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and Quantiles

Indrabati Bhattacharya and Subhashis Ghosal

North Carolina State University

Abstract: In this paper, we consider Bayesian inference on a type of multivariate

median and the multivariate quantile functionals of a joint distribution using a

Dirichlet process prior. Since, unlike univariate quantiles, the exact posterior

distribution of multivariate median and multivariate quantiles are not obtainable

explicitly, we study these distributions asymptotically. We derive a Bernstein-von

Mises theorem for the multivariate `1-median with respect to a general `p-norm,

which in particular shows that its posterior concentrates around its true value at

the n−1/2-rate and its credible sets have asymptotically correct frequentist cov-

erages. In particular, asymptotic normality results for the empirical multivariate

median with a general `p-norm is also derived in the course of the proof, which

extends the results from the case p = 2 in the literature to a general p. The

technique involves approximating the posterior Dirichlet process by a Bayesian

bootstrap process and deriving a conditional Donsker theorem. We also obtain

analogous results for an affine equivariant version of the multivariate `1-median

based on an adaptive transformation and re-transformation technique. The re-

sults are extended to a joint distribution of multivariate quantiles. The accuracy
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of the asymptotic result is confirmed by a simulation study. We also use the

results to obtain Bayesian credible regions for multivariate medians for Fisher’s

iris data, which consists of four features measured for each of three plant species.

Key words and phrases: Affine equivariance, Bayesian bootstrap, Donsker class,

Dirichlet process, Empirical process, Multivariate median.

1. Introduction

It is well known that the median is a more robust measure of location

than mean. Similarly, in multivariate analysis, there are situations where

the multivariate mean vector is not a good measure of location— for exam-

ple, when the data has a wide spread, outliers etc., a multivariate median

would be a much more robust measure. There is no universally accepted

definition of a multivariate median, because there is no objective basis of

ordering the data points in higher dimensions. Over the years, various

definitions of multivariate medians and, more generally, multivariate quan-

tiles have been proposed; see Small (1990) for a comprehensive review on

multivariate medians.

One of the most popular versions of multivariate median is called the

multivariate `1-median. For a set of sample points X1, X2, . . . , Xn ∈ Rk,

k ≥ 2, the sample `1-median is obtained by minimizing n−1
∑n

i=1 ‖Xi − θ‖

with respect to θ, where ‖ · ‖ denotes some norm. The most commonly
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used norm is the `p-norm ‖x‖p =
(∑k

j=1 |xj|p
)1/p

, 1 ≤ p ≤ ∞. The

most popular version of the `1-median that uses the usual Euclidean norm

‖x‖2 =
(∑k

j=1 x
2
j

)1/2
is known as the spatial median. This corresponds to

p = 2. Clearly the case p = 1 gives rise to the vector of coordinatewise

medians. The sample `1-median with `p-norm is given by

θ̂n;p = arg min
θ

1

n

n∑
i=1

‖Xi − θ‖p. (1.1)

The spatial median has been widely studied in the literature. It is a highly

robust estimator of the location and its breakdown point is 1/2 which is

as high as that of the coordinatewise median (see Lopuhaa and Rousseeuw

(Lopuhaa et al., 1991) for more details). The asymptotic properties of

spatial median has also been investigated (see Möttönen et al. (2010) for

more details). The `1-median functional of a probability distribution P

based on the `p-norm is given by

θp(P ) = arg min
θ

P (‖X − θ‖p − ‖X‖p) , (1.2)

for Pf =
∫
f dP and 1 ≤ p ≤ ∞. It can be noted that this definition does

not require any moment assumption on X, since |‖X−θ‖p−‖X‖p| ≤ ‖θ‖p.

Henceforth, we fix 1 < p <∞ and drop p from the notations θ̂n;p and θp(P )

and just write θ̂n and θ(P ) respectively.

In statistical applications, the distribution P is unknown. An obvious
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strategy to estimate θ(P ) is to replace P by the empirical measure Pn =

n−1
∑n

i=1 δXi , where δx denotes the point-mass distribution at x, which

gives rise to the sample `1-median in (1.1). The usual method for making

inference on multivariate medians is the M-estimation framework, i.e., the

median is estimated by minimizing a data-driven objective function, as in

(1.1). Asymptotic distributional results for M-estimators can be used to

construct confidence regions.

A Bayesian approach gives a nice visual summary of uncertainty, and

the posterior credible regions can be directly used, without any asymptotic

approximations being required. Here we take a nonparametric Bayesian

approach. We model the random distribution P and treat θ(P ) as a func-

tional of P . The most commonly used prior on a random distribution P is

the Dirichlet process prior which we discuss in Section 2. In the univariate

case, the exact posterior distribution of the median functional can be de-

rived explicitly (see Chapter 4, Ghosal and van der Vaart (2017) for more

details). Unfortunately, in the multivariate case, the exact posterior dis-

tribution can only be computed by simulations. The posterior distribution

can be used to compute point estimates and credible sets. It is of interest

to study the frequentist accuracy of the Bayesian estimator and frequen-

tist coverage of posterior credible regions. In the parametric context, the
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Bernstein-von Mises theorem ensures that the Bayes estimator converges at

the parametric rate n−1/2 and a Bayesian (1 − α) credible set has asymp-

totic frequentist coverage (1− α). Interestingly, a functional version of the

Bernstein-von Mises theorem holds for the distribution under the Dirichlet

process prior as shown by Lo ((1983), (1986)). A functional Bernstein-von

Mises theorem can potentially establish Bernstein-von Mises theorem for

certain functionals. We study posterior concentration properties of the mul-

tivariate `1-median θ(P ) and show that the posterior distribution of θ(P )

centered at the sample `1-median θ̂n is asymptotically normal. We also note

that this asymptotic distribution matches with the asymptotic distribution

of θ̂n centered at the true value θ0 ≡ θ(P0), where P0 is the true value of P ,

thus proving a Bernstein-von Mises theorem for the multivariate `1-median.

One possible shortcoming of the multivariate `1-median is that it lacks

equivariance under affine transformation of the data. Chakraborty, Chaud-

huri and Oja (1998) proposed an affine-equivariant modification of the sam-

ple spatial median using a data-driven transformation and re-transformation

technique. There is no population analog of this modified median. We de-

fine a Bayesian analog of this modified median in the following way. We put

a Dirichlet process prior on the distribution of a transformed data depending

on the observed data and induce the posterior distribution on θ(P ) to make
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its distribution translation equivariant. We show that the asymptotic pos-

terior distribution of θ(P ) thus obtained centered at the affine-equivariant

multivariate median estimate matches with the asymptotic distribution of

the latter centered at θ0, while both the limiting distributions are normal.

As we pointed out before, the lack of an objective basis of ordering

observations in higher dimensions makes it harder to define a multivariate

quantile as well. The most common version of a multivariate quantile is

the coordinatewise quantile (see Abdous and Theodorescu (1992), Babu

and Rao (1989)). As Chaudhuri (1996) pointed out, the coordinatewise

quantiles lack some useful geometric properties (e.g., rotational invariance).

Chaudhuri (1996) introduced the notion of geometric quantile based on

geometric configuration of multivariate data clouds. These quantiles are

natural generalizations of the spatial median. For the univariate case it is

easy to see that for X1, . . . , Xn ∈ R and u = 2α− 1, the sample α-quantile

Q̂n(u) is obtained by minimizing
∑n

i=1{|Xi−ξ|+u(Xi−ξ)} with respect to

ξ. Chaudhuri (1996) extended this idea and indexed the k-variate quantiles

by points in the open unit ball B(k) := {u : u ∈ Rk, ‖u‖2 < 1}. For any

u ∈ B(k), Chaudhuri (1996) obtained the sample geometric u-quantile by

minimizing
∑n

i=1{‖Xi − ξ‖2 + 〈u,Xi − ξ〉} with respect to ξ. Generalizing

Chaudhuri’s (1996) definition of multivariate quantile based on the `2-norm

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Bayesian Inference on Multivariate Medians 7

to the `p-norm with 1 < p <∞, we define the multivariate sample quantile

process as

Q̂n(u) = arg min
ξ∈Rk

1

n

n∑
i=1

Φp(u,Xi − ξ), (1.3)

where Φp(u, t) = ‖t‖p + 〈u, t〉 with u ∈ B(k)
q := {u : u ∈ Rk, ‖u‖q < 1} and

q is the conjugate index of p, i.e., p−1 + q−1 = 1. It is easy to see that

Q̂n(0) coincides with the sample multivariate `1-median θ̂n. Similarly, for

u ∈ B
(k)
q , the multivariate quantile process of a probability measure P is

given by

QP (u) = arg min
ξ∈Rk

P{Φp(u,X − ξ)− Φp(u,X)}. (1.4)

with Q0(u) ≡ QP0(u) being the multivariate quantile function for the true

distribution P0.

The geometric features and the asymptotic properties of geometric

quantiles have been investigated in the literature (see Chaudhuri (1996)).

Here, we study geometric quantiles in the previously discussed non-parametric

Bayes framework and study the posterior distributions asymptotically. We

prove that, with P having a Dirichlet process prior and for finitely many

u1, . . . , um, the joint distribution of {
√
n(QP (u1)−Q̂n(u1)), . . . ,

√
n(QP (um)−

Q̂n(um))} given the data, converges to a multivariate normal distribution.

Moreover, it is also noted that the joint distribution of {
√
n(Q̂n(u1) −

Q0(u1)), . . . ,
√
n(Q̂n(um) − Q0(um))} converges to the same multivariate
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normal distribution. Thus, we prove a Bernstein-von Mises theorem for

any finite set of geometric quantiles.

The rest of this paper is organized as follows. In Section 2, we give the

background needed to introduce the main results. In Section 3, we state the

Bernstein-von Mises theorem for the multivariate `1-median and the theo-

rems we need to prove the same. In Sections 4 and 5, we present Bernstein-

von Mises theorems for the affine-equivariant `1-median and multivariate

quantiles, respectively. In Section 6, we investigate the finite sample per-

formance of our approach through a simulation study and an analysis of

Fisher’s iris data. A few concluding remarks are given in Section 7 and all

the proofs are given in Section 8.

2. Background and Preliminaries

Before giving the background, we introduce some notations that we follow

in this paper. Throughout this paper, Nk(µ,Σ) denotes a k-variate mul-

tivariate normal distribution with mean vector µ and covariance matrix

Σ, and Gammak(s, r, V ) denotes a k-dimensional gamma distribution with

shape parameter s, rate parameter r and correlation matrix V , constructed

using a Gaussian copula (Xue-Kun Song (2000)). Also, DP(α) denotes a

Dirichlet process with centering measure α (See Chapter 4, Ghosal and van
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9

der Vaart (2017) for more details).

Let and
P→ denote weak convergence i.e. convergence in distribution

and convergence in probability respectively. For a sequenceXn, the notation

Xn = OP (an) means thatXn/an is stochastically bounded. Also, ‖P−Q‖TV

denotes the total variation distance supA |P (A)−Q(A)| between measures P

and Q. Moreover, diag(a1, . . . , an) denotes a diagonal matrix with diagonal

elements a1, . . . , an, and sign(·) denotes the signum fucntion

sign(x) =



1 if x > 0,

0 if x = 0,

−1 if x < 0.

Finally, 0k denotes a vector of all 0’s of length k, 1k denotes a vector of all

1’s of length k, and Ik denotes an identity matrix of order k × k.

Let Xi ∈ Rk, i = 1, . . . , n, be independently and identically distributed

observations from a k-variate distribution P and let P have the DP(α)

prior. The parameter space is taken to be Rk. The Bayesian model is then

formulated as

X1, X2, . . . , Xn|P
iid∼ P, P ∼ DP(α). (2.1)

The posterior distribution of P given X1, X2, . . . , Xn is DP(α + nPn), (see

Chapter 4, Ghosal and van der Vaart (2017) for more details).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



10

As stated in Ghosal and van der Vaart (2017),
√
n(P − Pn) with P ∼

DP(α + nPn) converges conditionally in distribution to a Brownian bridge

process. But this result cannot be used to find the posterior asymptotic

distribution of θ(P ), because θ(P ) is not a smooth functional of P . To deal

with this, we use the following fact stated in Chapter 12, Ghosal and van

der Vaart (2017). The posterior distribution DP(α+nPn) can be expressed

as VnQ + (1 − Vn)Bn, where the processes Q ∼ DP(α), Bn ∼ DP(nPn)

and Vn ∼ Be(|α|, n) are independent and Be(a, b) denotes a beta distri-

bution with parameters a and b. The process Bn is also known as the

Bayesian bootstrap distribution and can be defined by the linear opera-

tor Bnf =
∑n

i=1Bnif(Xi), where (Bn1, Bn2, . . . , Bnn) is a random vector

following the Dirichlet distribution Dir(n; 1, 1, . . . , 1). We approximate the

posterior Dirichlet process by the Bayesian bootstrap process and show that

given X1, . . . , Xn, the posterior distribution of
√
n(θ(P )− θ̂n) is asymptot-

ically the same as the conditional distribution of
√
n(θ(Bn) − θ̂n) (Lemma

1), where θ(Bn) = arg minθ∈Rk ‖X − θ‖p.

With the approximation in Lemma 1, we are just left to show that given

X1, . . . , Xn,
√
n(θ(Bn) − θ̂n) is asymptotically normal. In order to show

that, we use the fact that θ̂n can be viewed as a Z-estimator (van der Vaart

(1996)), because it satisfies the system of equations Ψn(θ) = Pnψ(·, θ) = 0,
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where ψ(·, θ) = (ψ1(·, θ), . . . , ψk(·, θ))T is a k × 1 vector of functions from

Rk × Rk to R with

ψj(x, θ) =
|xj − θj|p−1

‖x− θ‖p−1p

sign(θj − xj), j = 1, . . . , k, (2.2)

In addition, we view θ(Bn) as a bootstrapped analog of the Z-estimator θ̂n

(more details are given in Subsection 3.1). Next, we use the asymptotic

theory of Z-estimators to find the asymptotic distributions of θ̂n and θ(Bn).

In the next section, we state the Bernstein-von Mises theorem for the `1-

median, and discuss how to derive it with the help of the asymptotic theory

of Z-estimators..

3. Bernstein-von Mises theorem for `1-median

Before stating the theorem, we introduce a few more notations that will be

used in the theorem. Define Ψ̇0 =
∫
ψ̇x,0 dP0, where

ψ̇x,0 =
[∂ψ(x, θ)

∂θ

]
θ=θ0

.

The matrix ψ̇x,0 is given by

ψ̇x,0 =
p− 1

‖x− θ0‖p

[
diag

(
|x1 − θ01|p−2

‖x− θ0‖p−2p

, . . . ,
|xk − θ0k|p−2

‖x− θ0‖p−2p

)
− yyT

‖x− θ0‖2(p−1)p

]
.

(3.1)

Moreover, y is given by

y =

[
|x1 − θ01|p−1 sign(x1 − θ01), . . . , |xk − θ0k|p−1 sign(xk − θ0k)

]T
.
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Also, we denote Σ0 =
yyT

‖x− θ0‖2(p−1)p

.

Theorem 3.1. Let p ≥ 2 be a fixed integer. Suppose that the following

conditions hold for k ≥ 2.

C1. The true probability distribution of X ∈ Rk, P0 has a probability den-

sity that is bounded on compact subsets of Rk.

C2. The `1-median of P0, given by θ0 = θ(P0), is unique.

Then

(i)
√
n(θ̂n − θ0) Nk(0, Ψ̇

−1
0 Σ0Ψ̇

−1
0 ),

(ii) given X1, . . . , Xn,
√
n(θ(P )−θ̂n) Nk(0, Ψ̇

−1
0 Σ0Ψ̇

−1
0 ) in P0-probability.

Further if k = 2, (i) and (ii) hold for any 1 < p <∞.

The uniqueness holds unless P0 is completely supported on a straight

line in Rk, for k ≥ 2 (Section 3, Chaudhuri (1996)). As we have pointed out

before, finding the asymptotic distribution of
√
n(θ̂n − θ0) can be viewed

as an application of the problem of finding the asymptotic distribution of

a Z-estimator centered at its true value. The asymptotic theory of the

Z-estimators has been studied extensively in the literature. Huber (1967)

proved the asymptotic normality of Z-estimators when the parameter space
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is finite-dimensional. Van der Vaart (1995) extended Huber’s (1967) theo-

rem to the infinite-dimensional case.

We mentioned that θ(Bn) is a bootstrapped version of the estimator

θ̂n, where the bootstrap weights are drawn from a Dir(n; 1, 1, . . . , 1) distri-

bution. In other words, θ(Bn) satisfies the system of equations Ψ̂n(θ) =

Bnψ(·, θ) = 0. Wellner and Zhan (1996) extended van der Vaart’s (1995)

infinite-dimensional Z-estimator theorem by showing that for any exchange-

able vector of nonnegative bootstrap weights, the bootstrap analog of a

Z-estimator conditional on the observations is also asymptotically normal.

We use Wellner and Zhan’s (1996) theorem to prove the asymptotic nor-

mality of θ(Bn). Wellner and Zhan’s (1996) theorem ensures that both

√
n(θ̂n − θ0), and

√
n(θ(Bn) − θ̂n) given the data, converge in distribution

to the same normal limit, which, together with Lemma 1 proves Theorem

3.1. In Section 8, we provide a detailed verification of the conditions of

Wellner and Zhan’s (1996) theorem in our situation.

3.1 Bootstrapping a Z-estimator

In this subsection, we state Wellner and Zhan’s (1996) bootstrap theo-

rem for Z-estimators. Let Wn = (Wn1,Wn2, . . . ,Wnn) be a set of bootstrap

weights. The bootstrap empirical measure is defined as P̂n = n−1
∑n

i=1WniδXi .
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Wellner and Zhan (1996) assumed that the bootstrap weightsW = {Wni, i =

1, 2, . . . , n, n = 1, 2, . . . } form a triangular array defined on a probability

space (Z,E , P̂ ). Thus P̂ refers to the distribution of the bootstrap weights.

According to Wellner and Zhan (1996), the following conditions are imposed

on the bootstrap weights:

(i) The vectors Wn = (Wn1,Wn2, . . . ,Wnn)T are exchangeable for every

n, i.e., for any permutation π = (π1, . . . , πn) of {1, 2, . . . , n}, the joint

distribution of π(Wn) = (Wnπ1 ,Wnπ2 , . . . ,Wnπn)T is same as that of

Wn.

(ii) The weights Wni ≥ 0 for every n, i and
∑n

i=1Wni = n for all n.

(iii) The L2,1 norm of Wn1 is uniformly bounded: for some 0 < K <∞

‖Wn1‖2,1 =

∫ ∞
0

√
P̂ (Wn1 ≥ u) du ≤ K. (3.2)

(iv) limλ→∞ lim supn→∞ supt≥λ(t
2P̂{Wn1 ≥ t)} = 0.

(v) n−1
∑n

i=1(Wni − 1)2 → c2 > 0 in P̂ -probability for some constant

c > 0.

Van der Vaart and Wellner (1996) noted that if Y1, . . . , Yn are expo-

nential random variables with mean 1, then the weights Wni = Yi/Ȳn, i =

1, . . . , n, satisfy conditions (i)–(v), resulting in the Bayesian bootstrap
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scheme with c = 1 because the left hand side in (v) is given by n−1
∑n

i=1(Yi−

Ȳn)2/Ȳ 2
n

P→ Var(Y )/{E(Y )}2 = 1. To apply the bootstrap theorem, we also

need to assume that the function class

FR = {ψj(·, θ) : ‖θ − θ0‖2 ≤ R, j = 1, 2, . . . , k} (3.3)

has “enough measurability” for randomization with independently and iden-

tically distributed multipliers to be possible and Fubini’s theorem can be

used freely. We call a function class F ∈ m(P ) if F is countable, or if the

empirical process Gn =
√
n(Pn − P ) is stochastically separable (the defini-

tion of a separable stochastic process is provided in the supplement), or F

is image admissible Suslin (See Chapter 5, Dudly (2014) for a definition).

Now we formally state Wellner and Zhan’s (1996) theorem for a sequence of

consistent asymptotic bootstrap Z-estimators ˆ̂θn of θ ∈ Rk, which satisfies

the system of equations Ψ̂n(θ) = P̂nψ(·, θ) =
∑n

i=1Wniψ(Xi, θ) = 0.

Theorem 3.2 (Wellner and Zhan). Assume that the class of functions

F ∈ m(P0) and the following conditions hold.

1. There exists a θ0 ≡ θ(P0) such that

Ψ(θ0) = P0ψ(X, θ0) = 0. (3.4)

The function Ψ(θ) = P0ψ(X, θ) is differentiable at θ0 with nonsingular
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derivative matrix Ψ̇0:

Ψ̇0 =
[∂Ψ

∂θ

]
θ=θ0

. (3.5)

2. For any δn → 0,

sup
{‖Gn(ψ(·, θ)− ψ(·, θ0))‖2

1 +
√
n‖θ − θ0‖2

: ‖θ − θ0‖2 ≤ δn

}
= oP0(1). (3.6)

3. The k-vector of functions ψ is square-integrable at θ0 with covariance

matrix

Σ0 = P0ψ(X, θ0)ψ
T (X, θ0) <∞. (3.7)

For any δn → 0, the envelope functions

Dn(x) = sup
{ |ψj(x, θ)− ψj(x, θ0)|

1 +
√
n‖θ − θ0‖2

: ‖θ−θ0‖2 ≤ δn, j = 1, 2, . . . , k
}

(3.8)

satisfy

lim
λ→∞

lim sup
n→∞

sup
t≥λ

t2P0(Dn(X1) > t) = 0. (3.9)

4. The estimators ˆ̂θn and θ̂n are consistent for θ0, i.e., ‖θ̂n − θ0‖2
P0→ 0

and ‖ ˆ̂θn − θ̂n‖2
P̂→ 0 in P0-probability.

5. The bootstrap weights satisfy conditions (i)–(v).

Then

(i)
√
n(θ̂n − θ0) Nk(0, Ψ̇

−1
0 Σ0Ψ̇

−1
0 );
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(ii)
√
n(ˆ̂θn − θ̂n) Nk(0, c

2Ψ̇−10 Σ0Ψ̇
−1
0 ) in P0- probability.

It has already been mentioned that, for the Bayesian bootstrap weights,

the value of the constant c is 1. Thus if ψ(·, θ) defined in (2.2) satisfies the

conditions in Theorem 3.2, then Theorem 3.1 holds.

It may be mentioned that Cheng and Huang (2010) also studied asymp-

totic theory for bootstrap Z-estimators, and developed consistency and

asymptotic normality results. We could have also considered an M-estimator

framework and used their results to prove our theorems.

4. Affine-equivariant Multivariate `1-median

We start this section by describing the transformation and retransforma-

tion technique that has been used in the literature to obtain an affine

equivariant version of a multivariate median. Here we consider a non-

parametric Bayesian framework for an affine equivariant version of the `1-

median. Although the sample multivariate `1-median is equivariant under

location transformation and orthogonal transformation of the data, it is not

equivariant under arbitrary affine transformation of the data. Chakraborty

and Chaudhuri ((1996), (1998)) used a data-driven transformation-and-

retransformation technique to convert the non-equivariant coordinatewise

median to an affine-equivariant one. Chakraborty, Chaudhuri and Oja
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(1998) applied the same idea to the sample spatial median.

We use the transformation-and-retransformation technique to construct

an affine equivariant version of the multivariate `1-median. Suppose that

we have n sample points X1, X2, . . . , Xn ∈ Rk, with n > k + 1. We con-

sider the points Xi0 , Xi1 , . . . , Xik , where α = {i0, i1, . . . , ik} is a subset of

{1, 2, . . . , n}. The matrix X(α) consisting the columns Xi1 − Xi0 , Xi2 −

Xi0 , . . . , Xik − Xi0 is the data-driven transformation matrix. The trans-

formed data points are Z
(α)
j = {X(α)}−1Xj, j /∈ α. The matrix X(α) is

invertible with probability 1 if Xi, i = 1, . . . , n, are independently and iden-

tically distributed samples from a distribution that is absolutely continuous

with respect to the Lebesgue measure on Rk. The sample `1-median based

on the transformed observations is then given by

φ̂(α)
n = arg min

φ

∑
j /∈α

‖Z(α)
j − φ‖2. (4.1)

We transform it back in terms of the original coordinate system as

θ̂(α)n = X(α)φ̂(α)
n . (4.2)

It can be shown that θ̂
(α)
n is affine equivariant. Chakraborty, Chaudhuri

and Oja (1998) suggested that X(α) should be chosen in such a way that

the matrix {X(α)}TΣ−1X(α) is as close as possible to a matrix of the form

λIk where Σ is the covariance matrix of X. Chakraborty, Chaudhuri and
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Oja (1998) proved that conditional on X(α), the asymptotic distribution

of the transformed-and-retransformed spatial median is normal.

4.1 Bernstein-von Mises theorem for the affine-equivariant mul-

tivariate median

Here, we develop a non-parametric Bayesian framework for studying the

affine-equivariant `1-median. Let X1, X2, . . . , Xn ∈ Rk be a random sample

from a distribution P that is absolutely continuous with respect to the

Lebesgue measure on Rk. Let X(α) be the transformation matrix and

Z
(α)
j = {X(α)}−1Xj, j /∈ α, be the transformed observations. The sample

median of X1, . . . , Xn is denoted by θ̂n.

Let the distribution of Z
(α)
j , j /∈ α, be denoted by PZ . We equip PZ with

a DP(β) prior. The true value of PZ is denoted by PZ0, i.e., the distribution

of Z when X ∼ P0. Hence the Bayesian model can be described as

Z
(α)
j |PZ

iid∼ PZ , PZ ∼ DP(β), j /∈ α, (4.3)

which implies that

PZ |{Z(α)
j : j /∈ α} ∼ DP(β +

∑
j /∈α

δZj). (4.4)

Following the same arguments used in Section 2, we can approximate the

posterior Dirichlet process PZ by the Bayesian bootstrap process Bn−k−1,
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since we are excluding the (k + 1) observations that have been used to

construct the transformation matrix X(α). Note that, this exclusion will

not have any effect on the asymptotic study. Define

φ(α)(Bn) = arg min
φ

Bn−k−1‖Z(α) − φ‖p, (4.5)

φ(α)(PZ) = arg min
φ

{
PZ(‖Z(α) − φ‖p − ‖Z(α)‖p)

}
. (4.6)

Thus the transformed-and-retransformed medians are given by

θ̂(α)n = X(α)φ̂(α)
n , θ(α)(Bn) = X(α)φ(α)(Bn). (4.7)

Also define θ(α)(P ) = X(α)φ(α)(PZ). We view φ̂
(α)
n as a Z-estimator sat-

isfying ΨZn(φ) = PnψZ(·, φ) = 0. The “population version” of ΨZn(φ) is

denoted by ΨZ(φ) = PψZ(·, φ). The real-valued elements of the vector

ψZ(z, φ) are then given by

ψZ;j(z, φ) =
|zj − φj|p−1

‖z − φ‖p−1p

sign(φj − zj), j = 1, . . . , k. (4.8)

Let φ
(α)
0 ≡ φ(α)(PZ0) satisfy ΨZ0(φ

(α)) = PZ0ψZ(·, φ(α)) = 0. In the follow-

ing, we denote Ψ̇
(α)
Z0 =

[
∂ΨZ0/∂φ

]
φ=φ

(α)
0

and Σ
(α)
Z0 = PZ0ψZ(·, φ(α)

0 )ψTZ(·, φ(α)
0 ).

Theorem 4.1. Let p ≥ 2 be a fixed integer. For k ≥ 2 and a given subset

α = {i0, i1, . . . , ik} of {1, 2, . . . , n} with size k+1, suppose that the following

conditions hold.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4.1 Bernstein-von Mises theorem for the affine-equivariant multivariate
median21

C1. The true distribution of Z(α), PZ0 has a density which is bounded on

compact subsets of Rk.

C2. The `1-median of PZ0, denoted by φ
(α)
0 = φ(α)(PZ0), is unique.

Then

(i)
√
n(θ̂

(α)
n − θ(α)(P0))|{Xi : i ∈ α} 

Nk(0, X(α){Ψ̇(α)
Z0 }−1Σ

(α)
Z0 {Ψ̇

(α)
Z0 }−1 {X(α)}T );

(ii) given X1, . . . , Xn,
√
n(θ(α)(P )−θ̂(α)n ) Nk(0, X(α){Ψ̇(α)

Z0 }−1Σ
(α)
Z0 {Ψ̇

(α)
Z0 }−1

{X(α)}T ) in P0-probability. Here Ψ̇
(α)
Z0 =

∫
ψ̇Z,0 dPZ0, where

ψ̇Z,0 =
[∂ψZ(z, φ)

∂φ

]
φ=φ

(α)
0

. (4.9)

The matrix ψ̇Z,0 is given by

ψ̇Z,0 =
p− 1

‖z − φ(α)
0 ‖p

[
diag

(
|z1 − φ(α)

01 |p−2

‖z − φ(α)
0 ‖

p−2
p

, . . . ,
|zk − φ(α)

0k |p−2

‖z − φ(α)
0 ‖

p−2
p

)
−

yyT

‖z − φ(α)
0 ‖

2(p−1)
p

]
,

with y given by

y =

[
|z1 − φ(α)

01 |p−1 sign(z1 − φ(α)
01 ), . . . , |zk − φ(α)

0k |p−1 sign(zk − φ(α)
0k )

]T
,

(4.10)

and Σ
(α)
Z0 =

yyT

‖z − φ(α)
0k ‖

2(p−1)
p

.
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Further if k = 2, (i) and (ii) hold for any 1 < p <∞.

The uniqueness holds unless PZ0 is completely supported on a straight

line in Rk, for k ≥ 2, (Section 3, Chaudhuri (1996)). It can be noted that

the DP(β) prior on PZ induces the DP(β ◦ ψ−1) prior on P ≡ PZ ◦ ψ−1,

where ψ(Y ) = X(α)Y with Y ∈ Rk. Then the proof of the preceding

theorem directly follows from Theorem 3.1. Apart from Theorem 3.1, this

theorem uses the affine equivariance of the normal family: if a random

vector X ∼ N(µ,Σ), then Y = AX + b ∼ N(Aµ+ b, AΣAT ).

5. Bernstein-von Mises theorem for multivariate quantiles

The asymptotic results for the multivariate `1-medians almost directly trans-

late to multivariate quantiles. Let Xi, i = 1, . . . , n, be independently

and identically distributed observations from a k-variate distribution P

on Rk and P is given the DP(α) prior. We study the posterior distri-

butions asymptotically, and for every fixed u1, . . . , um ∈ B(k)
q , Theorem 5.1

gives the joint posterior asymptotic distribution of the centered quantiles

{
√
n(QP (u1)− Q̂n(u1)), . . . ,

√
n(QP (um)− Q̂n(um))}.

Firstly we introduce some notations. For each u, the sample u-quantile

is viewed as a Z-estimator that satisfies the system of equations Ψ
(u)
n (ξ) =

Pnψ(u)(·, ξ) = 0. We denote the population version of Ψ
(u)
n (ξ) by Ψ(u)(ξ) =
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Pψ(u)(·, ξ). The true value of QP (u) is denoted by Q0(u) ≡ QP0(u) and

it satisfies the system of equations Ψ
(u)
0 (·, ξ) = P0ψ

(u)(·, ξ) = 0. The real-

valued components of ψ(u)(·, ξ) are then given by

ψ
(u)
j (x, ξ) =

|xj − ξj|p−1

‖x− ξ‖p−1p

sign(ξj − xj) + uj, j = 1, . . . , k. (5.1)

Define Ψ̇
(u)
0 =

∫
ψ̇

(u)
x,0 dP0, where

ψ̇
(u)
x,0 =

[∂ψ(u)(x, ξ)

∂ξ

]
ξ=Q0(u)

. (5.2)

The matrix ψ̇
(u)
x,0 is given by

ψ̇
(u)
x,0 =

p− 1

‖x−Q0(u)‖p

[
diag

(
|x1 −Q01(u)|p−2

‖x−Q0(u)‖p−2p

, . . . ,
|xk −Q0k(u)|p−2

‖x−Q0(u)‖p−2p

)
− yyT

‖x−Q0(u)‖2(p−1)p

]
, (5.3)

with y given by

y =
[
|xj −Q0j(u)|p−1 sign(xj −Q0j(u)) : j = 1, . . . , k

]T
. (5.4)

In the above, Q0j(u), j = 1, . . . , k denotes the jth component of the vector

Q0(u). We also define Σ0;u,v = P0ψ
(u)(x,Q0(u)){ψ(v)(x,Q0(v))}T .

Theorem 5.1. Let p ≥ 2 be a fixed integer. Suppose that the following

conditions hold for k ≥ 2.

C1. The true distribution of X, P0 has a density that is bounded on com-

pact subsets of Rk.
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C2. For every u1, . . . , um ∈ B(k)
q , the u1, . . . , um-quantiles of P0, denoted

by Q0(u1), . . . , Q0(um), are unique.

Then

(i) the joint distribution of
(√

n(Q̂n(u1) − Q0(u1)), . . . ,
√
n(Q̂n(um) −

Q0(um)) converges to a km-dimensional normal distribution with mean

zero, and the (j, l)th block of the covariance matrix is given by {Ψ̇(uj)
0 }−1

Σ0;uj ,ul{Ψ̇
(ul)
0 }−1, 1 ≤ j, l ≤ m;

(ii) given X1, . . . , Xn, the posterior joint distribution of {
√
n(QP (u1) −

Q̂n(u1)), . . . ,
√
n(QP (um) − Q̂n(um))} converges to km-dimensional

normal distribution with mean zero, and the (j, l)th block of the co-

variance matrix is given by {Ψ̇(uj)
0 }−1Σ0;uj ,ul{Ψ̇

(ul)
0 }−1, 1 ≤ j, l ≤ m.

Further if k = 2, (i) and (ii) hold for any 1 < p <∞.

Just like the `1-median, the uniqueness of the quantiles holds unless

P0 is completely supported on a straight line on Rk, (Section 3, Chaudhuri

(1996)). We give the proof of the previous theorem in Section 8.

6. Simulation Study and a real data application

Here, we demonstrate the finite sample performance of the non-parametric

Bayesian credible sets for the multivariate `1-median. The data is generated
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from the following mixture distribution P = 0.5Nk(1k, Ik)+0.5Gammak(1, 1, V ),

with cases k = 2 and k = 3, and the sample size being 100. All the diagonal

elements of V have been chosen to be 1, and the off-diagonal elements are

0.7. The prior considered here is a Dirichlet process with centering measure

2×Nk(0k, 10Ik), and a 95% credible ellipsoid is constructed as

{ϑ : (ϑ− θ̄)>S−1(ϑ− θ̄) ≤ r0.95},

where θ̄ and S are the Monte Carlo sample mean and covariance matrix

respectively, and r0.95 is the 95% percentile of {(ϑb − θ̄)>S−1(ϑb − θ̄), b =

1, . . . , B}, where ϑ1, . . . , ϑB are the posterior samples, with B = 5000. The

coverage probability is defined as usual and, as a measure of the credible

set’s size, we use r0.95. For comparison, we use a parametric Bayesian model

as follows:

(X1, . . . , Xn) | θ iid∼ Nk(θ, σ
2Ik), θ ∼ Nk(0k, 10Ik), σ−2 ∼ Gamma(1, 1).

A simple Gibbs sampler can be used for posterior inference from the above

model, and a 95% credible set is constructed in the same way. However,

the above model suffers from the model misspecification bias, which our

non-parametric Bayes model is free from.

For inferring about the affine equivariant median, we choose X(α) as

suggested in Chakraborty, Chaudhuri and Oja (1998). The parametric
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Bayesian model gets the form

Z
(α)
j |φ

iid∼ Nk(φ, σ
2Ik), φ ∼ Nk(0k, 10Ik), σ−2 ∼ Gamma(1, 1).

Table 1 and Table 2 summarize the size and coverage probability over 2000

replications for both models, for k = 2 and 3, respectively. It can be no-

ticed that the non-parametric Bayes method gives a smaller credible set

with nominal coverage probability, thus protecting from the model mis-

specification bias in the paremetric Bayesian approach.

We also analyze Fisher’s iris data which consists of three plant species,

namely, Setosa, Virginica and Versicolor and four features, namely, sepal

length, sepal width, petal length and petal width. The same DP(α) prior

with α = 2×N4(04, 10I4) is used. We construct the 95% Bayesian credible

ellipsoid of the 4-dimensional spatial median and report its four principal

axes in Table 1 of the supplementary document. Also, for the purpose of

illustration, we plot 6 pairs of features for each species and the credible el-

lipsoids for the corresponding two dimensional spatial medians. The figures

are given in the supplementary document.

7. Concluding Remarks

• The present paper is the first to study the asymptotic behavior of poste-

rior distributions of multivariate median and quantiles. Multivariate quan-
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p Coverage (Size)(NPBayes) Coverage (Size)(PBayes)

Non AE
2 0.950 (5.94) 0.925 (6.37)

3 0.942 (5.54) 0.925 (6.37)

AE
2 0.977 (6.09) 0.980 (6.19)

3 0.955 (5.97) 0.980 (6.19)

Table 1: Estimated coverage probability, mean size of the 95% credible

ellipsoids and confidence ellipsoids (in parentheses) of the non-affine equiv-

ariant (Non AE) and affine equivariant (AE) `1-medians for both parametric

(PBayes) and non-parametric Bayes (NPBayes) models, when for k = 2.

tiles can be the object of interest in various types of study, for example, net-

work analysis, genetic experiments and image analysis, where the datasets

do not fit into well-known distributions and exhibit non-normality, skewness

and outliers. The Bayesian approach gives us automatic uncertainty quan-

tification through the posterior distributions without requiring any large-

sample approximations. The nonparametric Bayesian approach discussed

here is appealing because it does not need any distributional assumptions.

It would be interesting to explore the high dimensional setting, i.e.,

when k → ∞. We can modify the objective function by incorporating a

Lasso-like penalty. then a k-dimensional u-quantile for u ∈ B
(k)
q can be
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p Coverage (Size)(NPBayes) Coverage (Size)(PBayes)

Non AE
2 0.955 (5.81) 0.945 (5.99)

3 0.948 (5.88) 0.945 (5.99)

AE
2 0.972 (5.91) 0.950 (6.11)

3 0.961 (5.99) 9.50 (6.11)

Table 2: Estimated coverage probability, mean size of the 95% credible

ellipsoids and confidence ellipsoids (in parentheses) of the non-affine equiv-

ariant (Non AE) and affine equivariant (AE) `1-medians for both parametric

(PBayes) and non-parametric Bayes (NPBayes) models, when for k = 3.

obtained by minimizing P{Φp(u,X − ξ)−Φp(u,X) + λ‖ξ‖p}, with respect

to ξ, where λ is a tuning parameter. A non-parametric Bayesian framework

can be formulated by putting a Dirichlet process prior on P , and asymptotic

properties of the posterior distributions can be explored as before.

• The asymptotic results for multivariate quantiles translate to multi-

variate L-estimates (see Chaudhuri (1996)). An L-estimator is a weighted

average of order statistics. Chaudhuri (1996) defined an L-estimator of mul-

tivariate location of the form
∫
S
Q̂n(u)µ(du), where µ is an appropriately

chosen probability measure supported on a subset S of B
(d)
2 . We propose
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a non-parametric Bayesian analog of the form
∫
S
QP (u)µ(du), and put a

DP(α) prior on P . If S is a finite set {u1, . . . , us}, then the integral is of

the form
∑s

i=1QP (ui)µ({ui}), whose posterior asymptotic distribution can

directly be obtained from Theorem 5.1.

• Our approach has a deep connection with the bootstrap, as we are

essentially doing a bootstrap approximation to the posterior Dirichlet pro-

cess. The Bayesian bootstrap is a smoother version of Efron’s bootstrap.

For Efron’s bootstrap, the weights (Wn1, . . . ,Wnn) are multinomial with

probabilities (1/n, . . . , 1/n), and they satisfy conditions (i)–(v) in Subsec-

tion 3.1, with c = 1. Thus, credible sets obtained from Efron’s bootstrap

will be asymptotically equivalent with the credible sets we have obtained

here.

8. Proof

8.1 Proof of Theorem 3.1

We will need some concepts on stochastic and empirical processes theory,

which are given in the supplementary document. This includes definitions

of covering numbers, bracketing numbers, uniform entropy, bracketing en-

tropy, VC-classes, Glivenko-Cantell and Donsker classes, and a stochasti-
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cally separable process.

We give the proof in two steps. In the first step, we state and prove

Lemma 1, i.e., we show that the asymptotic posterior distribution of
√
n(θ(P )−

θ̂n) is the same as the asymptotic conditional distribution of
√
n(θ(Bn) −

θ̂n). Next, we verify the conditions of Theorem 3.2 in our situation and

show that the asymptotic conditional distribution of
√
n(θ(Bn) − θ̂n) is

Nk(0, Ψ̇
−1
0 Σ0Ψ̇

−1
0 ).

Lemma 1. The asymptotic posterior distribution of
√
n(θ(P ) − θ̂n) is the

same as the asymptotic conditional distribution of
√
n(θ(Bn)− θ̂n).

Proof of Lemma 1. We know θ(Bn) satisfies Ψ?(θ(Bn)) = Bnψ(·, θ) = 0 and

θ(P ) satisfies Ψ(θ(P )) = Pψ(·, θ) = 0.

The posterior distribution of P given X1, . . . , Xn is DP(α+nPn). From

the fact that ‖P − Bn‖TV = oP ?(n
−1/2) a.s. [P∞0 ], where P ? = P∞ × Bn,

∥∥Pψ(X, θ)− Bnψ(X, θ)
∥∥ ≤ ∥∥ψ∥∥∞∥∥P − Bn

∥∥
TV
≤
∥∥P − Bn

∥∥
TV
,

since ‖ψ‖∞ = supx |ψ(x, θ)| = 1. In view of this result, given X1, . . . , Xn,

∥∥Ψ?(θ(P ))−Ψ(θ(P ))
∥∥
2

=
∥∥Ψ?(θ(P ))‖2 = oP ?(n

−1/2). (8.1)

Hence, for given X1, . . . , Xn, θ(P ) makes the bootstrap scores Ψ?(θ) approx-

imately zero in probability. Therefore, given the observations X1, . . . , Xn,
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θ(P ) qualifies to be a sequence of bootstrap asymptotic Z-estimators. The-

orem 3.1 in Wellner and Zhan (1996) (Theorem 3.2 in this paper) holds for

any sequence of bootstrap asymptotic Z-estimators ˆ̂θn that satisfies

∥∥Ψ?(ˆ̂θn)
∥∥ = oP ?(n

−1/2). (8.2)

Thus, the asymptotic posterior distribution of
√
n(θ(P ) − θ̂n) is same as

the asymptotic conditional distribution of
√
n(θ(Bn)− θ̂n).

Next, we show that ψ(·, θ) defined in (2.2) satisfies the conditions in

Theorem 3.2. Firstly, we need to show that the function class FR ∈ m(P0)

where FR is defined in (3.3). To achieve this, we prove that the empirical

process Gn =
√
n(Pn−P0) indexed by FR is stochastically separable. It can

be noted that ψj(x, θ), j = 1, . . . , k, are left-continuous at each x for every

θ such that ‖θ− θ0‖2 ≤ R. Hence there exists a null set N and a countable

G ⊂ FR such that, for every ω /∈ N and f ∈ FR, we have a sequence gm ∈ G

with gm → f and Gn(gm, ω) → Gn(f, ω). For more details, see Chapter

2.3, van der Vaart and Wellner (1996).

Verification of Condition 1 in Theorem 3.2. By Condition C2 in Theorem

3.1, the `1-median of P0 exists and is unique. Hence there exists a θ0 ≡

θ(P0) ∈ Rk such that (3.4) is satisfied. Also, Ψ0(θ) = P0ψ(X, θ) is differen-

tiable from Condition C1. This follows from the fact that for a fixed θ ∈ Rk
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and a density f bounded on compact subsets of Rk, P0(‖X−θ‖−12 ) is finite,

which in turn implies that P0(‖X − θ‖−1p ) is finite for every p > 1. This

can be verified by using k-dimensional polar transformation for which the

determinant of the Jacobian matrix contains (k − 1)th power of the radius

vector (Chaudhuri (1996)).

Verification of Condition 2 in Theorem 3.2. From Wellner and Zhan (1996),

Condition 2 is satisfied if, FR in (3.3) is P0-Donsker for some R > 0 and

max
1≤j≤k

P0(ψj(·, θ)− ψj(·, θ0))2 → 0, (8.3)

as θ → θ0. In order to prove that FR is P0-Donsker, we define the following

two function classes:

F1R =
{ |xj − θj|p−1
‖x− θ‖p−1p

: j = 1, 2, . . . , k, ‖θ − θ0‖2 ≤ R
}
, (8.4)

F2R =
{

sign(θj − xj) : j = 1, 2, . . . , k, ‖θ − θ0‖2 ≤ R
}
. (8.5)

From Example 2.10.23 of van der Vaart and Wellner (1996), if F1R and F2R

satisfy the uniform entropy condition and are suitably measurable, then

FR = F1RF2R is P0-Donsker provided their envelopes F1R and F2R satisfy

P0F
2
1RF

2
2R <∞.

Lemma 2. For k > 2, F1R and F2R are P0-Donsker classes for some fixed

integer p, and hence they satisfy the uniform entropy condition.
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The proof is presented in the supplementary document. In view of

Lemma 2, next we need to prove (8.3), that is, max1≤j≤k P0(ψj(·, θ) −

ψj(·, θ0))2 → 0 as θ → θ0. Note that ψj(x, θ)→ ψj(x, θ0) for every x as θ →

θ0 for j ∈ {1, . . . , k}. Also (ψj(x, θ)−ψj(x, θ0))2 ≤ 4 for every x and every θ.

Hence by the dominated convergence theorem, P0(ψj(·, θ)− ψj(·, θ0))2 → 0

as θ → θ0 for j ∈ {1, . . . , k}. Thus (8.3) is established.

Verification of Condition 3 in Theorem 3.2. For every j ∈ {1, 2, . . . , k} and

θ ∈ Rk, ψj(x, θ) is bounded by 1 and hence is square-integrable. The (i, j)th

element of Σ0 = P0ψ(x, θ0)ψ
T (x, θ0) is given by

σij =

∫
|xi − θ0i|p−1|xj − θ0j|p−1

‖x− θ0‖2(p−1)p

sign(θ0i − xi) sign(θ0j − xj) dP0 (8.6)

≤
∫

1 dP0 <∞.

The class of functions {ψj(x, θ) : j = 1, 2, . . . , k, ‖θ − θ0‖2 ≤ R} has a

constant envelope 1. Hence Dn(x) defined in (3.8) is equal to 2 and it

satisfies (3.9).

Verification of Condition 4. First we prove ‖θ̂n − θ0‖2
P0→ 0. Note that θ̂n

can be written as

θ̂n = arg max
θ

Pnmθ, (8.7)

where mθ(x) = −‖x− θ‖p + ‖x‖p. Naturally the population analog of θ̂n is
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given by

θ(P ) = arg max
θ

Pmθ. (8.8)

From Corollary 3.2.3 of van der Vaart and Wellner (1996), we need to

establish two conditions as follows:

(a) supθ |Pnmθ − P0mθ| → 0 in probability;

(b) there exists a θ0 such that P0mθ0 > supθ/∈G P0mθ for every open set

G containing θ0.

The first condition can be proved by showing that the class of functions

{mθ : θ ∈ Rk} forms a P0-Glivenko-Cantelli class. From Theorem 19.4

of van der Vaart (2000), the class M = {mθ : θ ∈ Θ ⊂ Rk} will be P0-

Glivenko-Cantelli if N[ ](ε,M, L1(P0)) <∞ for every ε > 0.

By Example 19.7 of van der Vaart (2000), for a class of measurable

functions F = {fθ : θ ∈ Θ ⊂ Rk}, if there exists a measurable function m

such that

|f1(x)− f2(x)| ≤ m(x)‖θ1 − θ2‖2, (8.9)

for every θ1, θ2 and P0|m|r <∞, then there exists a constant K, depending

on Θ and k only, such that the bracketing numbers satisfy

N[ ](ε‖m‖P0,r,F ,Lr(P0)) ≤ K

(
diam Θ

ε

)k
, (8.10)
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for every 0 < ε < diam Θ. To use this example, we need to restrict the

parameter space to a compact subset of Rk. The next lemma shows that

this can be avoided in our case by asserting that the parameter space can

be restricted to a sufficiently large compact set with high probability.

Lemma 3. If for some 0 < ε < 1/4 and K > 0, P0 on (Rk,Rk) satisfying

P0(‖X‖p ≤ K) > 1−ε for any probability measure P0, then ‖θ(P0)‖p ≤ 3K;

where Rk denotes the Borel sigma field on Rk.

The proof of Lemma 3 is given in the supplementary document. Because

of Lemma 3, it suffices to establish (8.9). Using Minkowski’s inequality,

|mθ(x)−mθ′(x)| =|‖x− θ′‖p − ‖x− θ‖p| ≤ ‖θ − θ′‖p.

This expression is bounded by ‖θ−θ′‖2 for p ≥ 2, by the fact that ‖z‖p+a ≤

‖z‖p for any vector z and real numbers a ≥ 0 and p ≥ 1. For 1 < p < 2, the

expression is bounded by 2(1/p)−(1/2)‖θ−θ′‖2. Hence we choose m(x) = 1 for

every x and therefore P0|m| = 1. This ensures that N[ ](ε,M,L1(P0)) <∞

and hence Condition (a) is satisfied. From Condition (C2) in Theorem 3.1,

Condition (b) holds. Therefore θ̂n → θ0 in P0-probability.

Now to prove the consistency of θ(Bn), which is viewed as a “bootstrap

estimator”, we use Corollary 3.2.3 in van der Vaart and Wellner (1996). Two

conditions are needed for proving this. The first condition is supθ |Bnmθ −
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P0mθ|
P0×Bn→ 0. We verify this condition using the multiplier Glivenko-

Cantelli theorem which is given in Corollary 3.6.16 of van der Vaart and

Wellner (1996). By the representation Bn =
∑n

i=1BniδXi , where (Bn1, . . . ,

Bnn) ∼ Dir(n; 1, . . . , 1), it follows that Bni ≥ 0,
∑n

i=1Bni = 1 and Bni ∼

Be(1, n− 1). Therefore, for every ε > 0, as n→∞

P

(
max
1≤i≤n

|Bni| < ε

)
=

(∫ ε

0

(1− y)n−2

B(1, n− 1)
dy

)n
= (1− (1− ε)n−1)n → 1.

Thus the first condition is proved. The second condition is the same as

the “well-separatedness” condition (b) which we already verified. So, we

have θ̂n
P0→ θ0 and θ(Bn)

P0×Bn→ θ0. Hence by an application of the triangle

inequality, θ(Bn)
Bn→ θ̂n in P0-probability.

Verification of Condition 5. It has already been mentioned that the Bayesian

bootstrap weights satisfy the bootstrap weights (i)–(v).

Proof for arbitrary p > 1 when k = 2. When k = 2, we do not need p to be

an integer because we can show that F1R is a P0-Donsker class for any fixed

p > 1, which we formally state in the following lemma.

Lemma 4. For k = 2, F1R is a P0-Donsker class for any p > 1, and hence

it satisfies the uniform entropy condition.

Proof. Presented in the supplementary document.
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8.2 Proof of Theorem 5.1

Just like before, the sample geometric quantiles Q̂n(u1), . . . , Q̂n(um) are

viewed as a Z-estimator satisfying the system of equations Pnψ(·, ξ) = 0,

where ψ(·, ξ) = {ψlj(·, ξlj) : l = 1, . . . ,m, j = 1, . . . , k} is the score vector

with its real-valued elements being

ψlj(x, ξlj) =
|xj − ξlj|p−1

‖x− ξl‖p−1p

sign(ξlj − xj) + ulj. (8.11)

We define QBn(u1), . . . , QBn(um) as the corresponding “Bayesian

bootstrapped” versions of the Z-estimators Q̂n(u1), . . . , Q̂n(um), i.e., they

satisfy the system of equations Bnψ(·, ξ) = 0. We use the same technique

of approximating the posterior distribution of P by a Bayesian bootstrap

distribution, and we state the following lemma, which is the extension of

Lemma 1 to the quantile case.

Lemma 5. For every fixed u1, . . . , um ∈ B
(k)
q , the joint asymptotic pos-

terior distribution of
√
n(QP (u1) − Q̂n(u1)), . . . ,

√
n(QP (um) − Q̂n(um))

is the same as the asymptotic conditional distribution of
√
n(QBn(u1) −

Q̂n(u1)), . . . ,
√
n(QBn(um)− Q̂n(um)).

The proof of Lemma 5 is same as that of Lemma 1, hence is omitted.

The rest of the proof of Theorem 5.1 is along the lines of that of Theorem

3.1 as well, hence that is skipped too.
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Supplementary Document

In the supplementary document, we provide some background of the em-

pirical process theory. We give definitions of covering numbers and uniform

entropy, bracketing numbers, VC class of sets, Glivenko-Cantelli class of

functions and Donsker class of functions. Additionally, we provide proofs

of Lemmas 2, 3 and 4 and some details of the application on iris data.

Finally, we provide some R codes used for the computation of our method.
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pp. 182–193.

Small, C. G. (1990), ‘A survey of multidimensional medians’, International Statistical Re-

view/Revue Internationale de Statistique 58, 263–277.

Van der Vaart, A. (1995), ‘Efficiency of infinite dimensional m-estimators’, Statistica Neerlandica

49(1), 9–30.

Van der Vaart, A. W. (2000), Asymptotic Statistics, Cambridge University Press.

Van Der Vaart, A. W. and Wellner, J. A. (1996), Weak convergence and empirical processes,

Springer.

Wellner, J. A. and Zhan, Y. (1996), ‘Bootstrapping z-estimators’, University of Washington

Department of Statistics Technical Report 308.

Xue-Kun Song, P. (2000), ‘Multivariate dispersion models generated from gaussian copula’,

Scandinavian Journal of Statistics 27(2), 305–320.

Department of Statistics, North Carolina State University

E-mail: ibhatta@ncsu.edu

Department of Statistics, North Carolina State University

E-mail: sghosal@ncsu.edu

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)


	Background and Preliminaries
	Bernstein-von Mises theorem for 1-median
	Bootstrapping a Z-estimator

	Affine-equivariant Multivariate 1-median
	Bernstein-von Mises theorem for the affine-equivariant multivariate median

	Bernstein-von Mises theorem for multivariate quantiles
	Simulation Study and a real data application
	Concluding Remarks
	Proof
	Proof of Theorem 3.1
	Proof of Theorem 5.1




