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Abstract: Motivated by dimension reduction in regression analysis and signal

detection, we investigate the order determination for large dimensional matrices

including spiked type models of which the numbers of covariates are proportional

to the sample sizes for different models. Because the asymptotic behaviors of the

estimated eigenvalues of the corresponding matrices differ completely from those

in fixed dimension scenarios, we then discuss the largest possible number we can

identify and introduce a “valley-cliff” criterion. We propose two versions of the

criterion: one based on the original differences between eigenvalues and the other

based on the transformed differences, which reduces the effect of ridge selection

in the former one. This generic method is very easy to implement and compu-

tationally inexpensive, and can be applied to various matrices. As examples, we

focus on spiked population models, spiked Fisher matrices and factor models with

auto-covariance matrices. Numerical studies are conducted to examine the finite

sample performances of the method and to compare it with existing methods.

Key words and phrases: Auto-covariance matrix, factor model, finite-rank per-

turbation, Fisher matrix, phase transition, ridge ratio, spiked population model.
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Order Determination for Spiked Type Models

1. Introduction

In many statistical methods, we need to determine how many eigen-

values of a matrix are important to estimations. This problem is called

order determination. Examples include spiked population models proposed

by Johnstone (2001); spiked Fisher matrices, which are motivated from sig-

nal detection and hypothesis testing for covariances; canonical correlation

analysis; factor models; and some matrices in sufficient dimension reduction

(see Li (1991); Zhu et al. (2010)). Luo and Li (2016) is useful literature on

order determination and proposed a ladle estimation for several models. In

this paper, we use spiked population models to set up the problem of inter-

est and then introduce an estimation criterion that applies to more models

including spiked Fisher matrices. The method is also applicable to sample

auto-covariance matrices though they cannot be written as a spiked matrix

at the population level. Therefore, we call them spiked type models.

The literature includes several proposals in the fixed dimension cases,

such as the classic Akaike Information Criterion (AIC) and Bayesian Infor-

mation Criterion (BIC). Some methods developed for sufficient dimension

reduction can also be used in spiked type models. These include the sequen-

tial testing method (Li (1991)), the BIC-type criterion (Zhu et al. (2006)),

ridge ratio estimation (Xia et al. (2015)) and ladle estimation (Luo and Li
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Order Determination for Spiked Type Models

(2016)), some of which can even handle cases with divergent dimension in

the sense that p/n → 0 at certain rate as n → ∞. Here n denotes the

sample size and p the dimension of the matrix.

However, when the dimension p is proportional to the sample size n

such that p/n → c for some constant c > 0, the order determination be-

comes much more challenging. Some efforts have been devoted to this prob-

lem by using the large dimensional random matrix theory (see for example

Kritchman and Nadler (2008); Onatski (2009)). Consider spiked population

models. When p/n → c, using the results derived by Baik and Silverstein

(2006), Passemier and Yao (2012) introduced a criterion that counts the

number of differences between consecutive eigenvalues above some prede-

termined threshold. However, if there exist equal spikes, the corresponding

differences could be smaller than the designed threshold, then the criterion

could easily define an estimator smaller than the true number. Passemier

and Yao (2014) improved this method to accommodate cases with multiple

spikes. The underestimation issue however remains when there are three or

more equal spikes. Besides the spike multiplicity, the dominating effect by

several largest eigenvalues also results in underestimation. That is, when a

couple of eigenvalues are very large, those relatively small spikes would be

ignored. For the number of factors in a factor model for high-dimensional
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Order Determination for Spiked Type Models

time series, Li et al. (2017) proposed a criterion similar to that in Passemier

and Yao (2014). For spiked Fisher matrices, Wang and Yao (2017) used the

classical scree plot to determine the number of spikes when a threshold is

selected in a delicate manner. The underestimation is still an issue, which

will be demonstrated in the numerical studies below. Relevant references

include Lam and Yao (2012) and Xia et al. (2015).

Benefitting from existing asymptotic results for the estimated eigenval-

ues of large-dimensional random matrices in the literature, we introduce a

novel and generic criterion in the high dimensional regime with p/n → c.

Our criterion relies on the eigenvalue difference-based ridge ratios with the

following features. First, it can handle multiple spikes cases and alleviates

the large eigenvalues dominance problem. Second, it has a nice “valley-cliff”

pattern such that the consistent estimator is at the “valley bottom” facing

the “cliff” upon which all the next ratios take the same values asymptoti-

cally and can then exceed a threshold. Third, adding ridge values is essential

to make the ratios stable and create the “valley-cliff” pattern. Fourth, to

reduce the sensitivity of the criterion to ridge selection, we suggest another

version that uses transformed eigenvalues. Fifth, we discuss how to reduce

the effect of model scale in the construction as well. As the new method

completely avoids optimality procedure and thus is computationally effi-
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cient.

The remainder of this paper is organized as follows. In Section 2, we

focus on population spiked models, propose a VAlley-CLiff Estimation (VA-

CLE) and provide an optimal lower bound to show what order can be iden-

tified. The VACLE is then improved when we use a transformation-based

valley-cliff estimation (TVACLE) to alleviate the criterion’s sensitivity to

the designed ridge value. We also discuss the methods to select the trans-

formation. In Section 3, we implement our method on two more examples:

factor models with auto-covariance matrices and spiked Fisher matrices.

We discuss its applicability in more general cases as well. Section 4 con-

tains numerical studies and compares the VACLE and the TVACLE with

some competitors. The analysis for a real data example is included in Sec-

tion 5. Some concluding remarks are in Section 6, and the proofs of the

theoretical results are included in the supplementary materials.

2. Order determination for population spiked models

In this section, we develop our method for the population spiked models

introduced below with some important results for the estimated eigenvalues.

2.1 Spiked population models

Assume that a p × p non-negative definite matrix Σp = σ2Ip + ∆p has

eigenvalues λ1 ≥ · · · ≥ λq1 > λq1+1 = · · · = λp = σ2 where q1 is a
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2.2 Preliminary results for the estimated eigenvalues of Sn

fixed number and the scale parameter σ2 is either known or unknown. Let

Z ≡ (zji)1≤j≤p,1≤i≤n ≡ (z1, · · · , zn) ∈ Rp×n have i.i.d. entries each having

zero mean and unit variance. Taking xi := Σ
1/2
p zi, Σp is the population

covariance matrix of xi and coincides with the spiked population model

introduced in Johnstone (2001):

spec(Σp) = {λ1, · · · , λq1 , σ2, · · · , σ2}, (2.1)

where the eigenvalues λi, 1 ≤ i ≤ q1, are called spikes. Denote the corre-

sponding sample covariance matrix by Sn := n−1
∑
xix
>
i = n−1

∑
Σ

1/2
p ziz

>
i Σ

1/2
p

and its eigenvalues by λ̂1 ≥ · · · ≥ λ̂p, which can also be motivated from the

signal detection problem (see, e.g. Nadler (2010)):

xi = Aui + εi, 1 ≤ i ≤ n, (2.2)

where ui ∈ Rq1 is a random signal vector with zero mean components,

εi ∈ Rp is a random vector with mean zero and covariance matrix σ2Ip,

A ∈ Rp×q1 is the steering matrix whose q1 columns are linearly independent

of each other and xi ∈ Rp is the observed vector on the p sensors.

Remark 2.1. Spiked population models allow small spikes (i.e. λi < σ2),

but we do not discuss this case because it is of less statistical significance.

2.2 Preliminary results for the estimated eigenvalues of Sn

We use the following assumptions to specify the high dimensional framework

and the moment conditions which will be used in different scenarios.
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2.2 Preliminary results for the estimated eigenvalues of Sn

Assumption 2.1. p is proportional to n, i.e. p/n→ c ∈ (0,+∞).

Assumption 2.2. Z has i.i.d. entries zji, 1 ≤ j ≤ p, 1 ≤ i ≤ n satisfying

that E(z11) = 0, E(|z11|2) = 1, E(|z11|4) <∞.

Assumption 2.3. For any k ∈ N+, there exists a constant Ck s.t. E(|z11|k) <

Ck.

Consider the sample covariance matrix Sn under Assumption 2.1 with a

general σ2. When 0 < c ≤ 1, the empirical distribution of all the estimated

eigenvalues λ̂i almost surely converges to the well-known Marcenko-Pastur

distribution with the support (σ2(1−
√
c)2, σ2(1 +

√
c)2) =: (σ2a, σ2b) (see,

e.g. Theorem 2.14 in Yao et al. (2015)). To be specific, ∀x ∈ R,

1

p
#{λ̂i : λ̂i < x} → Fc,σ2(x) a.s. (2.3)

with the density function

F ′c,σ2(x) =
1

2πxcσ2

√
(σ2b− x)(x− σ2a), σ2a < x < σ2b. (2.4)

When c > 1, the integral of the above density function over the interval

(σ2a, σ2b) is equal to 1/c, and there is an additional Dirac measure of mass

1− 1/c at the origin x = 0.

For the extreme eigenvalues, Baik and Silverstein (2006) discovered the

phase transition phenomenon in the case with σ2 = 1 under Assumption 2.2.

Slightly generalizing their result by a scale transformation λ̂i � λ̂i/σ
2, we

have that for any fixed L with q + 1 < L < p,

λ̂i → σ2φ(λi/σ
2) a.s. for i ≤ q, λ̂i → σ2b a.s. for q + 1 ≤ i ≤ L, (2.5)
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2.3 Valley-cliff criterion and estimation consistency

where φ(x) := x + cx(x − 1)−1 is a strictly increasing function on (1 +

√
c,+∞). Therefore, the number of identifiable spikes q ≤ q1 is defined as

q := #{λi : λi > σ2(1 +
√
c)}. (2.6)

This is because there are only q extreme sample eigenvalues being outliers

larger than σ2b whenever the corresponding spikes exceed the value σ2(1 +

√
c) and any λ̂i of λi with σ2 < λi ≤ σ2(1 +

√
c) for q+ 1 ≤ i ≤ L converges

in probability to the same upper bound σ2b.

Further, Bai and Yao (2008) built the Central Limit Theorem for the

outliers λ̂i, 1 ≤ i ≤ q, under Assumption 2.2 on the moments, which implies

the
√
n-consistency of λ̂i to σ2φ(λi/σ

2). As for the eigenvalues λ̂i sticking

to the right edge σ2b for q + 1 ≤ i ≤ L, Theorem 2.5 in Cai et al. (2020)

shows that n2/3(λ̂i−σ2b) has the limiting Type-1 Tracy-Widom distribution

under Assumptions 2.2-2.3, which follows that λ̂i − σ2b = OP(n−2/3).

Remark 2.2. These estimated eigenvalues λ̂i corresponding to spikes λi ≤

σ2(1+
√
c) are not separated from those of λi = σ2. Thus, we only estimate

the number q (≤ q1) of spikes larger than σ2(1 +
√
c).

2.3 Valley-cliff criterion and estimation consistency

When p is proportional to n, estimated eigenvalues become much more

dispersed as the Marcenko-Parstur law shown (see (2.3) and (2.4)). The

estimation of λi−σ2 is no longer consistent to 0, but that of λi−λi+1 =: δi
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2.3 Valley-cliff criterion and estimation consistency

is still consistent for any q1 < i < min{n, p}. Thus, we do not directly use

λi but rather δi in the criterion construction.

Define a sequence of ratios ri := δi+1/δi, 1 ≤ i ≤ p − 2. These ratios

are scale-invariant and have the following property, when i ≤ q1:

ri =
δi+1

δi
=
δi+1/σ

2

δi/σ2
=


≥ 0, for i < q1,

= 0, for i = q1.

(2.7)

For any q1 + 1 ≤ i ≤ p − 2, ri = 0/0 is not well defined because of its

instability which also occurs at the sample level. To alleviate its effect in

constructing the criterion, we define a sequence by adding a ridge cn → 0

in both the numerator and the denominator:

rRi :=
δi+1/σ

2 + cn
δi/σ2 + cn

, 1 ≤ i ≤ p− 2, (2.8)

where we use δi/σ
2 instead of δi in order to keep the selection of the ridge

cn independent of the scale parameter σ2. Recalling the definition of δi and

that cn → 0, these ratios have the following property:

rRi =
δi+1/σ

2 + cn
δi/σ2 + cn

=


≥ 0, for i < q1,

= cn/(δq1/σ
2 + cn)→ 0, for i = q1,

cn/cn = 1, for q1 + 1 ≤ i ≤ p− 2,

They have a “valley-cliff” pattern, because q1 should be the index of rRq1 → 0

at a “valley bottom” facing the “cliff” valued at 1 of all next ratios rRi for

i > q1. Define their sample versions r̂Ri with δ̂i := λ̂i − λ̂i+1 as

r̂Ri :=
δ̂i+1/σ

2 + cn

δ̂i/σ2 + cn
, 1 ≤ i ≤ p− 2, (2.9)

9

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.3 Valley-cliff criterion and estimation consistency

where σ2 is replaced by σ̂2 when σ2 is unknown. Since λ̂i is not consistent

to λi, these ratios do not simply converge to their population counterparts,

which makes the quantity q1 generally unidentifiable. Hence, we estimate

the largest possible order we can identify, namely q defined in (2.6).

According to the property of λ̂i, we have

lim
n→∞

δ̂i =


σ2φ(λi/σ

2)− σ2φ(λi+1/σ
2) a.s. for 1 ≤ i ≤ q − 1,

σ2φ(λq/σ
2)− σ2b > 0 a.s. for i = q,

0, a.s. for q + 1 ≤ i ≤ L− 1.

More precisely, recalling the asymptotics of the extreme eigenvalues, we

have that δ̂i = OP(n−2/3) for q+ 1 ≤ i ≤ L− 1 and δ̂i for 1 ≤ q, at the rate

OP(n−1/2), are either consistent to positive constants or to 0 when spikes are

equal. When cn is selected in the principle: δ̂i = oP(cn) for q+1 ≤ i ≤ p−1,

i.e. cnn
2/3 →∞, r̂Ri still have a nice “valley-cliff” pattern at i = q as

lim
n→∞

r̂Ri =


≥ 0, i < q

0, i = q

1, q + 1 ≤ i ≤ L− 2

(2.10)

with a probability going to one, where L is a prefixed upper bound for

q. Taking this advantage, we define a thresholding VAlley-CLiff Estimator

(VACLE) as, for a constant τ with 0 < τ < 1,

q̂VACLE
n := max

1≤i≤L−2

{
i : r̂Ri ≤ τ

}
. (2.11)

We state the estimation consistency as follows.
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2.4 Modification of the VACLE

Theorem 2.1. Suppose Assumptions 2.1-2.3 hold and that cn → 0, cnn
2/3 →

∞. Then P(q̂VACLE
n = q)→ 1 as n→∞.

Proof. The consistency of q̂VACLE
n is implied by (2.10).

Remark 2.3. Recalling r̂Ri ’s defined in (2.9), the value of r̂Ri depends on

cn and the estimator σ̂2 when σ2 is unknown. Since the range of cn can

be rather wide, the criterion is not heavily affected when σ2 is estimated,

which is shown in the numerical studies we conduct later.

2.4 Modification of the VACLE

Selecting cn plays an important role in the estimation efficiency of the VA-

CLE. Although Theorem 2.1 provides estimation consistency, some numer-

ical studies that are not presented in this paper indicate that the perfor-

mance of q̂VACLE
n is sometimes and somehow sensitive to the value of the

ridge cn in finite sample cases. To be specific, when σ2φ(λq/σ
2) − σ2b is

small, the ratio at q could be close to 1, then we would easily achieve a

smaller estimation of q. A small ridge cn is therefore in demand. Mean-

while, a small cn would result in the instability caused by 0/0 type ratios,

and overestimation would be possible. There exists a trade-off between un-

derestimation and overestimation in the choice of ridge cn. We now alleviate

this dilemma by using transformed eigenvalues.

Consider a transformation (depending on n) fn(·) to define

δ̂∗i := fn(λ̂i/σ
2)− fn(λ̂i+1/σ

2), i = 1, 2, · · · , p− 1. (2.12)
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2.4 Modification of the VACLE

The ratios are defined as

r̂TR
i :=

δ̂∗i+1 + cn

δ̂∗i + cn
, 1 ≤ i ≤ p− 2, (2.13)

and the estimator of q is defined as

q̂TVACLE
n := max

1≤i≤L−2

{
i : r̂TR

i ≤ τ
}
, (2.14)

where cn and τ have the same definitions as before. We call this criterion

the transformation-based valley-cliff estimation(TVACLE).

For any transformation fn, we wish that r̂TR
i remains close to 1 for i > q,

and r̂TR
q is closer to zero than r̂Rq . To this end, we use a transformation that

satisfies conditions (i)− (iii) below:

(i) P{δ̂∗q ≥ δ̂q/σ
2} → 1; (ii) P{δ̂∗i ≤ δ̂i/σ

2} → 1, for q + 1 ≤ i ≤ p− 2;

(iii) δ̂∗q+1/δ̂
∗
q ≤ δ̂q+1/δ̂q.

Remark 2.4. Under conditions (i) and (ii), the transformation pulls the

value of δ̂q up and presses that of δ̂i, for q+ 1 ≤ i ≤ p− 2 down. Condition

(iii) is necessary to make the “valley” closer to its bottom “0” and then

better separated from the “cliff” after the transformation, which is not

implied by (i) and (ii) because (iii) holds in a deterministic way while (i)

and (ii) hold with a probability going to one.

The following conditions (a) and (b) ensure that fn : R → R satisfies

the above conditions (i)− (iii), letting f ′n(x) be the derivative of fn(x):

(a) fn is differentiable, and f ′n is increasing and nonnegative in R;

(b) ∃ κn > 0 s.t. κnn
2/3 →∞ and f ′n(x) = 1, ∀x ∈ (b− κn, b+ κn).
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Lemma 2.1. Conditions (a) and (b) imply conditions (i)− (iii) for {δ̂∗n,i}

and {δ̂n,i} defined as above.

Remark 2.5. In condition (b), κn can take a wide range of values, as long

as it satisfies that κnn
2/3 →∞. We let f ′n take value 1 in (b− κn, b + κn),

so that all λ̂i/σ
2, for q + 1 ≤ i ≤ L − 1, fall into this interval. Thus, the

ratios r̂TR
i , for q + 1 ≤ i ≤ L− 2, remain unaffected by the transformation

fn. Besides, the selection of κn is independent of cn.

We now give a piecewise quadratic function for this purpose as follows:

fn(x) =


Ln − 1

2k1
, x < Ln − 1

k1
1
2
k1x

2 + (1− k1Ln)x+ 1
2
k1L

2
n, Ln − 1

k1
≤ x < Ln

x, Ln ≤ x < Rn
1
2
k2x

2 + (1− k2Rn)x+ 1
2
k2R

2
n, x ≥ Rn

(2.15)

where slopes k1 and k2 are to be determined, Ln = b − κn, Rn = b + κn.

Obviously, the TVACLE degenerates to the VACLE when k1 = k2 = 0.

The consistency of q̂TVACLE
n is stated in the following theorem.

Theorem 2.2. Under the same conditions of Theorem 2.1, q̂TVACLE
n with

the above transformation fn is equal to q with a probability going to 1.

Remark 2.6. Although selecting an optimal transformation is desirable,

we suspect the existence as there is a large class of functions satisfying the

conditions. Thus, such an issue is beyond the scope of this paper.

3. More examples

We consider more examples with structures similar to spiked population

models in this section.
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3.1 Large dimensional auto-covariance matrix

3.1 Large dimensional auto-covariance matrix

The auto-covariance matrix has a complicated structure at the sample level,

so we provide more discussion on it. Since the theory for the estimated

matrix is not as complete as those for the spiked population models, we

need to add an extra assumption on the convergence rate of the estimated

eigenvalues, as reasonably conjectured by Li et al. (2017), to derive the

estimation consistency. Although the assumption would be true, it requires

a rigorous proof that is beyond the scope of this paper, and we leave it to a

further study. In this section, we provide a proposition that assumes that

the convergence rate can be achieved and use numerical studies to verify

the usefulness of our method in practice.

Consider a factor model:

yt = Axt + εt, (3.16)

where for a fixed number q0, xt ∈ Rq0 is a common factor time series, A

is the p × q0 factor loading matrix, {εt} is a sequence of Gaussian noises

independent of xt, and yt is the t-th column of the p×T observed matrix Y.

Let Σy = Cov(yt, yt−1) be the lag-1 auto-covariance matrices of yt. Then

Σy = Cov(yt, yt−1) = Cov(Axt + εt,Axt−1 + εt−1)

= ACov(xt, xt−1)A
> + Cov(εt, εt−1) =: ∆ + Σε,

which is a finite-rank perturbation of Σε. That is, Σy has a structure similar

to the spiked popualtion model in (2.1) although Σy is not symmetric. The

14
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3.1 Large dimensional auto-covariance matrix

order determination in this example is to estimate an identifiable quantity

q ≤ q0 based on the singular values of Σ̂y := T−1
∑T+1

t=2 yty
>
t−1.

Let µ be a finite measure on the real line R with support denoted by

supp(µ) and C\supp(µ) be a complex space C subtracting the set supp(µ).

For any z ∈ C\supp(µ), the Stieltjes transformation and T-transformation

of µ are respectively defined as

S(z) :=

∫
1

t− z
dµ(t), T (z) :=

∫
t

z − t
dµ(t). (3.17)

When µ is supported on an interval, say supp(µ) = [A,B], and z is a

real value, the T -transformation T (·) is a decreasing homeomorphism from

(−∞, A) onto (T (A−), 0) and from (B,+∞) onto (0, T (B+)), where

T (A−) := lim
z∈R,z→A−

T (z), T (B+) := lim
z∈R,z→B+

T (z).

Give the assumptions on the time series {xt}1≤t≤T and {εt}1≤t≤T (Li

et al. (2017)) as follows.

Assumption 3.1. p is propotional to T , i.e. p/T → y ∈ (0,+∞).

Assumption 3.2. {xt}1≤t≤T is a q0-dimensional stationary time series,

where q0 is a fixed number, with independent components and the following

decomposition:

xi,t =
∞∑
l=0

αi,lηi,t−l, i = 1, · · · , q0, t = 1, · · · , T,

where {ηi,k} is a real-valued and weakly stationary white noise with mean

0 and variance σ2
i . Denote γ0(i) and γ1(i) as the variance and lag-1 auto-

covariance of {xi,t}, respectively.

15
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3.1 Large dimensional auto-covariance matrix

Assumption 3.3. {εt} is a p-dimensional real-valued random vector inde-

pendent of {xt} and with independent components εi,t, satisfying E(εi,t) =

0, E(ε2i,t) = σ2, and for any η > 0,

1

η4pT

p∑
i=1

T+1∑
t=1

E(|εi,t|4I(|εi,t≥ηT 1/4|)) −→ 0 as pT →∞.

We show the identifiability of q0 by the following proposition.

Proposition 3.1. Assume Assumptions 3.1-3.3 are satisfied. Denote T (·)

as the T -transformation of the limiting spectral distribution for matrix M̂y/σ
4 =

Σ̂yΣ̂
>
y /σ

4. Suppose that the above assumptions are satisfied. Let q := #{i :

1 ≤ i ≤ q0, T1(i) < T (b1+)}, where

T1(i) =
2yσ2γ0(i) + γ1(i)

2 −
√

(2yσ2γ0(i) + γ1(i)2)2 − 4y2σ4(γ0(i)2 − γ1(i))2
2γ0(i)2 − 2γ1(i)2

,

b1 = (−1 + 20y + 8y2 + (1 + 8y)3/2)/8, T (b1+) = lim
z∈R,z→b1+

T (z).

Then q is the largest number of identifiable common factors.

Remark 3.1. Although the constraint T1(i) < T (b1+) does not have a

simple formulation as presented in the spiked population models, it also

provides the optimal bound.

Denoting λ̂i, 1 ≤ i ≤ p, as the eigenvalues of M̂y, we construct a VACLE

and a TVACLE for the q defined above by replacing (σ2, b) with (σ4, b1) in

(2.11) and (2.14) respectively. Their consistencies are shown below.

Proposition 3.2. If the estimated eigenvalues λ̂i for i > q have a conver-

gence rate of order OP(n−2/3) with the assumptions in Proposition 3.1, then

P(q̂VACLE
n = q)→ 1 and P(q̂TVACLE

n = q)→ 1 as n→∞.
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3.2 Large-dimensional spiked Fisher matrix

Remark 3.2. As we commented above, Li et al. (2017) proposed a criterion

with a reasonable conjecture on the convergence rate of order OP(n−2/3)

without rigorous proof. We have not proved this result either, and thus

consider the above results to be propositions, rather than theorems. We

will see that it works well in numerical studies.

3.2 Large-dimensional spiked Fisher matrix

Again consider the signal detection problem discussed above,

xi = Aui + εi, 1 ≤ i ≤ n, (3.18)

where xi, A and ui share the same settings of (2.2), whilst εi is a noise vector

with a general covariance matrix Σ2. Denote the population covariance

matrix of xi by Σ1 such that Σ1 = Σ2 + ∆, where ∆ = ACov(ui)A
T is a

non-negative definite matrix with fixed rank q1 provided that Cov(ui) is of

full rank. Then Σ1Σ
−1
2 has a spiked structure as

spec(Σ1Σ
−1
2 ) = {λ1, · · · , λq1 , 1, · · · , 1}, (3.19)

where λ1 ≥ · · · ≥ λq1 > 1 and the number of spikes q1 is fixed. When Σ2

is known, the sample version of Σ1Σ
−1
2 is SnΣ−12 where Sn is the sample

covariance matrix in the spiked population model. Otherwise, both of Σ1

and Σ2 need to be estimated. Let S1 := n−1
∑
xix
>
i and S2 := T−1

∑
ete
>
t

corresponding to Σ1 and Σ2 with respective sample sizes of n and T , where

the sample covariance matrix S2 comes from another sequence of pure noise

observations, say {ei}1≤i≤T , with a different sample size T . When S2 is
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3.2 Large-dimensional spiked Fisher matrix

invertible, the random matrix Fn := S1S
−1
2 is called a Fisher matrix, whose

motivation comes from the following hypothesis testing problem:

H0 : Σ1 = Σ2 H1 : Σ1 = Σ2 + ∆. (3.20)

See Wang and Yao (2017) as an example. Denote the eigenvalues of Fn as

λ̂1 ≥ · · · ≥ λ̂p. The difference between the two hypotheses relies upon those

extreme eigenvalues of Fn.

Consider a more general Fisher matrix with the spiked structure

spec(Σ1Σ
−1
2 ) = {λ1, · · · , λq1 , σ2, · · · , σ2}, (3.21)

which is motivated by the hypothesis testing problem:

H0 : Σ1 = σ2Σ2 H1 : Σ1 = σ2Σ2 + ∆, (3.22)

By using the simple transformation λ̂i � λ̂i/σ
2, we can also achieve the

results in the case of σ2 = 1 in a similar manner.

Give the assumptions on the samples {xi}1≤i≤n and {et}1≤t≤T as follows.

Assumption 3.4. p/n→ c ∈ (0,∞) and p/T → y ∈ (0, 1).

Assumption 3.5. Let zi := Σ
−1/2
1 xi and wt := Σ

−1/2
2 et for 1 ≤ i ≤ n and

1 ≤ t ≤ T . Assume that {zi}1≤i≤n and {wt}1≤t≤T are independent and

satisfy moment conditions Assumptions 2.2 and 2.3.

The order determination in this example is to estimate the number q

of spikes, whose identifiability is shown in the following proposition.

Proposition 3.3. Suppose that Assumptions 3.4 and 3.5 are satisfied. De-

fine q := #{i : λi > σ2(1 − y)−1(1 +
√
c+ y − cy)}. Then q is the number

of identifiable spikes.
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3.3 General cases

Let b2 := (1 − y)−2(1 +
√
c+ y − cy)2 and construct a VACLE and a

TVACLE for q by replacing b with b2 in (2.11) and (2.14) respectively. We

show consistencies of the VACLE and the TVACLE below.

Theorem 3.1. Suppose that Assumptions 3.4 and 3.5 are satisfied. Then

P(q̂VACLE
n = q)→ 1 and P(q̂TVACLE

n = q)→ 1 as n→∞.

3.3 General cases

Beyond the three models studied above, we consider more general cases in

this section. Suppose that Tn ∈ Rp×p is the matrix in the order determina-

tion problem of interest, for example, the sample covariance matrix Sn in

Section 2, and λ̂i, 1 ≤ i ≤ p, are its eigenvalues in descending order.

We assume the following model features for λ̂i, 1 ≤ i ≤ p.

Model Feature 3.1. In the high dimensional regime with p/n → c ∈

(0,∞), suppose that there exists a fixed constant q ∈ N+ satisfying:

(A1) there exists a constant d such that λ̂q − d = oP(1) as n→∞;

(A2) for a large fixed value L satisfying q + 1 < L < p, there exist e < d

and a sequence c̃n → 0 such that λ̂i − e = OP(c̃n), for q + 1 ≤ i ≤ L.

Remark 3.3. Condition (A1) corresponds to the so-called the phase tran-

sition phenomenon for extreme eigenvalues. (A2) further focuses on the

fluctuations of those eigenvalues sticking to the boundary of the bulk and

the fluctuation is often of order OP(n−2/3), namely c̃n = n−2/3. General
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theory for the phase transitions and fluctuations can be found, for exam-

ple, in Péché (2006), Benaych-Georges et al. (2011), Benaych-Georges and

Nadakuditi (2011) and Knowles and Yin (2017). The forementioned three

models are typical examples.

Similar to spiked population models, the VACLE and the TVACLE for

the q defined in this model feature can be constructed by replacing σ2b with

d and taking a ridge cn satisfying cn/c̃n →∞ in (2.11) and (2.14).

4. Numerical Studies

4.1 Numerical studies on spiked population models

Consider the comparisons between the VACLE and the TVACLE written as

q̂VACLE
n and q̂TVACLE

n and the estimator written as q̂PYn developed and refined

by Passemier and Yao (2012) and Passemier and Yao (2014). Because

estimating q is the main focus, we conduct simulations mainly with given

σ2. For the unknown σ2 scenario, we give a simple one-step estimator of

σ2 and a brief discussion. In all simulations, we conduct 500 independent

replications. We report the results, recalling c = p/n, with three scenarios:

c = .25, 1 and 2 to represent the cases with different dimensions p smaller

than and larger than the sample size n, respectively. q̂PYn is defined by

q̂PYn := min{i ∈ {1, · · · , L} : δ̂i+1 < dn and δ̂i+2 < dn}, (4.23)

where L > q is a prefixed bound large enough, dn = o(n−1/2) and n2/3dn →

+∞.
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4.1 Numerical studies on spiked population models

Scale estimation. Passemier and Yao (2012) estimated σ2 by simply

taking the average over {λ̂i}q+1≤i≤p and Passemier et al. (2017) established

its consistency and further introduced a refined version by subtracting the

bias. But it involves an iteration procedure because the number q must be

first estimated. To construct a robust estimator, Ulfarsson and Solo (2008)

and Johnstone and Lu (2009) used the median of the sample eigenvalues

{λ̂i : λ̂i ≤ b} and the sample variances {n−1
∑n

i=1 x
2
ij}1≤j≤p, respectively.

The former median still needs a crude estimation of the right edge b =

σ2(1 +
√
c)2 in advance, which amounts to a rough initial estimation of σ2.

We propose a one-step procedure that could be regarded as a simplified

version of the method in Ulfarsson and Solo (2008). For spiked population

models, the empirical spectral distribution of Sn almost surely converges to

a Marcenko-Pastur distribution Fc,σ2(x) (see (2.3) and (2.4)). For 0 < α <

1, their α-quantiles are denoted by ξ̂
(n)

c,σ2(α) and ξc,σ2(α), respectively:

ξ̂
(n)

c,σ2(α) := λ̂p−[pα], ξc,σ2(α) := inf{x : Fc,σ2(x) ≥ α}. (4.24)

It then follows that ξ̂
(n)

c,σ2(α) → ξc,σ2(α) as n → ∞. Note that ξc,σ2(α) =

σ2ξc,1(α). Approximating a certain quantile, say ξc,σ2(α), of the M-P dis-

tribution by its sample counterpart ξ̂
(n)

c,σ2(α), we obtain an estimator of σ2,

σ̂2 = ξ̂
(n)

c,σ2(α)/ξc,1(α). (4.25)

The consistency of σ̂2 is equivalent to that of ξ̂
(n)

c,σ2(α), which holds under

Assumption 2.2. Practically, for simplicity and stability, let α = 0.5 for

21

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4.1 Numerical studies on spiked population models

0 < c < 1; and 1 − (2c)−1 for c ≥ 1. Then α = 1 − (2 max{1, c})−1. The

sample quantile ξ̂
(n)

c,σ2(α) divides all positive eigenvalues of Sn into two equal

parts. The estimator σ̂2 can be less sensitive to extreme eigenvalues of Sn.

Its performance is examined in the following numerical studies.

Remark 4.1. The rigidity of the eigenvalues of covariance matrix (see

Theorem 3.3 in Pillai and Yin (2014)) implies that the convergence rate of

σ̂2 is o(n−1+ε) for any ε > 0. The consistencies still hold for the VACLE and

the TVACLE with λ̂i/σ̂
2, as σ̂2 has a higher convergence rate than extreme

eigenvalues λ̂i, 1 ≤ i ≤ L for any fixed L. Repeating the construction

of (4.25) for estimated eigenvalues of auto-covariance matrices and spiked

Fisher matrices can lead to similar estimators for σ2. Their consistencies

are implied by the convergence of empirical spectral distributions of M̂y and

Fn respectively (see Li et al. (2017) and Wang and Yao (2017)), but the

convergence rates are still under study, we then do not give more discussion.

Models and parameters selections: the known σ2 case.

For q̂PYn , the sequence dn = Cn−2/3
√

2 log log n with C being adjusted

by an automatic procedure identical to that in Passemier and Yao (2014).

For q̂VACLE
n and q̂TVACLE

n , they share the same threshold τ = 0.5 but have

different ridges cn. Theoretically, cn can be selected flexibly on condition

that cn → 0 and n2/3cn → +∞. Here, we give an automatic procedure for
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4.1 Numerical studies on spiked population models

ridge calibration by pure-noise simulations. For given (p, n), we conduct

500 independent pure-noise simulations and obtain the α−quantile qp,n(α)

and sample mean mp,n of the difference {λ̃1− λ̃2}, where λ̃1 and λ̃2 are the

two largest eigenvalues of the noise matrix. By results in Benaych-Georges

et al. (2011), we can approximate δ̂q+1 by {λ̃1 − λ̃2}:

P{qp,n(0.01)−mp,n < δ̂q+1 −mp,n < qp,n(0.99)−mp,n}

≈P{qp,n(0.01)−mp,n < λ̃1 − λ̃2 −mp,n < qp,n(0.99)−mp,n} ≈ 0.98.

Thus, the value of {δ̂q+2 − mp,n + (qp,n(0.99) − qp,n(0.01))}{δ̂q+1 − mp,n +

(qp,n(0.99) − qp,n(0.01))}−1 would be dominated by the term (qp,n(0.99) −

qp,n(0.01)−mp,n) and close to the “cliff” valued at 1 with a high probability.

We use ridge c
(1)
n = log log n(qp,n(0.95)− qp,n(0.05))−mp,n for the VACLE

and a smaller one c
(2)
n =

√
log log n(qp,n(0.95) − qp,n(0.05)) − mp,n for the

TVACLE. Note that qp,n(α) and mp,n have the same convergence rate as

λ̂q+1 which has a slightly faster rate to zero than c
(1)
n and c

(2)
n . Also, we

determine the sequence κn, the bound L, and the slopes k1 and k2 by

the rule of thumb. We take L = 20 because it is much larger than the

true value of q in the simulations and many practical scenarios, also large

enough. Details in the selections of the parameters are reported in Table 1.

Following the calibration procedure of Passemier and Yao (2014), we obtain

the value of C for various c = p/n, as shown in Table 2.
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4.1 Numerical studies on spiked population models

Table 1: Parameters settings for the three methods

Method dn τ cn κn k1 k2 L

PY Cn−2/3
√

2 log log n — — — — — 20

VACLE — 0.5 c
(1)
n — — — 20

TVACLE — 0.5 c
(2)
n p−2/3 log log p 5 5 20

Table 2: Values of C

c=p/n 0.25 1 2

C 5.5226 6.3424 7.6257

Remark 4.2. Note that we select different ridges cn in q̂VACLE
n and q̂TVACLE

n .

As described above, we want a small ridge cn to make r̂Rq+1 well separated

from r̂Rq , but this may lead to instability of r̂Ri for i > q+ 1. Because r̂TR
i is

less sensitive to the ridge than r̂Ri , we can choose a smaller ridge for q̂TVACLE
n .

Besides, the ridges c
(1)
n and c

(2)
n are generated by an automatic procedure

instead of manual selections. This calibration procedure only depends on

(p, n). Overall, when the signals are stronger, the detection is easier.

Consider three models: for fair comparisons, Models 1 and 2 were used

by Passemier and Yao (2012) with dispersed spikes and closely spaced but

unequal spikes respectively, and Model 3 has two equal spikes:

Model 1. q = 5, (λ1, · · · , λ5) = (259.72, 17.97, 11.04, 7.88, 4.82),

Model 2. q = 4, (λ1, · · · , λ4) = (7, 6, 5, 4),

Model 3. q = 4, (λ1, · · · , λ4) = (5, 4, 3, 3).

Furthermore, we compare q̂TVACLE
n with q̂PYn on a model with a greater

multiplicity of spikes:
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4.1 Numerical studies on spiked population models

Model 4. q = 6, (λ1, · · · , λ6) = (5, 5, 5, 5, 5, 5).

Set σ2 = 1. When σ2 is regarded as unknown, use the one-step method

in (4.25) to estimate it. We conduct the same simulations for q̂VACLE
n and

q̂TVACLE
n as those with the known σ2, but we do not report results for q̂PYn

with the unknown σ2 because the results and conclusions are very similar.

Table 3: Mean, mean square error and misestimation rates of q̂PY
n , q̂VACLE

n and q̂TVACLE
n

over 500 independent replications for Models 1-3, with the known σ2 = 1.

q̂PY
n q̂VACLE

n q̂TVACLE
n

(p, n) Mean MSE q̂PY
n 6= q Mean MSE q̂VACLE

n 6= q Mean MSE q̂TVACLE
n 6= q

Model 1

(50, 200) 5.022 0.022 0.022 5.004 0.004 0.004 5.024 0.024 0.024
(200, 800) 5.012 0.012 0.012 5.002 0.002 0.002 5.016 0.016 0.016
(100, 100) 5.016 0.02 0.02 4.97 0.046 0.046 4.998 0.002 0.002
(200, 200) 5.026 0.03 0.024 5.01 0.01 0.01 5.004 0.004 0.004
(100, 50) 4.846 0.218 0.212 4.484 1.296 0.41 4.782 0.222 0.216
(200, 100) 4.99 0.074 0.074 4.758 0.486 0.194 4.954 0.046 0.046

Model 2

(50, 200) 4.018 0.058 0.028 4.006 0.006 0.006 4.016 0.016 0.016
(200, 800) 4.016 0.02 0.014 4.004 0.004 0.004 4.032 0.04 0.028
(100, 100) 3.922 0.246 0.074 3.416 2.112 0.22 3.968 0.036 0.036
(200, 200) 4.014 0.014 0.014 3.92 0.304 0.048 4.006 0.006 0.006
(200, 100) 3.558 0.83 0.342 2.452 5.144 0.584 3.712 0.304 0.28
(400, 200) 3.906 0.162 0.118 3.046 3.138 0.364 3.958 0.05 0.044

Model 3

(50, 200) 3.994 0.118 0.032 3.772 0.804 0.08 4.024 0.024 0.024
(200, 800) 4.018 0.018 0.018 4 0 0 4.036 0.036 0.036
(200, 200) 3.456 0.92 0.414 1.94 6.684 0.734 3.614 0.518 0.326
(400, 400) 3.904 0.18 0.122 2.7 4.152 0.478 3.898 0.142 0.112
(400, 200) 2.222 3.81 0.952 1.08 9.736 0.968 2.648 2.296 0.91
(800, 400) 2.626 2.482 0.844 1.588 7.104 0.954 3.022 1.558 0.7

From Table 3, we have the following observations. For Model 1, all

three methods work well with high accuracies and small MSEs in the cases

where the dimension p is smaller than n (c = p/n = 0.25). When either

c = 1 or c = 2, q̂TVACLE
n is the best, and q̂PYn also has smaller MSEs than

q̂VACLE
n . In a word, all three methods perform in a satisfactory manner, but

the performance of q̂TVACLE
n is the stablest for various values of c = p/n.
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4.1 Numerical studies on spiked population models

Table 4: Mean, mean squared error and empirical distribution of q̂PY
n and q̂TVACLE

n

over 500 independent replications for Model 4 (q = 6), with the known σ2 = 1.

(p, n) Mean MSE q̂ = 0 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4 q̂ = 5 q̂ = 6 q̂ ≥ 7

q̂PY
n

(50, 200) 5.358 2.874 0.018 0.04 0.042 0.06 0 0 0.826 0.014
(200, 800) 5.816 0.868 0.002 0.014 0.02 0.012 0 0 0.94 0.012
(100, 100) 4.436 6.904 0.06 0.072 0.118 0.106 0.01 0.048 0.572 0.014
(200, 200) 4.964 4.772 0.042 0.052 0.082 0.07 0 0 0.742 0.012
(400, 200) 3.858 9.794 0.078 0.138 0.164 0.094 0.008 0.032 0.484 0.002
(800, 400) 4.406 7.558 0.068 0.11 0.098 0.086 0 0 0.626 0.012

q̂TVACLE
n

(50, 200) 6.006 0.006 0 0 0 0 0 0 0.994 0.006
(200, 800) 6.024 0 0 0 0 0 0 0 0.976 0.024
(100, 100) 5.886 0.122 0 0 0 0 0.004 0.106 0.89 0.11
(200, 200) 6 0 0 0 0 0 0 0 1 0
(400, 200) 5.952 0.06 0 0 0 0 0.004 0.042 0.952 0.002
(800, 400) 6.002 0.002 0 0 0 0 0 0 0.998 0.002

For Model 2 q̂VACLE
n is sensitive to the ratio c, particularly its MSE. Al-

though when c = 2, q̂TVACLE
n may sometimes slightly underestimate the

true number, it is less serious than q̂PYn . For Model 3 with two equal spikes,

q̂TVACLE
n works much better than both q̂PYn and q̂VACLE

n that underestimate q

significantly. To further confirm this phenomenon, we report the results for

Model 4 with more equal spikes. The results in Table 4 suggest that q̂TVACLE
n

overall performs better than q̂PYn in terms of estimation accuracy and MSE.

It has an underestimation problem as its searching procedure stops earlier

once the difference between consecutive eigenvalues corresponding to equal

spikes is below the threshold dn. This conclusion can be made after ob-

serving its empirical distributions in Table 4. In contrast, q̂TVACLE
n largely

avoids this problem. To better illustrate this fact, we plot in Figure 1 the

first 40 differences δ̂i for q̂PYn and the first 40 ratios of r̂TR
i for q̂TVACLE

n . The

left subfigure shows that there are three δ̂i, i = 3, 4, 5, being very close to
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4.1 Numerical studies on spiked population models

the threshold line y = dn, which causes the underestimation problem shown

in Table 4. In contrast, the right subfigure shows that the “valley” r̂TR
q and

the “cliff” r̂TR
q+1 are well separated by the threshold line τ = 0.5.

As we claimed in Sections 2.3 and 2.4, the VACLE could be somehow

sensitive to the ridge selection. The results reported in Table 3 confirm

this claim. To explore how the ridge cn affects both the VACLE and the

TVACLE, Figures 2 presents, for Model 2 with (p, n) = (400, 200), the

boxplots of the first 7 ratios without ridge r̂i; the first 7 ridge ratios r̂Ri ; and

the first 7 transformed ridge ratios r̂TR
i . From the left to right subfigure of

Figure 2, we can see that r̂i fluctuates much more than r̂Ri for i > q = 4,

and that r̂TR
4 and r̂TR

i , i > 4 are separated more significantly. This confirms

the necessity of using a ridge with a stable ratio r̂Ri and transformation can

enhance the estimation accuracy.

Figure 1: Plots of the first 40 differences and ratios: the left is for differences δ̂i, 1 ≤

i ≤ 40, in q̂PY
n ; the right is for ratios r̂TR

i , 1 ≤ i ≤ 40, in q̂TVACLE
n . The results are based

on simulations for Model 4 with 500 independent replications, and (p, n) = (400, 200).
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The unknown σ2 Case. Use Models 2 and 4 and regard σ2 as an un-
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4.1 Numerical studies on spiked population models

known value. These two models represent the cases with and without equal

spikes. Furthermore, because the conclusions are very similar to those with

known σ2, we then report only the results for q̂VACLE
n and q̂TVACLE

n to fur-

ther confirm the advantages of q̂TVACLE
n . The numerical results are shown

in Table 5. The results in the last two columns show that the one-step

estimation σ̂2 has good performance in terms of accuracy and robustness.

Figure 2: Boxplots of the first 7 ratios: the left is for ratios without ridge, r̂i; the

middle is for ratios with ridge r̂Ri ; the right is for transformed ratios with ridge r̂TR
i .
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Table 5: Mean and mean square error of q̂VACLE
n , q̂TVACLE

n and σ̂2, and the misestima-

tion rates of q̂VACLE
n and q̂TVACLE

n over 500 independent replications for Model 2 and 4,

with the unknown σ2 whose true value is 1.

q̂VACLE
n q̂TVACLE

n σ̂2

(p, n) Mean MSE q̂VACLE
n 6= q Mean MSE q̂TVACLE

n 6= q Mean MSE

Model 2

(50, 200) 4.002 0.002 0.002 4.012 0.012 0.012 1.0513 0.0033
(200, 800) 4.002 0.002 0.002 4.014 0.014 0.014 1.0119 0.0002
(100, 100) 3.326 2.346 0.258 3.966 0.038 0.038 1.0326 0.0022
(200, 200) 3.96 0.176 0.04 4.006 0.006 0.006 1.0169 0.0006
(200, 100) 2.334 5.726 0.616 3.71 0.306 0.282 1.0205 0.0008
(400, 200) 3.266 2.454 0.292 3.962 0.038 0.038 1.0094 0.0002

Model 4

(50, 200) 6.01 0.01 0.01 6.01 0.01 0.01 1.0788 0.0069
(200, 800) 6.002 0.002 0.002 6.022 0.022 0.022 1.0181 0.0004
(100, 100) 4.082 10.362 0.388 5.878 0.142 0.112 1.0555 0.0042
(200, 200) 5.846 0.938 0.034 6 0 0 1.0256 0.0009
(400, 200) 4.524 8.064 0.306 5.958 0.042 0.042 1.0165 0.0004
(800, 400) 5.822 0.966 0.034 6.01 0.01 0.01 1.0079 9× 10−5
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4.2 Numerical studies on large dimensional auto-covariance matrices

4.2 Numerical studies on large dimensional auto-covariance ma-

trices

To estimate the number of factors in Model (3.16), Li et al. (2017) intro-

duced the following ratio-based estimator,

q̂LWY
T := min{i ≥ 1 : λ̂i+1/λ̂i > 1−dT and λ̂i+2/λ̂i+1 > 1−dT}−1, (4.26)

where λ̂i, 1 ≤ i ≤ p, are in descending order and dT is a tuning param-

eter selected as that in Section 3.1 of Li et al. (2017). We use q̂LWY
T as

the competitor to examine the performance of q̂TVACLE
n . For the ratio

p/T = y, we consider two values y = 0.5 and y = 2. The dimension

p = 100, 200, 300, 400 and 500. In each case, we repeat the experiment 500

times. To be fair and concise, we conduct the simulation with two models

as follows. The model structure is the same as in Lam and Yao (2012) and

Li et al. (2017): for 1 ≤ t ≤ T

yt = Axt + εt, εt ∼ Np(0, Ip), xt = Θxt−1 + et, et ∼ Nk(0,Γ), (4.27)

where A ∈ Rp×q is the factor loading matrix and {εt} is a white noise

sequence with unit variance σ2 = 1. As in Li et al. (2017), A and Γ take

the forms as A = (Iq,O(p−q)×q)
>, Γ = diag(2, 2, · · · , 2). We manipulate the

strength of factors by adjusting the matrix Θ in different models as follows:

Model 5. This model is the same as Scenario III in Li et al. (2017). There

are q = 3 factors whose theoretical limits equal (7.726, 5.496, 3.613) in the

case of y = 0.5 and (23.744, 20.464, 17.970) in the case of y = 2. The upper
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4.2 Numerical studies on large dimensional auto-covariance matrices

edge b1 of the supports in these two cases are respectively 2.773 and 17.637.

q = 3 factors are identifiable, and Θ = diag(0.6,−0.5, 0.3).

Model 6. This model has more factors. There are q = 6 factors with

identical strength, and their theoretical limits are 5.496 in the case of y =

0.5 and 20.464 in the case of y = 2. Because these limits exceed their

corresponding upper edge b1, all q = 6 factors are identifiable in theory

with Θ = diag(0.5, 0.5, 0.5, 0.5, 0.5, 0.5).

All parameters in the simulations share the same settings of parameters

in Section 4.1 where we conduct numerical studies for spiked population

models. These parameters in the TVACLE are shown in Table 6.

Table 6: Parameters in the TVACLE.

τ cT κT k1 k2 L

0.5
√

log log T [qp,T (0.95)− qp,T (0.05)]−mp,T p−2/3 log log p 5 5 20

Table 7: Mean, mean squared error and empirical distribution of q̂LWY
T and q̂TVACLE

T

over 500 independent replications for Model 5.

p 100 200 300 400 500 p 100 200 300 400 500
T = 2p 200 400 600 800 1000 T = 0.5p 50 100 150 200 250

q̂LWY
T

q̂ = 0 0.024 0.002 0 0 0 q̂ = 0 0.53 0.238 0.234 0.138 0.054
q̂ = 1 0.028 0 0 0 0 q̂ = 1 0.326 0.412 0.38 0.36 0.282
q̂ = 2 0.384 0.138 0.05 0.014 0.008 q̂ = 2 0.136 0.32 0.356 0.464 0.572
q̂ = 3 0.544 0.85 0.948 0.976 0.986 q̂ = 3 0.008 0.03 0.03 0.036 0.092
q̂ ≥ 4 0.02 0.01 0.002 0.01 0.006 q̂ ≥ 4 0 0 0 0.002 0
Mean 2.508 2.866 2.952 2.996 2.998 Mean 0.622 1.142 1.182 1.404 1.702
MSE 0.732 0.166 0.052 0.024 0.014 MSE 6.21 4.11 3.982 3.148 2.186

q̂TVACLE
T

q̂ = 0 0 0 0 0 0 q̂ = 0 0.02 0.002 0 0.002 0
q̂ = 1 0 0 0 0 0 q̂ = 1 0.332 0.182 0.116 0.104 0.054
q̂ = 2 0.196 0.02 0.014 0.008 0.002 q̂ = 2 0.584 0.698 0.688 0.73 0.676
q̂ = 3 0.782 0.948 0.974 0.964 0.974 q̂ = 3 0.062 0.116 0.196 0.16 0.268
q̂ ≥ 4 0.022 0.032 0.012 0.028 0.024 q̂ ≥ 4 0.002 0.002 0 0.004 0.002
Mean 2.826 3.012 2.998 3.02 3.022 Mean 1.694 1.934 2.08 2.06 2.218
MSE 0.218 0.052 0.026 0.036 0.026 MSE 2.094 1.446 1.152 1.168 0.894
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Table 8: Mean, mean squared error and empirical distribution of q̂LWY
T and q̂TVACLE

T

over 500 independent replications for Model 6.

p 100 200 300 400 500 p 100 200 300 400 500
T = 2p 200 400 600 800 1000 T = 0.5p 50 100 150 200 250

q̂LWY
T

q̂ = 0 0.156 0.104 0.072 0.098 0.054 q̂ = 0 0.226 0.202 0.26 0.24 0.134
q̂ = 1 0.178 0.154 0.124 0.146 0.076 q̂ = 1 0.418 0.35 0.326 0.304 0.28
q̂ = 2 0.19 0.154 0.114 0.104 0.062 q̂ = 2 0.296 0.314 0.262 0.236 0.312
q̂ = 3 0.162 0.112 0.068 0.106 0.044 q̂ = 3 0.06 0.122 0.134 0.17 0.188
q̂ = 4 0.13 0.006 0 0 0 q̂ = 4 0 0.012 0.016 0.05 0.07
q̂ = 5 0.112 0.072 0 0 0 q̂ = 5 0 0 0.002 0 0.014
q̂ = 6 0.072 0.394 0.62 0.542 0.754 q̂ = 6 0 0 0 0 0.002
q̂ ≥ 7 0 0.004 0.002 0.004 0.01 q̂ ≥ 7 0 0 0 0 0
Mean 2.556 3.574 4.29 3.954 4.926 Mean 1.19 1.392 1.326 1.486 1.83
MSE 15.196 11.166 8.13 9.806 5.242 MSE 23.862 22.192 22.974 21.746 18.802

q̂TVACLE
T

q̂ = 0 0 0 0 0 0 q̂ = 0 0 0 0 0 0
q̂ = 1 0 0 0 0 0 q̂ = 1 0.01 0 0 0 0
q̂ = 2 0 0 0 0 0 q̂ = 2 0.206 0.07 0.03 0.008 0.008
q̂ = 3 0.004 0 0 0 0 q̂ = 3 0.586 0.496 0.33 0.224 0.13
q̂ = 4 0.066 0.002 0 0 0 q̂ = 4 0.19 0.414 0.546 0.574 0.554
q̂ = 5 0.418 0.038 0 0 0 q̂ = 5 0.008 0.02 0.094 0.188 0.294
q̂ = 6 0.51 0.946 0.99 0.984 0.97 q̂ = 6 0 0 0 0.006 0.014
q̂ ≥ 7 0.002 0.014 0.01 0.016 0.03 q̂ ≥ 7 0 0 0 0 0
Mean 5.44 5.972 6.01 6.016 6.03 Mean 2.98 3.384 3.704 3.96 4.176
MSE 0.72 0.06 0.01 0.016 0.03 MSE 9.588 7.26 5.728 4.628 3.808

From Table 7, we can see that when T = 2p, q̂LWY
T works well. That is,

when T is large, q̂LWY
T shows good performance, whilst when T is not large, it

tends to underestimate the true number q. Our method outperforms q̂LWY
T .

Although when T is small, the true value is somewhat underestimated, but

still, with a high proportion, to be two or greater. Table 8 shows that for

Model 6 with equal spikes, when T = 2p, the performance of q̂LWY
T is not

encouraging, and when T = 0.5p, the underestimation problem becomes

very serious, with a very high proportion having q̂LWY
T ≤ 2. In contrast, our

method performs well when T = 2p and when T = 0.5p; underestimation

still occurs, but it is much less serious than q̂LWY
T in the sense that q̂ > 2

with high proportion. Overall, our estimator q̂TVACLE
T is superior to q̂LWY

T

31

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



4.3 Numerical studies on large dimensional spiked Fisher matrices

in these limited simulations.

4.3 Numerical studies on large dimensional spiked Fisher ma-

trices

Because the TVACLE has been demonstrated to outperform the VACLE

overall, we only consider the comparison between q̂TVACLE
n and the estimator

q̂WY
n introduced by Wang and Yao (2017). Sharing notations in Section 3.2,

the estimator q̂WY
n can be written as

q̂WY
n := max{i : λ̂i ≥ b2 + dn}, (4.28)

where dn was recommended to be (log log p)p−2/3 in their paper.

As a Fisher matrix Fn = S1S
−1
2 involves two random matrices S1 and

S2, its eigenvalues are more dispersed, with wider range of the support, than

the spiked sample covariance matrices and auto-covariance matrices. The

aforementioned automatic procedure for ridge selection would then generate

a larger cn, and this in turn increases the value at the “valley”. Hence, we

use a larger threshold τ = 0.8 to avoid underestimation. Further, in the

following Model 7, we set the ridge c
(3)
n =

√
log log p[qp,n(0.95)−qp,n(0.05)]−

mp,n, whilst for Model 8 with dramatically-fluctuated extreme eigenvalues,

we need to set c
(3)
n =

√
log log p[qp,n(0.8) − qp,n(0.05)] − mp,n to avoid too

large ridge. Other parameters in q̂TVACLE
n share the same settings with that

of the spikd population models, which are shown in Table 9.
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Table 9: Parameters in the TVACLE.

τ cn κn k1 k2 L

0.8 c
(3)
n p−2/3 log log p 5 5 20

Again, for a fair comparison, we design two models, one was used by

Wang and Yao (2017) and the other is with weaker spikes. For y = p/T

and c = p/n, we set (0.5, 0.2) and (0.2, 0.5) for the respective models. The

dimension p takes values of 50, 100, 150, 200 and 250. For each combination

(p, T, n), the experiment is repeated 500 times. Consider the number of

spikes to be q = 3 and A to be a p× 3 matrix as:
√
α1 0 0 0 · · · 0

0
√

α2

2

√
α2

2
0 · · · 0

0
√

α3

2
−
√

α3

2
0 · · · 0



>

3×p

, (4.29)

where α = (α1, α2, α3) assumes different values in two models. Assume the

covariance matrix Cov(ui) = I3 and Σ2 = diag(1, · · · , 1, 2, · · · , 2), where

“1” and “2” both have multiplicity p/2. The two models are:

Model 7. Let α = (10, 5, 5), (y, c) = (0.5, 0.2), which is Model 1 in Wang

and Yao (2017). The matrix Σ1Σ
−1
2 has three spikes λ1 = 11 and λ2 =

λ3 = 6 that are all significantly larger than the identifiability bound
√
b2 =

(1− y)−1(1 +
√
c+ y − cy) ≈ 3.55.

Model 8. Let α = (10, 2, 2), (y, c) = (0.2, 0.5). The matrix Σ1Σ
−1
2 then

also has three spikes λ1 = 11 and λ2 = λ2 = 3 larger than the identifiability
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bound
√
b2 = (1 − y)−1(1 +

√
c+ y − cy) ≈ 2.22. Then λ2 = λ2 = 3 are

relatively more difficult to detect.

Table 10: Mean, mean squared error and empirical distribution of q̂WY
n and q̂TVACLE

n

for Model 7.

(p, T, n) Mean MSE q̂ = 0 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4
(50, 100, 250) 2.344 0.732 0 0.034 0.592 0.37 0.004
(100, 200, 500) 2.672 0.352 0 0.004 0.328 0.66 0.008

q̂WY
n (150, 300, 750) 2.822 0.194 0 0 0.186 0.806 0.008

(200, 400, 1000) 2.964 0.092 0 0 0.064 0.908 0.028
(250, 500, 1250) 2.96 0.068 0 0 0.054 0.932 0.014
(50, 100, 250) 2.364 0.7 0 0.028 0.584 0.384 0.004
(100, 200, 500) 2.688 0.336 0 0.004 0.312 0.676 0.008

q̂TVACLE
n (150, 300, 750) 2.842 0.182 0 0 0.17 0.818 0.012

(200, 400, 1000) 2.974 0.082 0 0 0.054 0.918 0.028
(250, 500, 1250) 2.964 0.064 0 0 0.05 0.936 0.014

Table 11: Mean, mean squared error and empirical distribution of q̂WY
n and q̂TVACLE

n

for Model 8.

(p, T, n) Mean MSE q̂ = 0 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4
(50, 250, 100) 2.114 1.07 0 0.09 0.708 0.2 0.002
(100, 500, 200) 2.302 0.79 0 0.046 0.606 0.348 0

q̂WY
n (150, 750, 300) 2.498 0.538 0 0.018 0.466 0.516 0

(200, 1000, 400) 2.622 0.394 0 0.006 0.368 0.624 0.002
(250, 1250, 500) 2.692 0.324 0 0.004 0.304 0.688 0.004
(50, 250, 100) 2.238 0.898 0 0.064 0.638 0.294 0.004
(100, 500, 200) 2.462 0.602 0 0.03 0.48 0.488 0.002

q̂TVACLE
n (150, 750, 300) 2.71 0.314 0 0 0.302 0.686 0.012

(200, 1000, 400) 2.82 0.232 0 0.002 0.2 0.774 0.024
(250, 1250, 500) 2.904 0.164 0 0 0.13 0.836 0.034

The results reported in Tables 10 and 11 show that q̂TVACLE
n shows

overall better performance than q̂WY
n . For Model 8, q̂TVACLE

n is superior to

q̂WY
n when the signals are relatively weak.

5. A real data example

Consider a data set of the daily prices of 100 stocks (see Li et al. (2017)).

This dataset includes the stock prices of the S&P500 from 2005-01-03 to
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2006-12-29. Except for incomplete data, every stock has 502 observations

of log returns. Thus, T = 502, p = 100, and then c = p/T ≈ 0.2.

Denote yt ∈ Rp, 1 ≤ t ≤ T , as the t-th observation of the log return

of these 100 stocks, and we then obtain its lag-1 sample auto-covariance

matrix Σ̂y and the matrix M̂y = Σ̂yΣ̂
>
y as formulated in Section 3.1. Use

q̂TVACLE and q̂LWY in Li et al. (2017) to determine the number of factors. All

parameters in these two methods share the same settings with the simula-

tion parts. Besides, the unknown σ2 in q̂TVACLE is estimated by the method

(4.25) after necessary modification as we commented in Remark 4.1. We can

see that the two largest eigenvalues of M̂y are 7.17× 10−7 and 2.01× 10−7,

and the third to the 40-th eigenvalues are shown in Figure 3.

Figure 3: Eigenvalues of M̂y from λ̂3 to λ̂40
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From the 3rd to the 40th largest eigenvalues (times 10^7)

Figure 4 shows that q̂LWY = 5. However, as shown in Figure 3, the gap

between the 5th eigenvalue and several following eigenvalues is evidently

insignificant. As q̂LWY is based on the magnitudes of the next two consecu-

tive ratios. If eigenvalue multiplicity occurs, q̂LWY could likely select a value

smaller than the true number.
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Figure 4: Ratios λ̂i+1/λ̂i in Li et al. (2017) and Ratios r̂TR
i in the TVACLE, 1 ≤ i ≤ 40.

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
● ● ●

●

●
●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●
● ●

0 10 20 30 40

0.
3

0.
5

0.
7

0.
9

From ratio 1 to ratio 40 for LWY estimator

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

From ratio 1 to ratio 40 for TVACLE

When the TVACLE is used, q̂TVACLE = 10. Figure 4 shows that the 11th

ratio is much larger than the 10th ratio, although some values get smaller.

Note that in this example, c ∼ 0.2 and the ridge is relatively small, which

would not very much dominate the difference between the eigenvalues and

thus some oscillating values remain after the 10th ratio.

It is considered that q̂LWY would neglect several factors and likely result

in an underestimation. For a real data example, we usually cannot give a

definitive answer. However, our method could provide an estimation that

would be relatively conservative but necessary, particularly in the initial

stage of data analysis; otherwise, an excessively parsimonious model would

cause misleading conclusions.

6. Concluding remarks

In this paper, we propose a valley-cliff criterion for spiked models, and the

method can be applied to other order determination problems when the

dimension is proportional to the sample size, such as those in sufficient
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dimension reduction if the corresponding asymptotics can be well investi-

gated. The method is for the case with a fixed order q. An extension to

the case with diverging q will be proposed in our future work. Besides, our

method applies to general Σ cases provided that we have the true value or a

reliable estimation of the right edge corresponding to Σ. But it is generally

hard to have a good estimation of the right edge in real data analysis when

Σ is unknown.

Supplementary Materials

Proofs and technical details are contained in the supplementary materials.
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