.035(0.003) 0.042(0.004)

0.40 SQR “1370551 a at, 1384886 at, 1398389 at” 0.029(0.004) 0.035(0.005)

0.45 SQR “1370429 at, 1370551 a at, 1398389 at” 0.022(0.002) 0.027(0.003)

0.50 SQR “1370551 a at, 1398389 at” 0.021(0.003) 0.025(0.003)

0.55 SQR “1370551 a at, 1374106 at, 1398389 at” 0.022(0.002) 0.027(0.003)

0.60 SQR “1370429 at, 1370551 a at, 1398389 at” 0.028(0.004) 0.034(0.004)

0.65 SQR 0 probes 0.032(0.004) 0.039(0.005)

0.70 SQR 0 probes 0.034(0.004) 0.043(0.004)

0.75 SQR 0 probes 0.037(0.003) 0.045(0.004)
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